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ABSTRACT
An important means of allowing non-expert end-users to pose ad
hoc queries — whether over single databases or data integration
systems — is through keyword search. Given a set of keywords, the
query processor finds matches across different tuples and tables. It
computes and executes a set of relational sub-queries whose results
are combined to produce the k highest ranking answers.

Work on keyword search primarily focuses on single-database,
single-query settings: each query is answered in isolation, despite
possible overlap between queries posed by different users or at dif-
ferent times; and the number of relevant tables is assumed to be
small, meaning that sub-queries can be processed without using
cost-based methods to combine work. As we apply keyword search
to support ad hoc data integration queries over scientific or other
databases on the Web, we must reuse and combine computation.
In this paper, we propose an architecture that continuously receives
sets of ranked keyword queries, and seeks to reuse work across
these queries. We extend multiple query optimization and contin-
uous query techniques, and develop a new query plan scheduling
module we call the ATC (based on its analogy to an air traffic con-
troller). The ATC manages the flow of tuples among a multitude
of pipelined operators, minimizing the work needed to return the
top-k answers for all queries. We also develop techniques to man-
age the sharing and reuse of state as queries complete and input data
streams are exhausted. We show the effectiveness of our techniques
in handling queries over real and synthetic data sets.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing

General Terms
Performance, Management, Algorithms

Keywords
Keyword search, top-k queries, multiple query optimization

1. INTRODUCTION
In recent years, there has been increasing acknowledgment that

database technologies must be made more accessible to end-users.
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One promising approach is that of providing keyword search inter-
faces over tables or XML trees [1, 2, 11, 12, 13, 18, 27, 33]: here,
keyword searches get reformulated into sets of database-style join
queries, whose answers are merged and ranked according to some
distance, cost, or relevance metric. Keyword search interfaces are
especially appealing for settings where users must pose novel (ad
hoc) queries over large numbers of tables that they do not fully un-
derstand: this occurs, for instance, in scientific communities where
many interrelated public databases, rather than a single global data
warehouse, exist. A specific example is the life sciences, where
individual databases may have more than 350 tables [21], and mul-
tiple such databases may have relevant data that can be pieced to-
gether to answer a scientist’s exploratory query.

Anecdotally, scientists often pose sequences of related queries,
iteratively refining their search for a particular relationship; and
they may refer back to previous queries1. Moreover, certain core
concepts (e.g., proteins) will appear in many queries.

Unfortunately, while a substantial body of research has been con-
ducted on keyword search over databases, such work has been di-
rected at settings in which a single database is answering a sin-
gle user’s query in isolation. Techniques have been developed to
use precomputed indices to quickly winnow down the number of
database subqueries that must be posed to return the top query an-
swers [9, 13], to find promising join “paths” linking the matching
tables [1, 2, 11, 12, 13, 18, 27, 33], and to efficiently compute and
merge top-k results [7, 28]. These techniques assume that lim-
ited numbers of join subqueries are necessary to obtain top-k an-
swers, and that few relations appear in multiple join subqueries. In
the data integration setting, it is much more common that multiple
source relations have highly relevant answers for each keyword;
we must consider ways of computing all combinations of these re-
lations, thus computing a set of queries with high mutual overlap
(see, e.g., [33]). Moreover, as mentioned previously, we may wish
to exploit the fact that queries posed across time may overlap.

In this paper we focus on scaling keyword search interfaces to
data integration scenarios with commonly-used sources, by exploit-
ing the overlap among the join subqueries that partially answer a
single keyword search, and also the overlap among different key-
word searches performed over time and even across users. We
show that through cost-based computation of common subexpres-
sions, clever caching, and pruning of the query optimization search
space, we can handle large numbers of queries and relevant sources
— while still delivering top-k results quickly.

We assume a very general model of ranked query processing,
in which the score of a query result may include a static compo-

1See, e.g., Protein Data Bank, pdbbeta.rcsb.org/
robohelp/site_navigation/reengeneered_site_
features.htm, for a system that supports query reuse.

pdbbeta.rcsb.org/robohelp/site_navigation/reengeneered_site_features.htm
pdbbeta.rcsb.org/robohelp/site_navigation/reengeneered_site_features.htm
pdbbeta.rcsb.org/robohelp/site_navigation/reengeneered_site_features.htm
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Figure 1: Example of a set of relations from multiple bioinformatics databases, plus a keyword query, for which each keyword
(k1 . . . k3) may match a table either based on its name, or based on an inverted index of its content.
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Figure 2: Timeline showing user queries posed to the system.
Note the overlap between tables that they access.

nent (based on the formulation of the query and/or properties of
the source relations) as well as a dynamic one (based on specific
attribute values from the source tuples). We even allow for the fact
that different users may have different scoring functions, possibly
taking into account context or user preference [3, 20, 31, 33]. We
assume that keyword searches are posed over time — sometimes
concurrently, sometimes in sequence. When queries are posed con-
currently, we perform cost-based multiple query optimization over
the query batch. When they are posed over time, we reuse results
computed by the earlier queries (resembling a continuous query
model [4]). See Figures 1 and 2 for an example database schema
and a visualization of queries posed over time (we describe details
in Section 2). Our approach takes advantage of several properties:
(1) top-k queries generally create a limited amount of intermediate
state [16], as they only run until the desired number of results are
processed; (2) it is often possible to compute bounds on the range of
scores for tuples from any query, by considering the query’s static
score component [33] and information about score attribute max-
ima; (3) top-k queries should support fully pipelined execution so
each subquery only reads the amount of data necessary to produce
top-scoring answers; (4) even subqueries that use different scoring
functions will read from the source relations in the same order —
they will just read at different relative rates from the sources.

Our work is implemented as part of the Q System [32, 33], which
enables customization of ranking functions for each user. It could
alternatively be used with the Kite data integration system [27] or
with other keyword search in database schemes [2, 11, 13]. We
make the following contributions:

• A new top-k query processing architecture that keeps in-
memory state and existing query plan structures from one
query execution to the next, enabling effective result reuse
and recomputation over time.

• An optimizer that combines cost-based and heuristic search,
in order to find common subexpressions across and within
top-k queries, and which supports the reuse of existing subex-
pressions from past query executions.

• A fully pipelined, adaptive top-k query execution scheme
for answering multiple queries, consisting of a query plan
graph of m-joins (STeM eddies) [24, 34] and rank-merge [7]
operators, supervised by a novel ATC controller.

• A query state manager that can graft and prune elements in
an executing query plan, and which manages the reuse and
eviction of state.

• A comprehensive set of experiments over synthetic and real
datasets, demonstrating the performance gains of our approach.

We provide a problem definition in Section 2, then outline our
approach in Section 3. Section 4 explains how multiple queries can
be executed simultaneously. We describe how we optimize batches
of queries for simultaneous execution in Section 5, then how we
handle further queries over time in Section 6. We experimentally
validate the performance of our system in Section 7, we describe
related work in Section 8, and we conclude and describe future
work in Section 9.

