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ABSTRACT
An effective query optimizer finds a query plan that exploits the
characteristics of the source data. In data integration, little is known
in advance about sources’ properties, which necessitates the use of
adaptivequery processing techniques to adjust query processing
on-the-fly. Prior work in adaptive query processing has focused on
compensating for delays and adjusting for mis-estimated cardinal-
ity or selectivity values. In this paper, we present a generalized ar-
chitecture for adaptive query processing and introduce a new tech-
nique, calledadaptive data partitioning(ADP), which is based on
the idea of dividing the source data into regions, each executed by
different, complementary plans. We show how this model can be
applied in novel ways to not only correct for underestimated selec-
tivity and cardinality values, but also to discover and exploit order
in the source data, and to detect and exploit source data that can be
effectively pre-aggregated. We experimentally compare a number
of alternative strategies and show that our approach is effective.

1. INTRODUCTION
The cornerstone of relational database query processing is the

optimizer’s ability to exploit known properties of the input data
(cardinalities, ordering information, histograms and other selectiv-
ity estimation aids, and dependencies and uniqueness constraints)
and the operating environment (CPU speed, disk access time, data
striping). Some query optimizers are even sophisticated enough to
exploit information about distinct values or skew in the data, e.g.,
to choose more appropriate operators or to perform early aggrega-
tion [4].

Unfortunately, the rich summary and statistical information avail-
able to a traditional DBMS is simply nonexistent in manydata
integration applications, where queries are posed over a variety
of heterogeneous, autonomous data sources that may not even be
databases. Data integration systems are frequently constructed with
little knowledge of the underlying data source properties (e.g., car-
dinalities, ordering, functional dependencies) or the current perfor-
mance characteristics of the environment (e.g., network bandwidth,
data provider’s resources), and in fact any of these properties is
subject to change without notice. Thus, the data integrationsource
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descriptionsfor each data source are typically quite cursory: often,
they merely describe thesemanticrelationship between relations
(or XML trees) in a data source and the relations (or XML trees) in
the globally integrated view of the data.

Given the limited knowledge available to a data integration sys-
tem, many have proposedadaptivetechniques that discover charac-
teristics about the data and modify query execution to exploit this
knowledge. Several techniques try to compensate for unexpected
variation in data access rates [27, 26, 17], or they reconsider the
query execution plan at materialization points [6, 19]. Still others,
focusing on online-applications, prioritize certain portions of the
data so these answers are presented earlier to the user [15, 12, 25].

Adaptive query processing techniques have shown significant
potential for improving performance, but they are generally best
described as a collection of techniques, each designed in isolation
to address a specific need (e.g., delays, estimation errors, etc.) —
rather than an integrated methodology for performing query pro-
cessing. An open research challenge has been to develop a more
comprehensive adaptive query processing framework and system
that mirrors the breadth of capabilities offered by traditional RDBMS
query processors, but for data integration applications with incom-
plete knowledge.

In this paper, we present a novel model of adaptive query pro-
cessing that emphasizesadaptive data partitioningand captures
most existing techniques. We show that by adaptively partition-
ing data into multiple plans we can achieve several benefits. First,
we are able to react to cost under-estimates by efficiently chang-
ing plans in mid-stream. Second, we can employ more aggressive
techniques that potentiallyexploit certain properties such as order
and the ability to perform pre-aggregation of data. Importantly, our
architecture is designed so partitioning data into plans can be done
with very little overhead, and it reuses intermediate results as much
as possible. The decisions about how to partition data are based on
multiple considerations, including the semantics of each operator,
statistics on data we have seen, and properties of competing plans.

Overall, we make the following contributions:

• We formalize the problem of adaptive query processing, defin-
ing four different, complementary classes of techniques.

• We present a framework foradaptive data partitioning, which
encompasses a range of techniques for changing query plans
in mid-execution: metaphorically, “transformation rules” for
adaptive query processing.

• We describe an implementation in theTukwila system, in-
cluding novel components for adaptive data partitioning.

• We demonstrate that adaptive data partitioning can be ap-
plied to address several opportunities for improving query
performance:



– new knowledge of selectivities, allowing for us to cor-
rect poorly performing query plans in mid-execution,

– order in the data, enabling the possibility of using more
efficient merge-based join algorithms,

– and potential for early aggregation, reducing the overall
number of tuples to be processed.

The remainder of this paper is organized as follows. Section 2
outlines the adaptive query processing problem space and outlines
the benefits of our proposed adaptive methods. Section 3 presents
the novel architectural features of our adaptive query processing
system, and the subsequent three sections describe methods for us-
ing adaptive data partitioning to exploit particular source data char-
acteristics. We discuss related work in more detail in Section 7 and
conclude in Section 8.

2. ADAPTIVE DATA PARTITIONING
As discussed in the introduction, data integration and remote

querying applications generally pose a query processing challenge
because limited information is available for query optimization. In
response, researchers developedadaptivequery processing tech-
niques, which may modify the plan based on information obtained
during execution — instead of executing it blindly. Some tech-
niques adaptbetweensuccessive executions of queries [5, 23, 3];
these methods rely on significant commonality between subsequent
queries, and the initial queries may show poor performance. Our
interests are inintra-queryadaptivity, which allows execution to be
modifiedduringexecution.

In this paper, we focus on what we consider to be the most flexi-
ble and powerful type of adaptive query processing, which we term
adaptive data partitioning(ADP). We begin by describing how
ADP relates to other adaptive query processing methods.

2.1 Adaptive Query Processing Taxonomy
We classify prior work in adaptive query processing into four

categories:

• Scheduling-based methodspreserve the logical structure of
the query plan, but seek to re-schedule the order in which
operations are processed by the CPU. Typically this is done
to mask delays or to cause certain answers to appear earlier.
Examples include adaptive join operators [22, 15, 26], query
scrambling [27], and dynamic rescheduling [25].

• Redundant-computation methodsuse multiple competing query
plans to process the same data [1]. After some time interval
or completion threshold is reached, all plans are terminated
except for the one that has progressed the furthest.

• Plan partitioning methodsattempt to change the physical
plan at intermediate materialization points or after a block-
ing operator (e.g., an aggregate). The query engine can either
choose from embedded alternative subplans [6] or trigger a
runtime re-optimization [19].

• Data partitioning methodsroute different parts of the data
to different plans. Thus far, the sole existing technique has
been eddies [2, 20], which makelocal routing decisionsand
send each tuple along a potentially unique path through a set
of query operators. State Modules (SteMs) refine the rout-
ing granularity so that two data items may also get differ-
ent access methods and join algorithms [21]. (Eddies and
SteMs also capture certain aspects of scheduling-based meth-
ods, in that they execute multiple operators concurrently and
can thus compensate for delays.)

The main claim of this paper is that a more general architec-
ture for data partitioning, employing global, long-term planning as
well as local decision-making, can provide much greater opportuni-
ties for adaptivity. Our novel architecture, which we termadaptive
data partitioning(ADP), provides a powerful framework for adapt-
ing complex query plans even in the midst of pipelined execution.
Adaptive data partitioning dynamically divides query processing
work across multipledifferentplans, where the plans may be run-
ning in parallel or in sequence. It not only forms a basis for devel-
oping new adaptive strategies, but it actually allows other classes of
adaptive techniques to be used more effectively. Scheduling-based
methods are only effective if the query is not CPU-bound; ADP
can reduce the cost of the currently executing plan. Plan partition-
ing methods modify a query planafter each pipeline stage; ADP
provides the ability to adapt a planwithin a stage. Finally, redun-
dant computation may be more useful when different sets of plans
can be compared over different intervals of execution.

