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Abstract

Conventional data integration techniques em-
ploy a “top-down” design philosophy, start-
ing by assessing requirements and defining a
global schema, and then mapping data sources
to that schema. This works well if the
problem domain is well-understood and rel-
atively static, as with enterprise data. How-
ever, it is fundamentally mismatched with
the“bottom-up” model of scientific data shar-
ing, in which new data needs to be rapidly de-
veloped, published, and then assessed, filtered,
and revised by others.

We address the need for bottom-upcollab-
orative data sharing, in which independent
researchers or groups with different goals,
schemas, and data can share information in the
absence of global agreement. Each group in-
dependently curates, revises, and extends its
data; eventually the groups compare andrec-
oncile their changes, but they are not required
to agree. This paper describes our initial de-
sign and prototype of the ORCHESTRA sys-
tem, which focuses onmanaging disagree-
mentamong multiple data representations and
instances. Our work represents an important
evolution of the concepts of peer-to-peer data
sharing [23], which considersrevision, dis-
agreement, authority, andintermittent partici-
pation.
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1 Introduction

Established techniques for data integration follow a
“top-down,” global-schema-first design philosophy,
starting by assessing requirements and defining a global
schema, and then mapping data sources to that schema.
This works well if the problem domain is well-
understood and relatively static, as with business data.
However, there is an urgent need to address data shar-
ing problems beyond this context — especially in sup-
porting large-scale scientific data sharing or managing
community-wide information. Prominent examples of
such data sharing occur in the emerging fields of com-
parative genomics and systems biology, whose focus is
the integrated analysis of the large, dynamic, and grow-
ing body of biological data. The success of these fields
will be largely determined by the quantity and quality
of the data made available to scientists.

Unfortunately, attempts to apply data integration tech-
niques — standardizing data formats and schemas, and
then creating translators, warehouses, or virtual medi-
ator systems to combine the data — have had limited
success. In bioinformatics today there are many “stan-
dard” schemas rather than a single one, due to differ-
ent research needs, competing groups, and the contin-
ued emergence of new kinds of data. These efforts not
only fail to satisfy the goal of integratingall of the
data sources needed by biologists, but they result in
standards that must repeatedly be revised, inconsisten-
cies between different repositories, and an environment
that restricts an independent laboratory or scientist from
easily contributing “nonstandard” data.

The central problem is that science evolves in a
“bottom-up” fashion, resulting in a fundamental mis-
match with top-down data integration methods. Scien-
tists make and publish new discoveries, and others ac-
cept, build upon, and refine the most convincing work.
Science does not revisit its global models after every
discovery: this is time-consuming, requires consen-
sus, and may not be necessary depending on the long-
term significance of the discovery. Data sharing ap-
proaches reliant on globally designing/redesigning in-
tegrated schemas are inappropriate for the same rea-



sons. Moreover, today’s integration techniques fail to
recognize that scientific discovery is inherently a pro-
cess ofrevisionanddisagreement. A common practice
is collaborative data sharing: independent researchers
or groups with different goals, schemas, and data agree
to share data with one another; each group indepen-
dently curates, revises, and extends this shared data;
at some point the groups compare andreconciletheir
changes. Even after reconciliation, some groups may
disagree about certain aspects of the data, and some
may yield to others with greaterauthority.

The Web, while not sufficient to address collabora-
tive data sharing, provides a model of an existing and
incredibly successful bottom-up data sharing infras-
tructure. Anyone can contribute new content as de-
sired or link to it; useful data is filtered by trusted,
value-added “portal” sites that link to content consis-
tent with some theme. The Web evolves rapidly, and
it is self-organizing and self-maintaining. Peer-to-peer
approaches [37, 41, 39] also adopt a bottom-up, self-
organizing approach, but to this point peer data man-
agement only considers query answering over multiple
schemas [23, 29].

Science and academia are in need of a Web-like,
bottom-up infrastructure to address their collaborative
data sharing needs. With such infrastructure, one could
rapidly contribute new schemas, data, andrevisions;
specify schema mappings to others’ data; control and
filter what data is exchanged, based on its source; and
publish andreconcilechanges to shared data. Shared
data must bealways available, even if a given contrib-
utor is not. This infrastructure could support a number
of important classes of applications.

Bioinformatics and scientific data exchange.Bioin-
formatics is an example of a science that needs to sup-
port data exchange among multiple schemas: numer-
ous standards exist for each of a variety of data types,
including microarray, proteomics, and neuroinformat-
ics data. Unfortunately, individual biologists may not
have the resources to influence the standard schemas or
easily share their proprietary data (which may include
annotations and analysis results valuable to the commu-
nity as a whole). Rapid advances in biology require data
sharing techniques that are more responsive to new de-
velopments, and that promote effective data exchange
among collaborators and groups with related interests.

Academic community resources. A common prob-
lem in academia is sharing and maintaining com-
munity resources such as citation entries, soft-
ware listings, or research group information. Typ-
ically this is accomplished via repositories main-
tained by individual groups, e.g., DBLP (dblp.
uni-trier.de ), ACM’s Digital Library, SIG-
MOD’s list of database systems (www.acm.org/
sigmod/databaseSoftware/ ), or by systems

that allow distributed submission of entries. Keeping
such databases current, duplicate-free, and “clean” is a
major challenge, requiring either significant human in-
put or automated and not-always-reliable techniques for
finding and matching entries. Further exacerbating the
problem, there may also be a desire to represent the data
in multiple forms.

