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Abstract. Several alternatives to manage large XML docu-
ment collections exist, ranging from file systems over rela-
tional or other database systems to specifically tailored XML
base management systems. In this paper we give a tour of
Natix, a database management system designed from scratch
for storing and processing XML data. Contrary to the com-
mon belief that management of XML data is just another ap-
plication for traditional databases like relational systems, we
illustrate how almost every component in a database system
is affected in terms of adequacy and performance. We show
how to design and optimize areas such as storage, transaction
management – comprising recovery and multi-user synchro-
nization – as well as query processing for XML.
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1 Introduction

As XML [7] becomes widely accepted, the need for systematic
and efficient storage of XML documents arises. For this rea-
son we have developed Natix, a native XML base management
system (XBMS) that is custom tailored to the processing of
XML documents. A general-purpose XBMS for large-scale
XML processing has to fulfill several requirements: (1) To
store documents effectively and to support efficient retrieval
and update of these documents or parts of them; (2) To support
standardized declarative query languages like XPath [9] and
XQuery [5]; (3) To support standardized application program-
ming interfaces (APIs) like SAX [30] and DOM [22]; (4) Last
but not least, a safe multi-user environment via a transaction
manager has to be provided including recovery and synchro-
nization of concurrent access.

A concrete example for an application domain requir-
ing (1)–(4) are life sciences. There, annotated biosequences
(DNA, RNA, and amino acid) are a predominant form of data.
The sequences and especially their annotations are commonly
represented using XML, making (1) an obvious requirement.
Typically, the annotated sequence data is processed by a mix of
tools for generation, visualization, (further) annotation, min-
ing, and integration of data from different sources. Existing

XML tools relying on DOM or SAX interfaces need to be
integrated (3). The emergence of new scientific methods reg-
ularly requires new tools. Their rapid development is facili-
tated by declarative XML query languages because they ren-
der trivial the frequently recurring task of selecting sequences
based on their annotation (2). Each sequence is analyzed us-
ing several costly experiments performed concurrently. Their
results are valuable annotations added to the sequence data.
Obviously, full-fledged transaction management reduces the
risk of wasting resources (4). Other application areas include
online-shopping with product catalog management and logis-
tics applications.

We are aware that several approaches based on traditional
database management systems (DBMSs) exist, e.g., storing
XML in relational DBMSs or object-oriented DBMSs [13,18,
25,29,39–42]. We believe, however, that a native XML base
management system is the more promising solution, as ap-
proaches mapping XML onto other data models suffer from
severe drawbacks. For example, let us look at the impact of
mapping XML documents onto relational DBMSs on the stor-
age of those documents. First, we have to decide on the actual
schema. On the one hand, if we take a document-centric view
we could retain all information of one document in a single
data item, e.g., a CLOB (Character Large OBject). This is
ideal for handling whole documents, but if we want to ma-
nipulate fragments of documents we would have to read and
parse the whole document each time. On the other hand, if
we take a data-centric view, each document is broken down
into small parts, e.g., the nodes of a tree representation of
an XML document. Obviously, handling parts of documents
is now much more efficient, whereas importing or exporting
a whole document has become a time-consuming task. This
dilemma exemplifies a potential for improvement exploitable
only by native XML base management systems. Opportunities
for improvements are not limited to the storage layer, as we
illustrate in this paper.

We cover all major components of Natix’ runtime system.
Those using existing techniques are discussed only briefly,
those introducing new techniques are discussed in greater de-
tail. Besides the system architecture with its selected list of
applied techniques, we contribute the following to the state of
the art of XBMSs. We introduce a storage format that clus-
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ters subtrees of an XML document tree into physical records
of limited size. Our storage format meets the requirement for
the efficient retrieval of whole documents and document frag-
ments. The size of a physical record containing the XML sub-
tree is typically far larger than the size of a physical record rep-
resenting a tuple in a relational database system. This affects
recovery. To improve recovery in the XML context, we devel-
oped the novel techniques subsidiary logging to reduce the log
size, annihilator undo to accelerate undo and selective redo
to accelerate restart recovery. To allow for high concurrency
a flexible multi-granularity locking protocol with an arbitrary
level of granularities is presented. This protocol guarantees
serializability even if transactions directly access some node
in a document tree without traversing down from the root.
Note that existing tree locking protocols fail here. Evaluating
XML queries differs vastly from evaluating SQL queries. For
example, SQL queries never produce an XML document; nei-
ther as a DOM tree nor as a string or a stream of SAX events.
Obviously, a viable database management system for XML
should support all these representations. Natix’ query execu-
tion engine is not only flexible enough to do so but also highly
efficient.

The rest of the paper is organized as follows. The next
section presents the overall architecture of the system. The
storage engine is the subject of Sect. 3. This is followed by a
description of the transaction management in Sect. 4. Next, we
take a look at the query execution engine in Sect. 5. Finally,
we conclude our paper with an evaluation (Sect. 3.3) and a
summary (Sect. 6).

2 Architecture

This section contains a brief overview of Natix’ system archi-
tecture. We identify the different components of the system
and their responsibilities. Forward pointers refer to sections
describing these components in greater detail.

Natix’ components form three layers (see Fig. 1). The
bottom-most layer is the storage layer, which manages all
persistent data structures. On top of it, the service layer pro-
vides all DBMS functionality required in addition to simple
storage and retrieval. These two layers together form the Natix
engine.

Closest to the applications is the binding layer. It consists
of the modules that map application data and requests from
other APIs to the Natix Engine Interface and vice versa.

2.1 Storage layer

The storage engine contains classes for efficient XML storage,
indexes and metadata storage. It also manages the storage of
the recovery log and controls the transfer of data between main
and secondary storage.An abstraction for block devices allows
to easily integrate new storage media and platforms apart from
regular files. Details follow in Sect. 3.

2.2 Service layer

The database services communicate with each other and with
applications using the Natix Engine Interface, which provides

a unified facade to specify requests to the database system.
These requests are then forwarded to the appropriate compo-
nent(s). After the request has been processed and result fields
have been filled in, the request object is returned to the caller.
Typical requests include ‘process query’, ‘abort transaction’
or ‘import document’.

There exist several service components that implement
the functionality needed for the different requests. The Natix
query execution engine (NQE), which efficiently evaluates
queries, is described in Sect. 5. The query compiler trans-
lates queries expressed in XML query languages into execu-
tion plans for NQE. Additionally, a simple compiler for XPath
is available. They both are beyond the scope of the paper.
Transaction management contains classes that provide ACID-
style transactions. Components for recovery and isolation are
located here. Details can be found in Sect. 4. The object man-
ager factorizes representation-independent parts for transfer-
ring objects between their main and secondary memory repre-
sentations since this transformation is needed by several APIs.

All of these components bear challenges with respect to
XML, which are related to the different usage profiles (coarse
grain vs small grain processing). Typically, a simple mapping
of operations on coarse granularities to operations on single
nodes neutralizes a lot of performance potential. If both access
patterns have to be supported in an efficient way, sophisticated
techniques are needed.

2.3 Binding layer

XML database management is needed by a wide range of
application domains. Their architectural and interface require-
ments differ. Apart from the classic client-server database sys-
tem, there are scenarios with Internet access, possibly using
protocols like HTTP or WebDAV [19]. For embedded systems
it might be more appropriate to use an XML storage and pro-
cessing library with a direct function call interface. For legacy
applications that can only deal with plain files, the database
has to be mounted as a file system. Other interfaces will arise
when XML database systems are more widely used.

The responsibility of the binding layer is to map between
the Natix Engine Interface and different application interfaces.
Each such mapping is called a binding.

Applications may call the Natix Engine Interface directly.
However, for rapid application development, it is often desir-
able to have interface abstractions that are closer to the ap-
plications domain. An example for such a higher-level API is
the file system interface, a demonstration of which is avail-
able for download [12]. Using this binding, documents, doc-
ument fragments, and query results can be accessed just like
regular files. The documents’ tree structure is mapped into a
directory hierarchy, which can be traversed with any software
that knows how to work with the file system. Internally, the
application’s file system operations are translated into Natix
Engine Interface requests for exporting, importing, or listing
documents.

Wherever feasible, the specification of a request to the
Natix Engine is not only possible using C++ data types, but
also by a simple, language independent string. A small parser
is part of the Engine Interface. It translates strings into request
objects. This simple control interface for the system can easily
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Fig. 1. Architectural overview

be incorporated into generic high-level APIs: by using request
strings as URLs, for example, the HTTP protocol can be used
to control the database system.

3 Storage engine

At the heart of every data base management system lies the
storage engine that manages all persistent data structures and
their transfer between main and secondary memory. The sys-
tem’s overall speed, robustness, and scalability are determined
by the storage engine’s design.

We briefly summarize the relevant techniques employed
and elaborate on our novel XML storage method. Some query
performance figures for the different storage formats follow.
Descriptions of indexing techniques conclude the section.

3.1 Architecture

Storage in Natix is organized into partitions, which represent
storage devices that can randomly read and write disk pages.
Disk pages are logically grouped into segments. There are
different types of segments, each implementing a different
kind of object collection. Disk pages resident in main memory
are managed by the buffer manager, and their contents are
accessed using page interpreters.

The following paragraphs will illustrate the responsibili-
ties of the individual components.

3.1.1 Segments

Segments export the main interfaces to the storage system.
They implement large, persistent object collections, where an

object may be larger than a page (depending on the segment
type).

The data type specific operations on the multi-page data
structures are mapped onto (sequences of) operations on sin-
gle pages. The segment classes form a hierarchy, the base
class of which factorizes common administrative functions
like free space and metadata management. The page collec-
tion used to store the object collections is maintained using
an extent-based system [45] that organizes segments into con-
secutive page groups (extents) of variable size. Intra-segment
free space management is done using a Free Space Inventory
(FSI) [34] describing the allocation state and free space on
pages. A caching technique similar to [28] is used.

The most important segment types are standard slotted
page segments supporting unordered collections of variable-
size records, index segments (e.g., for B-Trees) and XML seg-
ments. The XML segments for XML document collections are
novel and described below.

3.1.2 Buffer manager

The buffer manager is responsible for transferring pages be-
tween main and secondary memory. It also synchronizes mul-
tithreaded access to the data pages using latches. Special calls
exist to avoid I/O for reading or writing newly allocated or
deallocated pages.

3.1.3 Page interpreters

While a page resides in main memory, it is associated with a
page interpreter object that abstracts from the actual data for-
mat on the page. The page interpreters form a class hierarchy
with a single base class, from which one or more data-type



T. Fiebig et al.: Anatomy of a native XML base management system 295

specific classes are derived for each segment type. For exam-
ple, a B-Tree segment might use one page interpreter class for
inner pages and leaf pages each.

While the architectural decision to strictly separate intra-
page data structure management (page interpreters) from
inter-page data structures (segments) seems to be minor and
straightforward, it is often not present in existing storage sys-
tems. As it turns out, the existence of a common base class and
abstract data type interfaces for the page interpreters tremen-
dously simplifies the implementation of the recovery subsys-
tem, as described in a later section.

3.1.4 Partitions

Partitions represent an abstraction of random-access block de-
vices. Currently, there exist partition classes for Unix files, raw
disk access under Linux and Solaris, and C++ iostreams. In
addition to the user segments, each partition contains several
metadata segments describing the segments on the partition
and the free space available.