With the Tukwila system [17, 18], we have been investigating
how adaptive data partitioning can be used as the focal point of an
architecture supporting all four classes of techniques. In addition to
ADP, our system includes adaptive scheduling capabilities and plan
partitioning, and it can even perform redundant computation. We
use experimental results fromTukwila to validate that our adaptive
data partitioning methods can significantly improve performance,
beyond the benefits provided by other adaptive techniques.

2.2 Uses of Adaptive Data Partitioning
A major reason for our interest in ADP is the fact it can allow us

to detect and exploit certain properties (e.g., selectivity, order, and
groups) that are discovered to hold within the source data. To illus-
trate, we provide three examples in which adaptive data partitioning
can allow us to react to the discovery of data source properties.

Our first example (Figure 1) shows how ADP can recover from
overly optimistic cardinality estimates by switching between query
plans in the middle of pipelined execution.

EXAMPLE 2.1. Suppose we have a schema with three relations,
F (fid, from, to, when), representing flights;T (ssn, flight), rep-
resenting travelers; andC(p, num), indicating the number of chil-
dren per traveler. Suppose that these relations are stored in ran-
domly distributed order. Consider a query asking for the flight with
the traveler who has the most children, the number of children, and
the flight’s origin:

Group[fid, from]max(num)(F 1fid=flight T 1ssn=p C)
Given little information about the data, a query optimizer may ex-
ecute the query using the order of evaluation:

Group[fid, from]max(num)(F 1fid=flight (T 1ssn=p C))
Once the optimizer of a traditional query processor has selected

a physical query plan, the system will execute it until completion. In
one use of adaptive data partitioning, the systemstartsin the same
way, executing the plan described above (“Phase 0” in Figure 1).
However, the system monitors execution, collecting statistics. From
these statistics, the system may determine that it would be better
to join travelers and flights before children, replacing the original
join expression under the Group operator with((F 1fid=flight

T ) 1ssn=p C).
Rather than restart the query using the new plan, the system sim-

ply suspendsthe partially executed plan (which may have already

returned some answers). We call this initial plan the0th phaseof
execution and denote the sets of tuples that were processed in this
phase byF 0, T 0, C0.

Adaptive data partitioning replaces the old phase’s query plan
with the new (phase 1) plan, which resumes reading the source re-
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Figure 1: Executing an aggregation/join query with a combination of
two plans.

lations — thus consuming all remaining tuples from the sources.

However, the simple union of the0th and1st phase results returns
only a subset of the desired answers. We must also join all combi-
nations of relationsbetweenphases, feeding their results into the
grouping operator. Omitting the join subscripts for conciseness,
the remaining join expression is:
(F 0 1 T 0 1 C1) ∪ (F 0 1 T 1 1 C0) ∪ (F 0 1 T 1 1 C1) ∪
(F 1 1 T 0 1 C0) ∪ (F 1 1 T 0 1 C1) ∪ (F 1 1 T 1 1 C0)

Only when this final expression has been evaluated, in what we
call the stitch-upphase, will query execution complete. In gen-
eral, adaptive data partitioning supports any number of phases,
each correcting for a previous optimizer mis-calculation. Often, by
applying ADP in such a sequence of phases, we will converge on
the optimal plan. It may appear that the stitch-up phase would be
expensive to compute, but this is not the case for several reasons,
which we explain (and validate experimentally) in Section 4.

We can exploit adaptive data partitioning to providespeculation
about certain data properties, andspecializationto these properties.
Instead of running phase plans in sequence, we may run two or
more plans in parallel, adaptively routing different source data to
each plan.

EXAMPLE 2.2. Suppose that we wish to join two relations that
are “mostly sorted” (perhaps they were bulk loaded with some or-
der that was not maintained by future updates). Knowing (or spec-
ulating) that this is the case, adaptive data partitioning can use one
query plan specialized to joining sorted data, and a second plan to
join unsorted data. As the query progresses, data from the rela-
tions will be routed to the appropriate plan depending on whether
it maintains or violates order. In the end, a stitch-up plan will per-
form a limited amount of work to join data across the two plans.

Early aggregation [4] is a well-known optimization that is ex-
ploited by several commercial systems. In SQL, the GROUP BY
operation is typically performed last (in the absence of HAVING
clauses). However, it is logically possible to perform the grouping
operation before a join, since common aggregation operations such
as min, max, sum, count, and average1 distribute over union. In-
deed, this transformation can sometimes reduce the amount of data
to be joined.

There are two main cases when pre-aggregation is recognized to
be a useful optimization. The first case holds when the join ref-
erences only grouping attributes and outputs at most one tuple per
1Average is supported by pre-aggregating sums and counts for each
value to be averaged, and then using these to compute the average
at the end.

group. In this case, it is possible to directly commute the join and
grouping operation. In the second case, when the above conditions
do not hold, one may insert anewgrouping operation ahead of the
join. The new grouping operation creates smaller “partial groups”
(including any join attributes, even if these are not part of the fi-
nal groups), which are then fed into the join. Although the final
GROUP BY must still be performed, it will now “coalesce” pre-
grouped information instead of operating on original tuples.

EXAMPLE 2.3. In the query of Example 2.1, if a traveler flies
multiple times, the most efficient query plan may resemble that of
Plan 0 in Figure 1, with an additional pre-aggregation operator
after theT 1 C expression (grouping onflight and aggregating
max(num)). If a traveler rarely flies, perhaps the original Plan 0
performs better.

We can use data partitioning as a means of comparing the per-
formance of the two plans: divide the data up into a series of sub-
sets (say,k tuples apiece). Feed a few subsets into each of the
alternative plans; compare performance on those, and then feed
the remaining data into the “superior” plan.

Previously, we described four classes of adaptive techniques, in-
cluding ADP. The three examples in this section are intended to
give the intuition behind three ways data partitioning can be ap-
plied to query processing problems, and to illustrate its power. In
the remainder of this paper, we present and validate more devel-
oped implementations of these basic applications of ADP.

While ADP provides the core of our adaptive model, we supple-
ment it with other techniques, as appropriate. To mask I/O delays,
we use adaptive scheduling — which also provides a further bene-
fit that tuples are pipelined faster through the query plan, yielding
more information about selectivities. In resource-constrained situ-
ations, we may use plan partitioning to break a query into stages
and ADP to more effectively process each stage. Finally, in future
work we hope to investigate how to use competitive, redundant-
computation methods over ADP partitions to provide even further
selectivity information.

2.3 Principles of Adaptive Data Partitioning
Now that we have provided the intuition behind adaptive data

partitioning and several of its uses, we explain its algebraic un-
derpinnings, which define a space of possible adaptive techniques,
prove their correctness, and highlight their limitations. Informally,
the algebraic basis shows how the answers to a query can be pieced
together from multiple plans.

The key property enabling adaptive data partitioning is the abil-
ity to distribute relational union through operators such as select,
project, and join. Stated generally, we can take any join expression
overm relations, each divided inton partitions, and write it as:

R1 1 . . . 1 Rm =
[

1≤c1≤n,...,1≤cm≤n

(Rc1
1 1 . . . 1 Rcm

m )

whereR
cj

j represents some subset of relationRj . This is equivalent
to the series of join expressions between subsets that have matching
superscripts (Ri

1 1 . . . 1 Ri
m, 1 ≤ i ≤ n) plus the union of all

remaining combinations:

{t|t ∈ (Rc1
1 1 . . . 1 Rcm

m ), 1 ≤ ci ≤ n, ¬(c1 = . . . = cm)}

Note that this two-part version of the overall expression exactly
corresponds to the example of Figure 1. The two phases in the fig-
ure correspond to our join expressions with matching superscripts;
the stitch-up phase performs the final union of combinations. It is
straightforward to extend the above properties to include selection
and projection: both operators easily distribute over union.



