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(3) the algorithms implemented to process interactions, (4) the access methods implemented, 
(5) the concurrency and recovery control currently provided, and (6) the data structures used 
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1. INTRODUCTION 

INGRES (Interactive Graphics and Retrieval System) is a relational database 
system which is implemented on top of the UNIX operating system developed at 
Bell Telephone Laboratories [22] for Digital Equipment Corporation PDP 11/40, 
11/45, and 11/70 computer systems. The implementation of INGRES is primarily 
programmed in C, a high level language in which UNIX itself is written. Parsing 
is done with the assistance of YACC, a compiler-compiler available on UNIX [19]. 
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The advantages of a relational model for database management systems have 
been extensively discussed in the literature [7, 10, 111 and hardly require further 
elaboration, In choosing the relational model, we were particularly motivated by 
(a) the high degree of data independence that such a model affords, and (b) the 
possibility of providing a high level and entirely procedure free facility for data 
definition, retrieval, update, access control, support of views, and integrity verifica- 
tion . 

1 .l Aspects Described in This Paper 

In this paper we describe the design decisions made in INGRES. In particular we 
stress the design and implementation of: (a) the system process structure (see Sec- 
tion 2 for a discussion of this UNIX notion) ; (b) the embedding of all INGRES 
commands in the general purpose programming language C; (c) the access methods 
implemented; (d) the catalog structure and the role of the database administrator; 
(e) support for views, protection, and integrity constraints; (f) the decomposition 
procedure implemented; (g) implementation of updates and consistency of second- 
ary indices; (h) recovery and concurrency control. 

In Section 1.2 we briefly describe the primary query language supported, QUEL, 
and the utility commands accepted by the current system. The second user inter- 
face, CUPID, is a graphics oriented, casual user language which is also operational 
[20, 211 but not discussed in this paper. In Section 1.3 we describe the EQUEL (Em- 
bedded QUEL) precompiler, which allows the substitution of a user supplied C pro- 
gram for the “front end” process. This precompiler has the effect of embedding all 
of INGRES in the general purpose programming language C. In Section 1.4 a few 
comments on QUEL and EQUEL are given. 

In Section 2 we describe the relevant factors in the UNIX environment which 
have affected our design decisions. Moreover, we indicate the structure of the four 
processes into which INGRES is divided and the reasoning behind the choices im- 
plemented. 

In Section 3 we indicate the catalog (system) relations which exist and the role 
of the database administrator with respect to all relations in a database. The im- 
plemented access methods, their calling conventions, and, where appropriate, the 
actual layout of data pages in secondary storage are also presented. 

Sections 4, 5, and 6 discuss respectively the various functions of each of the three 
“core” processes in the system. Also discussed are the design and implementation 
strategy of each process. Finally, Section 7 draws conclusions, suggests future ex- 
tensions, and indicates the nature of the current applications run on INGRES. 

Except where noted to the contrary, this paper describes the INGRES system 
operational in March 1976. 

1.2 QUEL and the Other INGRES Utility Commands 

QUEL (QUEry Language) has points in common with Data Language/ALPHA [a], 

SQUARE [3], and SEQUEL [4] in that it is a complete query language which frees the 
programmer from concern for how data structures are implemented and what algo- 
rithms are operating on stored data [9]. As such it facilitates a considerable degree 
of data independence [24]. 

The QUEL examples in this section all concern the following relations. 
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EMPLOYEE (NAME, DEPT, SALARY, MANAGER, AGE) 

DEPT (DEPT, FLOOR#) 

A QUEL interaction includes at least one RANGE statement of the form 

RANGE OF variable-list IS relation-name 

The purpose of this statement is to specify the relation over which each variable 
ranges. The variable-list portion of a RANGE statement declares variables which 
will be used as arguments for tuples. These are called tuple variables. 

An interaction also includes one or more statements of the form 

Command [result-name](target-list) 
[WHERE Qualification] 

Here Command is either RETRIEVE, APPEND, REPLACE, or DELETE. For 
RETRIEVE and APPEND, result-name is the name of the relation which quali- 
fying tuples will’bc retrieved into or appended to. For REPLACE and DELETE, 
result-name is the name of a tuple variable which, through the qualification, iden- 
tifies tuples to be modified or deleted. The target-list is a list of the form 

result-domain = QUEL Function. . . . 

Here the result-domains are domain names’ in the result relation which are to be 
assigned the values of the corresponding functions. 

The following suggest valid QUEL interactions. A complete description of the 
language is presented in [15]. 

Example 1.1. Compute salary divided by age-18 for employee Jones. 
RANGE OF E IS EMPLOYEE 
RETRIEVE INTO W 
(COMP = E.SALARY/(E.AGE-18)) 
WHERE E.NAME = “Jones” 

Here E is a tuple variable which ranges over the EMPLOYEE relation, and all 
tuples in that relation are found which satisfy the qualification E.NAME = 
“Jones.” The result of the query is a new relation W, which has a single domain 
COMP that has been calculated for each qualifying tuple. 

If the result relation is omitted, qualifying tuples are written in display format 
on the user’s terminal or returned to a calling program. 

Example 1.2. Insert’ the tuple (Jackson,candy,l3000,Baker,30) into EMPLOYEE. 
APPEND TO EMPLOYEE(NAME = “Jackson”, DEPT = “candy”, 

SALARY = 13000, MGR = “Baker”, AGE = 30) 

Here the result relation EMPLOYEE is modified by adding the indicated tuple to 
the relation. Domains which are not specified default to zero for numeric domains 
and null for character strings. A shortcoming of the current, implemenation is that 
0 is not distinguished from “no value” for numeric domains. 

Example 1.3. Fire everybody on the first floor. 
RANGE OF E IS EMPLOYEE 
RANGE OF D IS DEPT 
DELETE E WHERE E.DEPT = D.DEPT 

AND D.FLOOR# = 1 
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Here E specifies that the EMPLOYEE relation is to bc modified, All tuplcs are to 
be removed which have a value for DEPT which is the same as some department 
on the first floor. 

Example 1.4. Give a lo-percent raise to Jones if he works on the first floor. 

RANGE OF E IS EMPLOYEE 
RANGE OF D IS DEPT 
REPLACE E(SALARY = l.l*E.SALARY) 
WHERE E.NAME = “Jones” AND 

E.DEPT = D.DEPT AND D.FLOOR# = 1 

Here E.SALARY is to be replaced by l.l*E.SALARY for those tuples in EM- 
PLOYEE where the qualification is true. 

In addition to the above QUEL commands, INGRES supports a variety of utility 
commands. These utility commands can be classified into seven major categories. 

(a) Invocation of INGRES: 

INGRES data-base-name 

This command executed from UNIX “logs in” a user to a given database. (A data- 
base is simply a named collection of relations with a given database administrator 
who has powers not available to ordinary users.) Thereafter the user may issue all 
other commands (except those executed directly from UNIX) within the environ- 
ment of the invoked database. 

(b) Creation and destruction of databases: 

CREATEDB data-base-name 

DESTROYDB data-base-name 

These two commands are called from UNIX. The invoker of CREATEDB must be 
authorized to create databases (in a manner to be described presently), and he 
automatically becomes the database administrator. DESTROYDB successfully 
destroys a database only if invoked by the database administrator. 

(c) Creation and destruction of relations : 

CREATE relname(domain-name IS format, domain-name IS format, . . .) 

DESTROY relname 

These commands create and destroy relations within the current database. The 
invoker of the CREATE command becomes the “ov,ner” of the relation created. 
A user may only destroy a relation that he owns. The current formats accepted by 
INGRES arc l-, 2-, and 4-byt,e integers, 4- and 8-byte floating point numbers, and 
l- to 255-byte fixed length ASCII character strings. 

(d) Bulk copy of data: 

COPY relname(domain-name IS format, domain-name IS format, . ) direction “file- 
name” 

PRINT relname 
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The command COPY transfers an entire relation to or from a UNIX file whose 
name is “filename.” Direction is either TO or FROM. The format for each domain 
is a description of how it appears (or is to appear) in the UNIX file. The relation 
relname must exist and have domain names identical to the ones appearing in the 
COPY command. However, the formats need not agree and COPY will auto- 
matically convert data types. Support is also provided for dummy and variable 
length fields in a UNIX filr. 

PRINT copies a relation onto the user’s terminal, formatting it as a report. In 
this sense it is stylized version of COPY. 

(e) Storage structure modification: 

MODIFY relname TO storage-structure ON (keyl, key2, . . . ) 

INDEX ON relname IS indexname(key1, key2, . . . ) 

The MODIFY command changes the storage structure of a relation from one 
access method to another. The five access methods currently supported are dis- 
cussed in Section 3. The indicated keys arc domains in relname which are con- 
catenated left to right to form a combined key which is used in the organisat,ion of 
tuples in all but one of the access methods. Only the owner of a relation may modify 
its storage structure. 

INDEX creates a secondary index for a relation. It has domains of keyl, key2, 
. . . , pointer. The domain “pointer” is the unique identifier of a tuple in the in- 
dexed relation having the given values for keyl, key2, . . + . An index named AGE- 
INDEX for EMPLOYEE might be the following binary relation (assuming that 
there are six tuples in EMPLOYEE with appropriate names and ages). 

Age Pointer 
25 identifier for Smith’s tuple 
32 identifier for Jones’s tuple 

AGEINDEX 36 identifier for Adams’s tuple 
29 identifier for Johnson’s tuple 
47 identifier for Baker’s tuple 
58 identifier for Harding’s tuple 

The relation indexname is in turn treated and accessed just like any other relation, 
except it is automatically updated when the relation it indexes is updated. Natur- 
ally, only the owner of a relation may create and destroy secondary indexes for it. 