3.2 XML storage

One of the core segment types in Natix is the novel XML stor-
age segment, which manages a collection of XML documents.
Before detailing the XML storage segment, we briefly survey
existing approaches to store XML documents.

Flat streams. In this approach, the document trees are seri-
alized into byte streams, for example by means of a markup
language. For large streams, some mechanism is used to dis-
tribute the byte streams on disk pages. The mechanism can be
a file system, or a BLOB manager in a DBMS [4,8,26]. This
method is very fast when storing or retrieving whole docu-
ments or big continuous parts of documents. Accessing the
documents’ structure is only possible through parsing [1].

Metamodeling. A different method is to model and store the
documents or data trees using some conventional DBMS and
its data model [13,18,25,29,39–42].

In this case, the interaction with structured databases in
the same DBMS is easy. On the other hand, reconstructing
a whole document or parts of it is slower than in the previ-
ous method. Other representations require complex mapping
operations to reproduce a textual representation [40], even du-
plicate elimination may be required [13].

Mixed. In general, the meta-modeling approach introduces
additional layers in the DBMS between the logical data and
the physical data storage, slowing the system down. Conse-
quently, there are several attempts to merge the two "pure"
methods above. In redundancy-based approaches, to get the
best of both worlds, data is held in two redundant reposito-
ries, one flat and one metamodeled [47]. Updates are propa-
gated either way, or only allowed in one of the repositories.
This allows for fast retrieval, but leads to slow updates and
incurs significant overhead for consistency control. In hybrid
approaches, a certain level of detail of the data is configured

as "threshold". Structures coarser than this granularity live in
a structured part of the database, finer structures are stored in
a "flat object" part of the database [6].

Natix native storage. Natix uses a novel native storage for-
mat with the following distinguishing features: (1) Subtrees
of the original XML document are stored together in a single
(physical) record (and, hence, are clustered); thereby; (2) the
inner structure of the subtrees is retained; (3) To satisfy special
application requirements, their clustering requirements can be
specified by a split matrix. Performance impacts of different
clusterings are evaluated in Sect. 3.3.

We now turn to the details on design and implementation of
Natix’ XML storage. We start with the logical document data
model used by the XML segment to work with documents, and
the storage format used by the XML page interpreters to work
with document fragments that fit on a page. Then, we show
how the XML segment type maps logical documents that are
larger than a page to a set of document fragments possibly
spread out on different disk pages. Finally, we elaborate on
the maintenance algorithm for this storage format, explaining
how to dynamically split records when trees grow, and how to
tune the maintenance algorithm for special access patterns.

3.2.1 Logical data model

The XML segment’s interface allows to access an unordered
set of trees. New nodes can be inserted as children or siblings of
existing nodes, and any node (including its induced subtree)
can be removed. The individual documents are represented
as ordered trees with non-leaf nodes labeled with a symbol
taken from an alphabet ΣTags. Leaf nodes can, in addition to
a symbol from ΣTags, be labeled with arbitrarily long strings
over a different alphabet. Figure 2 shows an XML fragment
and its associated tree.

3.2.2 Mapping between XML and the logical model

A small wrapper class is used to map the XML model with
its node types and attributes to the simple tree model and vice
versa. The wrapper uses a separate segment to map tag names
and attribute names to integers, which are used as ΣTags. All
the documents in one XML segment share the same mapping.
The interface of this so-called declaration table allows for
small, hashed per-thread caches for those parts of the mapping
that are in use. The caches can be accessed very fast without
any further synchronization.

Elements are mapped one-to-one to tree nodes of the log-
ical data model. Attributes are mapped to child nodes of an
additional attribute container child node, which is always the
first child of the element node the attributes belong to. At-
tributes, PCDATA, CDATA nodes and comments are stored
as leaf nodes. External entity references are expanded during
import, while retaining the name of the referenced entity as
a special internal node. Some integer values are reserved in
addition to the ones for tag and attribute names, to indicate
attribute containers, text nodes, processing instructions, com-
ments and entity references.
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<SPEECH>
<SPEAKER>OTHELLO</SPEAKER>
<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>
</SPEECH>

SPEECH

SPEAKER

OTHELLO

LINE

Let me see your eyes;

LINE

Look in my face. Fig. 2. A fragment of XML with its associated logical tree

3.2.3 XML page interpreter storage format

A (physical) record is a sequence of bytes stored on a single
page. The logical data tree is partitioned into subtrees (see
Sect. 3.2.4). Each subtree is stored in a single record and,
hence, must fit on a page. Additionally to the subtree, a record
contains a pointer to the record containing the parent node of
the root node of its subtree (if it exists), and the identifier of
the document the contained subtree belongs to.

Classified by their contents, there are three types of nodes
in physical trees:

Aggregate nodes represent inner nodes of the logical tree.
Literal nodes represent leaf nodes of the logical tree and con-

tain uninterpreted byte sequences like text strings, graph-
ics, or audio/video sequences.

Proxy nodes are nodes which point to other records. They
are used to link trees together that were partitioned into
subtrees (see 3.2.4).

XML page interpreters are used to maintain the subtrees’
records on data pages. They are based on a regular slotted page
implementation, which maintains a collection of variable-
length records on a data page. Each record is identified by
a slot number which does not change even if the record is
moved around on the page for space management reasons.

For the individual subtrees, distances between nodes have
an upper limit, the page size. This raises opportunities to op-
timize the subtree representation inside the records. All struc-
tural pointers for intra-subtree relationships (parent and sib-
ling pointers, node sizes etc.) fit into 2 bytes (if 64 kB pages
are the maximum). We do not go into details about the exact
representation used, as the maintenance algorithm described
later does not depend on the details. The interested reader is
referred to [24].

The currently used layout results in a node size for aggre-
gate nodes of only 8 bytes, minimizing the overhead for storing
the tree structure. Note that storing vanilla XML markup with
only a 1-character tag name ( < X > . . . < /X >), for exam-
ple, already needs 7 bytes! On average, XML documents in-
side Natix consume about as much space as XML documents
stored as plain files in the file system.

3.2.4 XML segment mapping for large trees

Typical XML trees may not fit on a single disk page. Hence,
document trees must be partitioned. Typical BLOB (binary
large object) managers achieve this by splitting large objects
at arbitrary byte positions [4,8,26]. We feel that this approach

wastes the available structural information. Thus, we seman-
tically split large documents based on their tree structure. We
partition the tree into subtrees. Proxy nodes refer to connected
subtrees not stored in the same record. They contain the RID
(record identifier) of the record containing the subtree they
represent. Substituting all proxies by their respective subtrees
reconstructs the original data tree.

A sample is shown in Fig. 3. To store the given logical
tree (which, say, does not fit on a page), the physical data
tree is distributed over the three records r1, r2 and r3. Two
proxies (p1 and p2) are used in the top level record. Two helper
aggregate nodes (h1 and h2) have been added to the physical
tree. They group the children below p1 and p2 into a tree. Proxy
and helper aggregate nodes are only needed to link together
subtrees contained in different records.

Physical nodes drawn as dashed ovals like the proxies
p1, p2 and the helper aggregates h1, h2, needed only for the
representation of large data trees, are called scaffolding nodes.
Nodes representing logical nodes (fi) are called facade nodes.
Only facade nodes are visible to the caller of the XML segment
interface.

The sample physical tree is only one possibility to store the
given logical tree. More possibilities exist since any edge of
the logical tree can be represented by a proxy. The following
section describes how to partition logical trees into subtrees
fitting on a page.

3.2.5 Updating documents

We present Natix’s algorithm for dynamic maintenance of
physical trees. The principal problem addressed is that a record
containing a subtree grows larger than a page. In this case, the
subtree has to be partitioned into several subtrees, each fitting
on a page. Scaffolding nodes (proxies and maybe aggregates)
have to be introduced into the physical tree to link the new
records together.

To describe our tree storage manager and split algorithm,
it is useful to view the partitioned tree as an associative data
structure for finding leaf nodes. We will first explain this
metaphor and afterwards use it to detail our algorithm. Pos-
sible extensions to the basic algorithm and a flexible splitting
mechanism to adapt it to special applications conclude this
section.

Multiway tree representation of records. A data tree that has
been distributed over several records can be viewed as a multi-
way tree with records as nodes. Each record contains a part of
the logical data tree. In the example in Fig. 4, r3 is blown up,
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nodes onto records
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r9 r10 Fig. 4. Multiway tree representation of records

hinting at the flat representation of the subtree inside record
r3. The references to the child records are proxy nodes.

If viewed this way, our partitioned tree resembles a B-Tree-
structure, as often used by traditional large object managers.
The particularity is that the “keys” are not taken from a simple
domain like integers or strings, but are based on structural
features of the data tree. Nevertheless, this analogy gives us a
familiar framework to describe the algorithms used to maintain
the clustering of our records.

Algorithm for tree growth. Insertion into a Natix XML tree
proceeds as follows. We determine the position where the new
node has to be inserted, and if the designated page does not
have sufficient space, the record is split. We explain the steps
in detail:

1. Determining the insertion location. To insert a new node
fn into the logical data tree as a child node of f1, it must
be decided where in the physical tree the insert takes place.
In the presence of scaffolding nodes, there may exist several
alternatives, as shown by the dashed lines in Fig. 5: the new
node fn can be inserted into ra, rb, or rc. In Natix, this choice
is determined by the split matrix (see below).

2. Splitting a record. Having decided on the insertion loca-
tion, it is possible that the designated record’s disk page is full.
First, the system tries to move the record to a page with more
free space. If this is not possible because the record as such
exceeds the net page capacity, the record is split by executing
the following steps:

(a) Determining the separator. Suppose that in Fig. 5 we add
fn to rb, which cannot grow. Hence, rb must be split into at

least two records r′
b and r′′

b , and instead of pb in the parent
record ra, we need a separator with proxies pointing to
the new records to indicate where which part of the old
record was moved.
In B-Trees, a median key partitioning the data elements
into two subsets is chosen as separator. In our tree storage
manager, the data in the records are not one-dimensional,
but tree-structured. Our separators are paths from the sub-
tree’s root to a node d. The algorithm removes this path
from the tree. The remaining forest of subtrees is dis-
tributed onto new records.
Figure 6 shows the subtree of one record just before a split.
It is partitioned into a left partition L, a right partition R,
and the separator S. This separator will be moved up to
the parent record, where it indicates into which records
the descendant nodes were moved as a result of the split
operation.
The node d uniquely determines this partitioning (in the
example, d = f7): The separator S = {f1, f6} consists of
the nodes on the path from d to the subtree’s root. Note
that d is excluded. The subtree induced by d, the subtrees
of d’s right siblings, and all subtrees below nodes that are
right siblings of nodes in S comprise the right partition
(in the example, R = {f7, f8, . . . , f14}). The remaining
nodes comprise the left partition (in the example, L =
f2, . . . , f5).
Hence, the split algorithm must find a node d, such that the
resulting L and R are of roughly equal size. Actually, the
desired ratio between the sizes of L and R is a configura-
tion parameter (the split target), which can, for example,
be set to achieve very small R partitions to prevent degen-
eration of the tree if insertion is mainly on the right side
(as when creating a tree in pre-order from left to right).
Another configuration parameter available for fine-tuning
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Fig. 7. Record assembly for the subtree from Fig. 6

is the split tolerance, which states how much the algorithm
may deviate from this ratio. Essentially, the split tolerance
specifies a minimum size for d’s subtree. Subtrees smaller
than this value are not split, but completely moved into
one partition to prevent fragmentation.
To determine d, the algorithm starts at the subtree’s root
and recursively descends into the child whose subtree con-
tains the physical "middle" (or the configured split target)

of the record. It stops when it reaches a leaf or when the
size of the subtree in which it is about to descend is smaller
than allowed by the split tolerance parameter.
In the example in Fig. 6, the size of the subtree below f7
was smaller than the split tolerance, otherwise the algo-
rithm would have descended further and made d = f7
part of the separator.
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(b) Distributing the nodes onto records. Consider the parti-
tioning implied by node d = f7 (Fig. 6). The separator
is removed from the old record’s subtree, as in Fig. 7a.
In the resulting forest of subtrees, root nodes in the same
partition that were siblings in the original tree are grouped
under one scaffolding aggregate. In Fig. 7c, this happened
at nodes h1 and h2. Each resulting subtree is then stored in
its own record. These new records (r1, . . . , r4) are called
partition records.