Other group-oriented applications. Discussion
groups and blogs, group calendars, and version control
systems are typically built using a centralized client-
server architecture and a single schema or representa-
tion. As such tools are deployed across multiple depart-
ments, organizations, and open-source efforts, there is
increasingly a need to customize them for each organi-
zation, and perhaps even to separately administer each
location. Even within a single organization, there may
be multiple formats to be managed, e.g., when a PDA
adds special fields to groupware data. Current tools rely
on opaque “custom fields” that cannot be mapped, e.g.,
between a PDA and a cell phone. Data would be more
effectively managed if each organization could sepa-
rately extend and manage its data and schema, while
mapping information to other groups.

Contributions and Road Map

In the ORCHESTRA project, we are developing a col-
laborative data sharing infrastructure to facilitiate sci-
entific and academic data sharing in a bottom-up, rapid-
to-change fashion: ORCHESTRAemphasizesmanaging
disagreementat the schema and instance levels, and
it supports rapidly changing membership. This paper
makes the following contributions:

• To address disagreement betweendifferent data
instances, we propose a novel data model that
focuses on accommodating data from many dis-
agreeing viewpoints.

• To address the problem of propagating updates de-
spite rapidly changing participation, we imple-
ment ORCHESTRAover a peer-to-peer, distributed
hash table substrate [39] and replicate data among
active members.

• To address the fact that different members may
preferdifferent schemas, we extend the techniques
of peer data management systems [23, 20] to trans-
lateupdatesfrom one schema to another.

This paper is organized as follows. Section 2 discusses
how the collaborative data sharing problem goes be-
yond the domains of past work on data integration and
distributed databases. Section 3 presents an overview
of the ORCHESTRA collaborative data sharing system
we are building. Section 4 describes our approach to
representing and reconciling conflicting updates. Sec-
tion 6 describes how we recast the cross-schema update



translation problem to leverage standard query reformu-
lation techniques. We conclude and discuss future work
in Section 7.

2 Rapid, Collaborative Data Sharing
Approaches to distributed data sharing today can be di-
vided into two categories.Distributed databases, ex-
emplified by Mariposa [42] and recent peer-to-peer data
processing engines and storage systems [24, 1], gener-
ally assume one schema with relations (or fragments
of relations) that are distributed and replicated. They
provide high-performance queries and updates over dis-
tributed and replicated data under a single administra-
tive domain.

Data integration ties together pre-existing, heteroge-
neous data sources in a distributed context. This typ-
ically involves defining a global virtual schema or ma-
terialized data warehouse as a uniform query-only inter-
face over the data sources, then creatingschema map-
pings to relate the sources to this schema. Such map-
pings are usually specified as conjunctive queries, and
query reformulationtechniques [32] are used to com-
pose user queries with mappings to return results. To-
day, the focus in data integration has been on designing
tools to assist in defining mappings [36] and on more
flexible, peer-to-peer models of integration [23, 22, 29].

2.1 Scientific Data Exchange

Such problems are of great importance in many situ-
ations, but we argue that there is a class of important
data sharing problems not addressed by either the dis-
tributed database or data integration models. This class
of applications revolves aroundexchangingdata among
different databases or warehouses, each with its own
schema, and each of which is independently evolving.
Data sharing for scientific collaboration is an exem-
plar of this class, as it must facilitate the exchange of
rapidly evolving, sometimes-disputed data across dif-
ferent schemas and viewpoints.

Example 2.1 The Penn Center for Bioinformatics
(PCBI) administers a local genomics microarray data
repository, RAD [40], a subset of a larger schema
called GUS. PCBI needs to share RAD data with other
standard microarray repositories, including ArrayEx-
press1, based on the MAGE-ML schema2, and, ulti-
mately, higher-level data sources such as the Gene On-
tology database3. All of these sources have overlapping
data, and they all want access to a complete set of the
data; yet none wants to adopt a new schema (as re-
quired by the top-down integration approach).

Figure 1 shows how the three schemas (sets of “shared
relations”) can be mapped together in an envisioned

1www.ebi.ac.uk/arrayexpress
2www.mged.org/
3www.geneontology.org

collaborative data sharing environment. Each schema
is shared by some number ofparticipants: in this system
there are four, including two sites, RAD1 and RAD2,
which replicate the same RAD schema. Each partic-
ipant has a local data instance matching its schema,
which it independently modifies. We indicate potential
dataflows in this figure with directed edges; note that
actual mappings may not be provided in both directions
by the user, nor are there mappings specified between
every pair of schemas. As in [23, 22, 10], it may be
necessary toinvert or composemappings to convey in-
formation from one schema to another.

At some point, a participant such as RAD1 willrecon-
cile the changes it made, i.e., it will publish all new up-
dates it has made to the system, and it will receive any
non-conflicting updates published recently by partici-
pants it trusts (perhaps ArrayExpress and Gene Ontol-
ogy, but not RAD2). It is also possible for an entity such
as Gene Ontology to only be aone-wayparticipant, not
accepting data from other sources but posting any mod-
ifications made to its internal database on a periodic
basis. Gene Ontology’s updates will be applied to any
participant with a RAD or MAGE-ML schema the next
time it reconciles. Those updates will be propagated to
ArrayExpress even though there is no direct mapping
between Gene Ontology and MAGE-ML: a transitive
mapping will be derived by composing the Gene On-
tology/RAD and RAD/MAGE-ML mappings.

The data sharing environment must be rapidly exten-
sible in a bottom-up way. If a new participant with
a different schema and data wishes to join, it need
only define a mapping to an existing schema. Alter-
natively, if PCBI updates the RAD schema, it will leave
the old version in place and add a mapping from the
new schema version to the old one; participants may
use either schema version.