2. PROBLEM DEFINITION
Our goal in the Q System is to provide high performance to

a user base that continuously poses keyword queries over remote
(and possibly local) database instances — where the resulting top-
k SQL queries overlap in the relations they access, both with other
concurrent queries and with other queries to be posed in the fu-
ture. Intuitively, the goal is to create and maintain a small set of
pipelined query plan graphs consisting of query processing oper-
ators — where each operator may produce sub-results that get fed
to one or more downstream operators, ultimately depositing results
into ranking queues that return the top-k answers. In general, we
expect the plans’ in-memory state to be small, if the queries have a
high overlap with one another and can share work. Moreover, top-
k queries tend to only fetch a small number of the highest-scoring
tuples from their relations. Once execution of a batch of queries
completes, we do not discard the query plan graph and its state —
rather, we take subsequent queries and attempt to graft them onto
the existing graph, reusing existing plan state and operators as ap-
propriate. Only if we run out of resources (in particular, memory)
do we prune plan state and operators.

2.1 Keyword Search in Data Integration
We introduce some notation and review the basics of keyword

search over databases, with an emphasis on databases that may be
remotely stored and in need of integration, as in [27, 33].

EXAMPLE 1. Suppose we are running a portal for biologists to
pose ad hoc queries. Perhaps we have a known schema graph, such
as the one shown in Figure 1. The sources UniProt, ProSite and In-
terPro correspond to protein databases; GeneOntology, NCBI En-
trez correspond to gene information, and OMIM stores information
about genetic diseases. These tables are bridged by record linking
tables (shown as orange squared rectangles). Edges in the graph
represent foreign keys, hyperlinks, and potential join relationships.

A biologist may pose the keyword queryKQ1: “protein ‘plasma
membrane’ gene.” A keyword search system would find matches be-
tween each keyword and data/metadata of each relation (as shown



Table 1: Conjunctive queries CQ1, CQ2 from user query UQ1, answering keyword query KQ1.
CQ1 q(prot, gene, typ, dis):-TP(id, prot, . . .), E2M(ent, id, . . .), I2G(ent, gid1),T(gid1, ’plasma membrane’, score),

TS(gid1, gid2, score), G2G(gid2, giId), GI(giId, gene, . . .)
CQ2 q(nam, gene, typ, dis):-UP(ac, nam, . . .),RL(ac, nam, ent, prot, score), I2G(ent, gid1),T(gid1, ’plasma membrane’, score),

G2G(gid1, giId), GI(giId, gene, . . .)

Table 2: Conjunctive queries CQ3, CQ4 from user query UQ2, answering keyword query KQ2, posed at the same time as KQ1.
CQ3 q(prot, typ):-TP(id, prot, . . .), E2M(ent, id, . . .), I2G(ent, gid1), T(gid1, ’metabolism’, score)
CQ4 q(nam, typ):-UP(ac, nam, . . .),RL(ac, nam, ent, prot, score), I2G(ent, gid1),T(gid1, ’metabolism’, score)

in Figure 1). In some cases, the match might be exact while in other
cases, it might be approximate. The goal of the keyword search
system is find a set of trees that contain relations matched to all
keywords. Each subgraph is then mapped to a conjunctive query
which is then evaluated. Table 1 shows conjunctive queries CQ1

andCQ2 corresponding to our example. The answers toKQ1 may
include results from these and other conjunctive queries; together
these form the user query UQ1. 2

Keyword searches are inherently uncertain during the matching
process, and systems will typically score the answers according to
some score function C that maps a tuple answer to a real score
value. Many scoring models have been proposed, with most usu-
ally taking into account a static component (such as query size),
as well as a dynamic component (such as keyword-to-tuple score
matches). We describe three different models/systems that we be-
lieve are representative of the state of the art:

DISCOVER: The systems in [12, 13] enumerate ordered conjunc-
tive queries (called candidate networks) for a particular keyword
search, and rank tuples based on the size of the query that produced
the tuple, as well as standard IR scores that are derived from a par-
ticular DBMS. Under their ranking model, a sample score function

C for CQ1 would be C(t) = 1
size(CQ1)

or C(t) =
P

ti
score(ti)

size(CQ1)
,

where t is a tuple of CQ1 and ti belongs to the derivation of t.

Q System: The model in the Q System [32, 33] is similar to that
of DISCOVER, in that conjunctive queries are found over a schema
graph. Each edge in the graph is annotated with a cost that repre-
sents how useful the edge is. Additionally, each relation may be
annotated with a cost that denotes how authoritative it is. These
edge and node costs are learned and may be different across user
queries. For a result tuple t of CQ1, the scoring function C would
be C(t) = 1

2c , where c = (
P

e ce) + (
P

i cost(ti)), ce is a cost
for each edge in the subgraph and cost is a function that maps a
tuple to a cost value.

BANKS, BLINKS: Unlike the previous systems, query execution
in BANKS [2] and BLINKS [11] involves traversing a data graph
(where nodes are tuples and edges are key/foreign key relationships
between tuples), in order to enumerate the top-k list. Nodes and
edges in the graph are annotated with scores and weights, with the
ranking function forming a monotonic combination of both.

The challenge for keyword search systems lies in efficiently re-
turning the top-k answers, without exhaustively computing every
answer satisfying the query conditions. If we know the potential
range bounds of scores for the conjunctive queries, we may be able
to eliminate some queries from consideration, because they will
not return top-scoring answers. If we fetch tuples from the vari-
ous relations in decreasing order of their score, we may likewise
be able to stop once we have returned enough answers. These con-
cepts have formed the cornerstones of work on top-k query process-
ing, ranging from keyword search systems [2, 11, 13, 18, 19, 33]

to generic rank-merging algorithms [7] to custom rank-join algo-
rithms [5, 9, 12, 15, 16, 23, 28] and ranked query optimization
strategies [22]. Our goal is to build on the foundations of all these
works, to address (for any of the three scoring models) two tasks
that can arise from the keyword search scenario of Figure 2.

2.2 Task 1: Handling overlapping queries

EXAMPLE 2. Concurrently with the first biologist, a second bi-
ologist may simultaneously pose a second keyword query KQ2

to the system: “protein metabolism.” Two example conjunctive
queries are shown in Table 2. Observe that these queries not only
overlap with each other — but they are also subexpressions ofCQ1

and CQ2, respectively. Note, however, that KQ2 was posed by a
different user, and so a different scoring function might be associ-
ated with this query (our Q System supports custom ranking func-
tions for each user [33]).

This overlap in concurrently posed queries provides an opportu-
nity for doing shared computation, which has only been explored
to a limited extent in the keyword search context. The works of
[2, 11] investigate this to some degree, where sharing computa-
tion essentially amounts to discovering join paths from a single
(keyword-matched) tuple to other tuples in a data graph. They
thus employ graph searching algorithms, assuming that the rela-
tionships between tuples are already known, and that the cost of
joining two tuples (i.e., traversing a link) is negligible. We address
a more general case, where tuples are stored in remote databases on
the Internet, which can be accessed in streaming fashion or probed
(remotely queried for matches) using some join key.

Our first set of contributions in this paper is a new scheme
for simultaneously producing results for multiple pipelined, ranked
queries within a middleware layer for data integration. We em-
phasize pushing down subqueries, whose results get streamed to
the middleware, where they are joined with one another, and with
sources that must be remotely probed. It is important to simul-
taneously (in interleaved fashion) support answering of multiple
conjunctive queries: Such queries might be ones whose results are
being merged in rank order to form top-k answers, as with queries
CQ1 andCQ2 in our previous example; or they might be returning
results to different users whose queries are posed simultaneously.
In our context, this requires fully pipelined execution of joins. To
share work across query plans, we support graph-structured rather
than tree-structured query plans, where a given query subexpres-
sion may produce answers whose results must be fed into multiple
“downstream” operators belonging to different queries.