(f) Consistency and integrity control: 

INTEGRITY CONSTRAINT is qualification 

INTEGRITY CONSTRAINT LIST relname 

INTEGRITY CONSTRAINT OFF relname 

INTEGRITY CONSTRAINT OFF (integer, . . . , integer) 

RESTORE data-base-name 

The first four commands support the insertion, listing, deletion, and selective dele- 
tion of integrity constraints which are to be enforced for all interactions with a 
relation. The mechanism for handling this enforcement is discussed in Section 4. 
The last command restores a database to a consistent state after a system crash. 
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It must be executed from UNIX, and its operation is discussed in Section 6. The 
RESTORE command is only available to the database administrator. 

(g) Miscellaneous : 

HELP [relname or manual-section] 

SAVE relname UNTIL expiration-date 

PURGE data-base-name 

HELP provides information about the system or the database invoked. When 
called with an optional argument which is a command name, HELP returns the 
appropriate page from the INGRES reference manual [31]. When called with a 
relation name as an argument, it returns all information about that relation. With 
no argument at all, it returns information about all relations in the current data- 
base. 

SAVE is the mechanism by which a user can declare his intention to keep a rela- 
tion until a specified time. PURGE is a UNIX command which can be invoked by 
a database administrator to delete all relations whose “expiration-dates” have 
passed. This should be done when space in a database is exhausted. (The database 
administrator can also remove any relations from his database using the DESTROY 
command, regardless of who their owners are.) 

Two comments should be noted at this time. 
(a) The system currently accept,s the language specified as QUELL in [15]; extension 

is in progress to accept QUELL. (b) The system currently does not accept views or 
protection statements. Although the algorithms have been specified [25, 271, they 
are not yet operational. For this reason no syntax for these statements is given in 
this section; however the subject is discussed further in Section 4. 

1.3 EQUEL 

Although QUEL alone provides the flexibility for many data management require- 
ments, there are applications which require a customized user interface in place of 
the QUEL language. For this as well as other reasons, it is often useful to have the 
flexibility of a general purpose programming language in addition to the database 
facilities of QUEL. To this end, a new language, EQUEL (Embedded QUEL), which 
consists of QUEL embedded in the general purpose programming language C, has 
been implemented. 

In the design of EQUEL the following goals were set: (a) The new language must 
have the full capabilities of both C and QUEL. (b) The C program should have the 
capability for processing each tuple individually, thereby satisfying the qualifica- 
tion in a RETRIEVE statement. (This is the “piped” return facility described in 
Data Language/ALPHA [8] .) 

With these goals in mind, EQUEL was defined as follows: 

(a) Any C language statement is a valid EQUEL statement. 
(b) Any QUEL statement (or INGRES utility command) is a valid EQUEL state- 

ment as long as it is prefixed by two number signs (##). 
(c) C program variables may be used anywhere in QUEL statements except as 
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command names. The declaration statements of C variables used in this 
manner must also be prefixed by double number signs. 

(d) RETRIEVE statements without a result relation have the form 

RETRIEVE (target-list) 
[WHERE qualification] 

ff( 
C-block 
##I 

which results in the C-block being executed once for each qualifying tuple. 
Two short examples illustrate EQUEL syntax. 

Example 1.5. The following program implements a small front end to INGRES 
which performs only one query. It reads in the name of an employee and prints 
out the employee’s salary in a suitable format. It continues to do this as long as 
there are names to be read in. The functions READ and PRINT have the obvious 
meaning, 

main( ) 

## char EMPNAME[20]; 
##int SAL; 
while (READ (EMPNAME)) 

RANGEOFXISEMP 
RETRIEVE (SAL = X.SALARY) 
WHERE X.NAME = EMPNAME 

#f( 
PRINT(“The salary of”, EMPNAME, “is”, SAL); 
##I 

I 

In this example the C variable EMPNAME is used in the qualification of the 
QUEL statement, and for each qualifying tuple the C variable SAL is set to the 
appropriate value and then the PRINT statement is executed. 

Example 1.6. Read in a relation name and two domain names. Then for each of 
a collection of values which the second domain is to assume, do some processing on 
all values which the first domain assumes. (We assume the function PROCESS 
exists and has the obvious meaning.) A more elaborate version of this program 
could serve as a simple report generator. 

main( ) 

## int VALUE; 
## char RELNAME[13], DOMNAME[13], DOMVAL[80]; 
ff char DOMNAME 2[13]; 
READ (RELNAME); 
READ (DOMNAME); 
READ (DOMNAME 2); 
## RANGE OF X IS RELNAME 
while (READ(DOMI’AL)) 
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RETRIEVE (VALUE = XBOMNAME) 
WHERE X.DOMNAME 2 = DOMVAL 

##l 
PROCESS(VALUE); 
#II 

Any RANGE declaration (in this case the one for X) is assumed by INGRES 
to hold until redefined. Hence only one RANGE statement is required, regardless 
of the number of times the RETRIEVE statement is executed. Note clearly that 
anything except the name of an INGRES command can be a C variable. In the 
above example RELNAME is a C variable used as a relation name, while DOM- 
NAME and DOMNAME 2 are used as domain names. 

1.4 Comments on QUEL and EQUEL 

In this section a few remarks are made indicating differences between QUEL and 
EQUEL and selected othrr proposed data sublanguages and embedded data sub- 
languages. 

QUEL borrows much from Data Language/ALPHA. The primary differences are: 
(a) Arithmetic is provided in QUEL; Data Language/ALPHA suggests reliance on a 
host language for this feature. (b) No quantifiers are present in QUEL. This results 
in a consistent semantic interpretation of the language in terms of functions on 
the crossproduct of the relations declared in the RANGE statements. Hence, QUEL 
is considered by its designers to be a language based on functions and not on a first 
order predicate calculus. (c) More powerful aggregation capabilities are provided 
in QUEL. 

The latest version of SEQUEL [2] has grown rather close to QUEL. The reader 
is directed to Example l(b) of [2], which suggests a variant of the QUEL syntax. 
The main differences between QUEL and SEQUEL appear to be: (a) SEQUEL 
allows statements with no tuple variables when possible using a block oriented 
notation. (b) The aggregation facilities of SEQUEL appear to be different from 
those defined in QUEL. 

System R [2] contains a proposed interface between SEQUEL and PL/l or 
other host language. This interface differs substantially from EQUEL and contains 
explicit cursors and variable binding. Both notions are implicit in EQUEL. The 
interested reader should contrast the two different approaches to providing an 
embedded data sublanguagc. 

2. THE INGRES PROCESS STRUCTURE 

INGRES can be invoked in two ways: First, it can be directly invoked from UNIX 
by executing INGRES database-name; second, it can be invoked by executing a 
program written using the EQUEL precompiler. We discuss each in turn and then 
comment briefly on why two mechanisms exist. Before proceeding, however, a few 
details concerning UNIX must be introduced. 

2.1 The UNIX Environment 

Two points concerning UNIX are worthy of mention in this section, 
(a) The UNIX file system. UNIX supports a tree structured file system similar 
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to that of MULTICS. Each file is either a directory (containing references to de- 
scendant files in the file system) or a data file. Each file is divided physically into 
512-byte blocks (pages). In response to a read request, UNIX moves one or more 
pages from secondary memory to UNIX core buffers and then returns to the user 
the actual byte string desired. If the same page is referenced again (by the same or 
another user) while it is still in a core buffer, no disk I/O takes place. 

It is important to note that UNIX pages data from the file system into and out 
of system buffers using a “least recently used” replacement algorithm. In this way 
t,he entire file system is managed as a large virtual store. 

The INGRES designers believe that a database system should appear as a user 
job to UNIX. (Otherwise, the system would operate on a nonstandard UNIX and 
become less portable.) Moreover the designers believe that UNIX should manage 
the system buffers for the mix of jobs being run. Consequently, INGRES contains 
no facilities to do its own memory management. 

(b) The UNIN process structure. A process in UNIX is an address space (64K 
bytes or less on an 11/40, 128K bytes or less on an 11/45 or 11/70) which is asso- 
ciated with a user-id and is the unit of work scheduled by the UNIX scheduler. 
Processes may “fork” subprocesses; consequently a parent process can be the root 
of a process subtree. Furthermore, a process can request that, UNIX execute a file 
in a descendant process. Such processes may communicate with each other via an 
interprocess communication facility called “pipes.” A pipe may be declared as a 
one direction communication link which is written into by one process and read by 
a second enc. UNIX maintains synchronization of pipes so no messages are lost. 
Each process has a “standard input device” and a “standard output device.” These 
are usually the user’s terminal, but may be redirected by the user to be files, pipes 
to other processes, or other devices. 

Last, UNIX provides a facility for processes executing reentrant code to share 
procedure segments if possible. INGRES takes advantage of this facility so the 
core space overhead of multiple concurrent users is only that required by data 
segments. 

2.2 Invocation from UNIX 

Issuing INGRES as a UNIX command causes the process structure shown in Fig- 
ure 1 to be created. In this section the functions in the four processes will be indi- 
cated. The justification of this particular structure is given in Section 2.4. 

Process 1 is an interactive terminal monitor which allows the user to formulate, 
print, edit, and execute collections of INGRES commands. It maintains a work- 
space with which the user interacts until he is satisfied with his interaction. The 
contents of this workspace are passed down pipe A as a string of ASCII characters 
when execution is desired. The set of commands accepted by the current terminal 
monitor is indicated in [31]. 

I 1 I I I 
I” -A4 

, I 
c -8-M 

1 I 
’ user c--u c -c-.bl 

I 
I 

’ term-; I I I I I I I I 
1 inal I I I I I I I I 

b---l k---l la----l b--l 1 
I I I IFUEEDI 

process 
pro;ess 

process pracess 
I 3 4 

Fig. 1. INGRES process structure 
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As noted above, UNIX allows a user to alter the standard input and output 
devices for his processes when executing a command. As a result the invoker of 
INGRES may direct the terminal monitor to take input from a user file (in which 
case he runs a “canned” collection of interactions) and direct output to another 
device (such as the line printer) or file. 