In scientific data sharing scenarios, like the one above,
the predominant paradigm is to provide acopy of an
experimental or analytical data instance to others. That
data is mapped into another database with a different
schema and then curated, refined, and modified inde-
pendently. At some stable point, the parties will want
to share, compare, and reconcile their changes. They
may elect to do so at different points of time; they may
reserve the right to override, or even remove, tuples or
data values provided by the other party. This mode of
collaborative data sharing, due to its dynamic nature
and lack of central authority, exacerbates a number of
issues that have not been systematically addressed in
past data sharing research, and these problems are the
focus of what we term acollaborative data sharing sys-
tem(CDS).
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Figure 1:Collaborative data sharing among four bioinformatics participants, with three schemas (sets of virtual “shared relations”).
Dotted lines represent mappings from shared data to local instances, and dashed lines represent update translation mappings between
different schemas.

2.2 Collaborative Data Sharing

At the heart of the collaborative data sharing problem
is the need to accommodate bothdisagreementanddy-
namic participation of members: schemas and data in-
stances will constantly be revised and extended; con-
flicting assertions about facts will abound; participants
will join and leave at will; different participants will use
different schemas. We briefly outline the problem and
our basic approach in this section; the remainder of the
paper provides further details.

2.2.1 Conflicting Data and Updates

The traditional emphasis in distributed data sharing has
been on providing (at least eventual) consistency. Ex-
amples of previous work include data warehouse main-
tenance [14]; distributed concurrency control and repli-
cation, such as synchronization of disconnected repli-
cas [11] and weak, eventual-consistency models [16];
and file sharing [35, 18, 30, 17]. The goal of these ap-
proaches is to merge update sequences in an ordered
and consistent way, yielding a globally consistent data
instance. When a consistent state cannot be determined,
a human must resolve the conflict.

With scientific data, a given data item (e.g., a tuple,
a tree, a series of data items related by foreign keys)
may be the subject of disagreement among different
sources. For instance, one bioinformatics data source
may postulate a relationship between a gene sequence
and a disease, whereas another may feel there is insuf-
ficient data to support this hypothesis. Variations on
the relational data model have been proposed in order
to support uncertainty or probability [33, 3] and incon-
sistency [4, 31], and these initially seem promising as
solutions. Probabilistic databases allow one to attach
probabilistic information to data items (usually tuples);
the study of inconsistency in databases generally re-
volves around trying to “repair” a data instance where
constraints are not satisfied. However, it is difficult to
assign a probability to each representation, or to deter-
mine how to repair the data.

Our approach. We propose a model that intuitively re-
sembles that of incomplete information [2], which rep-

resents multiple database instances within the same ta-
ble by annotating each tuple with a condition specify-
ing when it is part of an instance. Our case is a slightly
simpler variation: tuples are “tagged” with information
about which participantsacceptthem. Each participant
has an internally consistent database instance, formed
by the set of tuples that it accepts. Importantly, no par-
ticipant is required to modify its data instance to reach
agreement with the others, although it has the option if
it so chooses.

In large-scale data sharing scenarios, especially ones in
which data may be frequently revised or conflicting, it
is essential that the data versions can be “filtered” by
data consumers. Scientists are willing to trust data from
others whom they view as authorities; they may even
delegate decisions of trust to others. In effect, they
might decide whether to accept a data entry based on
its provenance[9]. We allow each participant to spec-
ify precisely whom to trust data from, and under which
conditions.

We are concerned not merely with representing differ-
ent data instances, but with propagating and applying
updates to those data instances. We tag and “filter” up-
dates in a similar manner to the way we tag data items:
an update is propagated only to those participants who
trust its source and/or value. Our model of support-
ing multiple concurrent versions leads to an important
difference from distributed concurrency control algo-
rithms: we do not need tominimizeconflict sets; rather,
each participant receives only those transactions that it
trusts and that do not conflict with its existing instance.

2.2.2 Dynamic Membership

In the data integration world, if a data source is un-
available for any reason, its data typically becomes un-
available to others. Scientists are very concerned about
losing access to crucial experimental data, simply be-
cause its originator is unavailable or experiences a sys-
tem crash. Any shared data must be permanently avail-
able, although individual machines may join and leave
at will.

Our approach. We replicateall information (i.e., the



original source data and the update sequences applied
to it) across the machines currently in the collaborative
data sharing environment. We alsopartition the data
before replicating it, allowing us to “stripe” the data
and computation across multiple nodes. Our implemen-
tation is based on a peer-to-peer distributed hash table
substrate [37, 41, 39], which provides effective replica-
tion and partitioning capabilities and does not rely on a
central server.

2.2.3 Multiple Schemas

Conventional data integration techniques work well in
enterprise information integration because the setting is
well understood, and user needs do not change rapidly.
In the sciences, there are diverse groups and needs, and
these change frequently, so it is difficult to create and
evolve a single global schema. Moreover, users fre-
quently prefer their familiar local schema to a global,
centralized mediated schema [38].

This has led to interest in more flexible, peer-to-peer
methods of data sharing [23, 34, 29]. In past work,
we and others proposedpeer data management, which
generalizes and decentralizes data integration: partici-
pants autonomously choose their own schemas and de-
fine mappings to other schemas. No single entity con-
trols the schema for a domain, and cooperating enti-
ties each have the ability to adopt a schema customized
to their individual needs. This provides a voluntary-
participation, “best effort” semantics, similar to peer-
to-peer file sharing systems [37, 41, 39]. A potential
pitfall of this approach is that it must be possible to
map betweenany pairof data sources; since that num-
ber of mappings may be unavailable, peer data man-
agement provides algorithms tocompose and combine
mapping paths to return the maximum set of inferrable
answers [23, 22, 43, 10, 7, 29]. Peer data management
provides a very effective model for sharing data among
heterogeneous collaborators with different needs, and it
meshes with the bottom-up data sharing model of the
sciences. However, it focuses purely on query answer-
ing; like the broader data integration field, it does not
consider the need for update propagation.