(c) Inserting the separator. The separator is moved to the par-
ent record – by recursively calling the insertion procedure
– where it replaces the proxy which referred to the old,
unsplit record. If there is no parent record, as in Fig. 7b,
the separator becomes the new root record of the tree. The
edges connected to the nodes in the partition records are
replaced by proxies pi. Since children with the same parent
are grouped in one scaffolding aggregate, for each level of
the separator a maximum of three nodes is needed, one
proxy for the left partition record, one proxy for the right
partition record, and one separator node.
To avoid unnecessary scaffolding records, the algorithm
considers two special cases: First, if a partition record
consists of just one proxy, the record is not created and
the proxy is inserted directly into the separator. Second, if
the root node of the separator is a scaffolding aggregate,
it is disregarded, and the children of the separator root are
inserted in the parent record instead.

3. Inserting the new node. Finally, the new node is inserted
into its designated partition record.

The splitting process operates as if the new node had al-
ready been inserted into the old record’s subtree, for two rea-
sons. First, this ensures enough free space on the disk page
of the new node’s record. Second, this results in a preferable
partitioning since it takes into account the space needed by the
new node when determining the separator.

The split matrix. It is not always desirable to leave full con-
trol over data distribution to the algorithm. Special application
requirements have to be considered. It should be possible to
benefit from knowledge about the application’s access pat-
terns.

If parent-child navigation from one type of node to another
type is frequent in an application, we want to prevent the split
algorithm from storing them in separate records. In other con-
texts, we want certain kinds of subtrees to be always stored
in a separate record, for example to collect some kinds of in-
formation in their own physical database area or to enhance
concurrency.

To express preferences regarding the clustering of a node
type with its parent node type, we introduce a split matrix as
an additional parameter to our algorithm:

The split matrix S consists of elements sij , i, j ∈ ΣTags.
The elements express the desired clustering behavior of a node
x with label j as children of a node y with label i:

sij =






0 x is always kept as a standalone record
and never clustered with y

∞ x is kept in the same record with y as
long as possible

other the algorithm may decide

The algorithm as described above acts as if all elements of
the split matrix were set to the value other.

It is easily modified to respect the split matrix. When mov-
ing the separator to the parent, all nodes x with label j under
a parent y with label i are considered part of the separator
if sij = ∞, and thus moved to the parent. If sij = 0, such
nodes x are always created as a standalone object and a proxy
is inserted into y. In this case, x is never moved into its parent
as part of the separator, and treated like the root record for
splitting purposes.

We also use the split matrix as the configuration parame-
ter for determining the insertion location of a new node (see
Sect. 3.2.5): when a new node x (label j) should be inserted as
a child of node y (label i), then if sij =∞, x is inserted into
the same record y. If sij = other, then the node is inserted
on the same record as one of its designated siblings (wherever
more free space exists). If sij = 0, x is stored as the root node
of a new record and treated as described above.

The split matrix is an optional tuning parameter: it is not
needed to store XML documents, it only provides a way to
make certain access patterns of the application known to the
storage manager. The “default” split matrix used when nothing
else has been specified is the one with all entries set to the value
other.

As a side effect, other approaches to store XML and
semistructured data can be viewed as instances of our algo-
rithm with a certain form of the split matrix [24].

3.3 Performance figures

We present some performance figures demonstrating the su-
periority of a clustered storage representation for query per-
formance.

Crucial for query performance is the storage format’s abil-
ity to support efficient navigation between document nodes.
As a typical example, consider the evaluation of expressions
in the XPath query language [9]. Navigation is at the core of
evaluation plans for XPath queries. Since XPath is a declara-
tive language, alternative evaluation plans exist. This allows us
to investigate Natix’ storage engine under different evaluation
strategies.

Table 1 contains the elapsed evaluation times for differ-
ent XPath expressions using Natix’ query execution engine
(detailed in Sect. 5), operating on two different storage for-
mats. As a reference, the table also includes times for the
Apache Project’s XSLT Processor Xalan C++. Xalan oper-
ates on a main memory tree representation delivered by the
Xerces XML Parser. The XPath evaluation times do not in-
clude the time needed for parsing in case of Xalan and system
startup in case of Natix. These times are given separately at
the bottom of Table 1. All times were measured on a PC with
a 1-GHz AMD Athlon processor running Linux.

The first storage format uses the value other for all entries
of the split matrix, the second 0 (see Sect. 3.2.5). The former
clusters documents whereas the latter yields a storage format
that stores one node per record. This is somewhat similar to
mappings of XML documents to relational and object-oriented
systems.

Three navigation-intensive XPath query expressions were
evaluated. They are shown in Table 1 in a shorthand nota-
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Table 1. Results for Xalan C++ and Natix storage (time in seconds)

Fanout
XPath Method Split Matrix 4 5 6
desc Natix sij = other 0.0007 0.0010 0.0078

sij = 0 0.0340 0.0903 0.2157
Xalan C++ 0.0029 0.0048 0.0097

desc/desc Natix DupElim sij = other 0.0117 0.0339 0.0795
sij = 0 0.1535 0.4499 1.0932

Natix Pipe sij = other 0.0012 0.0086 0.0254
sij = 0 0.0341 0.0921 0.2179

Xalan C++ 0.0099 0.0259 0.0630
desc/fol Natix DupElim sij = other 1.4801 12.4536 77.9578

sij = 0 20.8195 172.1488 993.7391
Natix Pipe sij = other 0.0023 0.0135 0.0359

sij = 0 0.0354 0.1020 0.2445
Xalan C++ 1.2779 11.4068 74.5812

desc/fol/desc Natix DupElim sij = other 6.3942 53.4276 323.7528
sij = 0 98.3362 826.3363 4862.5824

Natix Push sij = other 1.4762 12.6416 78.7448
sij = 0 21.0195 172.8896 995.3357

Natix Pipe sij = other 0.0022 0.0139 0.0377
sij = 0 0.0368 0.1035 0.2457

Xalan C++ 5.6159 49.9828 307.9632
Startup Natix 0.0518 0.0524 0.0532
Startup/Parsing Xalan C++ 0.0980 0.1492 0.2578
Document Size 20 kB 58 kB 140 kB

tion, with desc meaning descendant::test, and fol
meaning following::test.

Whenever applicable, we used three different query execu-
tion plans. All plans evaluate a path expression by a sequence
of UnnestMap operators. They generate the result by per-
forming nested loops for the XPath location steps (refer to
Query Processing in Sect. 5 for details). Since such a straight-
forward evaluation sometimes produces duplicates and XPath
requires results to be duplicate free, an additional duplicate
elimination is added as the last operator of the plan whenever
duplicates are produced. These plans are denoted by DupElim
and are comparable to Xalan’s evaluation strategy. Duplicates
in intermediate results imply duplicate work by subsequent
UnnestMaps. Plans denoted by Push eliminate duplicates
as soon as they occur. Duplicate elimination is an expensive
pipeline breaker. Hence, we developed a translation method
of XPath expressions to sequences of UnnestMaps such that
the programs by which they are parameterized guarantee that
no duplicates are produced and, hence, no duplicate elimi-
nation is necessary. These plans are called Pipe. For XPath
expressions with only a single axis, they coincide.

We evaluated the path expressions against three documents
containing only element nodes with tag name test. All doc-
uments were trees of height 5, with a constant fanout at each
inner node. We investigated three different fanouts.

Although there are many things that could be said about
these numbers, we concentrate on the most important observa-
tions: (1) the clustered storage format (si,j = other) is supe-
rior to the non-clustered storage format. The queries run faster
on the clustered format by at least an order of magnitude, no
matter how large the document is, no matter which query is
answered, and no matter which execution plan is employed;
(2) although Natix evaluates plans using a storage format for

secondary memory whereas Xalan C++ uses a main memory
representation for documents, the evaluation times of Xalan
C++ and those of the comparable DupElim plans do not differ
much for the clustered storage format. In most cases, Natix
looses by less than 10%. For the single tree traversal needed
to answer the desc query, Xalan is even slower than Natix’
clustered format.

3.4 Index structures in Natix

In order to support query evaluation efficiently, we need pow-
erful index structures. The main problem in building indexes
for XBMSs is that ordinary full text indexes do not suffice,
as we also want to consider the structure of the stored docu-
ments. Here we describe our approaches to integrate indexes
for XML documents into Natix. We have followed two princi-
ple avenues of approach. On the one hand we enhanced a tra-
ditional full text index, namely inverted files, in such a way as
to be able to cope with semistructured data. As will be shown,
we opted for a versatile generic approach, InDocs (for Inverted
Documents) [32], that can deal with a lot more than structural
information. On the other hand we developed a novel index
structure, called XASR (eXtended Access Support Relation)
[17], for Natix.

3.4.1 Full text index framework

Inverted files are the index of choice in information retrieval
[2,46]. Recently, the performance of inverted files improved
considerably, mostly due to clever compression techniques.
They usually store lists of document references to indicate in
which documents search terms appear. Often offsets within a
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document are also saved along with the references (this can
be used to evaluate near-predicates, for example). However,
in practice inverted files are handcrafted and tuned for special
applications. Our goal is to generalize this concept by stor-
ing arbitrary contexts (not just offsets) without compromising
performance.

The list implementation in Natix consists of four major
components: the Index, the ListManager, the lists themselves
and the ContextDescription. The main task of the Index is to
map search terms to list identifiers and to store these mappings
persistently. It also provides the main interface for the user to
work with inverted files.

The ListManager maps the list identifiers to the actual lists,
so it is responsible for managing the directory of the inverted
file. We have implemented efficient methods for bulk load and
bulk removal of lists, as well as for combining lists, namely
union and intersection.

Each list is divided into fragments that fit on a page. All
fragments that belong to one list are linked together and can
be traversed sequentially. For performance reasons the content
of each fragment is read and written sequentially.

The ContextDescription establishes the actual representa-
tion in which data is stored in a list. This includes not only
which information is stored, but also determines the kind of
compression used on the data. The strong point of our ap-
proach is the framework we provide. We can support new
applications with little effort, as only the ContextDescription
needs to be adapted. It is no problem at all to incorporate
XML indexes based on inverted lists [14,31] into our frame-
work. Among many other contexts, we have implemented a
traditional context consisting of document IDs and offsets, as
well as several contexts suited for XML data. They start with
simple node contexts (including document IDs, node IDs, and
offsets) and go up to complex node contexts that also con-
sider structural information (e.g., dmin and dmax values as
described in Sect. 3.4.2).