Process 2 contains a lexical analyzer, a parser, query modification routines for 
integrity control (and, in the future, support of views and protection), and con- 
currency control. Because of size constraints, however, the integrity control rou- 
tines are not in the currently released system. When process 2 finishes, it passes a 
string of tokens to process 3 through pipe B. Process 2 is discussed in Section 4. 

Process 3 accepts this token string and contains execution routines for the com- 
mands RETRIEVE, REPLACE, DELETE, and APPEND. Any update is turned 
into a RETRIEVE command to isolate tuples to be changed. Revised copies of 
modified tuples are spooled into a special fle. This file is then processed by a “de- 
ferred update processor” in process 4, which is discussed in Section 6. 

Basically, process 3 performs two functions for RETRIEVE commands. (a) A 
multivariablc query is decomposed into a sequence of interactions involving only a 
single variable. (b) A one-variable query is executed by a one-variable query pro- 
cessor (OVQP). The OVQP in turn performs its function by making calls on the 
access methods. These two functions are discussed in Section 5; the access methods 
are indicated in Section 3. 

All code to support utility commands (CREATE, DESTROY, INDEX, etc.) 
resides in process 4. Process 3 simply passes to process 4 any commands which 
process 4 will execute. Process 4 is organized as a collection of overlays which ac- 
complish the various functions. Some of these functions are discussed in Section 6. 

Error messages are passed back through pipes D, E, and F to process 1, which 
returns them to the user. If the command is a RETRIEVE with no result relation 
specified, process 3 returns qualifying tuples in a stylized format directly to the 
%tandard output device” of process 1. Unless redirected, this is the user’s termi- 
nal. 

2.3 Invocation from EQUEL 

We now turn to the operation of INGRES when invoked by code from the pre- 
compiler. 

In order to implement EQUEL, a translator (precompiler) was written to convert 
an EQUEL program into a valid C program with QUEL statements converted to 
appropriate C code and calls to INGRES. The resulting C program is then com- 
piled by the normal C compiler, producing an executable module. Moreover, when 
an EQUEL program is run, the executable module produced by the C compiler is 
used as the front end process in place of the interactive terminal monitor, as noted 
in Figure 2. 

I I I I I I I I 
I I I I I , I I 
I W---l k-1 w-4 I 
-F-E-E- 

C 
program proY proc3ess procqess 

Fig. 2. The forked process structure 
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During execution of the front end program, database requests (QUEL statements 
in the EQUEL program) are passed through pipe A and processed by INGRES. 
Note that unparsed ASCII strings are passed to process 2; the rationale behind 
this decision is given in [l]. If tuples must be returned for tuple at a time processing, 
then they are returned through a special data pipe set up between process 3 and the 
C program. A condition code is also returned through pipe F to indicate success or 
the type of error encountered. 

The functions performed by the EQUEL translator are discussed in detail in [l]. 

2.4 Comments on the Process Structure 

The process structure shown in Figures 1 and 2 is the fourth different process struc- 
ture implemented. The following considerations suggested this final choice: 

(a) Address space limitations. To run on an 11/40, the 64K address space 
limitation must be adhered to. Processes 2 and 3 are essentially their maximum 
size; hence they cannot be combined. The code in process 4 is in several overlays 
because of size constraints. 

Were a large address space available, it is likely that processes 2, 3, and 4 would 
be combined into a single large process. However, the necessity of 3 “core” processes 
should not degrade performance substantially for the following reasons. 

If one large process were resident in main memory, there would be no necessity 
of swapping code. However, were enough real memory available (m3OOK bytes) on 
a UNIX system to hold processes 2 and 3 and all overlays of process 4, no swap- 
ping of code would necessarily take place either, Of course, this option is possible 
only on an 11/70. 

On the other hand, suppose one large process was paged into and out of main 
memory by an operating system and hardware which supported a virtual memory. 
It is felt that under such conditions page faults would generate I/O activity at 
approximately the same rate as the swapping/overlaying of processes in INGRES 
(assuming the same amount of real memory was available in both cases). 

Consequently the only sources of overhead that appear to result from multiple 
processes are the following: (1) Reading or writing pipes require system calls which 
are considerably more expensive than subroutine calls (which could be used in a 
single-process system). There are at least eight such system calls needed to execute 
an INGRES command. (2) Extra code must be executed to format information for 
transmission on pipes. For example, one cannot pass a pointer to a data structure 
through a pipe; one must linearize and pass the whole structure. 

(b) Simple control flow. The grouping of functions into processes was moti- 
vated by the desire for simple control flow. Commands are passed only to the right; 
data and errors only to the left. Process 3 must issue commands to various over- 
lays in process 4; therefore, it was placed to the left of process 4. Naturally, the 
parser must precede process 3. 

Previous process structures had a more complex interconnection of processes. 
This made synchronization and debugging much harder. 

The structure of process 4 stemmed from a desire to overlay little-used code in 
a single process. The alternative would have been to create additional processes 
5, 6, and 7 (and their associated pipes), which would be quiescent most of the time. 
This would have required added space in UNIX core tables for no real advantage. 
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The processes are all synchronized (i.e. each waits for an error return from the 
next process to the right before continuing to accept input from the process to the 
left), simplifying the flow of control. Moreover, in many instances the various 
processes nmst be synchronized. Future versions of INGRES may attempt to cx- 
ploit parallelism where possible. The performance payoff of such parallelism is 
unknown at the present time. 

(c) Isolation of the front end process. For reasons of protection the C program 
which replaces the terminal monitor as a front end must run with a user-id different 
from that of INGRES. Otherwise it could tamper directly with data managed by 
INGRES. Hence, it must be either overlayed into a process or run in its own process. 
The latter was chosen for efficiency and convenience. 

(d) Rationale for two process structures. The interactive terminal monitor 
could have been written in EQUEL. Such a strategy would have avoided the exis- 
tence of two process structures which differ only in the treatment of the data pipe. 
Since the terminal monitor was written prior to the existence of EQUEL, this option 
could not be followed. Rewriting the terminal monitor in EQUEL is not considered 
a high priority task given current resources. Moreover, an EQUEL monitor would 
be slightly slower because qualifying tuples would be returned to the calling pro- 
gram and then displayed rather than being displayed directly by process 3. 

3. DATA STRUCTURES AND ACCESS METHODS 

We begin this section with a discussion of the files that INGRES manipulates and 
their contents. Then wc indicate the five possible storage structures (file formats) 
for relations. Finally we sketch the access methods language used to interface uni- 
formly to the available formats. 

3.1 The INGRES File Structure 

Figure 3 indicates the subtree of the UNIX file system that INGRES manipulates. 
The root of this subtree is a directory made for the UNIX user “INGRES.” (When 

ACM 

u---u 
sourZ(Crlanguoge) 

code files code flies 

v--2- v--2- 
catalog catalog DBA DBA other user other user 
relations relations relations relations reJotm5 reJotm5 

Fig. 3. The INGRES subtree Fig. 3. The INGRES subtree 
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the INGRES system is initially installed such a user must be created. This user is 
known as the ‘%upcruser” because of the powers available to him. This subject is 
discussed further in [28].) This root has six descendant directories. The AUX direc- 
tory has descendant files containing tables which control the spawning of processes 
(shown in Figures 1 and 2) and an authorization list of users who are allowed to 
create databases. Only the INGRES superuser may modify thrse files (by using 
the UNIX editor). BIN and SOURCE are directories indicating descendant files 
of respectively object and source code. TMP has descendants which are temporary 
files for the workspaces used by the interactive terminal monitor. DOC is the root 
of a subtree with system documentation and the reference manual. Last, there is 
a directory entry in DATADIR for each database that exists in INGRES. These 
directories contain the database files in a given database as descendants. 

These database files are of four types: 
(a) Administration file. This contains the user-id of the database administrator 

(DBA) and initialization information, 
(b) Catalog (system) relations. These relations have predefined names and are 

created for every database. They are owned by the DBA and constitute the system 
catalogs. They may be queried by a knowledgeable user issuing RETRIEVE state- 
ments; however, they may be updated only by the INGRES utility commands (or 
directly by the INGRES superuser in an emergency). (When protection state- 
ments are implemented the DBA will be able to selectively restrict RETRIEVE 
access to these relations if he wishes,) The form and content of some of these rela- 
tions will be discussed presently. 

(c) DBA relations. These are relations owned by the DBA and are shared in 
that any user may access them. When protection is implemented the DBA can 
“authorize” shared use of these relations by inserting protection predicates (which 
will be in one of the system relations and may be unique for each user) and de- 
authorize use by removing such predicates. This mechanism is discussed in [28]. 

(d) Other relations. These are relations created by other users (by RETRIEVE 
INTO W or CREATE) and are not shared. 

Three comments should be made at this time. 
(a) The DBA has the following powers not. available to ordinary users: the abil- 

ity to create shared relations and to specify access control for them; the ability to 
run PURGE; the ability to destroy any relations in his database (except the system 
catalogs). 

This system allows “one-level sharing” in that only the DBA has these powers, 
and he cannot delegate any of them to others (as in the file systems of most time 
sharing systems). This strategy was implemented for three reasons: (1) The need 
for added generality was not perceived. Moreover, added generality would have 
created tedious problems (such as making revocation of access privileges nontriv- 
ial). (2) It seems appropriate to entrust to the DBA the duty (and power) to resolve 
the policy decision which must be made when space is exhausted and some relations 
must be destroyed or archived. This policy decision becomes much harder (or im- 
possible) if a database is not in the control of one user, (3) Someone must be en- 
trusted with the policy decision concerning which relations are physically stored 
and which are defined as “views.” This “database design” problem is best central- 
ized in a single DBA. 
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(b) Except for the single administration file in each database, every file is treated 
as a relation. Storing system catalogs as relations has the following advantages: 
(1) Code is economized by sharing routines for accessing both catalog and data 
relations. (2) Since several storage structures are supported for accessing dsta 
relations quickly and flexibly under various interaction mixes, these same storage 
choices may be utilized to enhance access to catalog information. (3) The ability to 
execute QUEL statements to examine (and patch) system relations where neces- 
sary has greatly aided system debugging. 