2.3 Task 2: Handling dynamic changes
Our interest is not only in efficiently executing sets of queries

posed concurrently, but also in handling the dynamic operation of
the system: over time new users pose new queries, and existing
users refine their keyword queries by posing related queries with
further or fewer keywords. Recall the scenario of Figure 2.



Table 3: Two conjunctive queries CQ5, CQ6 from user query UQ3, corresponding to the first user’s second keyword query, KQ3.
CQ5 q(gene, typ, dis):-T(gid, ’plasma membrane’, score), G2G(gid, giId), GI(giId, gene, . . .)
CQ6 q(gene, typ, dis):-T(gid1, ’plasma membrane’),TS(gid1, gid2, conf), G2G(gid2, giId), GI(giId, gene, . . .)
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Figure 3: Query processing components of the Q System. Sets of CQs from the query generator are batched, optimized to exploit
state from prior executions, and grafted into running query plan graphs for execution by the ATC.

EXAMPLE 3. Suppose the first user, upon getting the results for
KQ1, decides to revise or refine his or her query, in this case to see
what other genes are related to the plasma membrane. This results
in a new keyword query KQ3, “membrane gene”. The resulting
user query UQ3 includes conjunctive queries CQ5 and CQ6 in
Table 3. Observe that both of these queries are subexpressions of
the original CQ1, omitting the protein-related relations. 2

Perhaps our system has completed execution of the query UQ1

from the first example; but if we retain its state (and portions of its
query plan) in memory, we might be able to reuse portions of the
state and plan to answer UQ3. Our second set of contributions fo-
cus on retaining a query plan graph and reusing it from one query
execution step to the next, with appropriate “grafting” of new oper-
ators into the existing plan, and “pruning” of operators and state as
necessary to fit within a memory budget.

3. APPROACH AND ARCHITECTURE
Our presentation focuses on the modules after keyword terms

have been converted to ranked lists of candidate conjunctive queries
(candidate networks): we assume a set of conjunctive queries for
each search, generated using any of the methods cited in Section 2.12.

Formally, each keyword query KQj is converted to the union of
a set of conjunctive queries: we refer to this set as UQj . Each con-
junctive query CQi within UQj is paired with a monotonic score
functionCi, which maps result tuples to real-valued scores, follow-
ing any of the cost models of Section 2.1. We assume the existence
of a function U(Ci) that allows us to compute the upper bound on
the score of any tuple returned by CQi. Finally, we assume the
conjunctive queries return results in nonincreasing order relative
to U. We assume the source relations referenced in the queries are
typically SQL DBMSs, able to return results in nonincreasing score
order; we refer to such sources as streaming sources. In addition to
streaming sources, we expect other Web-based sources that can be
probed with specific tuple values to return join results [10, 25]. We
refer to these as random access sources. We now describe how our
implementation, within the Q System, processes these queries.

Refer to Figure 3 for a diagram of the query processing archi-
tecture of the Q System, which functions as a middleware layer
over remote data sources. Users pose keyword queries KQj that
get converted into conjunctive queries and associated scoring func-
tions: these are passed along to the query batcher as lists of triples
[(UQj , CQi, Ci)|CQi ∈ UQj ], in nonincreasing order of the
maximum score they return, i.e., their bound U(CQi). The batcher

2BANKS and BLINKS enumerate tuples instead of queries, but
one could abstract their data graph into a schema graph.

typically waits for these conjunctive queries to collect over a small
time interval before it passes them along to the next stage. Follow-
ing our example, the list of triples after keyword queries KQ1 and
KQ2 would be [(UQ1, CQ1, C1), (UQ1, CQ2, C2), (UQ2, CQ3,
C3), (UQ2, CQ4, C4)].

The query optimizer takes a set of conjunctive queries from the
batcher, and performs several forms of multiple query optimiza-
tion over them. It first checks with the query state manager to
determine if previous queries have been executed and their run-
time state has been preserved: if this is the case, it determines what
query expressions can be reused from in-memory buffers. Then it
finds an efficient plans for computing the complete set of batched
queries (which may involve reusing or recomputing existing ex-
pressions, sharing computation across multiple conjunctive queries
in the batch, or pushing down portions of the query to the remote
data sources). For example, the optimizer may note the high simi-
larity in the new conjunctive queries of UQ3 to those of UQ1 and
UQ2, and it may reuse tuples that have already been read in for
some of the common relations. The result of this optimization is
one or more query plan graphs, which form the core of our query
processor. We discuss query plan graphs and operators in the next
section. Briefly, each plan graph may share subexpressions across
queries by pipelining results through a split operator; each con-
junctive query joins multiple relations using an m-join operator;
conjunctive queries’ results are merged into the top-k answers to a
user query via a rank-merge operator. Execution of these operators
is coordinated by a module called the ATC, named after an air traf-
fic controller, as it routes tuples to different destination operators.

The query state (QS) manager is responsible for managing the
set of query plan graphs that occupy the CPU and memory. Given a
new set of query plan graphs, its first task is to merge them with any
plan graphs that currently exist in memory. For each user query, it
incrementally takes the highest-scoring conjunctive queries (which
come in nonincreasing order of maximum-scoring contribution to
the results) and identifies which subexpressions overlap with exist-
ing plans; it then grafts the new subgraphs into place (using split
operators) and notifies the execution system. As execution pro-
gresses and the maximum score of the next result drops, further
conjunctive queries can be activated. Additionally, after producing
some answers, certain queries may no longer be able to contribute
to top-k results: the QS manager deactivates (prunes) these for effi-
ciency. Even if a query subexpression gets pruned from execution,
its state is retained for possible reuse, until the system runs out of
cache space and needs to evict it. Finally, the QS manager main-
tains cardinality information about intermediate results in the query
plan graph, such that the query optimizer can determine what can
be reused in subsequent executions.
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We now describe our simultaneous query execution process in
more detail, deferring a discussion of optimizing query batches to
Section 5 and of reusing results to Section 6.

4. QUERY PLAN GRAPH
Unlike in a traditional iterator-based query processor, our goal

here is to fully pipeline and multiplex the execution of multiple
queries simultaneously. In addition, we seek to preserve an impor-
tant aspect of top-k query processing work [5, 7, 9, 15, 23, 28]: the
streaming sources (each with data sorted in nonincreasing order of
score) are read in a context-sensitive way according to their score
upper bounds, and query processing ends once the k top-scoring
answers are known. Both these aspects warrant an adaptive set of
techniques that focus on reading the most promising tuples and ex-
ecuting all queries that use these tuples. To accomplish this, we
use a novel coordinator called the ATC, which manages and routes
tuples to different destination operators, using a query plan graph
as a base instructor. In this section, we define the query plan graph
and how it operates in more detail, starting with the operators and
then discussing the ATC.

4.1 Query operators
The query plan graph represents operators as nodes and dataflows

UQ1

CQ2CQ1
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Top-k

:

t23
t24

t21
t11
t22

Thresh(CQ1) = 0.1

Thresh(CQ2) = 0.5

⋈
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⋈

Figure 6: Query output streams and a rank merge operator.

as edges. As discussed previously, the main node types include the
split operator, the multi-way join operator (m-join), and the rank-
merge operator. Refer to Figure 4, which shows a detailed excerpt
of a query plan graph for our running example.