3.4.2 eXtended Access Support Relation

An extended access support relation (XASR) is an index that
preserves the parent/child, ancestor/descendant, and preced-
ing/following relationships among nodes. This is done by la-
beling the nodes of an XML document tree by depth-first
traversal. We assign each node a dmin value (when we en-
ter the node for the first time) and a dmax value (when we
finally leave the node). For each node in the tree we store a
row in an XASR table with information on dmin, dmax, the
element tag, the document ID, and the dmin value of the parent
node. Gaps can be used to reduce update costs [27].

A path in a query is translated into a sequence of self joins
on the XASR table. For each location step in the path we have
a join operation that connects the current context nodes to the
relevant nodes of the next step. The XASR combined with a
full text index provides a powerful method to search on (text)
contents of nodes [17].

4 Transaction management

Enterprise-level data management is impossible without the
transaction concept. The majority of advanced concepts for

versioning, workflow and distributed processing depends on
primitives based on the proven foundation of atomic, durable
and serializable transactions.

Consequently, to be an effective tool for enterprise-level
applications, Natix has to provide transaction management for
XML documents with the above-mentioned properties. The
transaction components supporting transaction-oriented pro-
gramming in Natix are the subject of this section. The two
areas covered are recovery and isolation, in this order.

For recovery, we adapt the ARIES protocol [35]. We fur-
ther introduce the novel techniques of subsidiary logging, an-
nihilator undo, and selective redo to exploit certain opportuni-
ties to improve logging and recovery performance which prove
– although present in many environments – especially effec-
tive when large records with a variable structure are managed.
This kind of record occurs when XML subtrees are clustered
in records as in Natix’ storage format.

For synchronization, an S2PL-based scheduler is intro-
duced that provides lock modes and a protocol that are suit-
able for typical access patterns occurring for tree-structured
documents. The main novelties are that: (1) granularity hi-
erarchies of arbitrary depth are supported; and (2) contrary
to existing tree locking protocols, jumps into the tree do not
violate serializability.

4.1 Architecture

Fig. 8 depicts the components necessary to provide transaction
management and their call relationships. Some of them are
located in the storage engine and have already been described,
while the rest is part of the transaction management module.

During system design, we paid special attention to a re-
covery architecture that treats separate issues (among them
page-level recovery, logical undo, and metadata recovery) in
separate classes and modules. Although this is not possible
in many cases, we made an effort to separate the concepts as
much as possible, to keep the system maintainable and ex-
tendible.

Although most components need to be extended to sup-
port recovery, in most cases this can be done by inheritance
and by extension of base classes, allowing for the recovery-
independent code to be separate from the recovery-related
code of the storage manager.

4.2 Recovery components

We will not explain the ARIES protocol here, but concentrate
on extensions and design issues related to Natix and XML.
A description of ARIES can be found in the original ARIES
paper [35] and in books on transaction processing (e.g., [21,
43]).

4.2.1 Log records

Natix writes a recovery log describing the actions of all update
transactions using log records. Each log record is assigned a
log-sequence number (LSN) that is monotonically increasing
and can directly (without additional disk accesses) be mapped
to the log record’s location on disk.
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Fig. 8. Recovery components

Natix log records consist of the usual fields, including a
transactionID, log record type and operation code informa-
tion, flags that specify whether the record contains redo-only,
media-recovery only, redo-undo, or undo-only information.
In addition, log records include the ID of the updated object
(segmentID, pageID, slot number, offset in a XML subtree)
and, possibly, data to redo and/or undo the logged operation.

We come to the first important difference between ARIES
and Natix’ recovery protocol. The log records of a transaction
are linked together into a pointer chain. In ARIES, a prevLSN
pointer contains the LSN of the log record previously written
by the same transaction. Natix does not use such a pointer.
Instead, Natix’ log records contain a nextUndoLSN pointer,
which in standard ARIES is only contained in compensation
log records (CLRs).

The nextUndoLSN of a log record points to the log record
of the same transaction that has to be undone after this log
record in case of a rollback. Usually, this will be the previ-
ously written log record with undo information of the same
transaction. Redo-only log records do not participate in the
nextUndoLSN chain, as the backward chaining is only neces-
sary for undo processing.

Only in case of compensation log records which describe
undo actions, the undoNextLSN points to the operation logged
before the undone operation. Sect. 4.4 shows another situation
where the nextUndoLSN chain of log records beneficially de-
viates from the reverse sequence of log records of one trans-
action.

4.2.2 Segments

From the view of the recovery subsystem, the segment classes
comprise the main interaction layer between the storage sub-
system and the application program. As part of their regular
operations, application programs issue requests to modify or
access the persistent data structures managed by the segments.

The segments map operations on their data structures –
which can be larger than a page – to sequences of operations
on single pages. The page interpreters deal with logging and
recovery for operations on pages. This means that the code
for multi-page data structures is the same for recoverable and
nonrecoverable variants of the data structure, it only has to in-
stantiate different page interpreter versions in the recoverable
case. This is a significant improvement in terms of maintain-
ability of the system, because less code is necessary.

The segments only handle logging and recovery for those
update operations on multi-page data structures whose inverse
operations are not described by the inverses of the respective
page-level operations. We call them L1 operations (following
[43]), while regular page-level operations are L0 operations.
L1 operations occur for segment types where a high degree of
concurrency is required (e.g., B-Trees [36]), and where other
transactions may have modified the same structures while the
original updater is still running (examples include index splits,
where keys have to be moved without the split page being
locked for the whole transaction duration).

Metadata is permanently accessed by the segments, and
access to metadata needs to be highly concurrent. Therefore,
L1 operations play a major role in the implementation of meta-
data and free space management. Issues in metadata recovery,
as raised for example in [33,34], are far from being simple but
involve delicate dependencies. To keep the system simple and
maintainable, they require an architecture prepared for them.
Our framework for segment metadata recovery provides such
an architecture, which can integrate solutions as described in
the above-mentioned papers, as well as our own approaches.
Details can be found in [23].

4.2.3 Page interpreters

The page interpreter classes are responsible for page-level log-
ging and recovery. They create and process all page-level (i.e.,
the majority of) log records. The page-level log records use
physical addressing of the affected page, logical addressing
within the page, and logical specification of the performed
update operation. This is called physiological logging [21].

For every page type in the page interpreter hierarchy that
has to be recoverable, there exists a derived page interpreter
class with an identical interface that, in addition to the regular
update operations, logs all performed operations on the page
and is able to interpret the records during redo and undo.

The page interpreter maintains the pageLSN attribute on
the page and has a member attribute redoLSN containing
the LSN of the first update operation after the last flush.
The redoLSN is included in the buffer manager’s checkpoint
records (see below) and makes it possible to determine the
start of the redo log scan after a crash.
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4.2.4 Buffer manager

The buffer manager is controlling the transfer of pages be-
tween main and secondary memory. Although ARIES is inde-
pendent of the replacement strategy used when caching pages
[35], the buffer manager enables adherence to the ARIES pro-
tocol by notifying other components about page transfers be-
tween main and secondary memory and by logging informa-
tion about the buffer contents during checkpoints.

A recovery issue related to the buffer manager is caused
by the fact that it sometimes avoids I/O. It doesn’t load pages
which have been newly allocated, and it drops deallocated
pages without writing them to disk. This introduces some com-
plications, as redo has to deal with old or uninitialized page
states on disk. This is not a problem of the buffer manager
itself, but is taken care of by the segments’ metadata manage-
ment (see above).

4.2.5 Recovery manager

The recovery manager orchestrates system activity during
undo processing, redo processing and checkpointing. It is
stateless and serves as a collection of the recovery-related top-
level algorithms for restart and transaction undo. During redo
and undo, it performs log scans using the log manager (see
below) and forwards the log records to the responsible objects
(e.g., segments and page interpreters) for further processing.

Before forwarding each log record during undo, the re-
covery manager prepares the transaction control block. Flags
and undoLSN pointers in the control block make sure that the
log manager can properly chain log records together using the
nextUndoLSN chain. This includes the special nextUndoLSN
chaining necessary for L0 and L1 compensation log records,
and L0 log records written as part of an inverse L1 operation.

4.2.6 Log manager

The log manager provides the routines to write and read log
records, synchronizing access of several threads that create
and access log records in parallel.

It keeps a part of the log buffered in main memory (us-
ing the Log Buffer as explained below) and employs special
partitions, log partitions, to store log records.

The log manager (1) maintains the mapping of log records
to LSN (and its inverse); (2) persistently stores the LSN of the
most recent checkpoint; and (3) maintains the transaction’s
nextUndoLSN chain of log records using information from the
transaction’s control block. During undo, the recovery man-
ager makes sure that the transaction control block contains
proper values even for L0 and L1 compensation log records.

The automatic undoLSN chaining by the log manager al-
lows for the segments and logging page interpreters to use
regular forward processing methods to undo operations and
write compensation log records, as the only difference be-
tween forward processing and undo is the different chaining
of log records. As a result, the code for the logging page in-
terpreters becomes much simpler, as no special functions for
undo have to be coded.

The log buffer is part of the log manager and performs the
transfer of log records from memory to disk and vice versa.

Although recovery literature does not describe a detailed pro-
tocol how to access the log buffer and considers the problem
trivial, the log buffer can easily become a bottleneck for up-
date intensive transactions and access characteristics that are
quite different from the regular buffer manager. Natix allows
massively parallel log reading and log writing, several CPUs
may simultaneously write even to the same log page.

4.2.7 Transaction manager

The transaction manager maintains the data structures for ac-
tive transactions and is used by the application programs to
group their operations into transactions. Each transaction is
associated with a control block that includes recovery-related
information like the LSN of the first log record, the LSN of
the last written log record, an undoLSN field, and a pending
actions list.

The LSN of the first log record is also considered a unique
and persistent identifier for update transactions and is also
called transactionLSN. The undoLSN field is used to hold the
next record that requires undo, and is used by the log manager
to chain log records together using the log records’ nextUn-
doLSN fields. During forward processing, this field is set to
the last log record written by the transaction that contained
undo information. During undo processing, it is set to the nex-
tUndoLSN field of the log record currently being undone to
provide automatic nextUndoLSN chaining for CLRs.

The pending actions list contains a set of operations that
have to be performed before the transaction commits. The
pending actions list is a main memory structure and may not
contain actions that are needed to undo the transaction (as it
may be lost in a crash). Examples for its use include metadata
recovery and subsidiary logging.

4.3 Subsidiary logging

Existing logging-based recovery systems follow the principle
that every modification operation is immediately preceded or
followed by the creation of a log record for that operation. An
operation is a single update primitive (like insert, delete, mod-
ify a record or parts of a record). Immediately usually means
before the operation returns to the caller. In the following, we
explain how Natix reduces log size and increases concurrency,
boosting overall performance, by relaxing both constraints.

Suppose a given record is updated multiple times by the
same transaction. This occurs frequently when using a storage
layout that clusters subtrees into records, for example, when a
subtree is added node by node. It is desirable that a composite
update operation is logged as one big operation, for example
by logging the complete subtree insertion as one operation:
merging the log records avoids the overhead of log record
headers for each node (which can be as much as 100% for
small nodes), and reduces the number of serialized calls to the
log manager, increasing concurrency.

