
Fall, 2007 CIS 550

Database and Information Systems

Solutions to Homework 1

Due on September 26, 2007

The first two problems concern the Penn Ebay (PBAY) System, which is represented by the following schema:

Sellers(sellerID :int, rating :char, email :string)
Items(itemID :int, type:string)

Buyers(buyerID :int, email :string, city :string, state:string)
Stock(itemID :int, sellerID :int, startBid :float, quantity :int,endingTime:int)

Purchase(itemID :int, buyerID :int, sellerID :int, price:float, purchaseQuantity :int, bidTime:int)

Problem 1 [60 points]: Express the following queries in (a) the relational algebra, (b) the tuple relational
calculus, and (c) the domain relational calculus:

Note: in problems where wording proved unclear, answers correct with respect to some reasonable interpre-
tation of the problem were accepted.

1. Find the IDs of items purchased for price < $50.

RA: πitemID(σprice<50(Purchase))
TRC: {Q | ∃P ∈ Purchase(P.price < 50 ∧ P.itemID = Q.itemID)}
DRC: {< i > | ∃b, s, p, u,m(< i, b, s, p, u, m > ∈ Purchase ∧ p < 50)}

2. Find the emails of buyers from PA who buy items with purchaseQuantity > 3.

RA: πemail(σstate=“PA”(Buyers) ./ πbuyerID(σpurchaseQuantity>3(Purchase)))
TRC: {Q | ∃B ∈ Buyers, ∃P ∈ Purchase (B.state = “PA”∧B.buyerID = P.buyerID∧P.purchaseQuantity >
3 ∧Q.email = B.email)}
DRC: {< e > | ∃b, c, a(< b, e, c, a > ∈ Buyers ∧ a = “PA” ∧ ∃i, s, p, u, m(< i, b, s, p, u, m > ∈
Purchase ∧ u > 3)}

3. Find the IDs of buyers who purchased items of purchaseQuantity less than 10% of the quantity provided
by the same seller the buyer purchased from in the stock.

RA: πbuyerID(πitemID,sellerID,quantity(Stock) ./
σpurchaseQuantity<0.1∗quantity(πitemID,buyerID,sellerID,purchaseQuantity(Purchase)))
TRC: {Q | ∃T ∈ Stock,∃P ∈ Purchase (T.itemID = P.itemID ∧ T.sellerID = P.sellerID ∧
P.purchaseQuantity < 0.1 ∗ T.quantity ∧Q.buyerID = P.buyerID)}
DRC: {< b > | ∃i, s, q, u(∃d, n(< i, s, d, q, n > ∈ Stock)∧ ∃p,m(< i, b, s, p, u, m > ∈ Purchase)∧ u <
0.1 ∗ q)}

4. Find the IDs of buyers who purchased items with type “furniture” for over 10% of the startBid price
of the items they bought.

RA: πbuyerID(πitemID(σtype=“furniture”(Items)) ./

πitemID,sellerID,startBid(Stock) ./ σprice> 1.1∗startBid(πitemID,buyerID,sellerID,price(Purchase)))
TRC: {Q | ∃I ∈ Items,∃T ∈ Stock,∃P ∈ Purchase (I.itemID = T.itemID ∧ T.itemID =
P.itemID ∧ T.sellerID = P.sellerID ∧ P.price > 1.1 ∗ T.startBid ∧ I.type = “furniture” ∧

1

Q.buyerID = P.buyerID)}
DRC: {< b > | ∃i(∃t(< i, t > ∈ Items ∧ t = “furniture”) ∧ ∃s, p, d(∃q, n(< i, s, d, q, n > ∈
Stock) ∧ ∃u,m(< i, b, s, p, u, m > ∈ Purchase) ∧ (p > 1.1 ∗ d)))}

5. Find the IDs of buyers who either always make purchases with purchaseQuantity < 5 or haven’t made
any purchases.

RA: πbuyerID(Buyers)− πbuyerID(σpurchaseQuantity≥5(Purchase))
TRC: {Q | ∃B ∈ Buyers (∀P ∈ Purchase (P.purchaseQuantity < 5 ∨ P.buyerID 6= B.buyerID) ∧
Q.buyerID = B.buyerID)}
DRC: {< b > | ∃e, c, a(< b, e, c, a > ∈ Buyers∧¬∃i, s, p, u, m((< i, b, s, p, u, m > ∈ Purchase)∧ (u ≥
5))}
(You can either have:
DRC: {< b > | ∃e, c, a(< b, e, c, a > ∈ Buyers∧∀i, s, p, u, m(¬(< i, b, s, p, u, m > ∈ Purchase)∨ (u <
5))}, but remember that is is an unsafe plan.)

