
Querying Provenance for Ranking and Recommending

Zachary G. Ives Andreas Haeberlen Tao Feng Wolfgang Gatterbauer
Computer and Information Science Department Tepper School of Business

University of Pennsylvania Carnegie Mellon University
{zives,ahae,fengtao}@cis.upenn.edu gatt@cmu.edu

1 Introduction
As has been frequently observed in the literature [4, 5, 7],
there is a strong connection between a derived data item’s
provenance and its authoritativeness, utility, relevance,
or probability. A standard way of obtaining a score for
a derived tuple is by first assigning scores to the “base”
tuples from which it is derived — then using the seman-
tics of the query and the score measure to derive a value
for the tuple. For instance, a probabilistic database may
use provenance to compute a probabilistic event expres-
sion for a result, and, given probability values or distri-
butions over the base data values, it can use this to com-
pute probability values or distributions over the resulting
value [4, 5]. Similarly, a keyword search system over
databases, which typically finds “join trees” relating tu-
ples matching the search terms, can assign a score to each
join tree by looking at the base scores and composing the
scores through the operators [18].

Green et al. [8] have shown that evaluation of scores
under many of these models is a special case of com-
puting over data with annotations following the prove-
nance semiring model — in which tuples are annotated
with polynomial expressions from a commutative semir-
ing describing their direct derivations from other tuples.
The commutative semiring is an abstract algebraic struc-
ture that can be “specialized” to a variety of scoring mod-
els, such as constructing probabilistic event expressions,
counting the number of derivations, or determining the
“minimal witness” for the existence of a tuple.

The set of provenance annotation expressions can
equivalently be represented as a graph relating tuples in
the database and their connections via derivations. This
graph representation can be directly stored, manipulated,
and operated upon using extensions to standard database
techniques [7, 12]. A wide array of applications can then
be built over a provenance graph storage system, ranging
from keyword search [18] (where each result is annotated
with a score depending on the sources and mappings) to
incremental view maintenance [7] (where each tuple in a

view is annotated with the conditions under which it re-
mains derivable) to security [6] (where tuples are anno-
tated with visibility levels). All of these applications can
directly operate over the same provenance graph: given
an assignment of annotation values to “base” tuples, plus
a specification for how these annotations compose (a par-
ticular instantiation of the semiring) the application can
traverse the provenance graph and assign an annotation
to every derived result.

Clearly, “provenance-enabled” scoring has led to a va-
riety of new applications and usage scenarios where tu-
ples’ intrinsic value is based on their provenance, inde-
pendent of whatever other tuples exist in the data set.
However, there is another class of applications, revolving
around sharing and recommendation, in which our goal
may be to rank tuples by their “importance” or the struc-
ture of their connectivity within the provenance graph.
More concretely, consider two problems that are com-
monly encountered in collaborative settings:

Ranking usage or influence based on the structure of
provenance. Consider a community portal for sharing
data, code, or queries, along the lines of SourceForge, or
a platform for sharing, analyzing, and visualizing struc-
tured data along the lines of Google Fusion Tables or my-
experiment.org. Intuitively, if we track the provenance of
every derived object, we should be able to rank the “best”
contributors to the site in terms of their overall influence
on what was shared. Observe that this problem is quite
different from assigning a score based purely on an in-
dividual object’s provenance. It more closely resembles
the link analysis problem for Web pages.

Measuring relatedness based on close connectivity,
which may be useful in clustering and recommendation.
In a variety of recommendation applications, it is useful
to be able to cluster users together based on how many
data items and/or tools they commonly use. Again, in
terms of the structure of the provenance graph, if two
different users have a high degree of overall connec-

1

tivity, we may wish to cluster them. This resembles
the clustering and recommendation problem addressed
in YouTube [3], which again exploits link analysis.

Our interest in these problems is motivated by applica-
tion scenarios in which we must rank the influence and
overall utilization of data and/or code. In the ieeg.org
project [13] for sharing neuroscience data and tools, we
seek to rate user contributions based on their overall im-
pact. In the TrustForge project (rtg.cis.upenn.
edu/TrustForge) we seek to rank code modules
for trustworthiness, largely based on how frequently
the code modules are incorporated and tested in other
projects. Ideally, we would like to be able to rank of
modules and users, as well as cluster them, in both a gen-
eral and a context-sensitive way.