(c) Each relation is stored in a separate file, i.e. no attempt is made to “cluster” 
tuples from different relations which may be accessed together on the same or on a 
nearby page. 

Note clear1.y that this clustering is analogous to DBTG systems in declaring a 
record type to be accessed via a set type which associates records of that record 
type with a record of a different record type. Current DBTG implementations 
usually attempt to physically cluster these associated records. 

Note also that clustering tuples from one relation in a given file has obvious per- 
formance implications. The clustering techniques of this nature that INGRES 
supports are indicat,ed in Section 3.3. 

The decision not to cluster tuples from different relations is based on the follow- 
ing reasoning. (1) UNIX has a small (512-byte) page size. Hence it is expected that 
the number of tuples which can be grouped on the same page is small. Moreover, 
logically adjacent pages in a UNIX file are not necessarily physically adjacent. 
Hence clustering tuples on “nearby” pages has no meaning in UNIX; the next 
logical page in a file may be further away (in terms of disk arm motion) than a 
page in a different file. In keeping with the design decision of not modifying UNIX, 
these considerations were incorporated in the design decision not to support clus- 
tering. (2) The access methods would be more complicated if clustering were sup- 
ported. (3) Clustering of tuples only makes sense if associated tuples can be linked 
together using “sets” [6], “links” [29], or some other scheme for identifying clusters. 
Incorporating these access paths into the decomposition scheme would have greatly 
increased its complexity. 

It should be noted that the designers of System R have reached a different con- 
clusion concerning clustrring [a]. 

3.2 System Catalogs 

We now turn to a discussion of the system catalogs. We discuss two relations in 
detail and indicate briefly the contents of the others. 

The RELATION relation contains one tuple for every relation in the database 
(including all the system relations). The domains of this relation are: 

relid 
owner 

spec 

indexd 

the name of the relation. 
the UNIX user-id of the relation owner; when appended to relid it produces 

a unique file name for storing the relation. 
indicates one of five possible storage schemes or else a special code indicating 

a virtual relation (or “view”). 
flag set if secondary index exists for this relation. (This flag and the follow- 

ing two are present to improve performance by avoiding catalog lookups 
when possible during query modification and one variable query pro- 
cessing.) 
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protect 
integ 
save 
tuples 

flag set if this relation has protection predicates. 
flag set if there are integrity constraints. 
scheduled lifetime of relation. 
number of tuples in relation (kept up to date by the routine “closer” dis- 

cussed in the next section). 
atts 
width 
prim 

number of domains in relation. 
width (in bytes) of a tuple. 
number of primary file pages for this relation. 

The ATTRIBUTE catalog contains information relating to individual domains 
of relations. Tuples of the ATTRIBUTE catalog contain the following items for 
each domain of every relation in the database: 

relid name of relation in which attribute appears. 
owner relation owner. 
domain-name domain name. 
domain-no domain number (position) in relation. In processing interactions INGRES 

uses this number to reference this domain. 
offset 
type 
length 
keyno 

offset in bytes from beginning of tuple to beginning of domain. 
data type of domain (integer, floating point, or character string). 
length (in bytes) of domain. 
if this domain is part of a key, then “keyno” indicates the ordering of this 

domain within the key. 

These two catalogs together provide information about the structure and content 
of each relation in the database. No doubt items will continue to be added or de- 
leted as the system undergoes further development. The first planned extensions 
are the minimum and maximum values assumed by domains. These will be used by 
a more sophisticated decomposition scheme being developed, which is discussed 
briefly in Section 5 and in detail in [30]. The representation of the catalogs as rela- 
tions has allowed this restructuring to occur very easily. 

Several other system relations exist which provide auxiliary information about 
relations. The INDEX catalog contains a tuple for every secondary index in the 
database. Since secondary indices are themselves relations, they are independently 
cataloged in the RELATION and ATTRIBUTE relations. However, the INDEX 
catalog provides the association between a primary relation and its secondary 
indices and records which domains of the primary relation are in the index. 

The PROTECTION and INTEGRITY catalogs contain respectively the pro- 
tection and integrity predicates for each relation in the database. These predicates 
are stored in a partially processed form as character strings. (This mechanism 
exists for INTEGRITY and will be implemented in the same way for PROTEC- 
TION.) The VIEW catalog will contain, for each virtual relation, a partially pro- 
cessed &u&-like description of the view in terms of existing relations. The use of 
these last three catalogs is described in Section 4. The existence of any of this 
auxiliary information for a given relation is signaled by the appropriate flag(s) in 
the RELATION catalog. 

Another set of system relations consists of those used by the graphics subsystem 
to catalog and process maps, which (like everything else) are stored as relations in 
the database. This topic has been discussed separately in [13]. 
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3.3 Storage Structures Available 

We will now describe the five storage structures currently available in INGRES. 
Four of the schemes are keyed, i.e. the storage location of a tuple within the file is 
a function of the value of the tuple’s key domains. They are termed “hashed,” 
“ISAM, ” “compressed hash,” and “compressed ISAM.” For all four structures the 
key may be any ordered collection of domains. These schemes allow rapid access to 
specific portions of a relation when key values are supplied. The remaining non- 
keyed scheme (a “heap”) stores tuples in the file independently of their values and 
provides a low overhead storage structure, especially attractive in situations re- 
quiring a complete scan of the relation. 

The nonkeyed storage structure in INGRES is a randomly ordered sequential 
file. Fixed length tuples are simply placed sequentially in the file in the order sup- 
plied. New tuples added to the relation are merely appended to the end of the file. 
The unique tuple identifier for each tuple is its byte-offset within the file. This 
mode is intended mainly for (a) very small relations, for which the overhead of 
other schemes is unwarranted; (b) transitional storage of data being moved into 
or out of the system by COPY; (c) certain temporary relations created as inter- 
mediate results during query processing. 

In the remaining four schemes the key-value of a tuple determines the page of 
the file on which the tuplc will be placed. The schemes share a common “page- 
structure” for managing tuples on file pages, as shown in Figure 4. 

A tuple must, fit entirely on a single page. Its unique tuple identifier (TID) con- 
sists of a page number (the ordering of its page in the UNIX file) plus a line num- 
ber. The line number is an index into a line table, which grows upward from the 
bottom of the page, and whose entries contain pointers to the tuples on the page. 
In this way the physical arrangement of tuples on a page can be reorganized with- 
out affecting TIDs. 

Initially the file contains all its tuples on a number of primary pages. If the rela- 
tion grows and these pages fill, overflow pages are allocated and chained by pointers 
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Fig. 4. Page layout for keyed storage structures 
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to the primary pages with which they are associated. Within a chained group of 
pages no special ordering of tuples is maintained. Thus in a keyed access which 
locates a particular primary page, tuples matching the key may actually appear on 
any page in the chain. 

As discussed in [16], two modes of key-to-address transformation are used-ran- 
domizing (or “hashing”) and order preserving. In a “hash” file tuples are distrib- 
uted randomly throughout the primary pages of the file according to a hashing 
function on a key. This mode is well suited for situations in which access is to be 
conditioned on a specific key value. 

As an order preserving mode, a scheme similar to IBM’s ISAM [18] is used. The 
relation is sorted to produce the ordering on a particular key. A multilevel direc- 
tory is created which records the high key on each primary page. The directory, 
which is static, resides on several pages following the primary pages within the file 
itself. A primary page and its overflow pages are not maintained in sort order. This 
decision is discussed in Section 4.2. The “ISAM-like” mode is useful in cases where 
the key value is likely to be specified as falling within a range of values, since a near 
ordering of the keys is preserved. The index compression scheme discussed in [16] is 
currently under implementation. 

In the above-mentioned keyed modes, fixed length tuples are stored. In addition, 
both schemes can be used in conjunction with data compression techniques [14] in 
cases where increased storage utilization outweighs the added cost of encoding and 
decoding data during access. These modes are known as “compressed hash” and 
“compressed ISAM.” 

The current compression scheme suppresses blanks and portions of a tuple which 
match the preceding tuplc. This compression is applied to each page independently. 
Other schemes are being experimented with. Compression appears to be useful in 
storing variable length domains (which must be declared their maximum length). 
Padding is then removed during compression by the access method. Compression 
may also be useful when storing secondary indices. 

3.4 Access Methods Interface 

The Access h’lethods Interface (AMI) handles all actual accessing of data from 
relations. The AM1 language is implemented as a set of functions whose calling 
conventions are indicated below. A separate copy of these functions is loaded with 
each of processes 2, 3, and 4. 

Each access method must do two things to support the following calls. First, it 
must provide some linear ordering of the tuplcs in a relation so that the concept of 
“next tuple” is well defined. Second, it must assign to each tuple a unique tuple-id 
(TID). 

The nine implemented calls are as follows: 

(a) OPENR(descriptor, mode, relation-name) 

Before a relation may be accessed it must be ‘<opened.” This function opens the 
UNIX file for the relation and fills in a “descriptor” with information about the 
relation from the RELATION and ATTRIBUTE catalogs. The descriptor (storage 
for which must be declared in the calling routine) is used in subsequent calls on 
AMI routines as an input parameter to indicate which relation is involved. Conse- 
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quently, the AMI data accessing routines need not themselves check the system 
catalogs for the description of a relation. “Mode” specifies whether the relation is 
being opened for update or for retrieval only. 