In the following, we sketch how Natix’ recovery architec-
ture supports such optimizations and elaborate on the concrete
implementation in case of XML data.
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4.3.1 Page-level subsidiary logging

In Natix, physiological logging is completely delegated to the
page interpreters: how the page interpreters create and inter-
pret log records is up to them.

Each page interpreter has its own state, which it can use
to collect logging information for the associated page without
actually transferring them to the log manager, thus keeping a
private, subsidiary log. The interpreter may reorder, modify, or
use some optimized representation for these private log entries
before they are published to the log manager.

To retain recoverability, some rules have to be followed.
To abide by the write-ahead-logging rule, the subsidiary log’s
content has to be published to the regular log manager before
writing a page to disk. Likewise, all subsidiary log entries
must be published to the regular log manager before the trans-
action commits, allowing them to be forced to disk to make
the transaction durable.

When following these rules, the subsidiary logs become
part of the log buffer as far as correctness of the recovery
process is concerned. Although part of the log buffer is now
stored in a different representation, its effects for undo and redo
processing are the same. Basically, the rules cause a sequence
of operations by one transaction on one page to be treated by
logging and recovery as a single atomic update operation.

Natix’ flexible architecture can incorporate these rules
without change.

Since the buffer manager notifies page interpreters before
their associated page is written to disk, the page interpreter
is able to guarantee write-ahead-logging by transferring its
subsidiary log to the log manager.

To force the subsidiary logs to disk before a commit occurs,
all page interpreters that maintain a subsidiary log can add a
pending action to the transaction control block (see Sect. 4.2.7)
that is executed before the transaction commits, and that causes
its subsidiary log to be published to the log manager.

Additional precautions have to be taken to guarantee
proper recovery also in the presence of savepoints, which allow
partial rollbacks. Integration of savepoints and L1 operations
into subsidiary logs is described in [23].

4.3.2 XML-Page subsidiary logging

A typical update operation of Natix applications is the insertion
of a subtree of nodes into a document, be it during initial
document import or later while a document evolves. Often
applications insert a subtree by inserting single nodes.

If every node insertion is logged using individual log
records, every node will cause a log header to be written. Re-
call that an element node with no children and no literal data
is stored using only 8 bytes of storage. A log header needs 32
bytes. For such a node the amount of log generated is five times
as large as the actual data. With regard to update performance,
this nullifies the effect of the compact storage format.

Since the updates are local and can easily be expressed
in terms of a single insert operation into the record, logging
this single operation allows for amortizing the costs for all
the node insertions. To achieve this, conventional recovery
systems would require the application to construct the subtree
separately from the storage system and then add it with one

insertion. Apart from requiring additional copying of data, the
application would need to do some kind of dynamic memory
management to maintain the intermediate representation. In
addition, with page-level physiological logging, only merging
of update operations that affect the same page is desirable.
Applications would need to know about the mapping of the
logical data structures to pages, violating encapsulation.

Using the page contents as the subsidiary log. The log entries
for the subsidiary log are not explicitly stored. Instead, the
XML page interpreters reuse the data page as a representation
for log records before publishing them to the global log.

Using a flag called fresh in the node headers on the data
page, new nodes/subtrees are marked. All information neces-
sary to log the subtree insertion is available inside the data
page itself, except for the transactionID. Instead of logging
node insertions directly, the page interpreter only marks them
as to-be-logged using the fresh flag.

Publishing the subsidiary log to the log manager then con-
sists of a scan of the page’s records. Every time a node is
encountered that has the fresh flag set, a creation log record
for the subtree implied by that node is written (and this subtree
is skipped before further scanning the nodes of that record).
The after image for this log record is the subtree as it is stored
on the data page. The fresh flags are all cleared after publishing
the subsidiary log.

Even if the fresh subtrees are modified before their cre-
ation is logged, no further maintenance of the subsidiary log
is required: if a node is deleted, the fresh flag in its header
is deleted as well, so no log record is written. If a node is
modified, only the final version is included in the log record.
Note that these situations occur frequently, e.g., when an XML
editor is operating directly on the Natix API.

If non-fresh subtrees are modified, we have to be careful
before directly creating non-subsidiary log records with the
log manager. Since intra-record physical addressing is used in
log records, they can only be redone and undone correctly if
the data record is in the same state as it was when the operations
were originally executed. Thus, we need to make sure that all
modifications in the subsidiary logs are published before any
nonsubsidiary log record for the same data record is created.
Thus, the log is not only published as outlined in Sect. 4.3.1,
but also when a node is modified that has its fresh flag not set.

To create complete log records from the subsidiary log, the
page interpreter must know the transactionIDs that created the
subtrees. The transactionIDs are not stored in the data page’s
contents.

This means that XML page interpreters must reserve some
extra storage for the transactionIDs. Since we use record-level
locking, only one transaction can have subsidiary log entries
for any given record, so we only need one transactionID per
record.

The transactionID is only necessary to maintain the sub-
sidiary log and does not need to be stored on disk. Since it
is unfavorable to add small objects dynamically just to store
some transactionIDs, we limit the subsidiary log to a fixed
number of transactionIDs. If more transactions want to add
subsidiary log entries, we publish the subsidiary log to the log
manager. On average, only a small number of records is stored
on each page, as XML subtree records usually are quite large.
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Therefore, allowing only one transaction per page interpreter
to have subsidiary log entries is usually sufficient.

Effects of subsidiary logging. If a large document tree is cre-
ated through repeated insertions of single nodes, splits occur
frequently (see Sect. 3.2). A conventional logging approach
would not only create bulky log records for every single node
insertion, but would also log all of the split operations. The
split log records are quite large, as they contain the contents of
all partition log records. As a result, every node may be logged
more than once.

With subsidiary logging, log records are only created when
necessary for recoverability. If the newly created document(s)
fit into the buffer, the log volume created is nearly equal to the
size of the data, as only the "final" state of the document is
logged upon commit. In addition, only a few log record head-
ers are created (one for each subtree record), amortizing the
logging overhead for the large number of small objects. Even
if the whole document cannot reside in the buffer, subsidiary
logging pays off by only creating log records as needed.

4.4 Annihilator undo

Transaction undo often wastes CPU resources, because more
operations than necessary are executed to recreate the desired
result of a rollback. For example, any update operations to
a record that has been created by the same transaction need
not be undone when the transaction is aborted, as the record
is going to be deleted as a result of transaction rollback any-
way. Refer to Fig. 9 which shows a transaction control block
and log records and their nextUndoLSN chain. During undo,
the records would be processed in the sequence 5, 4, 3, 2, 1,
starting from the undoLSN in the transaction control block
and traversing the nextUndoLSN chain. Looking at the opera-
tions’ semantics, undo of records 4 and 1 would be sufficient,
as undo of 1 would delete record R1, implicitly undoing all
changes to R1.

For our XML storage organization, creating a record and
performing a series of updates to the contained subtree after-
wards is a typical update pattern for which we want to avoid
unnecessary overhead in case of undo. And since the abort
probability of transactions can be much higher than in tra-
ditional database applications, undos occur more frequently.
For example, online shoppers often fill their shopping carts
and then decide not to go to the cashier.

Annihilators. We call undo operations that imply undo of
other operations following them in the log annihilators. For
example, the undo of a record creation like log record 1 in the
example above is an annihilator, as it implies undo of all up-
date operations applied to the record. For better performance,
it is desirable to skip undo of operations implied by the anni-
hilators. Natix realizes this to some extent.

Chaining annihilators. Let us recall from Sect. 4.2.1 that the
nextUndoLSN pointer of every log record points to the pre-
vious operation of that transaction that requires undo, which
is taken from the transaction control block’s undoLSN field.
Redo-only records are skipped by the nextUndoLSN chain.

If we know that undo for an operation is never required
because an annihilator exists, as is the case when updating
a subtree that has been created by the same transaction, the
operation can be logged as a redo-only operation. This will
prevent it from entering the nextUndoLSN chain of that trans-
action and it will not be undone explicitly, but implicitly by its
annihilator. An additional advantage is that no undo informa-
tion has to be included in the log record, which further reduces
the amount of log generated.

The situation is slightly complicated by partial rollbacks.
Partial rollbacks might want to reestablish an intermediate
state of the transaction. In this case, undo information is re-
quired even if annihilators exist, because a partial rollback
might not include the annihilator, and the updates must be
rolled back explicitly.

XML annihilators. Let us now look at the way Natix exploits
the optimization potential described above for XML data.

The XML page interpreters augment the stored informa-
tion for the subtree as follows: In every XML subtree record
header, an annihilatorLSN is stored containing the LSN of the
last operation that logged a complete before image of the sub-
tree. Usually, this is the creation LSN of the record (with the
implicit "empty" before image), the annihilatorLSN is also set
if for some other reason a log record with a full before image
of the subtree is logged. The transactionID of the transaction
which performed the annihilator is also written to the subtree
record header.

The update operations for XML subtrees now check
whether the stored annihilatorLSN for the subtree to be mod-
ified is greater than or equal to the last savepointLSN, and if
the annihilator was performed by the same transaction. If yes,
no rollback will be initiated that does not include the anni-
hilator operation. Hence, the update operation can be logged
redo-only and will be skipped during undo.

Figure 10 shows the resulting undo chain after log records
1–5 from the example in Fig. 9 have been written, assuming
that no savepoint is taken. The annihilatorLSN for record R1
is the LSN of the creation record 1. Because of the annihila-
torLSN checks during forward processing, the undo chain for
the depicted transaction is now 4, 1 – no unnecessary undos
are performed.

This technique can be beneficial not only for freshly cre-
ated records, but also if, for example, an application knows
that rolling back to a certain state is likely, as may be the
case for shopping cart applications in eCommerce shops that
will rollback to an empty shopping cart when there are con-
nection problems. Before every session, the application can
explicitly announce major impending modifications to a sub-
tree (the shopping cart), causing a before image to be written
and the annihilatorLSN to be set. The state of the shopping
cart before the session can easily be recreated by just one log
record undo containing a complete before image, no matter
how many single operations were executed in the meantime.

There are alternatives for the storage location of the an-
nihilatorLSN, as reserving space for a whole LSN might be
considered too high a cost for the benefits of annihilator undo.
For example, it is possible to store the annihilatorLSN in main
memory only, in the state of the page interpreter object. This
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Fig. 10. Undo chaining with check for annihilators

would disallow annihilator undo if the page is kicked out of
the buffer, which should be unlikely.

Please note that again, as with subsidiary logging ex-
plained in the previous section, the annihilatorLSN concept
is local in its consequences for the system. It can be decided
for every page interpreter class (i.e., data type) individually
whether or not to support the annihilator undo concept, with-
out affecting or modifying other parts of the system.

Other types of annihilators also exist. For example, if pages
are deallocated, then it is not necessary to undo all record
insertions to those pages first. However, it is dangerous to
exploit this opportunity in the presence of record-level locking.
Implementing page-level annihilators must be done with great
care, as explained in [23].

4.5 Selective redo and selective undo

The ARIES protocol is designed around the redo-history
paradigm, meaning that the complete state of the cached
database is restored after a crash, including updates of loser
transactions. After the redo pass has accomplished this, the
following undo pass may unconditionally undo all changes of
loser transactions in the log.