Our approach. Based on the ideas described above,
we develop techniques for propagatingupdatesacross
schemas. Intuitively, wequery for updatesto apply to
the target schema, based on any updates made to the
source schemas. New challenges arise from the fact that
updates are sequential rather than independent.

3 The ORCHESTRASystem
We are addressing the needs of collaborative data shar-
ing in a system called ORCHESTRA. ORCHESTRAco-
ordinates a set of autonomousparticipantswho make
updates to local relation instances (the rounded rectan-
gles of Figure 1) and laterpublishthem for others to ac-
cess. More than one participant may have local relation
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Figure 2: More detailed subset of the bioinformatics envi-
ronment of Figure 1. Shared relations are capitalized; local
relations are subscripted with the ID of the participant upon
which they appear. Mappings are italicized, and in the form
of conjunctive queries. The IDMap table is used only as part
of a mapping, and it can be considered the sole member of its
own schema.

instances that share the same schema; intuitively, these
instances capture the same information about the data,
and we defineshared relationsto encode the “union”
of the published (possibly conflicting) data, as well as
information about where that data originated.

Between a shared relation and each participant’slocal
relation that “replicates” it, there is aninstance map-
ping that specifies precisely what data from the shared
relation is trusted by the participant, and should be
replicated by it. In turn, data between shared relations
in different schemas is interrelated through schema
mappings. “Chains” of mappings can be followed be-
tween connected participants in the system.

Example 3.1 Refer to Figure 2 for a more detailed ex-
ample of our bioinformatics collaborative data shar-
ing environment. SupposeRAD1wishes to reconcile its
changes with any other recent updates. It first deter-
mines what updates have been published to the system
by others — in this case, participants who use either
the RADschema or theMAGE-MLone. RAD1 first re-
formulates all updates in terms of its shared relations
in Study , where necessary using the mapping between
Exper (in MAGE-ML) andStudy to translate the up-
dates. Then the updates applied toStudy are prop-
agated toRAD, so long as they meet the conditions of
its instance mapping and they do not violate its consis-
tency. Finally,RAD1publishes its own updates to the
RADshared relations; these are automatically tagged
with information specifying that they originate from
RAD1.

The general mode of operation in ORCHESTRA is to
operate in disconnected fashion, then to reconcile. A
participantp reconciles its updates with those made by
others through the following steps:

1. Determine all updatespublishedby participants to



ORCHESTRAsince the last reconciliation.

2. Compute the effects of these updates on all shared
relations, according to the possibly-disagreeing
viewpointsof the different participants.

3. Use the set of instance mappings to determine
which updates would beacceptedbyp and remove
those thatconflict.

4. Propagate top’s relation those updates that are ac-
cepted and non-conflicting.

5. Record the updates originating fromp, or accepted
by it, in ORCHESTRAfor future reconciliation op-
erations.

In subsequent sections, we describe in detail how OR-
CHESTRAaccommodates multiple viewpoints in a con-
sistent way, how it performs update propagation and
reconciliation, and how it translates updates from one
schema to another.

4 Consistency with Conflicting Data
We begin by defining the specifics of the data model
what it means for an instance to be consistent with a set
of schema mappings. ORCHESTRAmerges the results
of multiple, conflicting database instances intoshared
relations. In our bioinformatics example, these are
the RAD, MAGE-ML, and Gene Ontology shared re-
lations. Shared relations accommodate conflicting val-
ues by “tagging” each tuple with information specifying
where it originated and who “believes” it; each partici-
pant filters the data it accepts based on value, origin, or
who else accepts it. (This is a specialized and limited
form of data provenance [9].)

4.1 Multi-Viewpoint Tables

Each participantp is said to have aviewpoint, Vp, which
associates with each shared relationS an instance con-
sistent withp’s published updates. A viewpoint repre-
sentshypothesesheld byp rather thanfacts, i.e., there
can be conflicting information or information that is
later determined to be incorrect4. A shared relationS,
then, contains many overlapping data instances describ-
ing the hypotheses of each participant. Such a set of
possible instances matches closely with models ofin-
complete information[25, 2], for which a number of
formalisms, most notablyconditional tables, have been
proposed. Conditional tables represent a set of possi-
ble instances, and they attach to each tuple a condition
that must be satisfied for the tuple to exist in a particular
instance.

4Our model generalizes the standardopen-world assumption
made in data integration: in the open-world model, every instance
of a relation (collection) is assumed to be a potentially incomplete
subset of the overall set of tuples (objects, etc.) that may exist.

To encode multiple viewpoints’ instances in conditional
tables, we could assign each participant an identifier
i, define a variablev representing the viewpoint, and
attach the condition(v = i) to each tuple that exists
according toPi’s perspective. Unfortunately, condi-
tional tables are seldom used in practice because in the
worst case the cost of querying for certain answers (or
of performing updates) is exponential in the size of the
data [2].

Since we only need a restricted subset of conditional ta-
bles’ capabilities, we propose a novel subset we term a
multi-viewpoint tableor MVT, which ensures polyno-
mial data complexity in query answering and updates.
Similar models have been proposed previously [33, 3],
but the MVT is novel in that it encodes not only the
data’s original viewpoint, but also what other partici-
pants trust the data. That property allows us to dele-
gate trust: e.g., participantPi trusts anything thatPj

believes.

Definition 1 Given a relation R(X̄), X̄ =
(x1, . . . , xm), assume that there existn possible
instances ofR, I1(R), . . . , In(R), according to n
different viewpoints. We will distinguish between tuples
t ∈ Ii(R(X̄)) that originated(or partly originated) in
Ii, versus those that have beenacceptedinto Ii.