In fact, this property is already exploited in the hash ripple and
pipelined hash joins [22, 15]. In that case, given relationsR andS,
of which some initial subsetsR0 andS0, respectively, have already
been joined, a ripple join can read an additional subset of relation
R, R1. It will join this with S0, algebraically performing the op-
eration(R0 1 S0) ∪ (R1 1 S0), but returning the same result as
(R0 ∪ R1) 1 S0. The principles above can also be used to post-
rationalize some earlier work on adaptivity, which applied them in
limited settings (e.g, [2]).

An important benefit of our algebraic perspective is the ability to
systematically determine additional places where these techniques
may be applied. For example, we can apply adaptive data parti-
tioning to aggregation operations in a manner that is more efficient
than that of Example 2.3. We postpone the details of ourwindowed
pre-aggregation scheme until Section 5, but the idea is to partition
the data into a window ofw tuples, and pre-aggregate elements in
that window. If pre-aggregation is effective over the current win-
dow, increase the size for the next window; but if it is ineffective,
reduce the window size.

3. THE TUKWILA PLATFORM FOR ADP
The Tukwila system [17, 18] integrates data from autonomous

Internet and intranet data sources, where only limited information
may be available to the query processor, yet the data to be queried
is in the 10s or 100s of MB. Its emphasis is on (where possible) effi-
ciently pipelining answers to the user; we have progressively added
all four types of adaptivity described in Section 2.1. Our previ-
ous paper [17] discussesTukwila’s support for adaptive scheduling
using pipelined hash joins [22, 26], as well as its integrated ca-
pabilities for plan partitioning and mid-query re-optimization [19].
ThoughTukwila also supports pipelined processing of XML queries
in a relational-like execution model [18], we focus here on issues
that are not XML-specific.

In this paper, our focus is on using adaptive data partitioning
to improve query processing: as alluded to in the examples of the
previous section, we partition data acrossparallel subplans when
the data has properties that can be exploited; we process regions
or windows of the data using aseriesof plans as it becomes evi-
dent that the current plan is not performing well. Data partitioning
allows us to perform adjustments that reduce the total amount of
work required to answer a query. It complements adaptive schedul-
ing, which ensures that the server is using its resources effectively,
and plan partitioning, which divides work into logical units.

We now describe the novel architectural features required to im-
plement ADP in a real query processing system. This section fo-
cuses on the execution-level mechanisms, and subsequent sections
show different ways of using the framework to adapt to the proper-
ties of incoming data.

As might be expected,Tukwila has special operators for sharing
information between subplans: (split, which partitions data across
different plans;combine, which unions data from different plans;
and a queuing operator that supports communication across con-
current threads). However, most of the novelty of the execution
system lies in its support forreusing results from previous plan
phases (avoiding the need to recompute certain query subexpres-
sions), for monitoring the progress of execution, and for creating
“stitch-up” plans. The remainder of this section describes these
features: we begin by describing how we modify stateful operators
to expose the intermediate results they record; then we explain how
we ensure that these results are “compatible” with future plans; we
describeTukwila’s execution monitoring routines; and we conclude
by describing how a “stitch-up” plan is generated and executed.

3.1 Exposing State
To make multi-plan execution feasible, it is vital that we avoid

re-generating work where possible — our goal is to enable sharing
and reuse of subexpressions wherever effective. Hence, it must be
possible to access the intermediate state (e.g., hash tables) internal
to join and aggregation algorithms, in order to directly use those
results in other expressions. This has required a redesign of the
traditional query operators in an iterator model.

The join and aggregation operators been divided into two com-
ponents,state structuresand iterator modules. State structures
store the relations to be joined or the intermediate aggregate re-
sults; they are similar in concept to STeMs [21], but they advertise
certainproperties(e.g., supports key-based access, requires sorted
data), and they are components of pre-aggregation operators as
well as joins. Tukwila includes the common data structures used
in database systems: list, sorted list, hash, hash over sorted data
(which allows us to perform a binary search over hash buckets),
and B+ Tree.

For join algorithms, iterator modules define a creation and ac-
cess pattern for state structures: nested-loops-style iteration (with
buffering of the results of the inner loop); build-then-probe (as in
a hybrid hash join); data-availability-driven (as in a pipelined hash
join); or merge-driven (as in a merge join). There are two styles of
iterators for our hash-based aggregation operators: a conventional,
blocking iterator that reads the entire input relation and builds the
aggregate relation in a hash table; and an “adjustable sliding win-
dow” iterator that partially pre-aggregates everyw tuples, where
w is variable (see Section 5). We also plan to add a “punctuated”
iterator that takes input sorted by groups and outputs an aggregate
tuple at the end of each group.

The goal of this decoupling of state structure and iterator is to
allow Tukwila to sharea state structure across join operators in
different plans, yielding a common subexpression among different
data partitions. However, for performance and consistency, we im-
pose restrictions. For concurrently executing plans, we only allow
one operator to be simultaneously adding tuples to the state struc-
ture and using the new tuples to probe another structure (e.g., in
the outer loop of a nested loops join or the probe phase of a hy-
brid hash join)2. We also require that the joins’ children becom-
patible, as we describe below. For executing plans in sequence
(Section 4), we currently do not share results across plans, except
between early and stitch-up plans, for efficiency reasons discussed
in Section 3.4.1.

3.2 State Structure Compatibility
There is an important, though not immediately obvious, caveat

when sharing trying to reuse intermediate results from another plan’s
data structures. The physical layout of the tuples for an equivalent
subexpression might be different. First, the physical schema cre-
ated by an expression(A 1 (B 1 C)) is likely to be different
from that of(B 1 (C 1 A)), since the query processor is likely to
concatenate the attributes of the joined relations in a different order.
A second source of incompatibility is that a pre-aggregation oper-
ator changes the schema by projecting out non-grouping attributes
and adding aggregated values.

We handle the first (tuple order-incompatibility) problem as fol-
lows. To minimize copying, tuples inTukwila are implemented
as vectors of pointers to individual attribute value “containers”;
whereas state structures store a tuple’s values directly, according
to the tuple’s physical ordering. We can read from a state structure
2This restriction prevents conflicts between different styles of iter-
ators and it eliminates the need for message passing between the
different “owners” of a structure.



into a differently-ordered tuple via atuple adapterthat has a map-
ping between the state structure’s ordering and that of the tuple: it
permutes the attributes within the tuple as it reads them. A sim-
ilar idea allows us to efficiently map between schemas that have
pre-aggregation and those that do not. Here we need not only a
mapping between tuples, but a way to add placeholders for pre-
aggregate values that do not exist in the non-aggregated tuple. We
define a trivialpseudogroupoperator that essentially performs pre-
aggregation over each successive singleton tuple “set”: for each
tuple, it projects out non-grouping attributes and creates values for
the aggregation attributes based on the current tuple. This con-
verts each input tuple into a form that is schema-compatible with a
pre-aggregated tuple, eliminating a source of incompatibility, but it
costs little more than a conventional projection operation. When-
ever Tukwila creates a plan that has a potential pre-aggregation
point, it will either insert a pre-aggregation operator or a pseu-
dogroup operator: this ensures that the same subexpression will
have the same schema in any plan, regardless of whether pre-ag-
gregation was applied.

State structure key compatibility Another constraint against
structure sharing occurs when the state structure is accessed via
a key, but we would like to use it in an operator that requires a
different key. This situation arises occasionally in chain queries:
relationC may join with relationA on attributea, but it may join
with relationB on attributeb. If there is no constraint thata = b,
then we cannot share the state structure without converting its key.

