
Querying Data Provenance

Grigoris Karvounarakis
∗

LogicBlox ICS-FORTH
Atlanta, GA, USA Heraklion, Greece

gregkar@gmail.com

Zachary G. Ives Val Tannen
University of Pennsylvania

Philadelphia, PA, USA
{zives,val}@cis.upenn.edu

ABSTRACT
Many advanced data management operations (e.g., incremental main-
tenance, trust assessment, debugging schema mappings, keyword
search over databases, or query answering in probabilistic databases),
involve computations that look at how a tuple was produced, e.g.,
to determine its score or existence. This requires answers to queries
such as, “Is this data derivable from trusted tuples?”; “What tuples
are derived from this relation?”; or “What score should this answer
receive, given initial scores of the base tuples?”. Such questions
can be answered by consulting the provenance of query results.

In recent years there has been significant progress on formal
models for provenance. However, the issues of provenance stor-
age, maintenance, and querying have not yet been addressed in an
application-independent way. In this paper, we adopt the most gen-
eral formalism for tuple-based provenance, semiring provenance.
We develop a query language for provenance, which can express all
of the aforementioned types of queries, as well as many more; we
propose storage, processing and indexing schemes for data prove-
nance in support of these queries; and we experimentally validate
the feasibility of provenance querying and the benefits of our index-
ing techniques across a variety of application classes and queries.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query languages;
H.2.4 [Database Management]: Systems—Query processing

General Terms
Languages, Performance, Algorithms

Keywords
Data provenance, annotation, query language, query processing

1. INTRODUCTION
In the sciences, in intelligence, in business, the same adage holds

true: data is only as credible as its source. Recently we have be-
gun to see issues like data quality, uncertainty, and authority make
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their way from separate data processing stages, into the very foun-
dations of database systems: data models, mapping definitions, and
query languages. Typically, the notion of data provenance [12, 18,
29] lies at the heart of assessing authority or uncertainty. Systems
like Trio [6] compute provenance or lineage, then use this to de-
rive probabilities associated with answers; systems like ORCHES-
TRA [28] record provenance as they propagate data and updates
across schema mappings from one database to another, and use
provenance to assess trust and authority. Recently [41] provenance
has even been shown useful in learning the authority of data sources
and schema mappings, based on user feedback over results: a sys-
tem can learn adjustments to rankings of queries based on feedback
over their answers, and it can then propagate this adjustment to the
score of one or more relations. Finally, provenance has been used
to debug schema mappings [14] that may be imprecise or incorrect:
users can see how “bad” data has been produced. (We note that our
focus is on data provenance, based on declarative mappings, rather
than workflow provenance, a separate topic [8, 13, 38].)

Surprisingly, the study of data provenance as a first-class data
artifact — worthy of its own data model, query language, and in-
dexing and query processing techniques — has not yet come into
the forefront. We believe these topics are of increasing importance,
as databases begin to incorporate provenance. There are a variety
of reasons why provenance storage and querying support would be
advantageous if fully integrated into a DBMS query system.
Interactive provenance browsers and viewers. In many ap-
plications, ranging from debugging [14] to scientific assessment of
data quality [9, 28], users would like to visualize the relationship
between tuples in different relations, or the derivation of certain
results, without being overwhelmed by complexity. This requires
a convenient way to (1) explore the (typically large and complex)
graph of tuples and derivations, and (2) request and isolate por-
tions of it. Declarative querying is advantageous here: it provides a
high-level model for developers of graphical tools to retrieve data,
without needing to know the details of its physical representation.
Developing generalized materialized view support for multiple
scoring/ranking models. Uncertain data has been intensively
studied in recent years, with a variety of ranked and probabilistic
formulations developed. Such work typically develops a scheme
to derive probabilities or scores “on the fly,” based on how exten-
sional (base) tuples are combined. Given a very general tuple-based
provenance model such as [29], we can materialize a single view
and its provenance — and from this we can efficiently compute any
of a variety of scores or annotations through provenance queries.
Incorporation of generalized trust and confidentiality levels into
views. As materialized data is passed along from system to sys-
tem, it may be useful to annotate the data with information about
the access levels required to see certain portions of it [24, 40]; or,



conversely, to compute from its provenance an authoritativeness
score to determine how much to trust the data [42].
Efficient indexing schemes for provenance. Declarative query
techniques can benefit from indexing strategies for provenance, and
potentially offer better performance than ad hoc primitives.