A multi-viewpoint tablethat accommodatesn view-
points ofR, M(X̄, h̄, v̄), wheres is an integer and̄h
and v̄ are n-bit boolean vectors, is defined as follows.
For each tuplet in instanceIi(R(X̄)), there exists a
tuplet′ in M with the following properties:

• For each attributexa ∈ X̄, M(xa) = R(xa).

• For every1 ≤ j ≤ n, if t is derived from a tu-
ple originating in instanceIj , then thejth bit in
the h̄ origin vector is set to true, otherwise it is
false. This encodes a limited form ofdata prove-
nance[9, 21]: the viewpoints from which the tuple
was derived. (A tuple that is the result of a join
may have more than one origin.)

• For every instanceIj(R) that also containst, the
jth bit of v̄ in M is set to true, otherwise thejth bit
is false. This forms theviewpoint vectorfor each
tuple; it is a more compact representation of the
conditional table expression(v = j1)∨ . . .∨ (v =
jm), wherej1, . . . , jm are the bits set inv. This
indicates what viewpoints include the tuple.

It is straightforward to extend the standard relational al-
gebra in terms of these operators5. Selection and join
predicates may test not only the standard relational at-
tributes, but two additional attributes, the viewpoint and
origin vectors. The selection operator “passes through”

5Such extensions have been proposed for the more general condi-
tional table in [25].



any tuplet satisfying its predicates. Projection over an
MVT tuple t returns a tuplet′ with t’s viewpoint and
origin vectors; if two returned tuplest′, t′′ match in at-
tributes and origin, then one will be removed and the
other’s viewpoint vector will become the union of the
two tuples’ viewpoint vectors. A join of tuplest1, t2
returns a tuplet′ only if there is at least one overlap-
ping bit in the viewpoint vectors oft1, t2; t′ will have
bits set in its origin vector for each origin oft1 or t2,
and bits set in its viewpoint vector for each viewpoint
in common between the source tuples.

Under this semantics, multi-viewpoint tables are a prac-
tical way of representing instances for multiple view-
points, while maintaining query answering tractability:

Theorem 1 Answering datalog queries with multi-
viewpoint tables is polynomial in the size of the data
and the number of participants’ viewpoints.

4.2 Mappings from Shared to Local Relations

Key to ORCHESTRA’s data sharing model is the fact
that multiple local relation instances are mapped into
a single shared MVT relation. Participantp is will-
ing to trust and accept certain data from its associated
shared MVT relations;instance mappingsdefine the
constraints under which local (non-MVT) tuples match
those of shared relations. Specifically, they provide a
mapping between theset of instancesof a shared MVT
relation and asingle local instanceatp, based on tuples’
values, origins, and realm of trust. An instance mapping
contains selection conditions over the origin or view-
point vectors (as well as potentially the data), defining
a correspondence between a subset of the MVT tuples
and those of the local instance. Figure 2 includes in-
stance mappings forRAD1andRAD2, where the pred-
icates over the origin and viewpoint vectors are speci-
fied as set-containment constraints. In this case,RAD1
trusts data originating fromRAD2, andRAD2delegates
its trustby accepting anything in the viewpoint of node
RAD3 (not shown).

When a nodep reconciles, its published updates are in-
corporated into the shared MVT relations with their ori-
gin and viewpoint vectors set to includep. Likewise,
whenp accepts a value into its instance,p’s bit is set in
the MVT’s viewpoint vector.

Example 4.1 Suppose RAD2 publishes the tuple
study 2(12, “test′′, ...). This will show up in the shared
relation Study (12, “test′′, ...; {RAD2}, {RAD2}),
where the attributes after the semicolon represent
(in set form) the contents of the origin vector and
viewpoint vector, respectively. AfterRAD1 recon-
ciles, it will accept this new tuple, based on the
constraints of its instance mapping. Then the MVT
will be updated to includeRAD1 in its viewpoint:
Study (12, “test′′, ...; {RAD2}, {RAD1, RAD2}).

4.3 Mappings between Shared Relations

As in a peer data management system [23, 10], it is pos-
sible to expressschema mappingsbetween shared MVT
relations, and to formulate a query answering problem
in this model. We defer a discussion of such details to
Section 6.

5 Publishing Updates
Thus far, we have described the semantics of mappings
between conflictingdata instances. In reality, OR-
CHESTRA must manipulate, compare, and apply logs
of update sequences, because each participantp recon-
ciles according to its own schedule, and reconciliation
must compare modifications done locally atp against
all updates published sincep last reconciled.

The fundamental unit of storage and propagation in
ORCHESTRA is an atomicdelta over a single rela-
tion, representing a minimal encoding for the inser-
tion, deletion, or replacement of a single tuple. Our
approach bears great similarity to that of incremental
view maintenance [8] and hypothetical updates [19],
except for our inclusion of an atomicreplaceoperation
that changes the values of a tuple. We need an atomic
replacement operation in order to propagate a change
“through” a mapping with a projection: this allows us
to maintain any projected-out values.

Example 5.1 Insertion, replacement, and
deletion of tuples from MAGE-ML relation
Experiment (id, desc, date) can be specified with
deltas such as the following.

+Exper (12, “initial”, 1/04)
→Exper (12, “initial”, 1/04 : 45, “new”, 2/04)
-Exper (45, “new”, 2/04) (The “replace” operation,
→, takes both old and new values, separated by a “:”
in our notation.)

5.1 Reconciling Published Updates

A fundamental question about reconciliation ishow
deltas from different participants should interact—
which updates we consider to conflict. We adopt the
principle of least surprisehere: “intermediate” updates,
i.e., those whose value gets changed by subsequent up-
dates from the same source, should not interfere with
updates from other sources. Two updates only conflict
if their effects would both become visible in contra-
dictory ways at the end of a reconciliation operation.
This semantics implies that ORCHESTRAcanminimize
or “flatten” update sequences, eliminating any interme-
diate steps, before it checks for conflicts. For instance,
the update sequence in the above example should “can-
cel out” since the same tuple is inserted, modified, and
finally deleted.