3.3 Gathering Information for Adaptivity
At the finest level of granularity, we adjust the scheduling of

operators as in prior adaptive query processing systems [26, 17,
2], where individual operators (e.g., pipelined hash joins) react to
I/O and tuple availability delays to schedule work during idle cy-
cles. Thread scheduling extends not only between operators in a
single plan, but potentially across complementary query plans or
subplans: if one subplan’s computation is blocked by an I/O delay,
perhaps another subplan can be computing a different subresult. In
principle, this resembles some aspects of query scrambling [27].

More sophisticated forms of adaptivity, based on selectivity and
cardinality values, are governed by a query optimizer/re-optimizer,
which chooses the combination of query plans (which may ulti-
mately run both in series and parallel) by which the query will be
processed. A detailed discussion of runtime re-optimization is pre-
sented in Section 4; here we briefly describe the execution-engine
mechanisms by which it gathers information.

Each of the query operators inTukwila maintains certain in-
formation to aid the runtime decision-making modules (e.g., the
query optimizer or tuple router). Every query operator maintains
a counter indicating how many tuples it has output (unlike [23],
we found that this had no measurable performance penalty in our
workloads).

In addition to operator-level information, the query re-optimizer
can make use of information exposed by the state structures of join
and aggregation operators. Such information includes keys, order
constraints, size and cardinality, and swapped-to-disk status. More-
over, hash tables provide an external interface by which they can be
swapped to and from disk (enabling coordination of join overflow
partitions, as in [10] and as discussed in Section 5).

The third adaptive component, used with complementary plans
and subplans, is a router module that helps thesplit operator decide
what subplan is most appropriate for an incoming tuple. The router
is given a specification of each operator’s constraints (e.g., order),
and it may perform some additional pre-processing before routing
(e.g., pre-sorting a window of the data).

3.4 Stitch-up Plans
Perhaps the most complex aspect of adaptive data partitioning

lies in handling the stitch-up expression, which combines subsets
of data that had previously been partitioned to different plans. In
general, for a join ofm relations inn plans, there arenm − n
combinations of subsets that need to be stitched together.3

Note that one underlying requirement of adaptive data partition-
ing is that every plan must “buffer” the source data fed into it at the
leaves, so this data can be joined with data in the other plans — this
mirrors the requirement of the pipelined hash join, and in fact, since
most data integration systems almost exclusively rely on pipelined
hash joins, it is often trivially satisfied. InTukwila we also extend
the other join forms (nested loops, hybrid hash, and merge) to do
buffering.

3.4.1 Strategies for Stitch-up
In principle, one could achieve the effects of stitch-up using a

scheme similar to that of an n-ary pipelined hash join. Arrange
the plans according to some arbitrary ordering (e.g., the sequence
in which they are executed). For every source tuple, designate a
single plan that “owns” the tuple. Feed the tuple into this owner and
ensure that it buffers (e.g., in the hash table of a pipelined hash join)
this tuple and all intermediate results generated by combining this
tuple with others. Then feed the same tuple into allpreviousplans
— these plans should join with all of their buffered data, buffering
all resulting tuples — but to avoid duplicate answers, they must
avoid buffering the tuple itself. This approach will generate correct
answers, but we feel it is inadequate. First, if two or more of the
plans are running in parallel and have different constraints on the
sort orders of their inputs, the approach described above does not
work, since subsets of the data will not simultaneously conform
to both orderings. Second, if we change to a new plan because the
current plan proves to be performing poorly, we would like to avoid
sending future tuples into the poor plan.

A second alternative is to use an ordering scheme similar in fla-
vor to that of the XJoin [26] (which supports multiple stages of
joining input data and then joining overflowed data). As before, we
assign an ordering on the plans; we also assign aplan ID to each
plan. Next, wesharestate structures for common subexpressions
across query plans. Every time an incoming tuple is fed to a par-
ticular plan, it gets annotated with the plan ID as itslineage, and
every intermediate result tuple gets annotated with the lineages of
all of its constituent source tuples. Plan IDk is responsible for all
possible output values with a lineage consisting of (1) at least one
source tuple from plank and (2) the remaining tuples from plank
or earlier. This scheme has the desirable characteristic that every
join combination is evaluated as early as possible, but has two im-
portant drawbacks: first, annotating tuples adds overhead to every
step of query processing, and second, the optimal plan for com-
bining the firstk plans’ worth of data may be different from the
optimal plan for combining the data in partitionk.

3.4.2 Implemented Approach
We elected to use a third approach that allows for sharing and

reuse of subexpressions, while minimizing overhead and allowing

3The total number of possible tuple combinations to be evaluated
remains the same as with a single join operator — we simply par-
tition the work into smaller units. Moreover, we partition into a
new planthat is expected to be more efficient over that data (either
because the data had properties it exploits, or because the new plan
is a new phase believed to improve over the old one). Ideally, the
stitch-up expression can be computed in a way that does not incur
additional cost beyond that of the single-plan expression.



for the most efficient means of performing stitch-up computation.
We postpone the stitch-up computation to the end, after all prior
plans have completed — we refer to this as a stitch-up phase.

During execution prior to stitch-up, every query plan attempts
to maintainall of its intermediate results in state structures, since
the stitch-up phase will attempt to reuse these intermediate com-
putations wherever possible. (If memory is constrained, we use
a heuristic that the state structures will be paged to disk in most-
complex-expression to least-complex-expression order, based on
the principle that larger expressions are less likely to be shared be-
tween plans than simpler expressions.)

Each plan “registers” its state structures in astate structure reg-
istry that records the plan ID, the expression, and the cardinality of
the expression.

To create the stitch-up plan, theTukwila query optimizer takes
into account all existing state structures when comparing the cost
of stitch-up. For every join operation, it estimates the cost of pro-
ducing the unavailable intermediate results of the expression, rather
than all answers4. Next, the optimizer creates anexclusion listthat
specifies which subexpressions have already been computed, can
be reused, and should not be recomputed.

3.4.3 Stitch-up Joins
Finally, rather than taking all tuples from the existing state struc-

tures, combining them into a single structure, and annotating each
with its lineage so duplicates can be discarded at the end, we pro-
vide a specialized variation of the join operator that checks tuple
lineage more efficiently. Thestitch-up joinoperator starts with an
exclusion list provided by the optimizer (e.g., do not regenerate
A0 1 B0), plus sets of state structures containing existing results
that are to be reused. The stitch-up join iterates over the combi-
nations of existing state structures, and decides at a structure-to-
structure level (rather than a per-tuple level) whether this combina-
tion is in the exclusion list or needs to be generated. Moreover, it
decides on a pairwise basis which state structure should be scanned
for tuples and which should be probed against; if necessary for per-
formance, it will rehash one of the structures according to the join
key. Finally, the stitch-up join combines data from its inputs with
that from the existing state structures, checking on a per-tuple basis
whether the tuple should be created. The final result is an oper-
ator that is much more efficient at producing precisely the results
needed.

3.5 Implementation and Experimental Method-
ology

In the next three sections of this paper, we examine several differ-
ent applications of ADP to data integration problems. Each requires
the system to discover and exploit (or correct for) certain properties
about the data: unexpected selectivity or cardinality, possibility of
pre-aggregation, the presence of order. We describe howTukwila’s
data partitioning framework can address each problem, and we pro-
vide experiments showing the effectiveness of our techniques.

The Tukwila query processor is approximately 80,000 lines of
C++ code. Our query engine runs on a single central server but
requests data from remote data sources. A Java-based front-end
normally supplies queries to the system, and it also performs any
final sorting (since we assume the user will want to see answers
incrementally if possible). Many details of the execution engine
are discussed in [17, 18, 16]. We have developed a System-R-based

4Because it only considers intermediate results that are part of our
current query, and since such results are only a subset of all required
data, this problem is somewhat simpler than that for optimizing
using materialized views [14].

query optimizer (Section 4.3) that shares the same memory space as
the query execution engine; each component may trigger the other
in order to provide certain adaptive behavior.