Split operator (for subexpression sharing). Our example sce-
nario shows how different conjunctive queries may have overlap-
ping subexpressions whose computation might be performed once,
then fed into multiple query plans. Figure 4 shows how the pipelined
split operator is used to feed the output of a shared expression to
multiple downstream m-joins or rank-merge operators.

M-way joins (for query computation). In producing ranked re-
sults, the choice of which input to read next is dependent on the
relative scores of the inputs. A traditional binary join plan enforces
a particular order of processing: (R 1 S) 1 T will always pro-
duce RS subresults that get joined with T . A much more flexi-
ble scheme, which in different contexts is called the m-join [34]
or the STeM eddy [24], is to generalize the pipelined hash join to
support m-way joins. Here, each input has an associated access
module [6]3 — against which other tuples may be probed to com-
pute join results. As tuples are read from a streaming input, they
are inserted into the access module, then probed against the other
access modules according to a probe sequence. We also exploit the
fact that this probe sequence can be adjusted at runtime based on
monitored values for the various join selectivities, using techniques
proposed in [24] — in particular, we monitor the number of tuples
output from each probe into the hash table or access module, and
update selectivities after a certain number of tuples have been read.
This results in an adaptive form of optimization within the multi-
way join that can use a different ordering for each input relation.

Rank-merge operator (for top-k). The results of a single user
query must merge the outputs of multiple conjunctive queries, i.e.,
the outputs of multiple m-joins. The Q System generates query
plans in a way that ensures the streaming sources are returned in
nonincreasing order of score, and that the m-joins produce their re-
sults in nonincreasing order of score. We define an m-way rank-
merge operator (Figure 6) that receives tuples from each query
CQi, and uses each score functionCi to computes the threshold for
the next value to be returned by CQi. It maintains a priority queue
of the k highest scoring tuples seen from all conjunctive queries;
from this, it outputs the highest-scoring tuple above all thresholds,
and reads a tuple from the output stream that will drop the score
threshold the most (generally, the stream with the highest thresh-
old). This basic operation follows the the ideas of the Threshold
Algorithm and No-random-access Algorithm of [7].

To illustrate the ideas above, we define Q as the current set of
conjunctive queries given to the query batcher. We define an input

3For a streaming source, the access module is simply the associated
hash table; for a random access source, the module is a wrapper for
probing the remote site using the join key.



assignment as a pair (I,I), where I is a set consisting of the log-
ical subexpressions that will be computed outside the middleware
(by the streaming and random access sources). The results of each
input in I will be fed into (possibly multiple) queries in Q. We
use a map I: I → P(Q), where P(Q) are all subsets of Q, to relate
the inputs to the corresponding queries: for any input J in I, I[J]
refers to the queries that will use J in their query plans.

EXAMPLE 4. Refer to the query plan graph of Figure 4. The in-
put assignment I = {σ(T ), RL, G2G ./ GI , TS, TPR, E2MR,
UPR, I2GR} with the subscripts by R denoting random access
sources. The corresponding queries for input σ(T ) is I[σ(T )] =
{CQ1, CQ2, CQ3, CQ4}. Once a tuple from the stream of σ(T )
is read, it is split into two different paths that lead to two differ-
ent m-join operators, and ultimately along paths that lead to join
results for all “its” queries. There are probes into the hash tables
created forRL,G2G ./ GI and TS, as well as the random access
sources of TPR, E2MR, UPR and I2GR. Likewise, a tuple read
from the streaming source TS is sent to the m-join operator that
will create results for CQ1.

4.2 Coordinating Simultaneous Execution
Each rank-merge operator requests result tuples from its con-

stituent conjunctive queries, which in turn indirectly request tu-
ples from input streaming sources in I. Given that different user
queries have different score functions for their queries, their asso-
ciated rank-merge operators may prioritize different input expres-
sions. Yet the input expressions are often shared across queries,
leading to contention.

To solve these issues, we exploit the fact that the m-join operator
is in some sense push-based: given the arrival of a new tuple from
any of its streaming sources, it stores and probes this tuple accord-
ing to an optimized probe sequence. We can “holistically” choose
an input to read, and ensure that its tuples are propagated through
split operators to all conjunctive queries’ m-join operators, which
will pipeline the results downstream. The choice of which source
should be read next — across all conjunctive queries — is depen-
dent on the state of the thresholds in each rank-merge operator. The
ATC module has the task of “looking across” the set of rank-merge
operators’ thresholds, and using this information to choose the next
source to fetch from. We explored a variety of scheduling schemes,
and found that a round-robin scheme worked best. Here we look
at each rank-merge operator in every round, and we read from its
preferred stream before moving on to the next query. This scheme
has the same outcome as a voting strategy where the input stream
with the highest number of tuple requests gets read the most. It also
prevents starvation of sources, which might otherwise be neglected
if only a few operators requested tuples from them.

5. QUERY PLAN GENERATION
We now consider how to choose the most efficient query plan

graph for answering an initial batch of conjunctive queriesQ, form-
ing one or more user queries. Section 6 discusses how we imple-
ment the dynamic behavior of the Q System over time.

The initial query optimization problem can be considered one
of top-k multiple query optimization. Recall from our previous
discussion that data originates from either a streaming or random
access source. Our goal is to generate a query plan graph for the
entire set of queries in Q, which takes advantage of the query pro-
cessing capabilities of the underlying remote data sources (if they
support SQL), accommodates any restrictions on data access (via
Web forms), and exploits overlap among the conjunctive queries.

Our system adopts a two-stage approach to generate a query plan
graph. In the first stage, it does a cost-based exploration of possi-
ble strategies for pushing query operations into the streaming data
sources: push-down can reduce the overall amount of computation
to be performed and create common subexpressions used by mul-
tiple conjunctive queries. In the second stage, for the remainder of
the query, the optimizer performs a heuristics-based factorization
of the query plan graph into select-project-join subexpressions that
are shared by multiple conjunctive queries, and generates a query
plan graph with split, m-way join, and rank-merge operators. The
next two sections describe each of these stages in turn.

5.1 Pushing Down Common Subexpressions
The optimizer’s first task is to factor out from the set of queries

an input assignment I, to be executed at the remote DBMS sites.
The results of each J ∈ I will be shared among multiple conjunc-
tive queries, namely those queries in the set I[J ].

Our goal is to find subexpressions large enough to source more
than one conjunctive query, yet avoid forcing the optimizer to cre-
ate a bad plan that requires streaming in too many tuples or execut-
ing expensive joins. This requires a form of multi-query optimiza-
tion that is known to be intractable if done in exhaustive fashion:
optimization of a single query already results in a number of plans
exponential in the number of joins, and a full-blown dynamic pro-
gramming enumeration of plans with shared subexpressions would
compound this by the number of different ways of sharing subex-
pressions. Hence our optimizer, like other modern multi-query op-
timizers [35], employs a set of pruning heuristics in looking for
opportunities to combine and push down subexpressions.