Our definition of conflicts also affects what it means for
transactions to conflict: two transactions conflict during



a reconciliation stage if any of their individual opera-
tions conflict, or if either transaction uses results from
previous transactions that conflict.

5.2 Flattening Dependency Sequences

Based on the observations made above, we can define
a flatteningoperation that reduces an update sequence
to the minimal number of steps. We assume that all
operations in an update sequence have been validated
by the underlying DBMS, that there are no implicit de-
pendencies between transactions. For each operation,
let thetargetof a deletion or replacement be the key of
the value to be removed or replaced; let the target of an
insertion be the key of the new tuple. Let thenew keyof
a replacement be the key of the new tuple, and the new
key of an insertion be the key of the inserted tuple. For
each transaction, create anoperation setand insert into
it every operation in that transaction.

Each dependency sequence forms the start of a chain in
which the new key of one update potentially becomes
the target of some subsequent update. We repeatedly
apply the transformation rules of Figure 3, until each
update sequence is reduced to at most one operation.
Whenever a transformation merges two operations to
create a new operation, we add all operations from the
operation set of the first transaction to the operation set
of the second transaction: the second transaction can
only complete if the first succeeds.

After this merge operation completes, the only re-
maining dependencies are those resulting from “blind
writes” in which an item is removed and then replaced
(e.g., deleting an item and then inserting a new item
with the same key). If we treat the set of updates as
follow an ordering across the differenttypes(applying
deletions before replacements, and deferring insertions
until last), then we can achieve the effect of the original
update sequence in three successive steps of applying
flattened sets of updates.

Proposition 1 Given set semantics and our assumption
that all operations without data dependencies are in-
dependent, we can achieve the results of the original
update sequence over a relationR by applying the flat-
tened updates in three successive steps. The first step
removes all tuples that are removed in the original up-
date sequence; the second step modifies tuples that were
modified in the original update sequence; the final step
inserts new tuples that were created in the original up-
date sequence.

Since the results of the “flattened” update sequence over
relation r(X̄) are three (unordered, independent) sets
of deltas, we define threedelta relations overr, one for
each type of operation. These are−r(X̄),→ r(X̄, X̄ ′),
and+r(X̄), representing the collections of tuples to be
deleted, the collection of modifications to be applied,

[+A, +A, . . .] ⇒ [+A, . . .]
[+A,−A, . . .] ⇒ [. . .]
[+A,→ A : B, . . .] ⇒ [+B, . . .]
[−A,−A, . . .] ⇒ [−A, . . .]
[→ A : A, . . .] ⇒ [. . .]
[→ A : B, +B, . . .] ⇒ [A → B, . . .]
[→ A : B,−B, . . .] ⇒ [−A, . . .]
[→ A : B,→ A : B, . . .] ⇒ [→ A : B, . . .]
[→ A : B,→ B : C, . . .] ⇒ [→ A : C, . . .]

Figure 3:Transformation rules for flattening dependency se-
quences.A, B, C represent the keys of different updates over
the same relation.

and the collection of tuples to be inserted, respectively.
We use these delta relations as the basis of definingup-
date mappingsin Section 6.

5.3 Reconciliation in a Dynamic Environment

Given a set of “flattened” updates from a reconciling
participantp, ORCHESTRAmust compare these updates
to those performed elsewhere sincep’s last reconcilia-
tion. Not all participants may be available, so we do
not perform pairwise reconciliations. Instead, our solu-
tion is to record and replicate all published updates in a
peer-to-peer distributed hash table, which allows us to
both replicate data and distribute computation.

Every update published by a participant is routed to
a set of nodes in the P2P substrate according to its
key (and relation name). Once all updates have been
published, each peer will have received all updates,
from any participant, which share the same key. It
can quickly determine which updates are trusted by the
reconciling participant (by filtering against the instance
mapping), remove all conflicting updates (and all up-
dates from conflicting transactions), and then return the
remaining updates to the reconciling participant to be
applied to its state. The major challenge in reconcilia-
tion lies in ensuring that the process is atomic and re-
silient to the failure of any node. We rely on redundant
computation, done at each replica, to ensure that recon-
ciliation completes even if a peer disconnects. We also
designate a specific peer to be thecoordinatorof a rec-
onciliation operation for a specific shared relation: like
a distributed lock, it prevents concurrent reconciliations
over the same relation.

5.4 Implementation Status

We have an early implementation of the distributed rec-
onciliation engine, built over the Pastry distributed hash
table substrate. We are in the process of constructing a
synthetic workload generator and testbed to evaluate the
implementation with a large number of peers and large
data sets.

6 Mapping Updates between Schemas
ORCHESTRA allows update propagationacrossdiffer-
ent schemas, meaning that reconciliation typically re-



quires more work than simply comparing delta recorded
within the peer-to-peer substrate. The updates must first
be translated into the schema of reconciling participant
p. Unfortunately, there may not be direct mappings
from every schema to that ofp. Here we leverage tech-
niques developed for peer data management [23, 43]:
participantp will queryfor all deletions, replacements,
and insertions made to its schema, and it will compare
those with the updates it has made. The updates it re-
ceives will be based on the transitive closure of the con-
straints of all schema mappings in the system.

We briefly describe the salient features of peer data
management [23, 43]. The goal is to reformulate a
query posed over one schema into queries over all other
schemas, based oncompositionsof mappings between
pairs of schemas. This enables the peer data manage-
ment system to use a data source to provide certain an-
swers to a query even when a direct mapping to that
source is unavailable. The result is a union of conjunc-
tive queries, which provide the maximally complete set
of certain answers that satisfy all mappings in the sys-
tem, provided that there are no cycles in the mappings.
If cycles are present, then the algorithm returns sound
(but not complete) answers.