For our experiments, we use a 3.06GHz Pentium IV with the
Windows XP operating system and 1GB of memory (of which 200MB
is provided as a buffer pool) as the server. We disable query out-
put to eliminate feedback effects from the client. Importantly, re-
flecting the common data integration paradigm, we limit access to
the input relations to be sequential only, and assume that they may
change between successive accesses.

Since there is no common data integration query benchmark, we
use TPC-H (scale factor 0.1, 100MB) as the basis of our evalua-
tion. While real integration workloads may be slightly different in
nature, most, like TPC-H, are heavily reliant on key- and foreign-
key joins. Since most data sets are not uniformly distributed, how-
ever, we supplement the TPC-H dataset with a similar one that has
a skewed distribution: using a TPC-D data generator generously
supplied by the Data Mining and Exploration Group at Microsoft
Research, we created a skewed dataset of the same size, using a
Zipf factorz of 0.5 on the major attributes.

Although in many data integration scenarios, single-query per-
formance is limited by the speed of the network rather than com-
putation cost, overall CPU usage is nearly as important as the run-
ning time of a single query: more efficient processing means that
the data integration system can perform more concurrent queries.
Hence, we include experiments using both local and remote data.
All experiments are run a minimum of 4 times and 95% confidence
intervals are provided.

4. CORRECTIVE QUERY PROCESSING
We begin by showing how adaptive data partitioning can be ap-

plied in a novel approach to a well-known and persistent problem:
given incomplete and imprecise information (as is especially com-
mon in data integration scenarios, where even simple cardinality
information may be difficult or impossible to obtain), the query op-
timizer is likely to choose a poor execution plan. “Poor” plans may
result from inefficient CPU scheduling and/or from plan orderings
that produce large intermediate results. The first problem can be
addressed with pipelined hash joins (see [17, 26]); the latter prob-
lem is more challenging.

Most prior work has either attempted to improve estimatesbe-
tweenquery runs (e.g., [5, 23, 3]) or to partition the plan and then, at
each materialization point, re-optimize the remainder of the plan [19,
17]. Although these approaches have very little overhead, they are
fundamentally limited, since they cannot respond to a poorly per-
forming query expression untilafter it has completed.

In contrast, eddies and STeMs [2, 21] performcontinuousquery
re-optimization, using a data-flow heuristic that adds some per-
tuple overhead but enables continuous simultaneous exploration of
alternative query plans. Eddies will generally avoid “worst-case”
query performance, but they spend a significant time doing “ex-
ploration” of options, and hence they devote fewer resources to
“exploitation” — providing peak performance — than a traditional
query engine.

In Tukwila, we aim to address the shortcomings of the plan-
partitioning and inter-query adaptation approaches — namely, an
inability to react to the poor performance of thecurrently executing
query expression — but to dedicate the majority of computation to
query answering rather than exploration of potentially-better plans.
We seek to bereactiveto bad plans, making minor course correc-
tions, rather thanproactivein finding better plans5. Tukwila occa-

5We note that our focus is on minimizing the amount of work re-



sionally evaluates the performance of the executing query plan; if it
seems to be roughly on track, execution continues. Otherwise, the
system employs ADP mechanisms to halt the current query plan in
midstream and to route the remaining source data to an alternate
query plan that is hypothesized to be superior. Execution contin-
ues, potentially switching plans more than once; we refer to each
sequential change of plans as aphase. Finally, the system per-
forms a stitch-up phase at the end to compute the answers requiring
data fromacrossplans (as described in Section 3). We refer to this
scheme ascorrective query processing.

4.1 Basis of Decision-Making
Unlike eddies, which use a local heuristic, our approach is to try

to perform a more global, cost-based evaluation of plan progress
and potentially better plans. To facilitate this, ourTukwila system
includes support for re-optimizing a query in a low-priority back-
ground thread, as query execution continues. If the optimizer de-
termines that a plan appears to be proceeding well, it will simply
terminate and allow execution to continue. If it finds a plan that is
substantially better, it can interrupt the currently executing query
plan, allow the plan to reach aconsistentstate (where all compu-
tation in the query plan, including blocking operations, has been
performed on the source data that has been read), and switch to an-
other plan using the ADP mechanisms described previously. After
the input relations have been consumed, we perform the stitch-up
phase of Section 3.4.

A natural question to ask ishow oftento make decisions. Several
options have the potential to be effective: a triggering mechanism,
in which the optimizer is invoked after some selectivity or cardi-
nality threshold is crossed (as in [17]) would allow for reactivity at
minimum cost. Alternatively, the optimizer could be run after cer-
tain milestones are passed (e.g., some percentage of data has been
read). We elected to choose a more extreme approach, which is
to have the optimizer poll the query plan according to some pre-
specified interval. This has the benefit of allowing the optimizer to
be “slightly proactive,” taking advantage of obviously-better plans,
rather than purely reactive. It also allows us to study how suscep-
tible our information gathering and cost re-estimation routines are
to noise and variation.

4.2 Cost Re-estimation
It is obviously trivial to determine whether the current query plan

is proceeding with the expected cost, cardinality, and selectivity
values. However, the challenge is in determining (1) how the re-
mainder of query processing will proceed (especially if the data
sources’ cardinalities are unknown), and (2) the costs and selectiv-
ities of alternative query plans. One natural heuristic we and others
(e.g, [1]) employ is to assume that query performance will be con-
sistent throughout the lifetime of the query, and to extrapolate the
overall cost and cardinality values from this. While this heuristic
can be misled by variations in the data, we believe most of these
situations to be unlikely to arise in practice: the majority of query
cost tends to be in join operations, and the majority of joins are be-
tween keys and foreign keys, which may demonstrate skew but are
fairly well bounded in the size of their output. (Later in this section,
we demonstrate experimentally that our approach works well even
with skewed data.)

Given these assumptions, we can fairly naturally incorporate in-
formation from the current query plan (made available by the query
operators as described in Section 3) into the query optimizer’s cost

quired to compute a query — we rely on adaptive rescheduling
techniques, which are much more fine-grained, to mask delays and
ensure the server is making efficient use of its resources.

estimator. However, the challenge is that the current plan only ex-
plores a very small piece of the (exponential) search space. We
address this in several ways.

First, our concern is with determiningselectivitiesand using
those to better estimate costs. The search space is only over join
orderings, not all physical query plans. We record only onesubex-
pression selectivitythat is shared across all logically equivalent
subexpressions, regardless of algorithms used; we define this as
the ratio of the subexpression’s output cardinality over the product
of all its input relations.

Even with this observation, the search space remains large, hence
we adopt a number of heuristics that are similar in flavor to those
in the System-R cost model. If a subexpression has not been com-
puted previously, the system estimates its cardinality by averaging
the following values:

• The estimate returned by standard System-R heuristics, given
the estimated cardinalities of the subexpressions to be joined.

• The cardinality of each “parent expression” that joins this
subexpression with a leaf-level relation. The system spec-
ulates that this parent expression may be a key-foreign key
join, whose cardinality would match the size of the foreign-
key relation.

While these heuristics may frequently be based on incorrect as-
sumptions, we believe that averaging them will tend (1) to reduce
the effects of a single heuristic making a poor decision, and (2) to
generally provide a conservative estimate of the costs of subexpres-
sions that are structurally similar to an expensive expression in the
current plan.

Finally, we include one additional “conservative” heuristic:Tuk-
wila also “flags” any join predicates that have been demonstrated
to be “multiplicative” (i.e., joins in which the cardinality of the
output exceeds the size of either input relation). Future selectivity
estimates for any join expressions including these predicates will
be multiplied by the same factor. This makes an independence as-
sumption about the predicate, but it does so in a way that is likely
to avoid expensive future plans.