5.1.1 Pruning Heuristics
Consider queries as shared subexpressions. We estimate the
overall cardinality for each query that can be pushed-down. If a
query produces few results, we do not consider its subexpressions
— unless those subexpressions are shared by a different (larger) set
of conjunctive queries.
Only stream relations that have scoring attributes. Not all rela-
tions may have attributes contributing to the scoring function. For
any relation R with no score-related attributes, if R is read as a
stream, then generally it must be read entirely before a terminating
condition can be reached (each tuple in R contributes equally to
the score, so there is no change in the query threshold). Hence, we
treat R as a source to be probed against, rather than to be streamed,
unless its estimated cardinality is less than a threshold τ(R) 4.
Filter subexpressions by estimated utility. We consider subex-
pressions we deem to be “useful”: those that are shared by a min-
imum number of conjunctive queries, or that have low cardinality.
Conversely, if we know that certain subexpressions are expensive
to compute at the source (for example, non key-key or key-foreign
key joins), then these are pruned away. We always designate base
relations from streaming sources as useful.
Do not consider overlapping pushed-down subexpressions. If a
subexpression has not been pruned according to one of the heuris-
tics above, then we consider it as a candidate only if for every
query CQ, it is a subexpression of CQ, or it does not overlap with
CQ. Intuitively, we would like to avoid overlapping subexpres-
sions pushed down to the base sources, as this requires streaming
in a base relation more than once.

We expect the set of subexpressions predicted to be useful to
change over time, as better statistics are learned about base data
4τ(R) is set offline according to the relative cost of probing the
source vs. streaming its tuples.



Algorithm 1 BestPlan(Q, (S, S), (A, A)):
Input→ Query setQ, Candidates (S, S), partial inputs (A, A)
Output→ A plan P with the input assignment (I, I),A⊆ I
1: if ∃ cached plan P ′ for inputsA then
2: return P
3: end if
4: if |S| = 0 then
5: (I, I)← (A, A)
6: construct a plan P with inputs (I, I)
7: C ← calculate cost of P
8: return (P, C)
9: end if

10: (bestCost, bestP lan)←dummy plan with cost∞
11: for each input J in S do
12: (S′, S’)← (∅, ∅)
13: for each input J ′ 6= J in S do
14: if J and J ′ share a common relation and

S[J ′] - S[J] is not empty then
15: add J ′ to S′ with S’[J ′] = S[J ′] - S[J]
16: end if
17: end for
18: (A′, A’)← (A ∪ {J} , A) ; A’[J]← S[J]
19: (P, C)← BestP lan(Q, (S′, S’), (A′, A’))
20: if C < bestCost then
21: (bestP lan, bestCost)←(P, C)
22: end if
23: end for
24: cache bestP lan forA
25: return bestP lan

sources during dynamic operation (as described in the next section).
The search process that we describe below is flexible enough to ac-
cept any combination of subexpressions and queries, and is guar-
anteed to find a valid combination of subexpressions (see below),
so long as we include all base relations from streaming sources as
useful subexpressions.

DEFINITION 1. We consider the input assignment (I, I) to be
valid if for each query CQi ∈ Q and each relation R in CQi,
there exists exactly one input J ∈ I, such that J is a subexpression
of CQi, involving R, and CQi ∈ I[J ].

5.1.2 Cost-Based Enumeration
We next enumerate the set of possible subexpressions satisfying

the pruning heuristics. For efficiency, we employ a memoization
structure called an AND-OR graph, commonly used in multi-query
optimization [26]. The AND-OR representation of subexpressions
is a directed acyclic graph that consists of alternating levels of two
types of nodes: “OR” nodes that encode equivalent subexpressions,
and “AND” nodes that encode selection and join operations.

The optimizer enumerates an AND-OR graph representing all
subexpressions of all queries in Q, except those pruned according
to our heuristics above. We convert this set of subexpressions into
a candidate input assignment (S, S), where each candidate in S is
an input expression to consider evaluating outside the ATC.

Given these candidates, our goal is now to find the input assign-
ment (I, I) such that I ⊆S for which the cost of computing all the
queries in Q is minimum. Algorithm 1 shows our search proce-
dure, which uses memoization and top-down search similar to the
Volcano model [8]. Our input to the algorithm is a query setQ, the
candidates (S, S) and and the input assignment (A, A) that con-
stitutes a partial plan. A is initially the empty set, and candidates
from S are continually moved toA so that a valid input assignment
can be found. At the end of each recursive step, BestP lan returns
a query plan P with inputs (I, I) such thatA⊆ I (i.e., P is the best
plan that uses all inputs/subexpressions of A).

After initially calling BestP lan(Q, (S, S), (∅, ∅)), we iter-
ate over each candidate (lines 10-22) in S and find the best plan

that uses that candidate along with others in A. At each point
BestP lan chooses to use an expression J , it creates a modified
candidate assignment (S ′,S’) in order to ensure queries using J
will not also use overlapping expressions. Note that moving candi-
dates from S toA ensures S decreases in size each time a recursive
call is made. This, along with our step for adjusting the remaining
candidates in S ensures that we will generate a valid plan.

PROPOSITION 1. The plan P with input assignment (I, I) re-
turned by BestPlan is a valid plan for the query set Q and the
set of streaming data sources. (Proof appears in the technical re-
port [17].)

EXAMPLE 5. Consider our running example again whenKQ1

and KQ2 are posed. The query set is Q = {CQ1, CQ2, CQ3,
CQ4}. In order to build the candidate input assignment (S, S),
the optimizer decides that a set of useful subexpressions 5 may
be G2G ./ GI , G2G ./ GI ./ T and TP ./ E2M , with
S[G2G ./ GI] = {CQ1, CQ2}, S[G2G ./ GI ./ T ] = {CQ2},
and S[TP ./ E2M ] = {CQ1}. After calling BestPlan(Q, (S, S),
(∅, ∅)), the optimizer finds the best plan using each of these subex-
pressions. In order to find the best plan using G2G ./ GI ./ T ,
it will call BestPlan(Q, (S ′, S’), (A′, A’)), where A′={G2G ./
GI ./ T} and A’[G2G ./ GI ./ T ] = {CQ2}; S ′ = {G2G ./
GI, TP ./ E2M} and S’[G2G ./ GI] = {CQ1}.

5.2 Factorization of Query Plan Graph
Once the set of expressions to be pushed to the sources, I, is

determined by BestP lan, we are faced with the challenge of de-
termining join and selection orderings within the middleware por-
tion of the query plan graph P . Our approach is to first factor
the query plan graph into different connected components with dif-
ferent amounts of sharing, and then to defer decisions about join
ordering within each component to runtime, by computing all joins
within that component using a single m-join that uses monitored
selectivities to choose a sequence for probing. Our ultimate plan
graph will look like the one of Figure 4, where each split or rank-
merge represents the boundary between connected components.

To construct this query plan graph, we build up query expres-
sions in iterative fashion. Start with a frontier set consisting of the
streaming inputs in I. For each E in this set, suppose E is a com-
mon subexpression for the set of conjunctive queries I[E].
• If possible, find the most selective join or selection operation
o common to all queries in I[E], which can be applied to E.
Replace E in the frontier set with o(E) and iterate.
• Otherwise, insert a split operator over E, then choose a set

of operators into which it feeds, using the following iterative
process. LetRm = I[E] and removeE from the frontier set.
Choose the join or selection operation ox such that ox(E) is
common to the maximal number of queries in Rm (breaking
ties by picking the most selective such operator). Add ox(E)
to the frontier set. Now eliminate fromRm those queries that
include ox(E), and repeat, until Rm is empty.

We repeat until the frontier set contains all expressions inQ: we
now have a complete query plan graph. Note that the problem pre-
sented here is another form of multi-query optimization — finding
the best ordering of joins and selections in order to compute all
queries, which is NP-hard in the number of joins involved. Instead,
the greedy heuristic above is targeted at creating as few factored
components as possible. This way, we defer as many decisions
about operation ordering to the eddy modules. Changing orderings
between factored components is an interesting challenge that for
future work.
5We omit base relations for simplicity.