6.1 Update Translation Mappings

In order to leverage the query reformulation approach
discussed above, in ORCHESTRAwe take the mappings
between relations and convert them into mappings be-
tween “delta relations” (described in the previous sec-
tion). Essentially, we recast the update translation prob-
lem into one of translating unordered sets of updates
from one schema to another.

The update translation process differs subtly from query
unfolding and reformulation. Given a standard schema
mapping from schemaS1 to a relation in schemaS2,
it is possible to easily derive an update overS2 from
an update overS1; this forms the basis of incremen-
tal view maintenance [8, 13]. However, translating in
the inverse direction, from the output of a view to its
base relations, is not deterministic: the same deletion
of a tuple in theExper relation of Figure 2 might be
accomplished by deleting a tuple fromeitherStudy or
IDMap, or by deleting a tuple fromboth relations —
or by changing the value of one of the relations’ join
attributes. Moreover, depending on the key and func-
tional dependency constraints on the schemas, some of
these alternatives may not always achieve correct, “side
effect free” translation. In fact, there may be no way
to propagate the update at all! Finally, note that one
possible translation accomplishes an operation (delete)
by executing anentirely different class of operation(re-
placement of a join key). Different aspects of this prob-
lem have been addressed in [5, 15, 28].

A mapping for updates must be able to specify how to

takea particular type of update to the output of a view
and translate it into a set of updates over base relations.
In traditional schema mappings, a similar effect may be
achieved usinginverse rules[32]: an inverse rule de-
fines how to derive a tuple in a base relation from tuples
in a view, given that a view defines a constraint over the
base relation(s) and view. Here, the problem is to con-
strain the relationship between anupdateover a base
relation and an update over a view. If update operations
are represented as delta relations, then an update trans-
lation is an “inverse rule” that maps a delta relation for
the view’s output into a delta relation over a base re-
lation. Moreover, simple variations of this rule (e.g.,
changing from one type of delta to another, or join-
ing with data in a base relation in order to supply ad-
ditional attribute values) can deterministically express
the classes of update translation proposed in [28]. The
following example illustrates.

Example 6.1 Consider the schema mapping between
Exper andStudy provided in Figure 2. Given an up-
date toExper , valid update translations could either
delete a tuple fromStudy , a tuple fromIDMap, or both.
This must be disambiguated by specifying a single dele-
tion mapping such as:

-Study (s, . . .) :- -Exper (s2, . . .), IDMap(s, s2)

which deletes tuples fromStudy but not from the ID
mapping table.

One drawback to “inverting” a view is that quite fre-
quently, certain information from the base relations is
projected away by the view. A common technique in
data integration is to useSkolem functionsto represent
“unknown” values. An important benefit of Skolem
functions over traditional null values is that the same
Skolem value can be used in more than one place — en-
abling the query processor to determine that it can join
or merge tuples. In some data translation scenarios, we
can go one step beyond: there may exist a mapping ta-
ble that, given a key, supplies values for the unknown
information. TheIDMap is an example of such a map-
ping table: given a key in either theRADor MAGErela-
tions, it can supply the other key.

6.2 Translating Updates Using Mappings

Over ordinary update sequences, the approach we de-
scribe above must be applied with care, because the or-
der in which updates are applied and combined is im-
portant. We avoid most of those issues because we have
eliminated all ordering dependencies between deltas of
the same type: as discussed previously, we can translate
and apply all deletions in one step, removing existing
elements from the shared relations; then apply modifi-
cations; and finally apply insertions. A naive version
of the update translation algorithm, triggered by partic-
ipantp, proceeds as follows:



1. Traversep’s instance mappings to its shared rela-
tions. Collect information about the set of shared
schemas and mappings that are reachable fromp’s
shared relations.

2. For every shared MVT relationS, compute the set
of tuples to be deleted fromS, given the state of
the shared MVT instances from the last reconcil-
iation of p6 and all published updates since that
point.

3. For every shared MVT relationS, compute the set
of tuple replacement operations overS, given the
shared MVT instances that result after the dele-
tions of the previous step have been applied, and
all published updates sincep’s last reconciliation.

4. For every shared MVT relationS, compute the set
of insertions overS, given the shared MVT in-
stances that result after the deletions and replace-
ments of the previous steps have been applied, and
all published updates sincep’s last reconciliation.

Some mappings between schemas may only convey
partial information, e.g., a subset of the attributes of the
target relation. If more than one mapping path exists
between a pair of schemas, it may be possible to merge
tuples from both paths (e.g., on a key attribute) in order
to recover complete tuples.

6.2.1 Implementation Status

More efficient approaches than the naive algorithm for
update translation are a focus of ongoing work. Since
there may be a large number of interacting update trans-
lation rules, we are focusing on eliminating irrelevant
ones. Clearly, we can push the reconciling participant’s
instance mapping predicates into the reformulation pro-
cess — eliminating irrelevant viewpoints from the pro-
cess. However, there is also a great deal of potential for
eliminating redundant expressions and for distributing
(and caching) common subexpressions.

6.3 From Schema Mappings to Update Mappings

Our update translation approach is based on an assump-
tion that custom mappings have been created to specify
how updates can be propagated. This process occurs
offline, and it can be customized by the participant who
defines the mapping.