4.3 Re-optimizer
Tukwila’s re-optimizer is based on top-down enumeration (re-

cursion with memoization, equivalent to dynamic programming but
more flexible for sharing subexpressionsbetweenoptimizer re-in-
vocations) and mostly follows the System-R model, with a few
significant variations. Our optimizer does bushy-tree enumeration,
which has been shown to be important for data integration scenar-
ios [11, 8], and it supports push-down of pre-aggregation operators,
using the approach described in [4]. It supports select-project-join-
aggregation queries (but not SQL subqueries). Its cost model in-
corporates the re-estimation features described above.

At every point, the optimizer operates in greedy fashion, re-
estimating query costs based on the new estimates for source cardi-
nalities and selectivities. Our goal is to find the plan that, based on
what has already been computed, incurs the minimum cost. Hence,
for every subexpression that existed in previous phases, the opti-
mizer factors in the amount of computation that has already been
performed.

4.4 Experimental Results
To examine the usefulness of our corrective query processing

model, we started with the uniform TPC-H and skewed TPC-D
datasets of Section 3.5, along with a query workload based on those
TPC-H queries that conform to our select-project-join-aggregation



Query 3A Query 10 Query 10A Query 5
Uniform Skewed Uniform Skewed Uniform Skewed Uniform Skewed

Phases 2 2 4 3 3 3 4 4
No Stitch-up time 5.1s 5.1s 7.5s 7.6s 36.2s 33.5s 15.4s 25.8s
statistics Reused tuples 754K 753K 637K 639K 794K 793K 640K 639K

Discarded tuples 22.6K 20.8K 9.0K 0 0 0 37.4K 22.4K
Given Phases 1 1 1 2 1 1 3 3
cardinalities Stitch-up time - - - 2.2s - - 15.4s 25.9s

Reused tuples - - - 631K - - 640K 639K
Discarded tuples - - - 7.9K - - 76.5K 65.8K

Table 1: Breakdown of number of stitch-up phases, time spent in stitch-up, total tuples reused from prior phases, tuples not reused
by stitch-up phase.
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Figure 2: Static optimization, corrective query processing, and
plan partitioning compared over uniformly distributed and
skewed TPC data sets.

query model. These were queries 3, 10, and 5. Since query 3 was
very inexpensive to compute (it took approximately 3 seconds in
our system), we altered it to be more expensive by removing its
date-based selection predicates (we called this query 3A). We also
supplemented query 10 with a similar variation, which we called
query 10A, that removed its date-based selection predicates. This
left us with a workload with several levels of optimization com-
plexity: a join of 3 relations (query 3A), two joins of 4 relations
(queries 10 and 10A), and a join of 5 relations (query 5).

We configured the system to run all experiments completely within
memory (using a 200MB buffer pool, as described previously): this
allows us to isolate computation cost from disk I/O cost. Taking
this one step further, we also configured theTukwila engine to dy-
namically expand the amount of memory assigned to each hash
table, should it run out of memory: this reduces the performance
penalty imposed on query plans that are created with inaccurate es-
timates (though hash buckets in our system cannot be dynamically
adjusted, meaning that an overly large relation will still suffer from
many bucket collisions).

Our initial experimental comparisons were between three alter-
native strategies: static query optimization, our scheme for correc-
tive query processing, and a plan-partitioning model along the lines
of [19] that inserts a materialization after 3 joins and re-optimizes a
query at this point. Where applicable, we consider these strategies
in a case where the optimizer is not given cardinality estimates in
advance — it makes a default assumption of 20,000 tuples for every
relation, since that is roughly the median number of tuples in the

TPC datasets — versus a case in which the optimizer is provided
with source cardinality information.

We make several observations about the results, shown in Fig-
ure 2. First,Tukwila’s default query optimizer generally picks a
good plan when it is provided with cardinality information, but
there are times when the default selectivity estimation heuristics do
not work well: for query 5, joins between CUSTOMER, NATION,
and SUPPLIER produce a very large subresult when performed be-
fore the joins with the other relations. Under the “no statistics”
assumption, the optimizer assumes that all relations are equally-
sized, and this coincidentally works well in this situation, since it
first joins the tables with selection predicates (REGION and OR-
DERS). In contrast, for queries 3 and 10A, which both generate a
significant volume of data, the optimizer generally picks an order-
ing that yields an expensive intermediate result. Query 10 shows
slightly less variation in costs simply because it processes less data
and generates smaller intermediate results.

For plan partitioning with no statistical information, there is no
good metric for deciding where to place a materialization point (un-
like in [19]) — henceTukwila inserts one after 3 joins have been
performed. We see in the figure that this does not improve perfor-
mance for queries 10 and 10A — both suffer from having the most
costly subexpressionbeforethe materialization point. For query 5,
plan partitioning succeeds in correcting the plan in a way that adds
little overhead to the optimal case.

For corrective query processing, we set the query polling and
re-optimization interval to be extremely short, 1 second, and we
found that the scheme was stable, consistent, and effective at steer-
ing query execution away from bad plans. The performance num-
bers in Figure 2 show that without cardinality information,Tukwila
generally recovers to find a superior query plan; likewise, with mis-
estimated selectivities, our system shifts to a better plan. These re-
sults hold even in the presence of skew. Table 1 shows a breakdown
of how many phases were used to execute each query, as well as the
relative distribution of time in early phases versus stitch-up. We see
several general trends: first, our system switches only a few times
despite the frequent 1-second re-optimization interval. Second, the
stitch-up phase is quite effective in reusing tuples from prior in-
termediate results — few results are computed and later discarded.
Finally, the cost of stitch-up is often less than 50% of overall ex-
ecution time (in the future, we hope to implement strategies such
as those of [26] to precompute some of the stitch-up results during
network delays). The implication of this is that our adaptive data
partitioning mechanisms are roughly equivalent in memory con-
sumption to a well-selected pipelined-hash-join-based query plan.

Finally, to validate that our corrective approach is not overly vul-
nerable to burstiness and network delays, we performed a similar



Query 3A Query 10 Query 10A Query 5
Uniform Skewed Uniform Skewed Uniform Skewed Uniform Skewed

Phases 1 4.25 6 7 2 3.5 3.25 4
No Stitch-up time - 10.4s 10.0s 10.2s 94.3s 48.2s 140.5s 20.2s
statistics Reused tuples - 754306 624971 624483.25 871483.5 807589.25 673292.5 643214.5

Discarded tuples - 4886.25 3308.75 1654.25 28414.25 0 12424.75 11103.5
Given Phases 1 2 2 2 1 1 4 2
cardinalities Stitch-up time - 6.9s 3.5s 5.1s - - 15.3s 114s

Reused tuples - 754K 628K 624K - - 640K 639K
Discarded tuples - 0 0 1.2K - - 22.2K 12.5K

Table 2: Breakdown of number of stitch-up phases, time spent in stitch-up, total tuples reused from prior phases, tuples not reused
by stitch-up phase, for wireless-network experiment of Figure 3.
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Figure 3: Corrective query processing applied on data trans-
mitted across a wireless network, which has both limited band-
width and burstiness. (“SK” suffix denotes skewed data set.)

evaluation using data sources accessed over an 802.11b wireless
network that is known to be highly bursty. Figure 3 shows the re-
sults: in general the trends are very similar to those in the local case,
with the exception that it does not change plans in query 10A until
very late in the process. Here, we rely heavily on the pipelined hash
join (adaptive scheduling) to overlap I/O and computation. Table 2
shows that our approach is only slightly more prone to switching
through multiple plans than in the local-data case.