In Section 2 we show examples of provenance queries and iden-
tify a partial list of important use cases for a provenance query
language. Our motivation for studying provenance queries comes
from developing provenance support within collaborative data shar-
ing systems (CDSSs), a new architecture for data sharing estab-
lished by the ORCHESTRA [28] and Youtopia [36] systems. In such
systems, a variety of sites or peers, each with a database, agree to
share information. Peers are linked to one another using a network
of compositional schema mappings, which allow data or updates
applied to one peer to be transformed and applied to another peer.
A key aspect of such systems is that they support tracking of the
provenance of data items as they are mapped from site to site — and
they use this provenance to support incremental update propagation
(essentially, view maintenance) [28, 36], conflict resolution [42],
and ranked result computation [41]. CDSSs use provenance inter-
nally, but have, to this point, relied on custom procedural code to
perform provenance-based computations. In order to make prove-
nance fully available to users and application developers, we make
the following contributions:

• A query language for data provenance, ProQL, useful in sup-
porting a wide variety of applications with derived informa-
tion. ProQL is based on the more compact graph-based rep-
resentation [28] of the rich provenance model of [29], and
can compute various forms of annotations, such as scores,
for data based on its provenance.

• A general data provenance encoding in relations, which al-
lows storage of provenance in an RDBMS while incurring a
modest space overhead.

• A translation scheme from ProQL to SQL queries which can
be executed over an RDBMS used for provenance storage.

• Indexing strategies for speeding up certain classes of prove-
nance queries.

• An experimental analysis of the performance of ProQL query
processing and the speedup yielded by employing different
indexing strategies.

Our work generalizes beyond the CDSS setting, to analogous
computations over materialized views in traditional databases. It
is also relevant in a variety of problem settings such as comput-
ing probabilities for materialized tuples based on event expressions
(as in Trio [6]), or to facilitate debugging of schema mappings (as
in SPIDER [14]). ProQL was designed for the provenance model
of [29], extended to record schema mapping involved in deriva-
tions [31]. This model is slightly more general that the models of
Trio [6] and Perm [26]. However, a subset of our language could be
implemented over such systems, providing them with provenance
query support that matches the capabilities of their models.

The rest of the paper is organized as follows. In Section 2 we
present our problem setting and some example use cases. In Sec-
tion 3 we propose the syntax and semantics of ProQL, a language
for querying data provenance. In Section 4, we describe a scheme
for storing provenance information in relations and evaluating ProQL
queries over an RDBMS. Section 5 proposes indexing techniques
for provenance that can be used to answer ProQL queries more
rapidly. We illustrate the performance of ProQL query processing

and the speedup of these indexing techniques in Section 6. Finally,
we discuss related work in Section 7 and conclude and describe
future work in Section 8.

2. SETTING AND MOTIVATING USE CASES
Our study of provenance comes from the CDSS arena, where

different autonomous databases are linked by declarative schema
mappings, and data and updates are propagated across those map-
pings. We briefly describe the main ideas of schema mappings and
their relationship to provenance in this section, and also how these
ideas generalize to settings with traditional views. Then we provide
a set of usage scenarios and use cases for provenance itself — and
hence for our provenance query capabilities.

EXAMPLE 2.1. Suppose we have three data sharing partici-
pants, P1, P2, P3, all interested in information about animals, their
sizes, and the various (scientific and common) names by which
they may be referred. Let the public schema of P1 be the relations
Animal (id, scientificName, length) and CommonName(id,
name); the public schema of P2 be the single relation Names (id,
name, isCanonical); and the public schema of P3 be the single
relation Organism (name, height, isAnimal).