In this paper, we argue that the most natural ap-
proach is to exploit the structure of a provenance graph
to rank and recommend “interesting” or “relevant” items
to users, based on provenance (sub)graph structure and
random walk-based algorithms. Random walk algo-
rithms has been well-studied over Web and social net-
work graphs, but to our knowledge have not been con-
sidered in the provenance space. We further argue that
it is desirable to have a high-level declarative language
to extract portions of the provenance graph and then ap-
ply the random walk computations. We build upon the
ProQL provenance query language and make the follow-
ing specific contributions:

• We propose the use of link analysis via random
walks over provenance graphs, as a way of mea-
suring impact or similarity. (Section 2.)
• We extended the ProQL provenance query language

to support a wide array of random walk algorithms.
(Section 3.2.)
• We suggest avenues of exploration for optimizing

the computation of such queries. (Section 3.3.)
2 Ranking and Recommendation
Many methods have been proposed for ranking and
making recommendations in graphs. The most popular
schemes, and the ones we focus on, are based on the no-
tion of a random walk in a graph, with Google’s PageR-
ank [15] as the most popular example. Space constraints
prevent a full survey of the literature, but we briefly sum-
marize the key ideas, starting with the PageRank algo-
rithm and then discussing a number of popular variants.

The majority of link analysis algorithms are based on
the notion of a “random surfer” who starts at a random
node in the graph, and then randomly follows outgoing
links to other nodes (with some probability of instead
jumping to another random node). The PageRank of a
node n corresponds to the proportion of the time that the
random surfer spends at n in the limit. Its computation
can be expressed iteratively using matrix operations.

Suppose we are given n pages p1 . . . pn where each pi
has L(pi) outgoing links. Initialize a vector representing
PageRank at iteration 0, R0, to have the value 1/n in each
element. Then we iteratively recompute Ri for iteration i,
given the previous value Ri−1, a decay factor d, a column
vector of ones 1̄, and a matrix M where Mi j is 1/L(p j)
if page j links to page i, and 0 otherwise. Then:

Ri = dMRi−1 +
1−d

n
1̄

The PageRank algorithm, with minor variations, has
been extended to other domains, such as ObjectRank [2]
for interconnected objects, XRank [9] for XML, and
TrustRank [10] for computing trustworthiness.

We summarize a number of popular enhancements to
the basic problem formulation.
Biased starting points. PageRank assumes that the ran-
dom surfer has an equal probability of starting at (or
randomly jumping to) any node. Variations allow for a
nonuniform probability distribution across nodes [16].
Topic-sensitive or personalized PageRank. Work such
as that of [11] computes PageRank starting the random
walk from a subset of the nodes.
Nonuniform transfer of score to connected nodes. Ob-
jectRank [2] allows for edges of different types to prop-
agate different amounts of weight.
Normalization or threshold. Robust PageRank [1] lim-
its the amount of PageRank any single node can accumu-
late, by thresholding it at a particular level after every it-
eration. Algorithms such as label propagation (described
below) re-normalize the total accumulated value at the
end of each iteration.
Label propagation. More complex algorithms based
on label propagation, like adsorption [3, 17], generalize
PageRank. Instead of assuming a stationary distribution,
they assume a set of start nodes and create a label for
each. Each random walk step “propagates” some weight
for each label at the previous node. Adsorption com-
putes, for every node n in the graph, a distribution across
labels specifying the proportion of the time a visit to n
originated at each given start node s. If a large ratio of
the paths originating from s pass through n, n will have a
high score associated with s’s label. This forms a means
of clustering nodes, and thus making recommendations.

Our goal is to develop a high-level framework for per-
forming all of the above computations. We wish to per-
form this over graphs that represent provenance as op-
posed to Web graphs. In some cases we may wish to
project out portions of the provenance graph and only
operate over those. This suggests building random walk
capabilities over a provenance query language such as
ProQL [12], supplementing its capabilities for extracting
provenance subgraphs with new constructs for control-
ling weight assignment and propagation.

2

rtg.cis.upenn.edu/TrustForge
rtg.cis.upenn.edu/TrustForge

A(2,sn2,5)

A(1,sn1,7) N(1,sn1)m1

C(2,sn2) m2+

N(2,sn2)m1

+

+

Figure 1: Example provenance graph.

3 ProQL Language & Model
We briefly summarize the existing ProQL model and lan-
guage, of [12], to set the context for our extensions.
ProQL operates over provenance graph representations
of semiring provenance. A provenance graph includes
tuple nodes representing the tuples in the database in-
stance, and derivation nodes representing direct deriva-
tions (immediate consequents in Datalog parlance) of tu-
ples from other tuples. Tuple nodes can only be con-
nected via edges with derivation nodes: an edge from a
tuple node to a derivation node represents the use of the
tuple in a derivation, and an edge from a derivation node
to a tuple node represents the result of the derivation.

Example 3.1. Suppose we have two base relations A and
C (representing animals and their canonical names) and
a view N relating the three sources of data A, C, and
N (representing animals, common names, and scientific
names) that are related as follows:

m1 : N(i,n) :- A(i,n,x)
m2 : N(i,n) :- C(i,n)

An example provenance graph shown in Figure 1. Tu-
ple nodes are rectangles and derivations nodes are el-
lipses (labeled with the names of the queries, or “+” if
the data was directly inserted).