(b) GET(descriptor, tid, limit-tid, tuple, next-flag) 

This function retrieves into ‘tuple,” a single tuple from the relation indicated by 
“descriptor. ” “Tid” and “limit-tid” are tuple identifiers. There are two modes of 
retrieval, “scan” and “direct.” In “scan” mode GET is intended to be called suc- 
cessively to retrieve all tuples within a range of tuple-ids. An initial value of “tid” 
sets the low end of the range desired and “limit-tid” sets the high end. Each time 
GET is called with “next-flag” = TRUE, the tuple following Itid” is retrieved 
and its tuple-id is placed into “tid” in readiness for the next call. Reaching “limit- 
tid” is indicated by a special return code, The initial settings of “tid” and “limit- 
tid” are done by calling the FIND function. In “direct” mode (“next--flag” = 
FALSE), GET retrieves the tuple with tuple-id = “tid.” 

(c) FIND(descriptor, key, tid, key-type) 

When called with a negative “key-type,” FIND returns in “tid” the lowest tuple-id 
on the lowest page which could possibly contain tuples matching the key supplied. 
Analogously, the highest tuple-id is returned when “key-type” is positive. The 
objective is to restrict the scan of a relation by eliminating tuples from considera- 
tion which are known from their placement not to satisfy a given qualification. 

“Key-type” also indicates (through its absolute value) whether the key, if sup- 
plied, is an EXACTKEY or a RANGEKEY. Different criteria for matching are 
applied in each case. An EXACTKEY matches onIy those tuples containing exactly 
the value of the key supplied. A RANGEKEY represents the low (or high) end of 
a range of possible key values and thus matches any tuple with a key value greater 
than or equal to (or less than or equal to) the key supplied. Note that only with an order 
preserving storage structure can a RANGEKEY be used to successfully restrict a 
scan. 

In cases where the storage structure of the relation is incompatible with the 
“key-type,” the “tid” returned will be as if no key were supplied (that is, the 
lowest or highest tuple in the relation). Calls to FIND invariably occur in pairs, 
to obtain the two tuple-ids which establish the low and high ends of the scan done 
in subsequent calls to GET. 

Two functions are available for determining the access characteristics of the 
storage structure of a primary data relation or secondary index, respectively. 

(d) PARAMD(descriptor, access-characteristics-structure) 

(e) PARAMI(index-descriptor, access-characteristics-structure) 

The “access-characteristics-structure” is filled in with information regarding the 
type of key which may be utilized to restrict the scan of a given relation It indi- 
cates whether exact key values or ranges of key values can be used, and whether a 
partially specified key may be used. This determines the “key-type” used in a sub- 
sequent call to FIND. The ordering of domains in the key is also indicated. These 
two functions allow the access optimization routines to be coded independently of 
the specific storage structures currently implemented. 

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976. 



The Design and Implementation of INGRES l 207 

Other AM1 functions provide a facility for updating relations. 

(f) INSERT(descriptor, tuple) 

The tuple is added to the relation in its “proper” place according to its key value 
and the storage mode of the relation. 

(g) REPLACE(descriptor, tid, new-tuple) 

(h) DELETE(descriptor, tid) 

The tuple indicated by “tid” is either replaced by new values or deleted from the 
relation altogether. The tuple-id of the affected tuple will have been obtained by a 
previous GET, 

Finally, when all access to a relation is complete it must be closed: 

(i) CLOSER(descriptor) 

This closes the relation’s UNIX file and rewrites the information in the descriptor 
back into the system catalogs if there has been any change. 

3.5 Addition of New Access Methods 

One of the goals of the AM1 design was to insulate higher level software from the 
actual functioning of the access methods, thereby making it easier to add different 
ones. It is anticipated that users wit.h special requirements will take advantage of 
this feature. 

In order to add a new access method, one need only extend the AM1 routines to 
handle the new case. If the new method uses the same page layout and TID scheme, 
only FIND, PARAMI, and PARAMD need to be extended. Otherwise new pro- 
cedures to perform the mapping of TIDs to physical file locations must be supplied 
for use by GET, INSERT, REPLACE, and DELETE. 

4. THE STRUCTURE OF PROCESS 2 

Process 2 contains four main components: 
(a) a lexical analyzer; 
(b) a parser (written in YACC [19]); 
(c) concurrency control routines; 
(d) query modification routines to support protection, views, and integrity con- 

trol (at present only partially implemented). 
Since (a) and (b) are designed and implemented along fairly standard lines, only 

(c) and (d) will be discussed in detail. The output of the parsing process is a tree 
structured representation of the input query used as the internal form in subsequent, 
processing. Furthermore, the qualification portion of the query has been converted 
to an equivalent Boolean expression in conjunctive normal form. In this form the 
query tree is then ready to undergo what has been termed “query modification.” 

4.1 Query Modification 

Query modification includes adding integrity and protection predicates to the 
original query and changing references to virtual relations into references to the ap- 
propriate physical relations. At the present time only a simple integrity scheme has 
been implemented. 
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In [27] algorithms of several levels of complexity are presented for performing in- 
tegrity control on updates. In the present system only the simplest case, involving 
single-variable, aggregate free integrity assertions, has been implemented, as de- 
scribed in detail in [23]. 

Briefly, integrity assertions are entered in the form of QUEL qualification clauses 
to bc applied to interactions updating the relation over which the variable in the 
assertion ranges. A parse tree is created for the qualification and a representation of 
this tree is stored in the INTEGRITY catalog together with an indication of the 
relation and the specific domains involved. At query modification time, updates are 
checked for any possible integrity assertions on thcaffecteddomains. Relevant asser- 
tions are retrieved, rebuilt into tree form, and grafted onto the update tree so as to 
AND the assertions with the existing qualification of the interaction. 

Algorithms for the support of views are also given in [27]. Basically a view is a 
virtual relation defined in terms of relations which physically exist. Only the view 
definition will be stored, and it will be indicated to INGRES by a DEFINE com- 
mand. This command will have a syntax identical to that of a RETRIEVE state- 
ment. Thus legal views will bc those relations which it is possible to materialize by a 
RETRIEVE statement. They will be allowed in INGRES to support EQUEL pro- 
grams written for obsolete versions of the database and for user convenience. 

Protection will be handled according to the algorithm described in [25]. Like in- 
tegrit,y control, this algorithm involves adding qualifications to the user’s interac- 
tion. The details of the implementation (which is in progress) are given in [28], 
which also includes a discussion of the mechanisms being implemented to physically 
protect INGRES files from tampering in any way other than by executing the 
INGRES object code. Last, [28] distinguishes the INGRES protection scheme from 
the one based on views in [5] and indicates the rationale behind its use. 

In the remainder of this section we give an example of query modification at work. 
Suppose at a previous point in time all employees in the EMPLOYEE relation 

were under 30 and had no manager recorded. If an EQUEL program had been written 
for this previous version of EMPLOYEE which retrieved ages of employees coded 
into 5 bits, it would now fail for employees over 31. 

If one wishes to USC the above program without modification, then the following 
view must be used: 

RANGEOFEISEMPLOYEE 
DEFINE OLDEMP (E.NAME,E.DEPT,E.SALARY,E.AGE) 
WHERE E.AGE <30 

Suppose that all employees in the EMPLOYEE relation must make more than 
$8000. This can be expressed by the integrit.y constraint: 

RANGEOFEISEMPLOYEE 
INTEGRITYCONSTRAINTISE.SALARY>8OOO 

Last, suppose each person is only authorized to alter salaries of employees whom 
he manages. This is expressed as follows: 

RANGEOFEISEMPLOYEE 
PROTECTEMPLOYEEFORALL(E.SALARY;E.NAME) 
WHERE E.MANAGER = * 
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The * is a surrogate for the logon name of the current UNIX user of INGRES. The 
semicolon separates updatable from nonupdatable (but visible) domains. 

Suppose Smith through an EQUEL program or from the terminal monitor issues 
the following interaction : 

RANGE OF L IS OLDEMP 
REPLACE L(SALARY = .B*L.SALARY) 
WHERE L.NAME = “Brown” 

This is an update on a view. Hence the view algorithm in [27] will first be applied to 
yield: 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY = .Q*E.SALARY) 
WHERE E.NAME = “Brown” 
AND E.AGE < 30 

Note Brown is only in OLDEMP if he is under 30. Now the integrity algorithm in 
[27] must be applied to ensure that Brown’s salary is not being cut to as little as 
$8000. This involves modifying the interaction to: 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY = .Q*E.SALARY) 
WHERE E.NAME = “Brown” 

AND E.AGE < 30 
AND .g*E.SALARY > $8000 

Since .g*E.SALARY will be Brown’s salary after the update, the added qualifica- 
tion ensures this will be more than $8000. 

Last, the protection algorithm of [28] is applied to yield: 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY = .B*E.SALARY) 
WHERE E.NAME = “Brown” 

AND E.AGE < 30 
AND .Q*E.SALARY > $8000 
AND E.MANAGER = “Smith” 

Not.ice that in all three cases more qualification is ANDed onto the user’s inter- 
action. The view algorithm must in addition change tuple variables. 

In all cases the qualification is obtained from (or is an easy modification of) predi- 
cates stored in the VIEW, INTEGRITY, and PROTECTION relations. The tree 
representation of the interaction is simply modified to AND these qualifications 
(which are all stored in parsed form). 

It should be clearly not.ed that only one-variable, aggregate free integrity asser- 
tions are currently supported. Moreover, even this feature is not in the released ver- 
sion of INGRES. The code for both concurrency control and integrity control will 
not fit into process 2 without exceeding 641~ words. The decision was made to release 
a system with concurrency control. 

The INGRES designers are currently adding a tith process (process 2.5) to hold 
concurrency and query modification routines. On PDP 11/45s and 11/7Os that have 
a 128K address space this extra process will not be required. 
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4.2 Concurrency Control 

In any multiuser system provisions must be included to ensure that multiple con- 
current updates are executed in a manner such that some level of data integrity can 
be guaranteed. The following two updates illustrate the problem. 

