
Fall, 2005 CIS 550

Database and Information Systems

Homework 6
November 22, 2005; Due November 29 at 1:30 PM

Problem 1 [50 points]:

 10 20 30 80

 35 42 50 65

 90 98 ___ ___

A B C

30* 31* ___ ___

36* 38* ___ ___

42* 43* ___ ___

51* 52* 56* 60*

68* 69* 70* 79*

81* 82* ___ ___

94* 95* 96* 97*

98* 99* 100* 105*

Figure 1: B+ Tree for Problem 1

Consider the B+ tree index shown in Figure 1, which uses alternative(1) for data entries.
Each intermediate node can hold up to five pointers and four key values. Each leaf node
can hold up to four records (indicated as a key value plus a “*”), and leaf nodes are doubly
linked to their predecessor and successor nodes in the index (although this is not shown in
the figure). The minimum number of keys allowed in an intermediate node is two, and the
minimum number of records allowed in a leaf node is also two. In other words, the order of
the tree is two. Underscores (“ ”) indicate unallocated entries.

1. Insert a record with search key 94 into the tree.

1

2. Delete the record with search key 38 from the tree.

2

Problem 2 [50 points]: For this part of the assignment, you will need to run Oracle on
eniac, using the sql command, as in previous assignments. The goal is to see the benefits of
indexing in action.

The Oracle setup on eniac has a series of sample tables created for running database
benchmarks — the so-called TPC-H benchmark. Additionally, each of these tables may
have several alternative index structures. We will be comparing performance depending on
which indices are used. To do this assignment, you will need to repeat each query 5 times,
time it with a stopwatch or the PC clock, and average the running times. (Averaging is
necessary in case others are using eniac at the same time and affecting your running times.)

The lineitem table has nearly 300,000 rows and takes approximately 37MB of space. We
have two indices in lineitem, each with a name: sys c001480 is an index over the attribute
pair (l orderkey, l linenumber) and lineno is on the singleton attribute (l linenumber).

1. Start by running the query:

select avg(l_linenumber)

from zives.lineitem

where l_linenumber >= 3;

which uses whatever indices Oracle prefers. Time the run and repeat it 5 times,
averaging the total. What is that value?

Answer: about 0.1 seconds.

2. Next, repeat the query with a special optimizer hint that says you want to scan the
full table and avoid indices:

select /*+ full(l) */ avg(l_linenumber)

from zives.lineitem l

where l_linenumber >= 3;

Average the running time for 5 runs and record the result. What can you say about the
difference between the two runs? Do these results suggest that Oracle uses an index
by default?

Answer: about 0.3 seconds. When the query avoids indices, it takes about 3 times
longer. It suggests Oracle uses an index by default.

3. Try another hint, which makes use of the first index:

3

select /*+ index(l sys_c001480) */ avg(l_linenumber)

from zives.lineitem l

where l_linenumber >= 3;

Run 5 times and record the result. How did this compare to the first two cases? Did
that particular index offer any benefits?

Answer: About 0.18 seconds. It is slower than the default case and faster than the
no-index case. The particular index offers some benefits.

4. Which index was used in the default, un-hinted Oracle query? Generalizing from the
Oracle SQL hints shown above, what is the query hint that is equivalent to that default
query?

Answer: when use index /*+ index(l lineno) */, the averaged running time is about
0.1 seconds. So the default, un-hinted Oracle query might use lineno index.

5. For each of the two indices and for the non-indexed case, explain how what data and/or
index structures will be examined in answering the query.

Answer:
The lineno index is sorted on l linenumber, the system can locate the first index entry
of l linenumber >=3, skip the part of the index where l linenumber<3. Partial indices
need to be accessed.

The sys c001480 index is sorted first by l orderkey, then by l linenumber. Two data
entries with same value of l linenumber may be located in two different places in the
index tree(or index table) due to l orderkey. Thus, the entire index has to be accessed.

For the non-indexed case, all data entries in the lineitem relation will be scanned se-
quentially.

6. Run the two queries:

select /*+ index(l sys_c001480) */ count(distinct l_suppkey)

from zives.lineitem l

where l_linenumber < 400;

select /*+ full(l) */ count(distinct l_suppkey)

from zives.lineitem l

where l_linenumber < 400;

4

Report the averaged running times over 5 runs. Explain the relative differences (or
lack thereof) in performance, based on your knowledge of index and data layout char-
acteristics, as well as your knowledge of “covering” indices.

Answer:
The first query takes about 1 minutes 20 seconds; the second query takes about 45
seconds.
In the first query, since sys c001480 doesn’t contains l supperkey, when the system
finishes an index access, it has to retrieve the actual l suppkey value by another data
entry access. The physical page of the data entry may be on the different page of the
index entry. Thus, to obtain a single value of l suppkey, two disk I/Os are required
and take longer time.

The second query sequentially read every data entry once.

5