In the presence of fine-granularity locking, when multiple
transactions may access the same page concurrently, the redo-
history method is necessary for proper recovery, together with
writing log records that describe actions taken during undo
(compensation log records, or CLRs). Unfortunately, this may
cause pages that only contain updates by loser transactions to
be loaded and modified during restart, although their on-disk
version (without updates) already reflects their desired state
as far as restart recovery is concerned.

If a large buffer is employed and concurrent access to the
same page by different transactions is rare, ARIES’ restart

performance is less than optimal, as it is likely that all un-
committed updates were only in the buffer at the time of the
crash, and thus no redo and undo of loser transactions would
be necessary.

In Natix, records used to store XML documents are typi-
cally large, so that each page only contains a few records, re-
ducing the amount of concurrent access to pages. Since large
buffers are also the rule, we would like to improve on the
restart performance of our recovery system by avoiding redo
(and undo) when possible.

There exists an extension to ARIES, called ARIES/RRH
[37], that addresses this problem. Here, for pages that are up-
dated with coarse-granularity locking, special flags are set in
the log records. If during the redo pass log records of a loser
transaction are encountered which have the flag set, the log
record is ignored by the redo phase. During the latter undo
phase, log records with the flag are only undone if the pageLSN
indicates that the log record’s update is really present on the
page.

This procedure is complicated by the presence of CLRs.
To facilitate media-recovery, undo operations are logged using
a CLR, even if they have not actually been performed because
the original operation was not redone in the first place. To
allow to determine whether a CLR needs to be redone dur-
ing restart or whether it is only necessary for media recovery,
CLRs receive an additional field undoneLSN that contains the
LSN of the log record whose undo caused the CLR to be writ-
ten. Only if a page’s pageLSN lies between the undoneLSN
and the CLR’s LSN, the CLR needs to be redone.

In Natix, we wanted to avoid increasing the log record
header by another LSN-sized field, but we also wanted to ben-
efit from avoidance of redo and undo when possible, without
having to employ page-level locking at all times. Although
there exists a relaxed version of ARIES/RRH that in some
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situations allows selective redo and undo for fine-granularity
locking, this requires an additional analysis scan of the log.

In the remainder of the section, we explain our extension
of the method used by ARIES/RRH. For selective redo in an
ARIES-based recovery environment to work, it is not really
necessary that page-level locking is in effect for the affected
pages during forward processing. Instead, it is sufficient that
uncommitted updates of at most one transaction are present on
affected dirty pages. This can be the case even without being
enforced by page-level locking.

By adding a transactionID field to the main-memory page
interpreter, it can easily be determined whether one or more
transactions have updates on a dirty page. This information
is included in the dirty page checkpoint log records, and as a
result is available after restart analysis. Hence, it can be used
during restart redo to avoid redo of loser updates on pages with
only updates of one transaction.

We also avoid adding an undoneLSN field to log records.
Suppose that during forward processing, we know the LSN of
the current on-disk version of a dirty page (this can be derived
from the redoLSN of the dirty page’s frame control block).
In this case, we can determine during forward processing if a
CLR is required only for media recovery or if it may also have
to be redone during restart:

If the page was not written between execution of the orig-
inal operation and the undo operation, then the CLR is only
necessary for media recovery, because either both the original
operation and its inverse, or none of the two operations are
contained in the disk version of the page. In both cases, the
CLR will never be necessary for restart redo. We can set a flag
in the log record header accordingly, which consumes much
less space than a full-blown undoneLSN.

A drawback of this method is that certain knowledge about
the on-disk state of a page is required during forward process-
ing. This means that it is not allowed to asynchronously write
a page. A common buffer write optimization is, for example,
to protect a page with a latch only for the time necessary to
make a private memory copy of the page, then to release the
latch on the buffer frame, which allows operation on the page
to continue. The write is performed in the background from
the memory copy. In this case, the redoLSN cannot be used to
determine which version of the page is on disk, as the asyn-
chronous write may or may not have completed at the time. In
[23] we show how to relax this condition.

4.6 Synchronization components

Since XML documents are semi-structured, we cannot apply
synchronization mechanisms used in traditional, structured re-
lational databases. XML’s tree structure suggests using tree
locking protocols as described e.g. in [3,43]. However, these
protocols fail in the case of typical XML applications, as they
expect a transaction to always lock nodes in a tree in a top-
down fashion. Navigation in XML documents often involves
jumps right into the tree by following an IDREF or an index
entry. This jeopardizes serializability of traditional tree lock-
ing protocols. Another objection to tree locking protocols is
the lack of lock escalation. Lock escalation is a proven remedy
for reducing the number of locks held at a certain point in time.
Tamino, a commercial product by Software, solves this prob-

lem by locking whole XML documents, limiting concurrency
in an unsatisfactory manner. In order to achieve a high level of
concurrency, one might consider locking at the level of XML
nodes, but this results in a vast amount of locks. We strive for
a balanced solution with a moderate number of locks while
still preserving concurrent updates on a single document.

Although a traditional lock manager [21] supporting
multi granularity locking (MGL) and strict two-phase lock-
ing (S2PL) can be used as a basis for the locking primitives in
Natix, we need several modifications to guarantee the correct
and efficient synchronization of XML data. In the remainder
of this section we present our approach to synchronizing XML
data. This involves an MGL hierarchy with an arbitrary num-
ber of levels and the handling of IDREF and index jumps into
the tree. More information about the protocol and its imple-
mentation can be found in [38].

4.6.1 Lock protocol

Granularities. Locks can be requested at the segment, doc-
ument, subtree and record level. The segment, document or
record granularities are uniquely determined by a given XML
node. This is different for the subtree granularity. There can
be multiple subtrees containing a given node since the node
is contained in a hierarchy of subtrees starting with the node
itself as the smallest subtree up to the whole document as the
largest subtree containing the node. This leads to an uncon-
ventional granularity hierarchy with an undefined number of
subtree levels as shown in Fig. 11. Note that with the split
matrix the user can enforce splitting a document into records
such that those parts of the document that are likely to be mod-
ified concurrently reside in different records. As we will see,
concurrent updates on different records are possible. Hence, a
high level of customized concurrency is possible while avoid-
ing an excessive amount of locks.

Lock modes and compatibility matrix. In addition to the lock
modes described by Gray and Reuter [21], the lock manager
provides a special shared parent pointer lock mode (SPP). We
use this mode, which is described later on, to meet the require-
ments of supporting indexes and the ID/IDREF constructs.The
full lock mode hierarchy and the corresponding compatibility
matrix are shown in Fig. 12.

segment
|
document
|
subtree
|
subtree
|
...
|
subtree
|
record Fig. 11. Hierarchy of granularities
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4.6.2 Special issues

Protocol. We distinguish two cases. For operations on non-
structural data, we acquire a lock on the node containing the
data. For structural changes we request a lock on each node
in the vicinity of the affected node, i.e., on each node that has
a direct pointer to the affected node. We (only) conceptually
assume the existence of pointers between siblings and from a
parent node to its first and last child in an XML tree. Thus, the
siblings of the affected node are locked, and in the special case
of terminal nodes the parent node is locked. Strictly speaking,
these pointers do not really exist in the physical representation
of XML in Natix, but they should be seen as an auxiliary, log-
ical construct. In addition, note that in view of having records
at the finest granularity level, we cannot lock a node directly.
Instead we have to lock the record containing the nodes we
wish to lock.

Top-down navigation. When an application traverses a docu-
ment from the root to the leaves, we are back to the traditional
tree locking case. The transaction holds (some kind of) locks
on all nodes along the path from the root to the current node.
Therefore, no other transaction can change the structure of the
tree along this path.

Jumps. Sometimes transactions access an arbitrary node
within the tree, e.g., by dereferencing an IDREF link.As we do
not necessarily have locks on all ancestor nodes of the accessed
node, this may lead to complications with other transactions
working higher up in the subtree.

The goal is to lock all nodes from the node N the transac-
tion jumped to up to the root node of the document with the
according intention lock1. It is important to note that the nodes
on this path are not known to the transaction. They have to be
discovered by traversing upwards towards the root. This is very
dangerous, since in an extreme case a whole subtree contain-
ing N could have been deleted by another transaction, nodes
on the path to the root may have been moved to another disk
page and so on. To guarantee serializability, we must carefully
traverse up the tree. While traversing up the path to the root, the
transaction acquires SPP locks. Other transactions that move
records around or split records, have to adjust parent point-
ers and acquire X locks on records whose parent pointer they
change. Since SPP locks are incompatible with X locks, we
can only traverse up if no other transaction performed changes

1 If the transaction already owns an intention lock for a node M
on this path, it is sufficient to acquire the locks on the path from N
to M .

to the document that would endanger serializability. Once the
transaction reaches the root, it traverses down the path from
the root to node N , thereby converting the SPP locks to the
required lock mode. Note that the SPP locks prevent other
transactions from interfering while walking down.

Lock escalation. We invoke lock escalation whenever a trans-
action holds an excessive number of locks causing a lot of
overhead. This is checked when the transaction requests a new
lock. A heuristic is used to decide which locks to escalate. If
after the escalation of node locks to document locks there are
still too many locks, whole segments are locked.

Deadlock detection. If a transaction has waited for a lock re-
quest longer than a specified timeout value, we start a deadlock
detection by searching for cycles in the waiting graph, starting
at the node of the current transaction.

5 Natix query execution engine

A query is typically processed in two steps: the query compiler
translates a query into an optimized query evaluation plan,
and then the query execution engine interprets the plan. We
describe Natix’ query execution engine. The query compiler
is beyond the scope of this paper.

5.1 Overview

While designing the Natix Query Execution Engine (NQE)
we had three design goals in mind: efficiency, expressiveness,
and flexibility. Of course, we wanted our query execution en-
gine to be efficient. For example, special measures are taken
to avoid unnecessary copying. Expressiveness means that the
query execution engine is able to execute all queries express-
ible in a typical XML query language like XQuery [5]. Flex-
ibility means that the algebraic operators implemented in the
Natix Physical Algebra (NPA) – the first major component of
NQE – are powerful and versatile. This is necessary in order
to keep the number of operators as small as possible. Let us
illustrate this point by an example. The result of a query can be
an XML document or fragment. However, there exist several
alternatives to represent an XML document. First, a textual
representation is possible. Then the result of the query is a
simple – though possibly long – string. If further processing
of the query result is necessary, e.g., by a stylesheet processor,
then a DOM [22] representation makes sense. A third alterna-
tive is to represent the query result as a stream of SAX [30]
events. Since we did not want to implement different algebraic
operators to perform the implied different result constructions,
we needed a way to parameterize our algebraic operators in
a very flexible way. The component to provide this flexibil-
ity is the Natix Virtual Machine (NVM) – the second major
component of NQE.

Let us now give a rough picture of NPA and NVM. The
Natix Physical Algebra (NPA) works on sequences of tuples.
A tuple consists of a sequence of attribute values. Each value
can be a number, a string, or a node handle. A node handle
can be a handle to any XML node type, e.g., a text node, an
element node or an attribute node.
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NPA operators are implemented as iterators [20].All NPA
operators inherit from an iterator superclass which provides
the open, next, and close interface. However, this classi-
cal interface of an iterator has been extended by splitting the
open call into three distinct calls:

create Performs context independent resource allocations and
initializations.

initialize Performs context dependent resource allocations
and initializations.

start Prepares to fetch the first tuple.