RANGE OF E IS EMPLOYEE 
LJl REPLACE E (DEPT = “toy”) 

WHERE E.DEPT = “candy” 

RANGE OF F IS EMPLOYEE 
u2 REPLACE F(DEPT = “candy”) 

WHERE F.DEPT = “toy” 

If Ul and U2 are executed concurrently with no controls, some employees may 
end up in each department and the particular result may not be repeatable if the 
database is backed up and the interactions reexecuted. 

The control which must be provided is to guarantee that some database operation 
is “atomic” (occurs in such a fashion that it appears instantaneous and before or 
after any other database operation). This atomic unit will be called a “transaction.” 

In INGRES there are five basic choices available for defining a transaction: 
(a) something smaller than one INGRES command; 
(b) one INGRES command; 
(c) a collection of INGRES commands with no intervening C code; 
(d) a collection of INGRES commands with C code but no system calls; 
(e) an arbitrary EQUEL program. 

If option (a) is chosen, INGRES could not guarantee that two concurrently execut- 
ing update commands would give the same result as if they were executed sequenti- 
ally (in either order) in one collection of INGRJB processes. In fact, the outcome 
could fail to be repeatable, as noted in the example above. This situation is clearly 
undesirable. 

Option (e) is, in the opinion of the INGRES designers, impossible to support. The 
following transaction could be declared in an EQUEL program, 

BEGIN TRANSACTION 
FIRST QUEL UPDATE 
SYSTEM CALLS TO CREATE AND DESTROY FILES 
SYSTEM CALLS TO FORK A SECOND COLLECTION OF INGRES PROCESSES 

TO WHICH COMMANDS ARE PASSED 
SYSTEM CALLS TO READ FROM A TERMINAL 
SYSTEM CALLS TO READ FROM A TAPE 
SECOND QUEL UPDATE (whose form depends on previous two system calls) 

END TRANSACTION 

Suppose Tl is the above transaction and runs concurrently with a transaction T2 
involving commands of the same form. The second update of each transaction may 
well conflict with the first update of the other. Note that there is no way to tell a 
priori that Tl and T2 conflict, since the form of the second update is not known in 
advance. Hence a deadlock situation can arise which can only be resolved by abort- 
ing one transaction (an undesirable policy in the eyes of the INGRES designers) or 
attempting to back out one transaction, The overhead of backing out through the 
intermediate system calls appears prohibitive (if it is possible at all). 
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Restricting a transaction to have no system calls (and hence no I/O) cripples the 
power of a transaction in order to make deadlock resolution possible. This was judged 
undesirable. 

For example, the following transaction requires such system calls : 

BEGIN TRANSACTION 
QUEL RETRIEVE to find all flights on a particular day from San Francisco to Los 

Angeles with space available. 
Display flights and times to user. 
Wait for user to indicate desired flight. 
QUEL REPLACE to reserve a seat on the flight of the user’s choice. 

END TRANSACTIQN 

If the above set of commands is not a transaction, then space on a flight may not 
be available when the REPLACE is executed even though it was when the 
RETRIEVE occurred. 

Since it appears impossible to support multi-&uEL statement transactions (ex- 
cept in a crippled form), the INGRES designers have chosen Option (b), one QUEL 
statement, as a transaction. 

Option (c) can be handled by a straightforward extension of the algorithms to 
follow and will be implemented if there is sufficient user demand for it. This option 
can support “triggers” [2] and may prove useful. 

Supporting Option (d) would considerably increase system complexity for what 
is perceived to be a small generalization. Moreover, it would be difficult to enforce in 
the EQUEL translator unless the translator parsed the entire C language. 

The implementation of (b) or (c) can be achieved by physical locks on data items, 
pages, tuples, domains, relations, etc. [12] or by predicate locks [26]. The current im- 
plementation is by relatively crude physical locks (on domains of a relation) and 
avoids deadlock by not allowing an interaction to proceed to process 3 until it can 
lock all required resources. Because of a problem with the current design of the RE- 
PLACE access method call, all domains of a relation must currently be locked (i.e. a 
whole relation is locked) to perform an update. This situation will soon be rectified. 

The choice of avoiding deadlock rather than detecting and resolving it is made 
primarily for implementation simplicity. 

The choice of a crude locking unit reflects our environment where core storage for 
a large lock table is not available. Our current implementation uses a LOCK rela- 
tion into which a tuple for each lock requested is inserted. This entire relation is 
physically locked and then interrogated for conflicting locks. If none exist, all needed 
locks are inserted. If a conflict exists, the concurrency processor “sleeps” for a fixed 
interval and then tries again. The necessity to lock the entire relation and to sleep 
for a fixed interval results from the absence of semaphores (or an equivalent mecha- 
nism) in UNIX. Because concurrency control can have high overhead as currently 
implemented, it can be turned off. 

The INGRES designers are considering writing a device driver (a clean extension 
to UNIX routinely written for new devices) to alleviate the lack of semaphores. This 
driver would simply maintain core tables to implement desired synchronization and 
physical locking in UNIX, 

The locks are held by the concurrency processor until a termination message is 
received on pipe E. Only then does it delete its locks. 
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In the future we plan to experimentally implement a crude (and thereby low 
CPU overhead) version of the predicate locking scheme described in [26]. Such an 
approach may provide considerable concurrency at an acceptable overhead in lock 
table space and CPU time, although such a statement is highly speculative. 

To conclude this section, we briefly indicate the reasoning behind not sorting a 
page and its overflow pages in the “@AM-like” access method. This topic is also 
discussed in [17]. 

The proposed device driver for locking in UNIX must at least ensure that read- 
modify-write of a single UNIX page is an atomic operation. Otherwise, INGRES 
would still be required to lock the whole LOCK relation to insert locks. Moreover, 
any proposed predicate locking scheme could not function without such an atomic 
operation. If the lock unit is a UNIX page, then INGRES can insert and delete a 
tuple from a relation by holding only one lock at a time if a primary page and its 
overflow page are unordered. However, maintenance of the sort order of these 
pages may require the access method to lock more than one page when it inserts a 
tuple. Clearly deadlock may be possible given concurrent updates, and the size of 
the lock table in the device driver is not predictable. To avoid both problems these 
pages remain unsorted. 

5. PROCESS 3 

As noted in Section 2, this process performs the following two functions, which will 
be discussed in turn: 

(a) Decomposition of queries involving more than one variable into sequences of 

one-variable queries. Partial resu1t.s are accumulated until the entire query is 
evaluated. This program is called DECOMP. It also turns any updates into the 
appropriate queries to isolate qualifying tuples and spools modifications into a 
special file for deferred update. 

(b) Processing of single-variable queries. The program is called the one-variable 
query processor (OVQP). 

5.1 DECOMP 

Because INGRES allows interactions which are defined on the crossproduct of per- 
haps several relations, efficient execution of this step is of crucial importance in 
searching as small a portion of the appropriate crossproduct space as possible. DE- 
COMP uses three techniques in processing interactions. We describe each technique, 
and then give the actual algorithm implemented followed by an example which illus- 
trates all features. Finally we indicate the role of a more sophisticated decomposi- 
tion scheme under design, 

(a) Tuple substitution. The basic technique used by DECOMP to reduce a 
query to fewer variables is tuple substitution. One variable (out of possibly many) 
in the query is selected for substitution. The AMI language is used to scan the rela- 
tion associated with the variable one tuplc at a time. For each tuple the values of 
domains in that relation arc substituted into the query. In the resulting modified 
query, all previous references to the substituted variable have now been replaced 
by values (constants) and the query has thus been reduced to one less variable. De- 
composition is repeated (recursively) on the modified query until only one variable 
remains, at. which point the OVQP is called to continue processing. 

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976. 



The Design and Implementation of INGRES * 213 

(b) One-variable dctachmcnt. If the qualification Q of the query is of the form 

QIPI) ANI) Qz(V1, . . . , Vn) 

for some tuplc variable TiI , the following two steps can ba cxccutcd: 

(1) Issue the query 
RETRIEVE INTO W (TI,[1/11) 
WHERE Q,[V,] 

Here TL[VJ arc those domains required in the remainder of the query. Note that 
this is a one-variable query and may be passed directly to OVQP. 

(2) Replace Z2, , the relation over which T/‘, ranges, by W in the range declaration and delete 
&IV,] from Q. 

The query formed in step 1 is called a “one-variable, detachable subquery,” and 
t’hc technique for forming and cxccuting it is called “one-variable detachment” 
(OVD). This step has the effect of reducing the size of the rc4ation over which Til 
ranges by restriction and projection. Hence it may rcduco the complexity of the 
processing to follow. 

Moreover, the opportunity exists in the process of creating new relations through 
OVD, to choose storage structures, and particularly keys, lvhich will prove helpful 
in further processing. 

(c) Reformatting, When a tuplc variable is selected for substitution, a large 
number of qucrics, oath with one less variable, will bc cxecutcd. If (b) is a possible 
operation after the substitution for some remaining variable VI , then the relation 
over which VI ranges, RI , can bc reformatted to havcl domains used in Ql(V1) as a 
key. This will cxpcditc (b) each time it is cxccutcd during tuplc substitution. 

Wc can now state the complete decomposition algorithm. After doing so, we illus- 
trate all steps with an rxamplc. 

Step 1. If the number of variables in the qllery is 0 or 1, call O\‘QP and then return; else go on 
to step 2. 