The graph shows the derivations of tuples directly in
terms of one another. For a tuple node in the provenance
graph, its alternate direct derivations are captured by the
set of derivation nodes that have directed edges pointing
to it. (These represent unions.) In turn, each derivation
connects a set of source tuples that are joined — the set
of tuple nodes with edges going to the derivation node
— and a set of consequents — the set of tuple nodes that
have edges pointing to them from the derivation node.

3.1 Basic ProQL Language
A ProQL query takes as its input a provenance graph G,
like the one of Figure 1. We adopt a path expression
syntax where the individual “steps” consist of traversals
from a node representing a tuple in a relation, through
a node representing a derivation through a query, to an-
other node representing a tuple. Within the path expres-
sion, we may restrict the tuple nodes to belong to a cer-
tain relation, or the derivation nodes to belong to a cer-
tain mapping. We may also bind variables to either type
of node. Within a path expression, tuple nodes are spec-
ified using the form [relation-name variable], where

both relation-name and variable are optional. Derivation
nodes are specified using one of the three forms:

<- | < query-name | < variable
A derivation node (e.g., representing the results of a join
in a view) may connect multiple tuple nodes. ProQL also
supports Kleene-closure operators “+” or “*” on edges.

Directly borrowing the conventions of XQuery, a
ProQL query may have a for clause indicating which
variables (prefixed with the $ character) to bind to edges
or nodes in a list of paths. A where clause allows for
filtering conditions over variables.

Construction of returned results in ProQL is divided
into two parts. A graph construction clause, include
path, specifies which nodes, edges, and paths to copy
to an output graph. However, the user may wish to it-
erate over multiple portions of this output graph — for
this we also support a return clause that returns tuples
of bindings to nodes and/or edges in the graph. To help
make this concrete, we show a brief example.

Example 3.2. Given the setting of Figure 1, return the
subgraph containing all derivations of tuples in N whose
ID has value 1:

for [N $n]
where $n.id = 1
include path [$n] <-+ []
return $n

Note the use of the path wildcard (<-+) specifying all
paths from all nodes that derive any $x node.

This core language is sufficient to project out portions
of a provenance graph. We now need extensions for ran-
dom walk algorithms. Our first step was to increase the
set of variable types allowed in the language, to include
collection-types such as node sets, paths (lists of node
sequences), and edge sets; and correspondingly to allow
for set-membership and aggregation functions over col-
lections. These are necessary for reasoning about, e.g.,
how to divide a PageRank node weight evenly across the
set of all outgoing edges.

3.2 Random Walks and Query Support
Our initial approach to supporting graph random walk
algorithms over provenance graphs was to extend ProQL
to full Turing-completeness with arbitrary recursion and
creation of annotations. However, this makes the query
harder to optimize and gives the programmer a fairly
low-level abstraction. Hence, we instead propose a set of
language extensions for random walks that closely align
with the matrix-based specifications of the computation.
Node distribution table. We start by allowing the pro-
grammer to specify one or more tables giving a probabil-
ity for visiting each node, optionally for each label. This
captures the notion of the bias table.

3

Transfer table. Similarly, the programmer can specify a
table that resembles the weight transfer matrix in PageR-
ank, in mapping how much weight to transfer from one
node to another in each traversal. This can be extended
to support different transfers for different labels.
Iterative computation. We develop a repeat..until con-
struct in which the main random walk computation is
repeatedly applied. Optionally this may include two
steps, one for propagation and a second for adjustment
of weights (e.g., normalization or thresholding).
Propagation and adjustment. The propagate clause
uses the node distribution and transfer tables to propagate
weight from one node to another, with a specifiable de-
cay factor. The adjust clause allows the weights on each
node to be scaled (even across labels) or thresholded.
Termination condition. We can specify that the com-
putation should run until the amount of weight change is
under a threshold.

Figure 2 in Appendix A shows an example of the Ro-
bust PageRank algorithm (which thresholds the rank that
any node may accumulate) in ProQL and Figure 3 shows
the adsorption label propagation algorithm. A major dif-
ference between the two is the node distribution table:
for PageRank we assign a uniform weight, and for ad-
sorption we assign a value of 1.0 to two different labels
at two start nodes, leaving everything else blank. Weight
transfer for PageRank has a decay factor, whereas for ad-
sorption labels and weights are simply propagated.