For simplicity we will abbreviate the relation names to their first
letter, as A, C, N , and O. Each of these relations represents the
union of data contributed or created locally by each participant,
plus data imported by the participant. We can define a local contri-
butions table for each of the relations above, respectively Al, Cl, Nl,
and Ol. To copy all data from Al, Cl, Nl, and Ol to the corre-
sponding public schema relations, we can use the following set of
Datalog rules:
L1 : A(i, s, l) :- Al(i, s, l)
L2 : C(i, n) :- Cl(i, n)
L3 : N(i, n, c) :- Nl(i, n, c)
L4 : O(n, h, a) :- Ol(n, h, a)

Finally, we may inter-relate the various public schema relations
through a series of schema mappings, also expressed within a su-
perset of Datalog1, as the following:
m1 : C(i, n) :- A(i, s, _), N(i, n, false)

m2 : N(i, n, true) :- A(i, n, _)
m3 : N(i, n, false) :- C(i, n)

m4 : O(n, h, true) :- A(i, n, h)
m5 : O(n, h, true) :- A(i, _, h), C(i, n)

Observe that each public schema relation is in essence a (pos-
sibly recursive) view. Data and updates from each peer are ex-
changed by materializing this set of views [28, 39]. Our model is
in fact a generalization of one in which multiple views are com-
posed over one another, and all of the techniques in this paper will
apply equally to that setting.

The process of executing the set of extended-Datalog rules pro-
vided above is an instance of data exchange [21], and produces a
set of materialized data instances that form a canonical universal
solution. In this solution, as with any materialized view in set-
semantics, each tuple in the view may have been derivable in mul-
tiple ways, e.g., due to a projection within a mapping, or a union
of data from two different mappings. The set of such derivations
1To capture the full generality of standard “tuple generating depen-
dency” or GLAV schema mappings [30], Datalog must be extended
to support Skolem functions that provide a mechanism for creating
special labeled null values that may represent the same value in
multiple data instances. These details are not essential to the under-
standing of this paper, and hence we omit them in our discussion,
though our implementation fully supports such mappings.
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Figure 1: Example provenance graph (rectangles are tuples,
ellipses are derivations, and ovals with ’+’ represent original
base data, also shown as boldface).

are what we term the provenance of each tuple, and they can be
described in terms of base data (EDBs), other derived tuples (for
recursive derivations), and mappings (using the name that we have
assigned to each rule). Moreover, a tuple may be the result of com-
position of mappings (which may also involve joins): e.g., a tuple
may be derived in instance O as a result of applying m5 to data in
C that was mapped from A and N along m1. Our goal is to record
how data was derived through the mappings.

Figure 1 illustrates the result of data exchange over the mappings
of Example 2.1 along with the relationship between tuples and their
derivations. This provenance graph has two types of nodes: tuples
(represented in rectangles, labeled with the values of the tuples) and
derivations (represented as ellipses, labeled with the names of the
mappings). This graph describes the relative derivations of tuples
in terms of one another; local contribution tables for each relation
contain the tuples indicated by boldface, and their presence is in-
dicated by oval nodes with a ‘+’. Given a tuple node in the prove-
nance graph, we can find its alternate direct derivations by finding
the set of derivation nodes that have directed edges pointing to it.
(These represent union.) In turn, each derivation has a set of m
source tuples that are joined — the set of tuple nodes with edges
going to the derivation node — and a set of n consequents — the
set of tuple nodes that have edges pointing to them from the deriva-
tion node. The unique properties of our graph model will provide a
desideratum for our provenance query language semantics: when-
ever we return a derivation node in the output, we will also want all
m source nodes and n target nodes, to maintain the meaning of the
derivation. This contrasts with the graph data models of [1, 16, 22,
32].

Use Cases for Provenance Graph Queries
Given this provenance graph, there are many scenarios where a
user (especially through a graphical tool) may want to retrieve and
browse a portion of the graph. Based on our discussions with scien-
tific users, and on previous work in the data integration community,
we consider several query use cases.
Q1. The ways a tuple was derived. A scientist, intelligence ana-
lyst, or author of mappings [14] may want to visualize the different
ways a tuple can be derived — including the source tuple values and
the combination of mappings used. This is essentially a projection
of the provenance graph, containing all base tuples from which the
tuple of interest is derivable, as well as the derivations themselves,
including the mappings involved and intermediate tuples that were
produced. This graph may be visualized for the user.
Q2. Relationships between tuples. One may also be interested
in restricting the set of derivations to those involving tuples from
a certain source or derived relation or set of relations, e.g., if that
relation is known to be authoritative [9].
Q3. Results derivable from a given mapping or view. The
above use cases started with a tuple and considered its provenance.
Conversely, we can query the provenance for tuples derived using a
particular mapping (as is useful in [14]) or from a particular source.