Step 2. Find all variables, {VI , ., V,], for which the query contains a one-variable clause. 
Perform OVD to create new ranges for each of these variables. The new relation for each 

variable V; is stored as a hash file with key Ki chosen as follows: 
2.1. For eachj select from the remaining multivariable clauses in the query the collection, 

Cii, which have the form V,, d; = 8,. di , where d; , d, are domains of Vi and V; 
2.2. From the key K; to be the concatenation of domains dil , AP , of Vi appearing in 

clauses in Ci,. 
2.3. If more than onej exists, for which C,, is nonempty, one Cii is chosen arbitrarily for 

forming the key. If Cij is empty for allj, the relation isstored as an unsorted table. 

Step 3. Choose the variable V, with the smallest number of tuples as the next, one for which to 
perform tuple substitution. 

Step 4. For each tuple variable Ir, for which Cj, is nonnull, reformat if necessary the storage 
structure of the relation Ri over which it ranges so that the key of X, is the concatenation 
of domains d,l , . . appearing in C+ . This ensures that when the clauses in Ci, become 
one-variable after substituting for Vs , subsequent calls to OVQP to restrict further the 
range of V, will be done as efficiently as possible. 

Step 6. Iterate the following steps over all tuples in the range of the variable selected in step 
3 and then return: 
5.1. Substitute values from tuple into query. 
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5.2. Invoke decomposition algorithm recursively on a copy of resulting query which now 
has been reduced by one variable. 

5.3. Merge the results from 5.2 with those of previous iterations. 

We use the following query to illustrate the algorithm: 

RANGE OF E, M IS EMPLOYEE 
RANGE OF D IS DEPT 
RETRIEVE (E.NAME) 
WHERE ESALARY > MSALARY AND 

E.MANAGER = M.NAME AND 
E.DEPT = D.DEPT AND 
D.FLOOR# = 1 AND 
E.AGE > 40 

This request is for employees over 40 on the first floor who earn more than their 
manager. 

LEVEL 1 

Step 1. Query is not one variable. 

Step 2. Issue the two queries: 

RANGE OF D IS DEPT 
RETRIEVE INTO Tl (D.DEPT) (1) 
WHERE D.FLOOR# = 1 

RANGE OF E IS EMPLOYEE 
RETRIEVE INTO T2(E.NAME, ESALARY, E.MANAGER, E.DEPT) (2) 
WHERE E.AGE > 40 

Tl is stored hashed on DEPT; however, the algorit,hm must choose arbitrarily bc- 
tween hashing T2 on MANAGER or DEPT. Suppose it chooses MANAGER. The 
original query now becomes : 

RANGE OF D IS Tl 
RANGE OF E IS T2 
RANGE OF M IS EMPLOYEE 
RETRIEVE (E.NAME) 
WHERE E.SALARY > MSALARY AND 

E.MANAGER = M.NAME AND 
E.DEPT = D.DEPT 

Step 3. Suppose Tl has smallest cardinality. Hence D is chosen for substitution. 

Step 4. Reformat T2 to be hashed on DEPT; the guess chosen in step 2 above was a poor one. 

Step 5. Iterate for each tuple in Tl and then quit: 
5.1 Substitute value for D. DEPT yielding 
RANGE OF E IS Tl 
RANGE OF M IS EMPLOYEE 
RETRIEVE (E.NAME) 
WHERE ESALARY > MSALARY AND 

E.MANAGER = M.NAME AND 
E.DEPT = value 

5.2. Start at step 1 with the above query as input (Level 2 below). 
5.3. Cumulatively merge results as they are obtained. 
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LEVEL 2 

Step 1. Query is not one variable. 

Step 2. Issue the query 
RANGE OF E IS T2 
RETRIEVE INTO T3 (E.NAME, ESALARY, E.NAME) 
WHERE E.DEPT = value 

(3) 

T3 is constructed hashed on MANAGER. T2 in step 4 in Level 1 above is refor- 
matted so that this query (which will be issued once for each tuple in Tl) will be 
done efficiently by OVQP. Hopefully the cost of reformatting is small compared to 
the savings at this step. What remains is 

RANGE OF E IS T3 
RANGE IF M IS EMPLOYEE 
RETRIEVE (E.NAME) 
WHERE ESALARY > M.SALARY AND 

E.MANAGER = M.NAME 

Step 3. T3 has less tuples than EMPLOYEE; therefore choose T3. 

Step 4. [unnecessary] 

Step 5. Iterate for each tuple in T3 and then return to previous level: 
5.1. Substitute values for E.NAME, ESALARY, and E.MANAGER, yielding 

RANGE OF M IS EMPLOYEE 
RETRIEVE (VALUE 1) 
WHERE Value2 > M.SALARY AND 

Value3 = M.NAME 

(4) 

5.2. Start at step 1 with this query as input (Level 3 below). 
5.3. Cumulatively merge results as obtained. 

LEVEL 3 

Step 1. Query has one variable; invoke OVQP and then return to previous level. 

The algorithm thus decomposes the original query into the four prototype, one- 
variable queries labeled (l)-(4), some of which are executed repetitively with differ- 
ent constant values and with results merged appropriately. Queries (1) and (2) are 
executed once, query (3) once for each tuple in Tl, and query (4) the number of 
times equal to the number of tuples in Tl times the number of tuples in T3. 

The following comments on the algorithm are appropriate. 
(a) OVD is almost always assured of speeding processing. Not only is it possible 

to choose the storage structure of a temporary relation wisely, but also the cardin- 
ality of this relation may be much less than the one it replaces as the range for a 
tuple variable. It only fails if little or no reduction takes place and reformatting 
is unproductive. 

It should be noted that a temporary relation is created rather than a list of quali- 
fying tuple-id%. The basic tradeoff is that OVD must copy qualifying tuples but can 
remove duplicates created during the projection. Storing tuple-id’s avoids the copy 

operation at the expense of reaccessing qualifying tuples and retaining duplicates. 
It is clear that cases exist where each strategy is superior. The INGRES designers 

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976. 



216 l M. Stonebraker, E. Wong, P. Kreps, and G. Held 

have chosen OVD because it does not appear to offer worse performance than the 
alternative, allows a more accurate choice of the variable with the smallest range in 
step 3 of the algorithm above, and results in cleaner code. 

(b) Tuple substitution is done when necessary on the variable associated with the 
smallest number of tuples. This has the effect of reducing the number of eventual 
calls on OVQP. 

(c) Reformatting is done (if necessary) with the knowledge that it will usually re- 
place a collection of complete sequential scans of a relation by a collection of limited 
scans. This almost always reduces processing time. 

(d) It is believed that this algorithm efficiently handles a large class of interac- 
tions. Moreover, the algorithm does not require excessive CPU overhead to perform. 
There are, however, cases where a more elaborate algorithm is indicated. The follow- 
ing comment applies to such cases, 

(e) Suppose that we have two or more strategies XT,, ST1 , . . . p ST,, each one 
being better than the previous one but also requiring a greater overhead. Suppose 
further that we begin an interaction on ST,, and run it for an amount of time equal to a 
fraction of the estimated overhead of ST, . At the end of that time, by simply count- 
ing the number of tuples of the first substitution variable which have already been 
processed, we can get an estimate for the total processing time using ST0 . If this is 
significantly greater than the overhead of ST1 , then we switch to ST1 . Otherwise 
we stay and complete processing the interaction using ASTO . Obviously, the pro- 
cedure can be repeated on ST1 to call ST, if necessary, and so forth. 

The algorithm detailed in this section may be thought of as ST, . A more sophisti- 
cated algorithm is currently under development [30]. 

5.2 One-Variable Query Processor (OVQP) 

This module is concerned solely with the efficient accessing of tuples from a single 
relation given a particular one-variable query. The initial portion of this program, 
known as STRATEGY, determines what key (if any) may be used profitably to ac- 
cess the relation,, what value(s) of that key will be used in calls to the AM1 routine 
FIND, and whether access may be accomplished directly through the AM1 to the 
storage structure of the primary relation itself or if a secondary index on the relation 
should be used. If access is to be through a secondary index, then STRATEGY 
must choose which one of possibly many indices to use. 

Tuples are then retrieved according to the access strategy selected and are pro- 
cessed by the SCAN portion of OVQP. These routines evaluate each tuple against 
the qualification part of the query, create target list values for qualifying tuples, and 
dispose of the target list appropriately. 

Since SCAN is relatively straightforward, we discuss only the policy decisions 
made in STRATEGY. 

First STRATEGY examines the qualification for clauses which specify the value 
of a domain, i.e. clauses of the form 

V.domain op constant 

or 

constant op V.domain 
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where “op” is one of the set ( = , <, > , 5, 2 } . Such clauses are termed “simple” 
clauses and are organized into a list. The constants in simple clauses will determine 
the key values input to FIND to limit the ensuing scan. 

Obviously a nonsimplc clause may be equivalent to a simple one. For example, 
E.SALARY/:! = 10000 is equivalent to E.SALARY = 20000. However, recogniz- 
ing and converting such clauses requires a general algebraic symbol manipulator. 
This issue has been avoided by ignoring all nonsimplc clauses. 

STRATEGY must select one of two accessing strategies: (a) issuing two AM1 
FIND commands on the primary relation followed by a sequential scan of the rela- 
tion (using GET in “scan” mode) between the limits set, or (b) issuing two AMI 
FIND commands on some index relation followed by a sequential scan of the index 
between the limits set. For each tuplc retrieved the “pointer” domain is obtained; 
this is simply the tuple-id of a tuple in the primary relation, This tuple is fetched 
(using GET in “direct” mode) and processed. 

To make the choice, the access possibilities available must be determined. Keying 
information about the primary relation is obtained using the AM1 function 
PARAMD. Names of indices are obtained from the INDEX catalog and keying in- 
formation about indices is obtained with the function PARAMI. 

Further, a compatability between the available access possibilities and the speci- 
fication of key values by simple clauses must be established. A hashed relation re- 
quires that a simple clause specify equality as the operator in order to be useful; for 
combined (multidomain) keys, all domains must be specified. ISAhl structures, on 
the other hand, allow range specifications; additionally, a combined ISAM key re- 
quires only that the most significant domains be specified. 