Overall, our evaluation shows that adaptive data partitioning can
be used to effectively compensate for errors in query cost estima-
tion, for both uniformly distributed and skewed data, where most
of the joins are performed between keys and foreign keys. The next
question we consider is whether join selectivities are predictablein
general— a requirement for any adaptive form of query processing
that attempts to improve the current plan.

4.5 Evidence that Selectivity Is Predictable
An argument can be made that adaptivity may be theonly feasi-

ble solution when no statistics are available, even if it may some-
times make suboptimal decisions. However, in this section we
show evidence that it may be possible to predict intermediate re-
sult sizes (and thus performance), although current summarization
methods do not yet reach the desired level of performance. His-
togram and order information can be gathered at runtime and used
to predict intermediate result sizes early, even when the data is
highly skewed.

We studied a query joining the 100MB TPC-H ORDERS table
with a 100,000-row table on a Zipf-distributed attribute (using a

random Zipf parameter), then joining on asecondZipf-distributed
attribute with LINEITEM. In this experiment, we use two tech-
niques to collect information: incremental histograms (using the
Dynamic Compressed histograms of [7]) and order detection. (Unique-
ness can also be quickly detected in the special case where the val-
ues are sorted.)

ORDERS is sorted by its key, which is also the join key; the
Zipf-distributed attributes are in random order. We found that in
isolation, neither of our detectors was adequate as a predictor of
join output cardinality: histograms rely on having the data appear
in a randomized order, and order detection only works if the data
is sorted. Combining the two, however, produced reasonable esti-
mates quite rapidly: we found that we could almost precisely esti-
mate the 2-way join result having seen 75% of the data, and the 3-
way join result when only 50-60% of the join has been completed.

Unfortunately, deploying incremental histograms adds signifi-
cant overhead — when we add histogram generators to all three
data sources (using 50 buckets), we see an increase of nearly 50%
in query running times (from 6 sec to 11 sec). However, the com-
bination of histograms and order detectors does yield good esti-
mates of intermediate result sizes. Our preliminary conclusion is
that traditional summarization techniques are currently impractical
for most applications — henceTukwila does not normally use them
— but that there generallyis enough information in a data stream to
make predictions. We are currently investigating whether more re-
cent stream-based summarization structures are similarly effective
with less overhead.

5. EXPLOITING ORDER
A property common to many data sources, and frequently ex-

ploited in relational DBMSs, is ordering on the tuples in a relation.
Yet in many data integration applications, the source descriptions
are not detailed enough to specify whether a source is ordered; fur-
thermore, a particular ordering may not be part of the “contract” to
which a data provider is willing to commit. Despite these facts, the
relations being joined in an integration scenario are likely to fol-
low a particular ordering, especially if the joins are on primary key
attributes.

In this section we propose an ADP-based technique for “specu-
lating” that a particular pair of relations might be ordered and us-
ing a merge join (which is slightly more efficient than a pipelined
hash join) to combine them as they stream in — but to include a
“fallback” route should the sourcesnot be ordered. (Sorting the
relations would ensure an ordering, but at significant overhead.)

We initially studied an alternative implementation in which our
optimizer generated “complementary” query plans for data follow-
ing specific orderings, plus a plan for unordered data and a final
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Figure 4: Internals of pipelined hash join vs. complementary
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“stitch-up” plan: whereas Section 4 uses ADP to partition data in
sequence, here we used it inparallel. Our split operator would
route data to the most appropriate plan, and in fact the system could
even share certain state structures across multiple query plans. How-
ever, this implementation tended to fragment data across many com-
plementary plans, and the bulk of computation occurred during
stitch-up, so the performance benefits were meager.

A smaller-scale approach (Figure 4) proved to be much more
effective. For each possibly-sorted relation, we create acomple-
mentary join pairconsisting of a merge join and a pipelined hash
join. We share memory between the joins, dividing it into four
hash tables (two for each relation, designated h(R) and h(S) in the
figure), each with the same number of buckets. Data from input
relation R is routed to one of the joins based on whether it con-
forms to the ordering of the merge join. If a tuple that arrives is
not in the proper sequence with its chronological predecessor, it is
joined within the pipelined hash join in standard fashion. If it is
ordered, the merge join consumes and joins it, and then stores it
in the merge join’s local hash table for R. Data from relation S is
processed similarly. Once all data is consumed, a mini-version of
stitch-up is performed: hash table R from the pipelined hash join is
combined with hash table S in the merge join, and vice-versa. (We
describe a more sophisticated version of this approach shortly.)

This scheme enables us to handle overflow in the same fashion
(and with roughly the same level of efficiency) as the XJoin [26]
and Tukwila pipelined hash join [17]: if the complementary join
pair runs out of memory, it lazily partitions all four hash tables
along the same boundaries and swaps some of these regions to disk.
During the stitch-up, those overflowed regions can be joined using
the mechanisms suggested in those papers. (Note, however, we can
avoid joining the two hash tables of the merge join with each other
at stitch-up, even if overflowed, since the merge join performs this
task prior to writing the tuples into the overflow partition.)

Figure 5, focusing on a single join between the LINEITEM and
ORDERS relations over several different datasets, demonstrates
that not only does the complementary join pair effectively utilize
ordered inputs, but it can even be effective with “mostly ordered”
data. We assume that this join operation is being done as part of a
sequence, with both inputs and outputs running in separate threads
(as in Figure 4), and we compare the relative performance of the
conventional pipelined hash join with two versions of the com-
plementary join pair, over our uniform TPC-H and skewed TPC-
D data sets — as well as versions of the data in which we ran-
domly swapped 1%, 10%, or 50% of the data. The “complementary
joins” bar represents a naive implementation, which simply routes
in-order data to the merge join. We compared this with a more
sophisticated implementation, which uses a priority queue (hold-
ing up to 1024 tuples) to reorder recently received elements before
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Figure 5: Comparison of performance between pipelined hash
join and complementary-joins strategies, using join between
TPC-H LINEITEM and ORDERS.

Naive Priority queue
Dataset Hash Merge Stitch Hash Merge Stitch
Uniform - 600K - - 600K -
Skewed - 600K - - 600K -
Uniform, 1% 600K 112 - 5.0K 80K 515K
Skewed, 1% 600K 7 26 4.8K 82K 513K
Skewed, 10% 600K 5 5 544K 7.8K 48K
Skewed, 50% 599K - 1K 5K 80K 515K

Table 3: Distribution of processing in complementary joins

routing them.
It is worth remarking that pipelined hash join performance was

slightly impeded by both skew (as would be expected) but also by
reordering. In the ordered case, many of the early tuples from
LINEITEM can be inexpensively joined, as there are few tuples
in the ORDERS hash table, few collisions, and only single matches
(this is a foreign-key join). Reordering destroys this opportunity:
the extreme case is for the skewed data set with 1% swaps, and
we attribute the large degradation in performance to having many
sequences of mostly-the-same foreign keys (in LINEITEM) whose
primary key (in ORDERS) has been displaced to a late point in
execution. It will need to be probed against many tuples in the ap-
propriate LINEITEM hash bucket. As we further permute the data,
this degenerate case diminishes due to randomness.

Versus the pipelined hash join, both complementary approaches
had a clear advantage when the data was fully ordered, and no ad-
vantage when 10% of the data was permuted. Table 3 shows how
the processing of tuples was divided among the different compo-
nents of the complementary join (hash, merge, and stitch-up join).
For purely ordered data, the naive implementation of the comple-
mentary join was clearly the most efficient (20% faster than the
priority queue implementation). However, when the data had even
a few permutations, the priority queue version was dramatically
faster. At the 10% permutations level, the complementary join
mostly degrades into a standard join and little difference is seen. In-
terestingly, with the data mostly randomized (50% data permuted),
the priority queue has a greater chance of finding a sequence of
relatively-contiguous data, so it sends more tuples to the merge
join, with a slight performance benefit. Informal experiments sug-
gest that shrinking the length of the queue does little to diminish
overhead in the purely sorted case, whereas the queue becomes
significantly less effective at reordering data for the merge join.