Q4. Identifying tuples with common/overlapping provenance
As data is propagated along different paths in a CDSS, it may be
useful to be able to determine at a given time whether tuples at two
different peers have some common provenance. For instance, sup-
pose we are trying to assess trustworthiness of information accord-
ing to the number of peers in which it appears independently [20].
In that case, it is important to be able to identify when information
came from the same peer or source.

2.1 From Provenance to Tuple Annotations
In the previous section and in our actual storage model, we focus

on provenance as a graph. However, formally this graph encodes
a (possibly recursively defined) set of provenance polynomials in a
provenance semiring [29] (also called how-provenance). This cor-
respondence is useful in computing annotations like scores, proba-
bilities, counts, or derivability of tuples in a view.

Suppose we are given a provenance graph such as that of Fig-
ure 1, and that every EDB tuple node is annotated with a base
value: perhaps the Boolean true value if we are testing for deriv-
ability, a real-valued tuple weight if we are performing approximate
keyword search over the tuples, etc. Then we can compute anno-
tations for the remaining nodes in a bottom-up fashion: for any
derivation node whose source tuple nodes have all been given an-
notations, we combine the source tuple nodes’ annotation values
with an appropriate abstract product operation: we AND Boolean
values for derivability, or sum tuple weights in the keyword search
model. When we reach a tuple node whose derivation nodes have
all been given scores, we apply an abstract sum operation to deter-
mine which annotation to apply to the tuple node: we OR Boolean
values from the mappings for derivability, or compute the MIN an-
notation of the different derivation nodes’ weights in the keyword
search model. Finally, mappings themselves can affect the result-
ing annotation, e.g., an untrusted mapping may produce false on all
inputs. We repeat the process until all nodes have been annotated.

We can get different types of annotations for different use cases,
based on how we instantiate the base value, abstract product oper-
ation, and abstract sum operation. The work of [29, 31] provides
a formal definition of the properties that must hold for these values
and operations, namely that they satisfy the constraints of a semir-
ing; but we summarize some useful cases (including a few novel
ones) in Table 1. Each row in the table represents a particular use
case, and its semiring implementation.

The derivability semiring assigns true to all base tuples, and de-
termines whether a tuple (whose annotation must also be true can
be derived from them. Trust is very similar, except that we must
check each EDB tuple to see whether it is trusted — annotating
it with true or false. Moreover, each mapping may be associated
with the neutral function Nm, returning its input value unchanged,
or the distrust function Dm, returning false on all inputs. Any de-
rived tuples with annotation true are trusted. The confidentiality
level semiring [24] assigns a confidentiality access level to a tuple
derived by joining multiple source tuples: for any join, it assigns
the highest (most secure) level of any input tuple to the result; for
any union, it assigns the lowest (least secure) level required. The
weight/cost semiring is useful in ranked models where output tu-
ples are given a cost, evaluating to the sums of the individual scores
or weights of atoms joined (and to the lowest cost of different al-
ternatives in a union). This semiring can be used to produce ranked
results in keyword search [41] or to assess data quality. The prob-
ability semiring represents probabilistic event expressions that can
be used for query answering in probabilistic databases.2 The lin-

2As observed in [19], computing actual probabilities from these
event expressions is in general a #P-complete problem. Techniques



Table 1: Useful mappings of base values and operations in evaluating provenance graphs.
Use case base value product R⊗ S sum R⊕ S
Derivability true R ∧ S R ∨ S
Trust trust condition result R ∧ S R ∨ S
Confidentiality level tuple confidentiality level more_secure (R, S) less_secure (R, S)
Weight/cost base tuple weight R + S min(R, S)
Lineage tuple id R ∪ S R ∪ S
Probability tuple probabilistic event R ∩ S R ∪ S
Number of derivations 1 R · S R + S

eage semiring corresponds to the set of all base tuples contributing
to some derivation of a tuple. The number of derivations semir-
ing counts the number of ways each tuple is derived, as in the bag
relational model.
Cycles (recursive mappings). For provenance graphs contain-
ing cycles (due to recursive mappings) there are certain limitations.
The first 5 semirings of Table 1 have idempotence and absorption
properties guaranteeing they will remain finite in the presence of
cycles (if evaluation is done in a particular way); for the number
of derivations semiring, the annotations may not converge to a fi-
nal value (i.e., we can have infinite counts). In this paper we de-
velop a query language capable of handling cycles (as can occur
in a CDSS such as ORCHESTRA, where participants independently
specify schema mappings to their individual databases instances).
However, we focus our initial implementation on the acyclic case.