STRATEGY checks for such a compatability according to the following priority 
order of access possibilities: (1) hashed primary relation, (2) hashed index, (3) 
ISAM primary relation, (4) ISAM index. The rationale for this ordering is related 
to the expected number of page accesses required to retrieve a tuple from the source 
relation in each case. In the following analysis the effect of overflow pages is ignored 
(on the assumption that the four access possibilities would be equally affected). 

In case (1) the key value provided locates a desired source tuplc in one access via 
calculation involving a hashing function. In case (2) the key value similarly locates 
an appropriate index relation tuple in one access, but an additional access is re- 
quired to retrieve the proper primary relation tuple. For an ISAM-structured scheme 
a directory must be examined. This lookup itself incurs at least one access but 
possibly more if the directory is multilevel. Then the tuple itself must be accessed. 
Thus case (3) requires at least two (but possibly more) total accesses. In case (4) 
the use of an index necessitates yet another access in the primary relation, making 
the total at least three. 

To illustrate STRATEGY, we indicate what happens to queries (l)-(4) from 
Section 5.1. 

Suppose EMPLOYEE is an ISAM relation with a key of NAhIE, while DEPT is 
hashed on FLOOR#. Moreover a secondary index for AGE exists which is hashed on 
AGE, and one for SALARY exists which uses ISAM with a key of SALARY. 

Query (1) : One simple clause exists (D.FLOOR# = 2). Hence Strategy (a) is ap- 
plied against the hashed primary relation. 
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Query (2): One simple clause exists (E.AGE > 40). However, it is not usable to 
limit the scan on a hashed index. Hence a complete (unkeyed) scan of EMPLOYEE 
is required. Were the index for AGE an ISAM relation, then Strategy (b) would be 
used on this index. 

Query (3) : One simple clause exists and Tl has been reformatted to allow Strategy 
(a) against the hashed primary relation. 

Query (4): Two simple clauses exist (value2 > M.SALARY; value3 = 
M.NAME). Strategy (a) is available on the hashed primary relation, as is Strategy 
(b) for the ISAM index. The algorithm chooses Strategy (a). 

6. UTILITIES IN PROCESS 4 

6.1 Implementation of Utility Commands 

We have indicated in Section 1 several database utilities available to users. These 
commands are organized into several overlay programs as noted previously. Bring- 
ing the required overlay into core as needed is done in a straightforward way. 

Most of the utilities update or read the system relations using AM1 calls. MODIFY 
contains a sort routine which puts tuples in collating sequence according to the con- 
catenation of the desired keys (which need not bc of the same data type). Pages are 
initially loaded to approximately 80 percent of capacity. The sort routine is a re- 
cursive N-way merge-sort where N is the maximum number of files process 4 can 
have open at once (currently eight). The index building occurs in an obvious way. 
To convert to hash structures, MODIFY must specify the number of primary pages 
to be allocated. This parameter is used by the AM1 in its hash scheme (which is a 
standard modulo division method). 

It should be noted that a user who creates an empty hash relation using the 
CREATE command and then copies a large UNIX file into it using COPY creates 
a very inefficient structure. This is because a relatively small default number of pri- 
mary pages will have been specified by CREATE, and overflow chains will be long. 
A better strategy is to COPY into an unsorted table so that MODIFY can subse- 
quently make a good guess at the number of primary pages to allocate. 

6.2 Deferred Update and Recovery 

Any updates (APPEND, DELETE, REPLACE) are processed by writing the 
tuples to be added, changed, or modified into a temporary file. When process 3 
finishes, it calls process 4 to actually perform the modifications requested and any 
updates to secondary indices which may be required as a final step in processing. 
Deferred update is done for four reasons. 

(a) Secondary index considerations. Suppose the following QUEL statement is 
executed : 

RANGE OF E IS EMPLOYEE 
REPLACE E(SALARY = l.l*E.SALARY) 
WHERE ESALARY > 20000 

Suppose further that there is a secondary index on the salary domain and the pri- 
mary relation is keyed on another domain. 

OVQP, in finding the employees who qualify for the raise, will use the secondary 
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index. If one employee qualifies and his tuple is modified and the secondary index 
updated, then the scan of the secondary index will find his tuple a second time since 
it has been moved forward. (In fact, his tuple will be found an arbitrary number of 
times.) Either secondary indexes cannot be used to identify qualifying tuples when 
range qualifications are present (a rather unnatural restriction), or secondary in- 
dices must be updated in deferred mode. 

(b) Primary relation considerations. Suppose the QUEL statement 

RANGE OF E, M IS EMPLOYEE 
REPLACE E(SALARY = .9*E.SALARY) 
Where E.MGR = M.NAME AND 

E.SALARY > M.SALARY 

is executed for the following EMPLOYEE relation: 

NAME SALARY MANAGER 
Smith 10K Jones 
Jones 8K 
Brown 9.5K Smith 

Logically Smith should get the pay cut and Brown should not. However, if Smith’s 
tuple is updated before Brown is checked for the pay cut, Brown will qualify, This 
undesirable situation must be avoided by deferred updatc. 

(c) Functionality of updates. Suppose the following QUEL statement is exe- 
cuted : 

RANGE OF E, M IS EMPLOYEE 
REPLACE E(SALARY = M.SALARY) 

This update attempts to assign to each employee the salary of every other employee, 
i.e. a single data item is to be replaced by multiple values. Stated differently, the 
REPLACE statement does not specify a function. In certain cases (such as a RE- 
PLACE involving only one tuple variable) functionality is guaranteed. However, 
in general the functionality of an update is data dependent. This nonfunctionality 
can only be checked if deferred update is performed. 

To do so, the deferred update processor must check for duplicate TIDs in RE- 
PLACE calls (which requires sorting or hashing the update file). This potentially 
expensive operation does not exist in the current implementation, but will be op- 
tionally available in the future. 

(d) Recovery considerations. The deferred update file provides a log of up- 
dates to be made. Recovery is provided upon system crash by the RESTORE 
command. In this case the deferred update routine is requested to destroy the 
temporary file if it has not yet started processing it. If it has begun processing, it 
reprocesses the entire update file in such a way that the effect is the same as if it 
were processed exactly once from start to finish. 

Hence the update is “backed out” if deferred updating has not yet begun; other- 
wise it is processed to conclusion. The software is designed so the update file can 
be optionally spooled onto tape and recovered from tape. This added feature should 
soon be operational. 

If a user from the terminal monitor (or a C program) wishes to stop a command 
he can issue a “break” character. In this case all processes reset except the deferred 
update program, which recovers in the same manner as above. 
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All update commands do deferred update; however the INGRES utilities have 
not yet been modified to do likewise. When this has been done, INGRES will 
recover from all crashes which leave the disk intact. In the meantime there can be 
disk-intact crashes which cannot be recovered in this manner (if they happen in 
such a way that the system catalogs are left inconsistent). 

The INGRES “superuser” can checkpoint a database onto tape using the UNIX 
backup scheme. Since INGRES logs all interactions, a consistent system can always 
be obtained, albeit slowly, by restoring the last checkpoint and running the log of 
interactions (or the tape of deferred updates if it exists). 

It should bc noted that deferred update is a very expensive operation. One 
INGRES user has elected to have updates performed directly in process 3, cogni- 
zant that he must avoid executing interactions which will run incorrectly. Like 
checks for functionality, direct update may be optionally available in the future. 
Of course, a different recovery scheme must be implemented. 

7. CONCLUSION AND FUTURE EXTENSIONS 

The system described herein is in use at about fifteen installations. It forms the 
basis of an accounting system, a system for managing student records, a geodata 
system, a system for managing cable trouble reports and maintenance calls for a 
large telephone company, and assorted other smaller applications. These applica- 
tions have been running for periods of up to nine months. 

7.1 Performance 

At this time no detailed performance measurements have been made, as the current 
version (labeled Version 5) has been operational for less than two months. We have 
instrumented the code and are in the process of collecting such measurements. 

The sizes (in bytes) of the processes in INGRES are indicated below. Since the 
access methods are loaded with processes 2 and 3 and with many of the utilities, 
their contribution to the respective process sizes has been noted separately. 

access methods (AM) 11K 
terminal monitor 10K 
EQUEL 30K + AM 
process 2 45K + AM 
process 3 (query processor) 45K + AM 
utilities (8 overlays) 160K + AM 

7.2 User Feedback 

The feedback from internal and external users has been overwhelmingly positive. 
In this section we indicate features that have been suggested for future systems. 

(a) Improved performance. Earlier versions of INGRES were very slow; the 
current version should alleviate this problem. 

(b) Recursion. QUEL does not support recursion, which must be tediously pro- 
grammed in C using the precompiler; recursion capability has been suggested as a 
desired extension. 

(c) Other language extensions. These include user defined functions (especially 
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counters), multiple target lists for a single qualification statement, and if-then-else 
control structures in QUEL; these features may presently be programmed, but only 
very inefficiently, using the precompiler. 

(d) Report generator. PRINT is a very primitive report generator and the 
need for augmented facilities in this area is clear; it should bc written in EQUEL. 

(c) Bulk copy. The COPY routine fails to handle easily all situations that 
arise. 

7.3 Future Extensions 

Noted throughout the paper are areas where system improvement is in progress, 
planned, or desired by users. Other areas of extension include: (a) a multicomputer 
system version of INGRES to operate on distributed databases; (b) further per- 
formance enhancements; (c) a higher level user language including recursion and 
user defined functions; (d) better data definition and integrity features; and (e) a 
database administrator advisor. 

The database administrator advisor program would run at idle priority and issue 
queries against a statistics relation to be kept by INGRES. It could then offer 
advice to a DBA concerning the choice of access methods and the selection of 
indices. This topic is discussed further in [16]. 
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