6. INCREMENTAL ATC MODIFICATION
We now discuss the dynamic aspects of our implementation —

specifically, how state is maintained for reuse and removed to assist
with newly arriving queries. When a batch of queries is first posed,
these queries must be optimized given an existing query plan graph
and its state; we discuss this in Section 6.1. To execute the resulting
query, we must modify an existing query plan graph, and then no-
tify the ATC about the new operators, as discussed in Section 6.2.
Finally, under resource constraints we may need to discard some
state from memory (Section 6.3).

6.1 Optimizing New Queries
As new queries arrive over time, they are likely to overlap with

queries previously executed by the ATC. The optimizer must be
able to determine whether it should reuse in-memory state (e.g.,
the hash tables within join operators) of prior query execution runs.
Updated cost estimates. The optimizer must be modified to prop-
erly estimate the costs of reusing existing tuples. After it receives
a new batch of queries, the optimizer builds the new candidate as-
signment (S, S) as in Section 5. For each subexpression J ∈ S, if
J represents a streaming source, it queries the QS manager about
whether J is in memory (i.e., whether it has been used for a previ-
ous set of queries) and if so, the number of results that have been
streamed in. Since the costing of plans is based on the number of
tuples to be read from the source, the optimizer then adjusts the
estimate of using J in a plan to account for any source tuples al-
ready read in. It next prevents J from being evicted, by requesting
that the QS Manager “pin” J down. Finally, it runs the BestP lan
algorithm with the updated cost estimates.
Preventing over-sharing of results. One trade-off that may arise
is due to the limited amount of concurrency in the ATC: in very
large query plan graphs, any given query UQj may only depend
on a small percentage of the overall graph. This can result in a
phenomenon like thrashing in a multithreaded system: much of
the ATC’s resource budget gets spent on computing subresults for
queries other than UQj . To improve concurrency, we can gen-
erate multiple query plan graphs, each with their own ATC. We
accomplish this by clustering user queries in a simple hierarchical
fashion. Given the initial set of conjunctive queries, we identify
the most frequently occurring source relations in the workload. We
build an initial cluster for each source by adding the set of user
queries that reference the source, more than Tm times (where Tm

is a configurable threshold). Then we repeatedly merge clusters
whose Jaccard similarity (i.e., ratio of overlap) exceeds a second
threshold Tc, until it is no longer possible to merge. The resulting
set of clusters defines the sets of user queries to separately group,
optimize, and execute.

6.2 Grafting New Query Plan Graphs
The optimizer passes a new query plan graph to the QS man-

ager, to graft it onto the existing query plan graph. This is done
by individually merging each path in the new query plan graph, as
sketched below. For each node n in a path, iterating from source
(leaf) to rank-merge operator, assign a mapping m(n) from n to a
query operator as follows.

1. If a query operator in the existing query plan matches n, let
m(n) be that operator.

2. If n’s parent operator n′ matches m(n)’s parent operator,
then repeat the above step for n′.

3. Stop at any node nwhose parent node np has no match in the
existing query plan graph, then (if necessary) inject a split
operator between m(n) and its parent in the existing graph.

Create a new operator for np, letm(np) be this operator, and
connect one of the outputs of the split operator to m(np).

For any unmatched node n in the new graph, create a new operator
for m(n).

In order to prevent race conditions, we create the new query plan
graph segments first, then suspend execution of the original graph
and lock it from concurrent modification. Next we ensure that for
each n in the new graph and its parent np, ensure that m(n) feeds
data to m(np). Finally, the new conjunctive queries are registered
with downstream rank-merge operators and the main ATC, so that
thresholds are maintained. Whenever a new query reuses an old
stream, the threshold is initialized to the current score upper bound
of that stream. Execution may now resume.

EXAMPLE 6. Consider again, our running example, whenKQ3

is posed (some time after KQ1 and KQ2). The optimizer decides
that a plan for these queries is I = {G2G ./ GI , TS, T}, with
I[G2G ./ GI] = {CQ5, CQ6}, I[TS] = {CQ6}, I[T ] = {CQ5,
CQ6}. As the first step, a new rank merge operator is created for
UQ3. Then, the new plan graph created for CQ5 and CQ6 is
merged with the original graph in Figure 4. We show a part of the
merging process for the inputs T and TS in Figure 5. Observe two
new split operators are added in order to route intermediate tuples
of σ(T ) and σ(T ) ./ (G2G ./ GI) to new destination operators.

Reusing state. A major complexity is that a new conjunctive query
CQi may make use of data from input streams that have already
been read. In such an event, simply reading further from the streams
is insufficient; we must first re-process the earlier parts of the streams,
which are buffered within the query plan graph’s state.

A naive approach is simply to find the various streams’ tuples
buffered in the hash tables of existing m-joins, and to simply iter-
ate over these tuples and join them. Not only would this require us
to suspend normal query processing until the new join was com-
plete — but in fact such an approach is score-unaware and would
emit tuples in a way that do not conform to the downstream rank-
merge operator’s requirement that each conjunctive query’s tuples
be generated in nonincreasing score order.

The problem is that we need to re-process the tuples according to
their original order; we accomplish this with a more sophisticated
approach. We modify the hash tables to also embed a linked list:
each time we add a tuple to the hash table, we update the last-added
tuple to include a next pointer to the newly added tuple. Given the
initial pointer to the first tuple added, we can visit the set of tuples in
the order they were received from the input stream. Every time the
QS manager provides a new set of queries to the ATC, it increments
a counter called the epoch (a logical timestamp). Then, for each
CQi that references input streams that have already been read, we
create an additional new query CQe

i , to compute all the missing
tuples for CQi. This query takes as its inputs the contents of the
appropriate linked lists as recorded before epoch e, in order to avoid
the introduction of duplicate results. Internally, we keep track of
the association between tuples and epochs by storing each epoch’s
tuples in a separate partition within the m-join hash tables. Note
that onceCQe

i ’s plan is created, it is just another conjunctive query,
and the linked lists from the hash tables are treated as another input
in I. The new query is registered with the rank-merge operator
which takes into account the upper bounds for the linked lists just
as another ranked input, in order to maintain correct thresholds.

Algorithm 2 shows the steps to recover missing tuples: Recover-
State is called when the QS Manager discovers that the streaming
sources for CQi have been read before its arrival. Lines 2-5 show
steps to partition the hash table for each streaming input J that be-



Algorithm 2 RecoverState(CQi, (I,I)):
Input→ Conjunctive query CQi, Current assignment (I, I)

1: e← current epoch
2: for each input J ∈ I s.t. J is a stream and CQi ∈ I[J] do
3: create a new hash table He

J where new tuples will be indexed
4: end for
5: CQe

i ← CQi, Ce
i ← Ci

6: Choose a streaming input J s.t. CQi ∈ I[J]
7: Let Je be a streaming source which is the linked list of tuples from

hash tables Hl
J where l < e

8: add Je as a streaming source to I with I[Je] = {CQe
i }

9: for each J ′ ∈ I s.t. J ′ 6= J and CQi ∈ I[J ′] do
10: if J ′ is a streaming input then
11: add J ′

e as a random access source to I with I[J ′
e] = {CQe

i }
12: else
13: I[J ′] = I[J ′] ∪ {CQe

i }
14: end if
15: end for
16: Add the new query CQe

i with updated assignment (I,I)

longs to I[J ]. Note that the tuples that arrived before epoch e are ex-
actly those tuples that need to be joined for recovering the missing
tuples of CQi — these results are represented by the query CQe

i

which is created in line 5. Now, since CQe
i requires a set of in-

puts, we reuse exactly the set of inputs for CQi, but we choose one
streaming input J that will be the streaming source for CQe

i , (lines
6-8). Every other input J ′ is treated as a random access source
(since tuples from J ′

e are already indexed in a hash table). Lines
9-15 add the new query and modify the input assignment to I.