Use Cases for Tuple Annotation Computation
Within data integration and exchange settings, there are a variety of
cases where we would like to assign an annotation to each result in
a materialized view, based on its provenance.
Q5. Whether a tuple remains derivable. During incremental
view maintenance or update exchange, when a base tuple is de-
rived, we need to determine whether existing view tuples remain
derivable. Provenance can speed up this test [28].
Q6. Lineage of a tuple. During view update or bidirectional
update exchange [33] it is possible to determine at run-time whether
update propagation can be performed without side effects based
on the derivability test of Q5 and the lineages [18] of tuples —
i.e., the set of all base tuples each can be derived from, without
distinguishing among different derivations.
Q7. Whether to trust a tuple. In CDSS settings, a set of trust
policies is used to assign trust/distrust and authority levels to differ-
ent data sources, views, and mappings — resulting in a trust level
for each derived tuple based on its provenance [28, 42].
Q8. A tuple’s rank or score. In keyword query systems over
databases, it is common to represent the data instance or the schema
as a graph, where edges represent join paths (e.g., along foreign
keys) between relations. These edges may have different costs
depending on similarity, authority, data quality, etc. These costs
may be assigned by the common TF/IDF document/phrase similar-
ity metric, by ObjectRank and similar authority-based schemes [4],
or by machine learning based on user feedback about query an-
swers [41]. The score of each tuple is a function of its provenance.
If we are given a materialized view in this setting, we may wish
to store the provenance, rather than the ranking, in the event that
costs over the same edges might be assigned differently based on
the user or the query context [41].
Q9. A tuple’s associated probability. In Trio [6], a form of
provenance (called lineage in [6], though more general than that
of [18]) is computed for query results, and then probabilities are

from probabilistic databases [19] can be used to compute them
more efficiently; this is outside the scope of this paper.

assigned based on this lineage. In similar fashion, we can compute
probabilities from a materialized representation of provenance.
Q10. Computing confidentiality/access control levels for data.
Recent work [24] has shown how provenance can be used to assign
access control levels to different tuples in a database. If the tuples
might represent “shredded XML,” i.e., a relational representation of
an XML document, then the access control level of a tuple (XML
node) should be the strictest access control level of any node along
the path from the XML root. In relational terms, the access control
level of a tuple represents the strictest level of any tuple in a join
expression corresponding to path evaluation.

In the next section, we describe a general language for express-
ing a wide variety of provenance queries, including these use cases.

3. A QUERY LANGUAGE FOR PROVENANCE
To address the provenance querying needs of CDSS users, as ex-

pressed in the use cases of the previous section, we propose a lan-
guage, ProQL (for Provenance Query Language). We noted previ-
ously that our use cases can be divided into ones that (1) help a user
or application determine the relationship between sets of tuples, or
between mappings and tuples; (2) provide a score/rank, access con-
trol level or assessment of derivability or trust for a tuple or set of
tuples. Consequently, ProQL has two core constructs. The first de-
fines projections of the provenance graph, typically with respect to
some tuple or tuples of interest. The second specifies how to evalu-
ate a returned subgraph as an expression under a specific semiring,
to compute an annotation from that semiring for each tuple.

3.1 Core ProQL Semantics
A ProQL query takes as its input a provenance graph G, like the

one of Figure 1. The graph projection part of the query:

• Matches parts of the input graph according to path expres-
sions (possibly filtering them based on various predicates).

• Binds variables on tuple and derivation nodes of matched
paths.

• Returns an output provenance graph G′, that is a subgraph
of G and is composed of the set of paths returned by the
query. For each derivation node, every tuple node to which it
is related is also returned in G′, maintaining the arity of the
mapping.

• Returns tuples of bindings from distinguished query vari-
ables to nodes in G′, henceforth called distinguished nodes.