Accordingly, the close call has been split into finish,
deinitialize, and destroy. The reason for this split is
the efficient support of nested algebraic expressions, which are
used for example to represent nested queries that for efficiency
or other reasons are not unnested by the query compiler.

NPA operators usually take several parameters which are
passed to the constructor. The most important parameters are
programs for the Natix Virtual Machine (NVM). Take for
example the classical Select operator. Its predicate is ex-
pressed as an NVM program. The Map operator takes as pa-
rameter a program that computes a function and stores the
result in some attribute. Other operators may take more than
one program. For example, a typical algebraic operator used
for result construction takes three NVM programs. We con-
sidered several alternatives to NVM programs to represent
expressions. Operator trees turned out to be too expensive.
Further experiments showed that compilation into machine
code boosts performance sometimes by a factor of almost two.
However, we decided against it due to its implementation com-
plexity and machine dependence. Instead we decided to use
a virtual machine as the middle course. We did not use an
existing virtual machine like the Java Virtual Machine (JVM)
for several reasons. First, we would have to extend an exist-
ing JVM to incorporate special instructions used for query
and XML processing. Second, the JVM opcode is of vari-
able length decreasing performance since opcode interpreta-
tion becomes more expensive. Third, memory management as
performed by the JVM does not fit our memory management
model.

The rest of the section is organized as follows. We first
introduce the Natix Virtual Machine. Then we describe the
Natix Physical Algebra. Last, we give some example plans.

5.2 Natix virtual machine

The Natix Virtual Machine interprets commands on register
sets. Each register set is capable of holding a tuple, e.g., one
register holds one attribute value. At any time, an NVM pro-
gram is able to access several register sets. The situation is
illustrated in Fig. 13 for unary (a) and binary (b) NPA op-
erators. There always exists a global register set (named X)
which contains information that is global to but specific for
the current plan execution. It contains information about par-
titions, segments, lookup tables, and the like. It is also used
for intermediate results or to pass information down for nested
query execution. Between operators, the tuples are stored in
the register sets Z and Y where Y is only available for binary
operators. In case of a join operator, Z contains an outer and
Y an inner tuple.

b)

Z

NPA-Operator �
executes

NVM-Program

�
�

�
�

�

�
�
�
�
�
Y

Z′

X

accesses

a)

NPA-Operator �
executes

NVM-Program

Z′

Z

X

accesses

Fig. 13. Register sets, NPA-operators and NVM-programs

It is database lore that during query execution most of the
time is spent on copying data around. We have been very care-
ful to avoid unnecessary copying in NQE. Let us briefly de-
scribe our approach here. In order to avoid unnecessary copy-
ing, pointers to registers sets are passed among different NPA
operators. If there is no pipeline breaker in a plan, only one Z
register set is allocated and its address is passed down the tree.
The general rule for Z registers used by pipelined operators
is the following: memory is passed from top to bottom and
content from bottom to top.

The situation differs for pipeline breakers. A pipeline
breaker usually allocates register sets. For example, a sim-
ple grouping operator may allocate a Z register set for every
group and fill it with corresponding values while processing its
input. When next is called on the group operator, memory is
passed to the group operator by providing thenext call with a
pointer to a Z register set. It would be straightforward to copy
the contents of the next local Z register of the group operator
into the Z register passed down by the next call. However,
this is unnecessary. Instead, a pointer to the local Z register of
the group operator is passed upwards to the caller of next.
Hence, the next method contains a parameter which holds a
reference to a pointer to a register set. This way, the operator
has a choice to either modify the contents of the register set
or to return a different register set.

NVM commands. NVM commands can be divided into
groups. For example, there exists a group for arithmetics. A
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typical command is ARITH ADD A UI4 ZZZ which adds
two unsigned four byte integers found in Z registers and puts
the result into another Z register. In general, a command name
starts with a group name followed by the command. Then an
optional result mode (borrowed from AVM, see [44]) and a
type follow. Last in the command name is a specification of
the register sets for the arguments and the result. Altogether
there are more than 1500 commands that can be interpreted by
the NVM. Let us consider a small example of a program that
adds two numbers given in X registers 1 and 2. The following
program adds these numbers, puts the result in X register 3
and prints the output:

ARITH ADD A SI4 XXX 1 2 3
PRINT SI4 X 3
STOP

The STOP command ends the execution of the NVM. Be-
sides STOP, NVM provides more control commands like
EXIT FALSE Xwhich exits if a specified X register contains
false. The following small program implements the selec-
tion predicate a ≤ 55 for some variable a where we assume
that a is contained in Z register number 1.

CMP LEQ SI4 ZCX 1 55 2
EXIT FALSE X 2

The C indicates that the corresponding argument is a con-
stant.

The XML specific part of NVM contains about 150 com-
mands. Among these are simple operations that copy a node
handle from one register to another, compare two handles,
print the XML fragment rooted at a handle with or without
markup and the like. The main portion of the XML specific
commands consists of navigation operations roughly corre-
sponding to the axes in XPath. These commands retrieve the
attributes of an element node, its children, or its descendants.

Let us consider an example. Evaluating XPath expression
can sometimes be performed by a sequence of UnnestMap
operations.AnUnnestMapoperation takes in its logical form
a set-valued expression and produces a single output tuple for
every element in the result of this expression. At the physical
level, an UnnestMap operation takes three programs. The
first program initializes the first tuple to be returned. The sec-
ond program computes the next tuples. After all tuples have
been produced, the third program is called for cleanup opera-
tions. The following table contains the three programs for an
UnnestMap operator that accesses all child nodes of a node
contained in Z register 1. The children are written to Z register
2. X Register 3 is used to indicate whether there is a new tuple
or the iteration ends. X Register 4 is used to save the current
child node since it will not necessarily survive in the Z register
between two next calls.

init XML CHILD ZZ 1 2
XML VALID ZX 2 3
EXIT FALSE X 3
MV XML ZX 2 4

step XML SIBLING NEXT XX 4 4
XML VALID XX 4 3
EXIT FALSE X 3
MV XML XZ 4 2

fin

In theinit program, we look for the first child. Subsequently,
we check it for validity. If there are no children, Z register
2 will contain an invalid node. Analogously, after retrieving
the next child with the step program’s first command, we
check whether there has been a next child. No fin program
is necessary here. Note that we omitted the STOP commands.

These kinds of programs are generated by the query com-
piler. We use the query compiler BD 2 for this purpose. BD 2
is a multilingual query compiler speaking several query lan-
guages. Its description is beyond the scope of the paper. Since
NVM programs are a little difficult to read for human readers,
we will use expressions with function calls instead in the plans
of the next section.

Implementation of the NVM. All commands are represented
by consecutive non-negative integers. The NVM interpreter is
implemented as an infinite loop with a switch statement in-
side. Only control commands may halt the execution by jump-
ing outside the loop. The advantage of this implementation of
NVM is that no function calls are necessary to execute a com-
mand. This makes NVM program execution very fast.

5.3 Natix physical algebra

Query languages for XML (for example XQuery) often pro-
vide a three-step approach to query specification. The first part
(let and for in XQuery) specifies the generation of vari-
able bindings. The second part (where in XQuery) specifies
how these bindings are to be combined and which combina-
tions are to be selected for the result construction. The final
part (return in XQuery) specifies how a sequence of XML
fragments is to be generated from the combined and selected
variable bindings.

Reflecting this three-step approach, NPA operators exist
to support each of these steps. The middle step – binding com-
bination and selection – can be performed by standard alge-
braic operators borrowed from the relational context. Those
provided in NPA are a select, map, several join and grouping
operations, and a sort operator. Some operators like the d-join
and the unary and binary grouping operators are borrowed
from the object-oriented context [10,11]. Since these opera-
tors and their implementations are well-known (see e.g., [20]),
we concentrate on the XML specific operations for variable
binding generation and XML result construction.

At the bottom of every plan are scan operations. NPA
provides several of them. The simplest is an expression scan
(ExpressionScan) which generates tuples by evaluating
a given expression. It can be thought of as a Map operator
working without any input. It is used to generate a single tu-
ple containing the root of a document identified by its name.
The second scan operator scans a collection of documents and
provides for every document a tuple containing its root. Index
scans complement the collection of scan operations.

Besides the scan operationsUnnestMap is used to gener-
ate variable bindings for XPath expressions. An XPath expres-
sion can be translated into a sequence of UnnestMap opera-
tions. Consider for example the XPath expression /a//b/c.
It can be translated into

UnnestMap$4=child($3,c)(
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Fig. 14. Interfaces of construction operators

<!ELEMENT bib (conference|journal)*>
<!ELEMENT conference (title, year, article+)>
<!ELEMENT journal (title, volume, no?, article+)>
<!ELEMENT article (title, author+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author EMPTY>
<!ATTLIST author last CDATA #REQUIRED

first CDATA #REQUIRED> Fig. 15. Sample DTD

UnnestMap$3=desc($2,b)(
UnnestMap$2=child($1,a)([$1])))

However, one has to be careful: not all XPath expres-
sions can be translated straightforwardly into a sequence
of UnnestMap operations. Often relatively complex trans-
formations are needed to guarantee a correct and efficient
pipelined evaluation of XPath expressions. The details thereof
are beyond the scope of the paper.

For XML result construction NPA provides the
BA-Map, FL-Map, Groupify-GroupApply, and
NGroupify-NGroupApply operators. The interfaces
of these operators are shown in Fig. 14. The BA-Map and
FL-Map operators are simple enhancements of the traditional
Map operator. They take three NVM programs as parameters.
The program called each is called on every input tuple. The
programs before and after of the BA-Map operator are
called before the first and after the last tuple, respectively.
The programs first and last of the FL-Map operator
are called on the first and last tuple, respectively. In general
BA-Map is more efficient (FL-Map needs to buffer the
current tuple) and should be used whenever applicable.

The Groupify and GroupApply pair of operators de-
tects group boundaries and executes a subplan contained be-
tween them for every group. The Groupify operator has a
set of attributes as parameters. These attributes are used to
detect groups of tuples. On every first tuple of a group the
program first is executed. Whenever one attribute’s value
changes, it signals an end of stream by returning false on
the next call. The GroupApply operator then applies the
last program on the last tuple of the group. It then asks the

Groupify operator to return the tuples of the next group by
calling GetNextGroup. ResetGroup allows to reread a
group. The use of these operators will become more clear when
looking at the examples of the next section. The NGroupify
and NGroupApply pair of operators allows multiple sub-
plans to occur between them. They are rather complex and
beyond the scope of the current paper. More details about the
operators and the generation and optimization of construction
plans can be found in [15,16].