Given a traditional schema mapping (potentially de-
rived from a schema matching tool such as those de-
scribed in [36]), it is trivial to derive the update trans-
lation rules that “mirror” a traditional schema mapping
from relationss1, . . . , sk to relationr. Since we sepa-
rately consider deletions, replacements, and insertions,
we need three views to derive the deletion, replacement,
and insertion delta-relations overr. Each query which

6Note that reconciliation is always done between a participant and
the systemfrom the point that participant last reconciled.

produces the delta-relation of type∆ is computed using
the original relationss1, . . . , sk (after any previous up-
date propagation steps) and the∆ delta-relations over
them. We generate a rule for the∆r relation for each
possible way of substituting∆si for si in the original
schema mapping.

6.3.1 Generating Inverse Update Mappings

The problem of generating “inverse” update mappings
is significantly more complex, particularly since not ev-
ery schema mappinghas a correct update translation
that produces precisely the desired effect (and no oth-
ers). Moreover, ifmultiple mappings exist between a
pair of relations, it is possible that such mappings might
interact. Our initial approach in ORCHESTRAis to con-
sider only those cases where a sound and complete,
instance-independent means of mapping an update ex-
ists, and the effects of individual mappings can be con-
sidered independently (i.e., either there is only a single
mapping or different mappings’ translations do not con-
tradict one another).

We have developed a Mapping Wizard that takes a tra-
ditional mapping between schemas and creates a set of
update translator mappings to propagate changes in the
reverse direction. When necessary, it prompts the lo-
cal administrator to choose among valid update map-
pings. Our approach builds upon the algorithm of Dayal
and Bernstein [15], which determines which source re-
lations can become targets of a modification; and on
work by Keller [28], who enumerated alternative ways
of performing an update (e.g., deleting a tuple in the
view by modifying the value of a source attribute). The
main novelty is that we generate translations asrules,
rather than directly applying the update as part of the
algorithm.

6.3.2 Number of Possible Translations

For our techniques to be scalable — and particularly
for them to be manageable by users and administrators
— the number of alternative update translations (and
resulting rules) must be small. A close study of the ap-
proaches of [15, 28] reveals that a view must have a very
specific structure in order to be updatable. Specifically,
it must be possible to find one base relation that func-
tionally determines the remaining source tuples in the
view. It is rare to have more than one relation within
the same view that has this characteristic, and thus an
update typically has few alternative sources to which it
may be propagated. Thus, the only remaining choices
in terms of update propagation tend to be along the lines
of those suggested by Keller.

Table 1 shows real-world results for real-world bioin-
formatics schema mappings, converting from the RAD
database to the MAGE-ML interchange format. These
views represent combinations of different aspects of ex-
perimental setups and data. Our results show that the



View # Rel. Targets Var. Rules
Deletion

RAD-DESIGN 4 1(1) 3(2) 1
RAD-DESIGN-ASSAY 5 3(2) 1(1) 2
RAD-DESIGN-FACTOR 6 3(2) 8(3) 2
RAD-TREATMENT 4 1(1) 3(2) 1
RAD-ASSAY-BIOMAT 3 1(1) 1(1) 1
RAD-ARRAY 4 1(1) 3(2) 1
RAD-COMP-ELEM 6 3(2) 1(1) 2
RAD-SPOT 9 1(1) 15(4) 1

Insertion
RAD-DESIGN 4 1(1) - 5(4)
RAD-DESIGN-ASSAY 5 1(1) - 7(5)
RAD-DESIGN-FACTOR 6 1(1) - 8(6)
RAD-TREATMENT 4 1(1) - 5(4)
RAD-ASSAY-BIOMAT 3 1(1) - 4(3)
RAD-ARRAY 4 1(1) - 5(4)
RAD-COMP-ELEM 6 1(1) - 8(6)
RAD-SPOT 9 1(1) - 10(9)

Table 1: Characterization of possible translations of up-
dates over bioinformatics mappings, showing number of re-
lations in the view, number of sources that may be modified
to achieve the update, number of different ways such modifi-
cations may be performed, and maximum number of resulting
rules for any translation. Numbers in parentheses indicate val-
ues when we assume a minimal number of update operations.

number of possible sources of deletion (3rd column) is
typically small: it is only greater than 1 when the base
table joins with another relation with which it has a 1:1
relationship. Within a given tuple, it may be possible
to modify different attributes; this is the 4th column in
the table, and the figure is only slightly larger. The total
number of resulting update translation rules is shown in
the last column. Note that the numbers generally repre-
sentworst-casenumbers of user choices and numbers
of rules; the numbers within parentheses represent the
worst case if we limit ourselves to deleting only one
source tuple for every deletion over the view. From
this we tentatively conclude that our approach produces
manageable numbers of rules.

6.3.3 Implementation Status

We have completed an early prototype of the Mapping
Wizard tool discussed in this section. Our deinitial ex-
perience suggests that our approach is a feasible way of
taking traditional schema mappings and allowing local
administrators to rapidly and easily convert them into
precise update translation mappings. Our current work
focuses on reasoning aboutinteractionsbetween map-
ping translation rules.

7 Conclusions and Future Work
In this paper, we have shown how the problem of rapid,
collaborative sharing of scientific data requires us to re-
visit our models of data sharing. We have described
how our work on the ORCHESTRA system addresses
this problem:

• It uses a novel data model and languages forman-
agingconflicting information.

• It provides a peer-to-peer distributed hash table
substrate to replicate and exchange updates.

• It extends query rewriting techniques from data in-
tegration to map updates between schemas.

Our current work is focused on refining and evaluat-
ing the peer-to-peer implementation of ORCHESTRA,
based on the algorithms and techniques discussed. Our
primary focus is on finding techniques to optimize the
update translation process. Equally important, we are
working on extending our data model to XML, which
has become the standard format for exchanging struc-
tured data. Finally, we are considering means of apply-
ing our techniques when mappings do not satisfy the
constraints described in Section 6: perhaps it is possi-
ble to define a clean mapping oversubsetsof the source
data instances, enabling “best effort” update transla-
tion.
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