Note that provenance is a record of how data was related through
mappings and data exchange; it does not make sense to be able to
independently “create new provenance” within a provenance query
language. Hence, unlike GraphLog [16], Lorel [1] or StruQL [22]
— but similarly to XPath — ProQL cannot create new nodes or
graphs, but always returns a subgraph of the original graph. More-
over, provenance graphs are different from the graph models of
those languages, in containing two kinds of nodes (tuple and deriva-
tion nodes, where, as previously described, a derivation node is in
some sense “inseparable” from the set of tuple nodes it relates).



If the ProQL query only consists of a graph projection part, it
returns the subgraph described above, together with sets of bind-
ings for the distinguished variables. The set of bindings accom-
panying the graph projection is especially useful for the optional
next stage: ProQL queries can also support annotation computa-
tion for the nodes referenced in the binding tuples, using a par-
ticular semiring. This is a unique feature of ProQL compared to
other graph query languages, that is enabled by the fact that prove-
nance graphs can be used to compute annotations in various semir-
ings, as explained in Section 2.1. The annotation computation part
of a ProQL query specifies an assignment of values from a par-
ticular semiring (e.g., trust value, Boolean, score) to some of the
nodes in G′ and computes the values in that semiring for the dis-
tinguished nodes. The result is a set of tuples consisting of pairs
(distinguished node id, semiring annotation value) for each
bound variable output by the query.

Due to space limitations, this paper focuses on a single ProQL
query block, but our design generalizes to support nested graph
projection and annotation computation queries. For the latter, we
need to retain both the annotations and the subgraph over which
they were computed, in order to evaluate the outer query.

3.2 ProQL Syntax
As we explained above, ProQL queries can have two main com-

ponents, graph projection and annotation computation. The graph
projection part can be used independently, if one only needs to
compute a projection of a provenance graph. The annotation com-
putation part can apply an assignment to a provenance graph and
compute values for its distinguished nodes in the corresponding
semiring. To simplify the presentation, we explain the two core
constructs of ProQL and their basic clauses, separately. An EBNF
grammar for our language can be found in [31].

3.2.1 Graph Projection
Unlike the graphs typically considered in semi-structured data,

our provenance graph is not rooted. We adopt a path expression
syntax where the individual “steps” consist of traversals from a
node representing a tuple in a relation, through a node represent-
ing a derivation through a mapping, to another node representing a
tuple. We refer to the actual nodes in the provenance graph as tuple
nodes and derivation nodes, respectively. Within the path expres-
sion, we may restrict the tuple nodes to belong to a certain relation,
or the derivation nodes to belong to a certain mapping. We may
also bind variables to either type of node. We use the syntax:

[relation-name variable]
to indicate tuple nodes (where both relation-name and variable are
optional), and one of the three forms:

<- | < mapping-name | < variable
to indicate derivation nodes (belonging to the corresponding map-
ping). A schema mapping M in general may have m source atoms
and n target atoms. Thus, in contrast to other graph models and
query languages, even if a path expression includes one source
and/or target atom, any matched derivation node corresponding to
M will have n tuple nodes to its left and m tuple nodes to its right.
We also allow for arbitrary paths (compositions of multiple steps)
between nodes, using the notation <-+ for paths of length one or
more. Paths may not be bound to variables.

Given this path notation, we outline our basic ProQL syntax,
comprising 4 basic clauses (see [31] for further detail).
FOR: This clause binds variables (whose names are prefixed with
the $ character) to sets of tuple and/or derivation nodes in the graph,
through path expressions.
WHERE: This clause is used to specify filtering conditions on the

variables bound in the FOR clause. Conditions on tuple nodes may
be expressed over the attributes of the tuple, or over the name of
the relation in which it belongs. Derivation nodes may be tested for
their mapping name. If path expressions are included in the WHERE
clause they are evaluated as existential conditions.
INCLUDE PATH: For each set of bound variables satisfying the
WHERE clause, this clause specifies the nodes and paths to be copied
to the output graph. If a derivation node variable is output, its
source and target tuple nodes are also output. At the end of query
execution, the output graph unifies all nodes and paths that have
been copied through INCLUDE PATH operations.
RETURN: In addition to returning a graph, it is essential that we
be able to identify specific nodes in this graph. The RETURN clause
specifies the set of distinguished variables whose bindings are to be
returned together as result tuples.