6.3 Query Termination and Discarding State
Once a conjunctive query has completed, or can longer con-

tribute to top-k output (its threshold is lower than the kth tuple in
the ranking queue of the downstream rank-merge operator), it gets
unlinked from the query plan graph and deactivated. We simply tra-
verse the graph backwards starting from the query node, removing
nodes and edges until we reach a split operator. The split operator
can only be removed if it does not route tuples along another path.
If the split gets removed, we repeat the removal process recursively.

A natural question is when we remove the state for a query that is
terminated. In a conventional OLAP query processing setting, one
would expect that our basic approach — keep everything around in
memory as a large cache for re-use — may be impractical due to
large intermediate result sizes. In our setting, we expect memory
and resource problems to be very infrequent on a modern machine,
as ranking queries tend to read only (quite small) prefixes of rela-
tions, and most machines have multiple GB of RAM. Nonetheless,
for completeness we develop strategies for cache replacement. Two
types of objects are considered “cacheable”: the contents of rank-
ing queues that hold pending tuples to be output to the user, and
hash tables corresponding to specific query subexpressions. Such
items can be fully evicted if unreferenced by running or pending
queries; or flushed to disk otherwise.

We experimented with a variety of potential cache replacement
policies. The most obvious policy is least-recently-used (LRU), but
we also considered factors such as result size and recomputation
cost. We found that LRU, with size as a tie-breaker, worked quite
well in practice. Since the results were not particularly informative,
we omit them from the experiments section.

7. EXPERIMENTAL ANALYSIS
Our Q System implementation comprises approximately 50,000

lines of Java code and runs as a middleware layer over remote SQL
databases. Evaluation was done using Java 6 JDK 1.60_04 on a
dual-processor, dual-core Xeon 5140 machine with 8GB RAM and

UQ 1 2 3 4 5 6 7 8
Queries 12.75 4.5 11 13.5 8.5 6 13.75 8.75

UQ 9 10 11 12 13 14 15
Queries 3.75 5.75 13.75 3.25 12.5 13 7.75

Table 4: Average number of conjunctive queries executed to
return top-50 results over synthetic datasets

Windows Server 2003, using JDBC to connect to MySQL databases
running on an identically configured machine. We briefly describe
our experimental setup and methodology.

To create conjunctive queries from keyword searches, we used
the Q System’s query generator algorithm of [33]. We used both
synthetic and real-world data sets.

Synthetic workload. Our synthetic dataset made use of the Ge-
nomics Unified Schema [21] (GUS), which has 358 relations. We
created 4 simulated database instances by populating the relations
in schema with 20,000-100,000 randomly generated tuples apiece.
Each synonym/relationship table in the schemas was extended with
an additional attribute representing a similarity score. Scores, join
keys, and coefficients on the score functions for the various user
queries were drawn from a Zipfian distribution. We stored these
instances in MySQL, indexed by join keys and score attributes.

We generated a suite of 15 user queries by choosing pairs of
keywords from a list of common biological terms, using a Zipf dis-
tribution on the keywords6. Each such query yielded a maximum
of 20 conjunctive queries over GUS. For each relation matching a
search term, we also added a synthetic score attribute, simulating
an IR-style keyword similarity score.

Real-data workload. We also conducted tests over real data from
the biological datasets Pfam (http://pfam.sanger.ac.uk/),
a collection of protein families with multiple relationship tables
to protein sequences, and Interpro (http://www.ebi.ac.uk/
interpro/), another integrated database of protein families and
sequence information. The former database contains a mapping ta-
ble that relates Pfam families to Interpro entries. We created 15
keyword queries using the same methodology as in our synthetic
case, using keywords that matched to sequence, family, and publi-
cation data.

Delays. To simulate wide-area delays over our local-area network,
we added random delays for each tuple read from a data stream
and each join probe performed against a remote DBMS. Delays
were chosen from a Poisson distribution with an average of 2 mil-
liseconds. Keyword search queries were posed within 6 seconds of
one another. All graphs include averaged values taken over three
different runs over each database instance (12 runs in total), and we
include 95% confidence intervals.

Overview of experiments. Our experiments seek to answer the
following questions: What are the performance implications of (1)
shared subexpressions and (2) state reuse? (3) Given state reuse, is
shared subexpression computation even necessary? (4) How does
the time to perform multiple query optimization affect overall per-
formance? (5) Do our results, done over synthetic data, generalize
to real-world data?

7.1 Benefits of Sharing
We first study the impact of sharing and result reuse. Each user

query in our query workload gets expanded into a set of conjunctive
queries: refer to Table 4 to see how many conjunctive queries were

6Keyword queries can be found in https://dbappserv.
cis.upenn.edu/home/?q=node/132

http://pfam.sanger.ac.uk/
http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
https://dbappserv.cis.upenn.edu/home/?q=node/132
https://dbappserv.cis.upenn.edu/home/?q=node/132
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Figure 11: Optimization times vs. candidate inputs.
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Figure 12: Execution times over the Pfam/Interpro dataset.

required to return the top-50 results for each user query, averaged
across the four different synthetic data sets. Recall that the QS
manager and ATC coordinate in order to ensure that additional CQs
are executed only as necessary to return relevant results. In our
experiments, we never needed more than 20 CQs per user query.

We studied several different optimization and QS manager con-
figurations:

• As a baseline, we separately optimize each user query and
disable sharing across conjunctive subexpressions; we refer
to this method as ATC-CQ since the ATC executes conjunc-
tive queries as separate m-joins whose results are merged.
• We enable subexpression sharing within a given user query,

but disable it across queries. We refer to this as ATC-UQ.
• We use and update a single query plan graph to execute all

user queries received at any point in time; this process auto-
matically reuses existing state. This is strategy ATC-FULL.
• We manually clustered the user queries to create multiple

query plan graphs when different sets of queries had signif-
icantly different inputs (see Section 6.1 for a way of doing
this automatically). We call this ATC-CL.

In all configurations, the sequence of queries is user posed over
time, with random delays of up to 6 seconds. Our query batcher

is set to group queries into batches of size 5. Figure 7 shows the
resulting execution times for each user query. We see that virtu-
ally across the board, sharing within a user query (ATC-UQ) pro-
vides benefits versus the baseline (ATC-CQ). When we look at
sharing across user queries, we see that a different issue arises.
ATC-FULL only performs better than ATC-UQ in 5 out of the 15
queries: here, several different rank-merge operators are requesting
tuples from different subexpressions, seeking to optimize a differ-
ent goal; the resulting contention means each query suffers a delay
waiting for the others. We see that the clustering method, ATC-CL,
handles this problem well by separating the contending queries and
increasing parallelism.