We also experimented with strategies for flushing and restarting
the merge join (adding new hash tables each time), but we found
that this typically added more overhead to stitch-up without signif-
icantly increasing the amount of data that was initially merged.

Using complementary joins:As we have seen, complementary
joins are an effective use of adaptive data partitioning way to ex-
ploit order in data sets that are to be joined. Currently, we use them
as a direct replacement for the pipelined hash join when joining
leaf-level relations. We believe it may be effective to further gener-
alize our strategy to support multi-way complementary joins.

6. PRE-AGGREGATION
Another data characteristic that can be exploited using adaptive

data partitioning is repetition of items that are to be aggregated —
if there is significant repetition, it is beneficial topre-aggregatethe
values before they are fed into a join operator, thus reducing the
cost of the join. While many existing database systems support
pre-aggregation transformations, such capabilities must be applied
conservatively (e.g., with knowledge that an attribute is a foreign
key), as a poor choice of pre-aggregation can actually add overhead.

Data integration scenarios typically have little source knowledge,
so it is difficult to estimate the effects of pre-aggregation, and hence
it cannot be directly applied. However, we can leverage the key
idea of adaptive data partitioning — dividing data into regions,
performing sub-operations on these, and then combining the re-
sults — to perform pre-aggregation only where it is useful. Here,
instead of dividing a data stream across separate plans, we use a
singleadjustable-window pre-aggregation operatorto divide its in-
put data into different “windows” and pre-aggregate each of those,
outputting the results of each window in sequence. Since pre-
aggregation distributes over union, we may adjust the window size
dynamically. If pre-aggregation is effective over the current win-
dow, we can increase the size for the next window; if it is inef-
fective, we can reduce the window size, until we ultimately arrive
at a window size of 1, which simply passes tuples through (with
the appropriate creation of “aggregate” values over the singleton
tuple).

The adjustable-window pre-aggregation operator adds very lit-
tle overhead even in the worst case, so it can be systematically
inserted by the query optimizer ateverypossible pre-aggregation
point. Moreover, in contrast to a traditional grouping or pre-ag-
gregation operator, it is pipelined, which is important both for po-
tential parallelism of computationand, in our corrective query pro-
cessing system, for acquiring information about join selectivities
“above” pre-aggregation points. Figure 6 demonstrates these ben-
efits: for our example queries over both uniformly distributed and
skewed TPC data sets, it compares final aggregation operators only,
adjustable-window pre-aggregation, and traditional pre-aggregation
(applied only where it was beneficial, hence the omission of this
data point for Query 5).

For queries 3A and 10 over both data sets, we see that both forms
of pre-aggregation provide a slight benefit over a single final ag-
gregation; this difference is much more pronounced for query 10A,
which joins the entirety of the ORDERS table. In both cases, we see
that the adjustable-window pre-aggregate operator shows a slight
performance benefit over a traditional pre-aggregate operator, be-
cause of its support for pipelining. In Query 5 over the uniformly
distributed data set, a pre-aggregate operator does not find any op-
portunity to coalesce input tuples, but it only adds 1.5% overhead
to the running time. Over the skewed data set, there is some oppor-
tunity to pre-aggregate even in this query, so we see a performance
benefit. Overall, adjustable-window pre-aggregation is a low-risk
operator, adding minimal overhead in the worst case while provid-
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Figure 6: Comparison of strategies for pre-aggregation, using
TPC-H queries.

ing significant potential for speedup. It complements corrective
query processing quite well, especially since it pipelines its out-
put data (allowing the selectivities of “downstream” operators to
be monitored).

7. RELATED WORK
During our discussion, we have mentioned a number of related

pieces of work in the adaptive query processing space. We use
and supplement the adaptive scheduling-based algorithms, such as
pipelined hash joins [22, 15, 26], query scrambling [27], and dy-
namic rescheduling [25], by focusing on reducing the amount of
computation being performed in the query. Plan-partitioning tech-
niques like choose nodes [6] and mid-query re-optimization [19]
are an important complementary means of adapting at low cost, at
points where pipelines must be broken.

Our work has similarities to Eddies [2] and STeMs [21], but
these techniques embody a greedy approach that emphasizes con-
stant exploration of alternatives. In contrast, our method empha-
sizes greater expressiveness and long-term decision-making, and
it promises to make more globally optimal decisions. In this re-
spect, our research is similar to the recent work on Eddy routing
policies [24].

We attempt to create our initial query plans using any available
statistical information, perhaps exploiting knowledge frominter-
query-adaptive techniques like [23, 5, 3]; however, our focus is on
adapting plansduringexecution.

Most previous work on adaptive query processing is restricted
to the domain of SPJ queries, and cannot be easily generalized to
more expressive query languages. In contrast, we have described
the windowed pre-aggregation operator, which supports adaptive
push-down of grouping operations.

There is a significant body of work in incremental sampling, syn-
opsis, and estimation methods, e.g., [7, 9, 13], and we hope to study
how some of the lower-overhead algorithms can be used to better
predict intermediate result sizes.

8. CONCLUSIONS AND FUTURE WORK
This paper has focused on a fundamental problem in query pro-

cessing for data integration, that of compensating for a lack of in-
formation about data sources by adaptively exploiting or reacting
to the sources’ unspecified properties usingadaptive data parti-
tioning.

We showed three different problems in which ADP techniques



could provide performance benefits: correcting mis-estimated se-
lectivities, taking advantage of (even partial) ordering in the data,
and adaptively pre-aggregating data. These capabilities can, of
course, be used together to significant benefit: while space con-
straints prevent us from showing further results, our results in [16]
show that pre-aggregation and corrective query processing can be
combined to provide further performance improvements.

In our classification of adaptive query processing, ADP is one
of several techniques. However, it is the one with the most oppor-
tunity to change the amount ofcomputationdone in processing a
query (since it can change pipelines during execution), and hence
we feel it is the most interesting. Note that we do not expect it to be
used in isolation. ADP is most successful in situations where the
query operators are fully non-blocking (i.e., the plan uses adaptive
scheduling, as in our experiments): there are more opportunities for
estimating selectivities. In resource-constrained situations, we may
use plan partitioning to break a query into stages and ADP to more
effectively process each stage. Finally, we believe there are inter-
esting possibilities for using competitive, redundant-computation
methods over ADP partitions, as a way of further evaluating the
space of alternative plans.

Overall, we have made the following contributions in this paper:

• We formalized the problem of adaptive query processing into
four classes of techniques and explained their relationship.

• We presented a framework for adaptive data partitioning, which
encompasses a range of techniques for changing query plans
in mid-execution.

• We described the novel components of theTukwila system
for implementing adaptive data partitioning.

• We demonstrated three applications of adaptive data parti-
tioning: monitoring selectivity information andcorrecting
query plans that appear to be performing poorly; exploiting
complementaryoperators to take advantage of order present
in the data; and using anadjustable-window pre-aggregation
operator to apply pre-aggregation only where it is beneficial.

Our Tukwila platform provides a flexible framework for apply-
ing adaptive data partitioning techniques, and for adaptive query
processing in general. We believe there is significantly more than
can be achieved using it: our long-term goal is to try to find subsets
of the adaptive query processing problem that can be exploited ef-
fectively. We see two clear directions for future development: first,
to define a more comprehensive benchmark for evaluating data in-
tegration and adaptive query processing workloads, and second, to
expand our techniques to support subqueries and ultimately XML
queries.
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