Using these clauses, we can express ProQL queries for the first
four use cases of Section 1.
Q1. Given the setting of Figure 1, return the subgraph containing
all derivations of tuples in O from base tuples:
FOR [O $x]
INCLUDE PATH [$x] <-+ []
RETURN $x

Note the use of the path wildcard (<-+) specifying all paths from
all nodes that derive any $x node.
Q2. Return the part of derivations of tuples in O that involve
tuples in relation A.
FOR [O $x] <-+ [A $y]
INCLUDE PATH [$x] <-+ [$y]
RETURN $x

Q3. Find tuples that can be derived through mappings m1 or m2

and return all one-step derivations from those tuples.
FOR [$x] <$p [], [$y] <- [$x]
WHERE $p = m1 OR $p = m2
INCLUDE PATH [$y] <- [$x]
RETURN $y

Note the comparison as to whether $p is from mappings m1 or m2.
Reusing $x in the second path expression is a syntactic shortcut im-
plying a join between paths matched by the two path expressions.
Q4. Select tuples from O and C that have common provenance
(called “join using provenance” in [13]), and return their deriva-
tions:
FOR [O $x] <-+ [$z], [C $y] <-+ [$z]
INCLUDE PATH [$x] <-+ [], [$y] <-+ []
RETURN $x, $y

Observe that there are two variables in the RETURN clause of the
query above. As a result, this query returns pairs of bindings to
tuple nodes in the provenance graph that have common provenance.

3.2.2 Annotation Computation
We now consider how to take returned subgraphs and use them

to compute semiring annotations for sets of tuples — matching the
needs of our remaining use cases. For this situation, we add two
new clauses to ProQL.
EVALUATE semiring OF: This clause is used to specify the semir-
ing for which we want to evaluate the graph returned by the nested
graph projection query. Semirings built into our implementation
include those presented in Table 1, and we expect that future imple-
menters of ProQL may wish to add additional semirings to match
their domain requirements.
ASSIGNING EACH: To compute annotations in particular semir-
ings, one needs to assign values from that semiring to leaf nodes,
i.e., EDB tuple nodes in the original graph or tuple nodes that have
no incoming derivations in projected subgraphs; as well as to define
appropriate unary functions for the mappings. The ASSIGNING
EACH clause can be used to specify such assignments similarly to a
switch statement in C or Java: first, we define a variable that iterates
over the set of leaf nodes from the query’s projected provenance



subgraph, and then we list cases and the value to assign a node,
should the case be met.3 In these conditions one can check mem-
bership in a relation or express selections on values of particular
attributes of the corresponding tuples. Finally, there is an optional
DEFAULT statement, if none of the CASE statements is satisfied.
If there is no DEFAULT statement, all leaf nodes not matching any
CASE are assigned the identity element for the · operation of the
semiring.

Similarly, a second ASSIGNING EACH clause can be used to
define unary mapping functions in each semiring. In this case, one
can specify conditions over the name of a mapping as well as the
semiring value of its single parameter. The default value for map-
pings, if no DEFAULT statement is provided, is the identity func-
tion. Function definitions are restricted in two key ways [31]: one
cannot specify an assignment that returns a non-zero value when
the input is 0 and mapping application must commute with (finite
and infinite) sums.

Any (or both) of these two kinds of ASSIGNING EACH clauses
may be specified in a query, depending on whether a user wants to
“customize” their value assignment for leaf nodes and/or mappings
or they are satisfied with default values. We illustrate the usage of
the ASSIGNING EACH clause(s) in the following queries for use
cases Q5-Q10 of Section 1.
Q5. Determine derivability of the tuples in U from base tuples
(the default assignment is sufficient in this case).
EVALUATE DERIVABILITY OF {

FOR [O $x]
INCLUDE PATH [$x] <-+ []
RETURN $x

}

Q6. Same as above, but substitute the word “LINEAGE” for
“DERIVABILITY”.
Q7. Assuming peer O distrusts any tuple O(n, h, a) if the data
came from A(i, n, h) and h ≥ 6, trusts any tuple from C and dis-
trusts m4 while trusting all other mappings if their input is trusted,
determine what set of tuples in O is trusted:
EVALUATE TRUST OF {