3.3 Optimization Opportunities
Our high-level formulation of the random walk com-
putation simplifies optimization in a distributed setting.
The node distribution and transfer tables can be easily
partitioned alongside the nodes to enable efficient lo-
cal computation. Moreover, given that the random walk
algorithms have convergence guarantees, we can actu-
ally compute over different parts of the graph at differ-
ent rates, e.g., if some node weights stabilize early. As
described in our recent work on cluster-based query pro-
cessing in the REX system [14], the system can “focus”
its communication and computation on the parts of the
data that actually change.

4 Conclusions & Future Work
The problem of making recommendations or assigning
scores based on influence or common connectivity is es-
sential to a variety of collaborative scenarios. We pro-
pose that a natural way of performing such computa-
tions is via random-walk algorithms, which can be ap-
plied over the provenance graph. We have developed a
number of extensions to the ProQL language to specify
a broad array of different random-walk algorithms in a
high-level way. These high-level specifications are also
amenable to distribution and optimization, which we are
currently studying.

Acknowledgments
This work was funded by NSF grants IIS-1050448, CNS-
071541, and CNS-1065130, and DARPA grant HR-011-
11-C-0096.

References

[1] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, K. Jain,
V. Mirrokni, and S. Teng. Robust pagerank and locally
computable spam detection features. In AIRWeb, 2008.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-
tRank: Authority-based keyword search in databases. In
VLDB, 2004.

[3] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly. Video sugges-
tion and discovery for YouTube: taking random walks
through the view graph. In WWW, 2008.

[4] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. In
VLDB, 2006.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[6] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML:
queries and provenance. In PODS, 2008.

[7] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tan-
nen. Update exchange with mappings and provenance.
In VLDB, 2007. Amended version available as Univ. of
Pennsylvania report MS-CIS-07-26.

[8] T. J. Green, G. Karvounarakis, and V. Tannen. Prove-
nance semirings. In PODS, 2007.

[9] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked keyword search over XML documents.
In SIGMOD, 2003.

[10] Z. Gyöngyi, H. Garcia-Molina, and J. O. Pedersen. Com-
bating web spam with TrustRank. In VLDB, 2004.

[11] T. H. Haveliwala. Topic-sensitive PageRank: A context-
sensitive ranking algorithm for web search. TKDE, 15(4),
2003.

[12] G. Karvounarakis and Z. G. Ives. Querying data prove-
nance. In SIGMOD, 2010.

[13] B. Litt and et al. The international epilepsy electrophysi-
ology portal. www.ieeg.org.

[14] S. R. Mihaylov, Z. G. Ives, and S. Guha. Rex: Recursive,
delta-based data-centric computation. In Proc. VLDB,
2012. To appear.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, November
1999.

[16] M. Richardson and P. Domingos. The intelligent surfer:
Probabilistic combination of link and content informa-
tion in PageRank, 2002.

[17] P. Talukdar and K. Crammer. New Regularized Algo-
rithms for Transductive Learning. In ECML/PKDD (2),
2009.

[18] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer,
Z. G. Ives, F. Pereira, and S. Guha. Learning to create
data-integrating queries. In VLDB, 2008.

4

www.ieeg.org

A Appendix

populate table bias(toNode,weight)
let $v = []
for [$n]
insert ($n, 1 / count($v))

populate table transfer(source,
destination, ratio)

for [$n] <- [$n2]
let $outEdges = [] <- [$n2]
insert ($n, $n2, 1/count($outEdges))

initialize
for [$n]
annotate $n with pr = bias($n)

repeat
for [$n] <- [$n2]
propagate $n.pr to $n2.pr using decay =

0.85 [transfer($n,$n2), bias]
then
for [$n]
adjust $n.pr threshold min(bias($n),

0.5)
until empty (
for [$n]
where change($n.pr) > 0.1
return $n

) Figure 2: Robust PageRank in ProQL+

populate table bias(toNode,label,weight)
for [$n]
insert (’start1’, ’label1’, 1)
insert (’start2’, ’label2’, 1)

populate table transfer(source,
sourcelabel, destination,
destinationlabel, ratio)

for [$n] <- [$n2], $l in labels($n)
let $outEdges = [] <- [$n2]
insert ($n, $l, $n2, $l, 1/count(

$outEdges))
initialize

for [$n]
annotate $n with pr = bias($n)

repeat
for [$n] <- [$n2], $l in labels($n)
propagate $n.$l to $n2.$l using

transfer($n,$l,$n2,$l)
then
for [$n], $l in labels($n)
let $labels = (for $l2 in labels($n)

return $n.$l2)
adjust $n.$l scale 1/(sum($labels))

until empty (
for [$n], $l in labels($n)
where change($n.$l) > 0.1
return $n

) Figure 3: Label propagation in ProQL+

5

	Introduction
	Ranking and Recommendation
	ProQL Language & Model
	Basic ProQL Language
	Random Walks and Query Support
	Optimization Opportunities

	Conclusions & Future Work
	Appendix

