
Midterm Examination
CSE 455 / CIS 555 – Internet and Web Systems

Spring 2008

Zachary Ives

Name: _Answer Key__

6 questions, 100 pts, 80 minutes

1. (20 pts) Explain the basic (a) lookup and (b) file/object replication capabilities in the

Chord DHT versus the “unstructured” Gnutella peer-to-peer network.

Chord uses a “ring” with values from 0 to 2160-1 as its basic abstraction. Each
node’s IP address is hashed and placed in the ring; values are also hashed by
their keys, and “owned by” the closest node whose hash value is greater than or
equal to the key’s hash. Nodes in Chord have lg(n) entries in a “finger” table,
pointing to a node halfway around the ring, 1/4th of the way, 1/8th of the way, …,
all the way to the successor. Data is also replicated on the lg(n) successors of
the owner.

Lookup for a key k proceeds by doing a search through the finger table, using
the destination nodes’ keys as a “pivot” in a fashion similar to a search of a tree.
The goal is to find the predecessor of the owner of k. If this predecessor is not
reachable in one hop, the search request will be forwarded to the nearest node to
the predecessor, and the process will repeat recursively.

Gnutella relies on flooding (usually to some time-to-live n) to do lookups. Once
an object is looked up, it is typically replicated on the requesting node, which
should make it available for future lookups.

(c) What are the guarantees provided by each P2P network?

Chord guarantees that, in the absence of churn (nodes joining and leaving) and
dropped messages, if a key exists within the DHT, its value will be returned.
Gnutella guarantees that, in the absence of churn and dropped messages, an
object will be retrieved if it is within the time-to-live range.

(d) What are the reasons one would prefer an unstructured network vs. a

structured one?

Unstructured networks like Gnutella are less sensitive to churn; structured
networks like Chord must continuously ship state back and forth as nodes join
and leave.

2. (20 pts) Suppose we were to replace the DNS lookup system with one based on the

forward axes of XPath (using the same hierarchical structure and naming). For

instance, www.cis.upenn.edu/~zives/cis555 might become

edu/upenn/cis/www/~zives/cis555. Assume we have /, //, and * but no [] predicates.

(a) How would we need to change the lookup system in order to make this work

correctly?

This would require substantially more work on the part of the lookup system: instead
of matching a single path, we instead need to match a path against a tree, returning
a node set. Either the node doing the lookup would have to recursively traverse the
hierarchy of nodes on step at a time, at each level collecting all node sets that match,
or it would need to offload this work to the DNS nodes (who in turn would need to
perform expensive recursive traversals). Internally, this could be done using a
scheme similar to XFilter.

Caching of names would be significantly more complex, as there might be XPath
expressions that partly match but aren’t exactly the same. Segmenting the XPaths,
which consist of a portion that matches on the domain name hierarchy and a portion
that matches on paths in the filesystem of a machine, becomes tricky.

(b) Would this represent an improvement over the existing DNS naming scheme, or a

step backwards? Why?

It gives a great deal more flexibility, but it changes the semantics of lookup
significantly (a set of nodes, potentially heterogeneous, is quite different from a
single node), and it incurs greater lookup cost. It is also more vulnerable to overload
or denial-of-service attacks.

3. (15 pts) Given two XML files with the following form:

Students.xml

<students>

 <student>

 <name>{person}</name>

 <sid>{student ID}</sid>

 </student>

…

</students>

SSNs.xml

<ssns>

http://www.cis.upenn.edu/~zives/cis555%20might%20become%20edu/upenn/cis/www/~zives/cis555
http://www.cis.upenn.edu/~zives/cis555%20might%20become%20edu/upenn/cis/www/~zives/cis555
http://www.cis.upenn.edu/~zives/cis555%20might%20become%20edu/upenn/cis/www/~zives/cis555

 <mapping>

 <sid> { student ID } </sid>

 <ssn> { SSN } </ssn>

 </mapping>

 …

</ssns>

Write an XQuery that outputs each student, the student’s name, and the student’s SSN.

for $st in doc(“Students.xml”)/students/student,
 $sn in $st/name,
 $sid in $st/sid
return <student>
 { $sn }
 { doc(“SSNs.xml”)/ssns/mapping[sid=$sid]/ssn }
 </student>

OR

for $st in doc(“Students.xml”)/students/student,
 $sn in $st/name,
 $sid in $st/sid,
 $sm in doc(“SSNs.xml”)/ssns/mapping,
 $sid2 in $sm/sid,
 $ssn in $sm/ssn
where $sid = $sid2
return <student>
 { $sn }
 { $ssn }
 </student>

(and many other variants)

4. (15 pts) Explain the roles of (a) WSDL and (b) SOAP in implementing remote

procedure calls. What are the corresponding concepts in Java RMI?

(a) WSDL is the interface definition language (IDL) for Web services. It specifies

what functions are available, what their RPC bindings are, what the parameters,
datatypes, and return values are, and so forth. It is analogous to the Java
interface definitions that are used for RMI.

(b) SOAP is the data/error serialization layer. Within the SOAP envelope we get
constraints on what tags must be understood/implemented, sets of parameters,
and so on. The return value is also typically in SOAP, and it may include error
information. SOAP is analogous to Java serialization.

5. (10 pts) We have discussed the internal architecture of Google to a significant extent

in this course: it has many replica sets, each of which may be independently refreshed

during a new crawl of the Web. Such an architecture wasn’t well-suited for an EBAY or

an Amazon, but it worked very well for search. Discuss how well it fits for a system like

YouTube.

Many of the basic features are quite well-suited for YouTube, where videos are
essentially static for all time. One can partition or “stripe” videos by ID (and
according to load distribution) across different machines, and can assume that these
machines will not need to communicate with one another. Each machine will
independently serve videos for its partition; it will have many replicas. (Replication
could be done, e.g., via Google’s replicating distributed filesystem.) YouTube does
not really need an offline crawler, as videos are directly uploaded.

There is one aspect that is significantly different: YouTube places much more I/O
demands on machines and the network. Most likely, more replicas of each node
must be created, and the machines and network would need to have higher
throughput. Many data centers would be geographically distributed, and the goal
would be to forward requests to a “nearby” node.

6. (20 pts) Assume we have a cluster of machines, each containing lists of URLs

crawled. Describe how one would use the MapReduce programming model to count

how many documents named “index.html” have been crawled. Include pseudocode

for the map and reduce components.

map(key,log): iterate through log entries
 if entry ends with “index.html” { emit (key=“index.html” , val=1) }

reduce(key,vals): foreach count in vals { sum += count }
 emit sum