Overall, we see that subexpression sharing and reuse both pro-
vide significant benefits — up to 90% for Query 9. We consider
whether the two kinds of sharing can be used in isolation in later
experiments, but first look in more detail at a breakdown of time
versus query execution operations (Figure 8). Here we divide the
total time into three operations: reading tuples from the stream-
ing sources (Stream read time), performing in-memory joins (Join
time), and probing remote sources with tuples to perform a two-way
semijoin (Random access time). ATC-UQ, ATC-FULL and ATC-
CL spend much less time reading tuples from the base streams than
ATC-CQ, as they optimize by sharing and reusing tuples. On the
other hand, they spend much more time probing against remote



sources: we attribute this to the fact that probes are commonly used
against relation sources that have no scoring attributes, and that the
ATC may need to execute a fairly large number of probes in order
to maintain the full set of results required to properly maintain the
query threshold. Given that we cache tuples from random probes,
we can expect the rate of probing to decrease over time.

7.2 Benefits of Subexpression Sharing
We next consider whether the process of identifying shared subex-

pressions — i.e., multiple query optimization — makes a useful
contribution, given that in principle reuse of results from one run
to the next might achieve similar behavior. To study this, we took
the ATC-CL configuration and our query workload, and compared
their running times when each query was optimized separately (batch
size = 1) versus multiply (batch size = 5, as in the previous experi-
ments). Figure 9 shows significant gains in performance for larger
batch sizes, clearly indicating that it is advantageous to proactively
identify opportunities for subexpression sharing.

7.3 State Reuse across Time
Assuming adequate memory and sufficient overlap among queries

in the workload, we would expect that the incremental cost of an-
swering newly posed queries should go down over time, if we can
reuse subexpressions. Figure 10 shows that this is indeed the case
for our query workload: it plots the total amount of work done
(measured as the total number of input tuples consumed) in an-
swering the first 5 queries of the workload, versus the full set of 15
queries. We see for the cases where tuples are not reused (ATC-
CQ and ATC-UQ) that executing 15 queries takes approximately
three times the amount of work as executing 5 queries. On the
other hand, for ATC-FULL the complete suite requires only about
75% more work, and for ATC-CL about twice the amount of work.
(Recall that ATC-CL shares less than ATC-FULL, which reduces
contention and thus running time, but actually does slightly more
work as measured by intermediate result production.)

7.4 Optimizer Running Times
While our previous timings included query optimization as a

component, we now focus on the actual cost of performing multiple
query optimization. In general multiple query optimization costs
are determined by the number of unique query atoms (source rela-
tions), and in this case the main portion of the search is the number
of candidate expressions considered for push-down into the source
relations. We measured the amount of time spent optimizing the 15
user queries, batched in groups of 5. Figure 11 shows the results
for a single run (other runs showed similar trends), where we plot
the number of candidate subexpressions for a set of queries, against
the time taken to generate a plan. Not surprisingly, the distribution
follows an exponential curve as the number of candidates increase.

7.5 Generalization to Real Data
Finally, we investigated whether our conclusions transfer to queries

over real rather than synthetic datasets. Given our combined Pfam-
Interpro dataset, we used MySQL’s text search capability to match
pairs of two-keyword phrases against database tuples, capturing
MySQL’s similarity score as well as the tuples. Additionally, we
included one additional score attribute, namely the age (year) of
publication. Each user query here resulted in 4 conjunctive queries;
we posed the user queries in sequence with random delays of up to
6 seconds. Figure 12 shows the execution times of all queries using
our various configurations, for k = 50 results.

As with the synthetic data, ATC-UQ tends to provide a minor
improvement over ATC-CQ (with a best case of 77% better for

UQ5). ATC-FULL, on the other hand, showed few gains — this
was because the real dataset resulted in significantly larger amounts
of data, hence more computation time and more contention delay
in our middleware layer. The ATC-CL confugration clustered the
user queries into three query plan graphs (queries 3 and 12 in one
plan graph; query 5 in another; and the remaining queries in the fi-
nal graph). This less-contentious arrangement provided significant
improvement, especially in queries 7 through 15, with a maximum
performance gain of 97% over ATC-CQ and 90% over ATC-UQ.
All told, the results over real data are very consistent with those
over synthetic data.

Our overall conclusion from the experiments is that our tech-
niques for subexpression sharing, and for threshold-based selection
of input tuples via the ATC, provide significant performance bene-
fits. Our studies show that clustering user queries together can also
alleviate the problem of contention occurring due to a high rate of
incoming user queries. We plan to further investigate techniques
for eliminating contention and I/O bottlenecks, including selective
use of multithreading over portions of the same query plan graph.

8. RELATED WORK
This paper addresses a distributed, data integration-centric ap-

plication of keyword search over databases [2, 11, 13, 18, 27, 33],
with concurrent and ongoing sequences of user query requests. Our
approach adopts a fairly general model and ranking scheme; it can
be directly incorporated into any of the existing systems that gen-
erate queries before executing them [11, 13, 27]. Some other sys-
tems like [2, 11, 18] tend to interleave query generation with tuple
retrieval and intermediate result creation, and there our techniques
for performing multiple query optimization are somewhat more dif-
ficult to fit architecturally.

Our goal, through the ATC and query plan graph, is to support
efficient top-k query answering [9, 23], but across multiple queries
simultaneously (and allowing for reuse). The problem of devel-
oping efficient algorithms for executing these queries includes the
Fagin et al. threshold and no-random-access algorithms [7] and
work on (pairwise) rank joins [15, 28]. Our multiway join is es-
sentially a STeM eddy [24], which uses adaptivity to determine an
order of join evaluation. It also resembles the m-join [34], with the
distinction that the control logic is separated into the ATC, rather
than into the operator.

The problem of optimizing individual top-k queries was consid-
ered in [16, 29], and we leverage their cost estimation techniques.
So far as we know, multiple query optimization has only been stud-
ied in the unranked context [26, 30, 35]. The related problem of
view selection and materialization for ranked queries, as well as
merging of ranked union queries, is studied in [14].

In many ways, our work resembles the continuous query execu-
tion model considered in NiagaraCQ [4] and other related systems,
where the goal was to optimize an initial set of queries and produce
a continuous query plan; then to leverage the existing plans for ex-
ecuting subsequent queries. Our context is quite different, in that
the queries are not truly continuous, so certain query subexpres-
sions truly become irrelevant and may be evicted; and the top-k
setting changes the query execution mode.

9. CONCLUSIONS AND FUTURE WORK
This paper has addressed the issue of improving keyword search

performance for data-integrating queries, through sharing and reusing
subexpressions, as well as adaptive query processing techniques.
Our contributions were:

• A new top-k query processing architecture that keeps in-



memory state and existing query plan structures from one
query execution to the next, enabling effective result reuse
and recomputation over time.

• An optimizer that combines cost-based and heuristic search,
in order to find common subexpressions across and within
top-k queries, and which supports the reuse of existing subex-
pressions from past query executions.

• A fully pipelined, adaptive top-k query execution scheme
for answering multiple queries, consisting of a query plan
graph of m-joins (STeM eddies) and rank-merge operators,
supervised by a novel ATC controller.

• A query state manager that can graft and prune elements in
an executing query plan, and which manages the reuse and
eviction of state.

• A comprehensive set of experiments over synthetic and real
datasets, demonstrating the performance gains of our approach.

As future work, we plan to study opportunities to strategically
exploit threads to limit contention among different queries; to ex-
tend our query processor to consider more complex queries that
include aggregation; and to consider the problem of incremental
maintenance of views defined over multiple queries.
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