5.4 Example plans

Let us consider two plans which rely on a bibliography doc-
ument whose DTD is shown in Fig. 15. The first plan imple-
ments the evaluation strategy for the following XQuery (Query
1):

<result>
{
FOR $c IN document("bib.xml")/bib/conference
WHERE $c/year > 1996
RETURN

<conference>
<title> { $c/title } </title>
<year> { $c/year } </year>

</conference>
}
</result>

This query retrieves the title and year for all recent confer-
ences. The corresponding plan is shown in Fig. 16. Note that
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getValue($y) > 1996

Select

Map

$t: getFirst(getChildren($c,"title"))

Map

$y: getFirst(getChildren($c,"year"))  

UnnestMap

$c: getChildren($b,"conference")

UnnestMap

$b: getChildren($d,"bib")

ExpressionScan

$d: getDocumentRoot("bib.xml")

FL−Map

          </conference> 

first: <bib>
each:  <conference> 

           <year>getValue($y)</year>

last:  </bib> 

           <title>getValue($t)</title>   

Fig. 16. Construction plan of Query 1

this plan is unoptimized and results from a rather straight-
forward translation process of the query into the algebra.
The bottom-most operator is an ExpressionScan. It eval-
uates its expression to build a single tuple whose attribute
$d is set to the root of the document bib.xml. Then a se-
quence of UnnestMap operations follows to access the bib,
conference, year, and title elements. In case an axis
returns only a single element, Map and UnnestMap opera-
tions are interchangeable. After producing all variable bind-
ings, the selection predicate is applied. Last, the result is con-
structed by a single FL-Map operator. This is the usual situa-
tion for a query that selects and projects information from an
XML document without restructuring it.

The second query restructures the original bibliography
document such that papers are (re-) grouped by authors (Query
2):

<bib>
{
FOR $a IN document("bib.xml")

//conference/article/author
RETURN
<author>
<name first={$a/@first} last={$a/@last}/>
<articles>
{

FOR $b IN document("bib.xml")
//conference/article,

$c IN $b/author
WHERE $c/@first = $a/@first

AND $c/@last=$a/@last
RETURN

first:
each:
last:  </bib>

FL−Map

last:    </articles>
</author>

GroupApply

first: <bib>
each:
last:

FL−Map

Map

$l: getValue(getAttribute($a,"last"))

Map

$f: getValue(getAttribute($a,"first"))

Map

$t: getFirst(getChildren($ar,"title"))

first:  <author>
group−by: $f,$l

           <name first=$f last=$l/>
<articles>

UnnestMap

$a: getChildren($ar,"author")

UnnestMap

$ar: getChildren($c,"article")

UnnestMap

$c:getChildren($b,"conference")

$b:  getChildren($d,"bib")

UnnestMap

ExpressionScan

$d:  document("bib.xml")

each:   <article>
             <title>$t</title>

         </article>
last:

first:

FL−Map

Groupify

Fig. 17. Construction plan of Query 2
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<article> {$b/title} </article>
}
</articles>

</author>
}
</bib>

The corresponding plan is shown in Fig. 17. The lower half
of the plan produces the variable bindings necessary to an-
swer the query. The outer two FL-Map operations produce
the outermost <bib> and </bib> tags. Since they print
constants, they can be replaced by BA-Map operations, but
again we show an unoptimized initial plan. The Groupify
operation groups the input relation by the first and last name
of the authors. For every such group, the inner FL-Map oper-
ator prints the title of the current group’s author. The author
and article open tags are printed by the first program
of Groupify. The corresponding close tags are produced by
GroupApply.

6 Conclusion

Exemplified by storage management, recovery, multi-user
synchronization, and query processing, we illustrated that the
challenges of adapting database management systems to han-
dling XML are not limited to schema design for relational
database management systems.

We believe that sooner or later a paradigm shift in the way
XML documents are processed will take place.As the usage of
XML and its storage in DBMSs spreads further, applications
working on huge XML document collections will be the rule.
These applications will reach the limits of XML-enhanced
traditional DBMSs with regard to performance and application
development effectiveness. Our contribution is to prepare for
the shift in processing XML documents by describing how
efficient, native XML base management systems can actually
be built.
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6. K. Böhm, K. Aberer, E.J. Neuhold, X. Yang (1997) Structured
document storage and refined declarative and navigational ac-
cess mechanisms in HyperStorM. VLDB J. 6(4):296–311

7. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler (2000)
Extensible markup language (xml) 1.0 (2nd edn). Technical
report, World Wide Web Consortium (W3C)

8. M.J. Carey, D.J. DeWitt, J.E. Richardson, E.J. Shekita (1986)
Object and file management in the EXODUS extensible
database system. In: Proc. 12th International Conference on
Very Large Data Bases, pp 91–100, Los Altos, Calif., USA

9. J. Clark, S. DeRose (1999) XML path language (XPath) version
1.0. Technical report, World Wide Web Consortium (W3C)

10. S. Cluet, G. Moerkotte (1993) Nested queries in object bases.
In: Proc. Int. Workshop on Database Programming Languages

11. S. Cluet, G. Moerkotte (1995) Classification and optimization
of nested queries in object bases. Technical Report 95-6, RWTH
Aachen

12. data ex machina (2001) NatixFS technology demonstration
available at: http://www.data-ex-machina.de/download.html

13. A. Deutsch, M. Fernandez, D. Suciu (1999) Storing semistruc-
tured data with STORED. In: Proc. 1999 ACM SIGMOD In-
ternational Conference on Management of Data, pp 431–442,
Philadelphia, Penn., USA, June

14. J. Naughton, et al (2001) The Niagara internet query system.
IEEE Data Eng Bull 24(2):27–33

15. T. Fiebig, G. Moerkotte (2001) Algebraic XML construction
and its optimization in Natix. WWW J 4(3):167–187

16. T. Fiebig, G. Moerkotte (2001) Algebraic XML construction
in Natix. In: Proc. 2nd International Conference on Web Infor-
mation Systems Engineering (WISE’01), pp 212–221, Kyoto,
Japan, December. IEEE Computer, New York

17. T. Fiebig, G. Moerkotte (2001) Evaluating queries on structure
with extended access support relations. In: The World Wide
Web and Databases, 3rd International Workshop WebDB 2000,
Dallas, Tex., USA, May 18–19, 2000, Selected Papers, Lecture
Notes in Computer Science, vol. 1997. Springer, Berlin Heidel-
berg New York

18. D. Florescu, D. Kossmann (1999) Storing and querying xml
data using an rdmbs. IEEE Data Eng Bull 22(3):27–34

19. Y. Goland, E. Whitehead, A. Faizi, S. Carter, D. Jensen (1999)
Http extensions for distributed authoring – webdav. Technical
Report RFC2518, Internet Engineering Task Force, February

20. G. Graefe (1993) Query evaluation techniques for large
databases. ACM Comput Surv 25(2):73–170

21. J. Gray, A. Reuter (2000) Transaction processing: concepts and
techniques. Morgan Kaufmann, San Francisco

22. A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M.
Champion, S. Byrne (2000) Document object model (DOM)
level 2 core specification. Technical report, World Wide Web
Consortium (W3C)

23. C.-C. Kanne (2002) Natix: a native XML base management
system. PhD thesis, University of Mannheim (to appear)

24. C.-C. Kanne, G. Moerkotte (1999) Efficient storage of XML
data. Technical Report Nr. 8, Lehrstuhl für praktische Informatik
III, Universität Mannheim, June

25. M. Klettke, H. Meyer (2000) XML and object-relational
database systems – enhancing structural mappings based on
statistics. In: ACM SIGMOD Workshop on the Web and
Databases (WebDB)



314 T. Fiebig et al.: Anatomy of a native XML base management system

26. T.J. Lehman, B.G. Lindsay (1989) The Starburst long field man-
ager. In: Proc. 15th International Conference onVery Large Data
Bases, pp 375–383, Amsterdam, The Netherlands, August

27. Q. Li, B. Moon (2001) Indexing and querying XML data for
regular path expressions. In: Proc. 27th VLDB, pp 361–370,
Rome, Italy

28. M.L. McAuliffe, M.J. Carey, M.H. Solomon (1996) Towards
effective and efficient free space management. In: Proc. 1996
ACM SIGMOD International Conference on Management of
Data, pp 389–400, Montreal, Canada, June

29. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom
(1997) Lore: a database management system for semistructured
data. SIGMOD Rec 26(3)

30. David Megginson (2001) SAX: A simple API for XML. Tech-
nical report, Megginson Technologies

31. H. Meuss, C. Strohmaier (1999) Improving on index structures
for structured document retrieval. In: 21st Annual Colloquium
on IR Research (IRSG’99)

32. J. Mildenberger (2001) A generic approach for document in-
dexing: design, implementation, and evaluation. Master’s thesis,
University of Mannheim, Mannheim, Germany, November (in
German)

33. C. Mohan (1995) Disk read-write optimizations and data in-
tegrity in transaction systems using write-ahead logging. In:
P.S. Yu, A. L. P. Chen (eds) Proc. 11th International Confer-
ence on Data Engineering, March 6–10, 1995, Taipei, Taiwan,
pp 324–331. IEEE Computer, New York

34. C. Mohan, D. Haderle (1994) Algorithms for flexible space
management in transaction systems supporting fine-granularity
locking. Lecture Notes in Computer Science, vol. 779. Springer,
Berlin Heidelberg New York, pp. 131–144

35. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz
(1992) ARIES: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead log-
ging. ACM Trans Database Syst 17(1):94–162

36. C. Mohan, Frank Levine (1992) Aries/im: an efficient and high
concurrency index management method using write-ahead log-
ging. In: M. Stonebraker (ed) Proc. 1992 ACM SIGMOD Inter-
national Conference on Management of Data, San Diego, Calif.,
June 2–5, 1992, pp 371–380. ACM, New York

37. C. Mohan, H. Pirahesh (1991) Aries-rrh: restricted repeating
of history in the aries transaction recovery method. In: Proc.
7th International Conference on Data Engineering, April 8–12,
1991, Kobe, Japan, pp 718–727. IEEE Computer, New York

38. R. Schiele (2001) NatiXync: Synchronisation for XML database
systems. Master’s thesis, University of Mannheim, Mannheim,
Germany, September
(in German).

39. A. Schmidt, M. Kersten, M. Windhouwer, F. Waas (2000) Ef-
ficient relational storage and retrieval of XML documents. In:
ACM SIGMOD Workshop on the Web and Databases (WebDB)

40. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt,
J.F. Naughton (1999) Relational databases for querying XML
documents: limitations and opportunities. In: Proc. 25th Inter-
national Conference on Very Large Data Bases, pp 302–314,
Edinburgh, Scotland, UK

41. B. Surjanto, N. Ritter, H. Loeser (2000) XML content man-
agement based on object-relational database technology. In:
Proc. 1st Int. Conf. on Web Information Systems Engineering
(WISE), pp 64–73

42. R. van Zwol, P.M.G.Apers,A.N. Wilschut (1999) Modeling and
querying semistructured data with MOA. In: ICDT’99 Work-
shop on Query Processing for semistructured data

43. G. Weikum, G. Vossen (2002) Transactional information sys-
tems: theory, algorithms and the practice of concurrency control
and recovery. Morgan Kaufmann, San Francisco

44. T. Westmann, D. Kossmann, S. Helmer, G. Moerkotte (2000)
The implementation and performance of compressed databases.
SIGMOD Rec 29(3):55–67

45. G. Wiederhold (1987) File organization for database design.
McGraw-Hill Computer Science Series. McGraw-Hill, New
York

46. I.H. Witten, A. Moffat, T.C. Bell (1999) Managing gigabytes.
Morgan Kaufmann, San Francisco

47. T.W. Yan, J. Annevelink (1994) Integrating a structured-text re-
trieval system with an object-oriented database system. In: Very
large data bases, VLDB ’94: Proc. 20th International Confer-
ence on Very Large Data Bases, pp 740–749, Santiago, Chile