6. Find the types of items stocked by ≥ 2 sellers or bought by ≥ 2 buyers.

RA: πtype(σs1 6=s2(ρsellerID→s1(πsellerID,type(Items ./ Stock)) ./ ρsellerID→s2(πsellerID,type(Items ./
Stock))))
∪
πtype(σb1 6=b2(ρbuyerID→b1(πbuyerID,type(Items ./ Purchase)) ./ ρbuyerID→b2(πbuyerID,type(Items ./
Purchase))))
TRC: {Q | (∃P1, P2 ∈ Purchases,∃I1, I2 ∈ Items (P1.itemID = I1.itemID∧P2.itemID = I2.itemID∧
I1.type = I2.type ∧ P1.buyerID 6= P2.buyerID ∧ I1.type = Q.type)) ∨ (∃S1, S2 ∈ Stocks,∃I1, I2 ∈
Items (S1.itemID = I1.itemID ∧ S2.itemID = I2.itemID ∧ I1.type = I2.type ∧ S1.sellerID 6=
S2.sellerID ∧ I1.type = Q.type))}
DRC: {< t > |∃i1, s1, d1, q1, n1, i2, s2, d2, q2, n2(< i1, t > ∈ Items ∧ < i1, s1, d1, q1, n1 > ∈ Stock ∧ <
i2, t > ∈ Items ∧ < i2, s2, d2, q2, n2 > ∈ Stock ∧ s1 6= s2)∨ ∃i3, b3, s3, p3, u3,m3, i4, b4, s4, p4, u4,m4(<
i3, t > ∈ Items ∧ < i3, b3, s3, p3, u3,m3 > ∈ Purchase ∧ < i4, t > ∈ Items ∧ < i4, b4, s4, p4, u4,m4 >
∈ Purchase ∧ b3 6= b4)}

Problem 2 [30 points]: State in English what the following queries compute:

1. {Q | ∃P ∈ Purchase,∃S ∈ Sellers (S.rating = “A”∧P.sellerID = S.sellerID∧P.purchaseQuantity =
2 ∧Q.buyerID = P.buyerID)}
IDs of buyers who have bought 2 of the same items from a seller with rating “A”.

2. {< e > | ∃i, s(∃r(< s, r, e > ∈ Sellers) ∧ ∃d, q, n(< i, s, d, q, n > ∈ Stock ∧ (d < 20) ∧ (q = 5)) ∧
∃b, p, u,m(< i, b, s, p, u, m > ∈ Purchase ∧ (p > 50)))}
Emails of sellers who have 5 of the same stock items, all with start bid price < 20, and who have sold
at least 1 item with price > 50.

3. πemail(σcity=”Philadelphia”(Buyers) ./ πbuyid(σprice<2∗startBid(σtype=”book”∧purchaseQuantity=2(Items ./
Purchase) ./ Stock)))
Emails of the buyers living in Philadelphia who have bought 2 same books with price less than twice
of the start bid price.

4. πrating(πs1(σi1 6=i2∧s1=s2(ρitemID→i1,sellerID→s1(Stock) ./ ρitemID→i2,sellerID→s2(σquantity≥3(Stock))))
./s1=sellerID Sellers)
Ratings of sellers with 2 different items in stock where the seller stocks at least 3 of one of those items.

Problem 3 [10 points]: Explain how Codd’s points of access path dependence and indexing dependence
relate to today’s Java objects. (Assume the goal is to return all instances of a particular member variable
of a particular object, which might be linked to by other objects.)

2

Java has all of the same ”shortcomings,” i.e., access path dependencies, as the languages of Codd’s time.
For instance, a programmer must know: (1) data ordering for files serialized to disk; (2) what indices are
available, and what they point to (and in fact this requires a special library like BerkeleyDB); (3) how
references between files are represented (one can serialize object references in a single file but not across
files).

3

