Wrap-Up: Data Sharing and the Web

Zachary G. Ives
University of Pennsylvania

April 16, 2003
Reminder: Monday is your project presentation
- About 5-7 minutes each
- Slides are allowed (but not required); demos welcome (but also not required)
 - What did you do?
 - What were the hard problems?
 - How are you solving them?
 - How are you evaluating your work?

Take-home final exam also distributed Monday
- Will likely be 3-4 essay questions; open-book, open-notes
- Due Friday May 2 before 6PM EST
Administrivia II

- Project reports due Friday May 2
 - 5-10 pages for implementation project; 10-15 pages for survey paper
 - Structured like a conference paper
- Remember to answer:
 - What problem you’re addressing
 - Why it’s a problem
 - How you’re attacking it
 - How you’re going to show you succeeded
Where Have We Been? I

- Our themes:
 - Data sharing using **semantics**
 - Web and Internet
- The central characters:
 - Data integration
 - What’s does it look like?
 - What does it do?
 - vs. warehousing?
 - Decentralized variants
 - Peer data management systems
Where Have We Been? II

- Processing queries
 - Query optimization
 - What were the two systems?
 - Query execution
 - Basic principles
- Adaptive variants
 - Inter-query: SITs
 - Intra-query: mid-query re-optimization, eddies
- Query processing in a distributed context
 - Mariposa, Tukwila
- Answering queries using views
Where Have We Been? III

- Other ways of sharing data:
 - Publish-subscribe: XFilter
 - IR-style querying
 - IR/DB hybrids: WHIRL, extended XML-QL
- Difference-based models:
 - Change detection in semistructured data
 - Heraclitus
 - Harmony
- Semantic Web
- Groupware
- Matching schemas and data
How Much Real-World Impact? I

- Data integration:
 - Systems available from Nimble Technology, Enosys Markets, IBM, BEA, Progressive Software, ...

- Query optimization:
 - Every DBMS uses System-R or Volcano-derived optimizer

- Query execution:
 - Basic techniques common to every DBMS

- Adaptive query processing:
 - Only a few techniques (e.g., SITs) currently available

- Answering queries using views:
 - Data integration systems; DB2, Oracle, likely SQL Server
How Much Real-World Impact? II

- Publish-subscribe:
 - Not too much use (exception: RSS, available from Netscape/AOL, CNET, etc.)

- IR querying:
 - Google is partly based on this!
 - DB hybrids: DB2 Text Extender, SQL Server text ext.

- Synchronization/change detection:
 - CVS, diff3, Unison

- Groupware:
 - SMTP, Exchange server, Domino, Groove, …

- Semantic Web:
 - The jury is still out…
What’s Likely to Be Adopted Soon?

- Adaptive query processing
 - “Autonomic computing” is the big buzzword
 - Much like JIT compiling…
- Industry may actually be driving most of the adaptive work in the future:
 - Adapting to new configurations, new hardware
 - Adapting to workloads
 - Self-healing (failover)
What Are Today’s Hottest Research Topics? I

- XML!!
 - Everyone does papers on XML processing, XML indices, XML validation, XML constraints, XML compression, and so on

- Data streams!!!!
 - The new hot topic, though it has many meanings
 - Sensor data; stock data; astronomy data
 - Mining streams; statistics for streams; querying streams over sliding windows; etc.

- Traditional stuff: optimization, execution, indexing
What Are Today’s Hottest Research Topics? II

- Peer-to-peer architectures
 - Using P2P for scalability reasons
- Semantic translation
 - Mapping schemas; manipulating schemas
 - Querying in this context
 - Semantic Web
- Architecture-aware DBs
 - Cache-aware algorithms; scheduler-aware algorithms
In Summary…

- I hope you found this course to be “less dull than average” 😊
 - Databases doesn’t have to mean payroll systems or web back-ends
- I hope you learned something that’s useful regardless of whether you want to be a DB researcher
 - How to read and analyze technical papers
 - How to present
 - How to write
 - ... And a little about what goes on inside the DBMS
- Thanks for being a fabulous class!