FOR [O $x]
INCLUDE PATH [$x] <-+ []
RETURN $x

} ASSIGNING EACH leaf_node $y {
CASE $y in C : SET true
CASE $y in A and $y.height >= 6 : SET false
DEFAULT : SET true

} ASSIGNING EACH mapping $p($z) {
CASE $p = m4 : SET false
DEFAULT : SET $z

}

Q8-Q10. These are similar to Q7, using the “WEIGHT”, “PROB-
ABILITY” and “CONFIDENTIALITY” semirings, respectively,
and assigning appropriate base values for each semiring.

4. STORING & PROCESSING PROVENANCE
In this section we describe our prototype implementation of the

core operations of the language, as presented earlier. Our imple-
mentation is built on top of the standalone ORCHESTRA engine [28],
that creates a complete replica of all data and provenance in the
CDSS at each peer, to accomodate disagreements among peers,
and uses each peer’s relational DBMS for provenance storage and
querying. To this end, we describe the core aspects of our prove-
nance encoding in relations, and our query execution strategy that
exploits a relational DBMS engine. The next section discusses how
we enhance this basic engine with indexing techniques.

4.1 Provenance Storage in Relations
Extending the ORCHESTRA implementation of [28], we store

provenance in a set of relations in an RDBMS. Intuitively, we would
3if multiple CASE statements match, the first one is followed

P 2(i, n, true) :- A(i, n, l)
P 4(n, h, true) :- A(i, n, h)

P 3(i, n, false) :- C(i, n)

P 1(i, n)
1 cn1

2 cn2

P 5(i, n)
1 cn1

2 cn2

Figure 2: Relations corresponding to Figure 1, assuming the
key of A is id, that of C and N is the pair (id, name) and
the key of O is name. Provenance relations P 2, P 3, P 4 are su-
perfluous because the mappings are projections over A and C,
hence they are replaced with views.

like a scheme resembling the edge relation encoding of a tree or
graph (i.e., a relation in which tuples contain source and destina-
tion attributes). Of course, mappings in our setting are not strictly
binary relationships — we can map from m source tuples to n tar-
get tuples. We observe that each relation connected by provenance
can be identified by its key. Hence we encode a single mapping
derivation in a relation containing the keys of all m source and n
target relations. For compactness, we only store one copy of any
set of attributes that are constrained by the mapping to be the same
(e.g., attributes joined on equality, or copied from input to output
relations). Each tuple in the provenance relation exactly represents
a derivation node and its outgoing edges, as in Figure 1. Each tuple
node is simply a tuple in one of the database relations. Our scheme
differs from that of [28], in that each derivation is represented by
a single tuple: in that work, there were certain cases (specifically
with Skolem functions) where that was not the case.
Superfluous Provenance Relations. If we refer back to Example
2.1, we see that mapping m2 computes N by projecting over the
attributes of A, and adding a constant true. Here m2’s provenance
relation would contain the key attributes of A, and we can add the
remaining (constant) attribute for N simply by knowing the def-
inition of m2. Hence we consider this provenance relation to be
superfluous: rather than materializing a table for m2, we define it
as a virtual view over A.
Combining Provenance Relations. Unfortunately, a general
problem that arises using a relational encoding is that there are
many potential path traversals through different combinations of
provenance relations; and the result is a large number of queries (for
alternate paths) with multiple joins (representing multiple nodes on
a path). A natural question is how best to combine provenance re-
lations to improve performance. In [28], we established that it was
more effective to take all source and target tuples’ key attributes for
a single schema mapping and store these in their own provenance
table — as opposed to storing data from multiple derivations with
the same target relation in a combined table that used disjoint union.
Hence we build upon this idea, and we show in Section 5 how we
can index combinations of such provenance tables to optimize path
traversals.

EXAMPLE 4.1. For our running example of Figure 1, suppose
that the key of A is id, that of C and N is the pair (id, name) and
the key of O is name. Figure 2 shows the provenance relations
(where P i corresponds to mapping mi).

4.2 Translating ProQL to SQL
In this section, we describe our strategy for executing ProQL

queries that return projections of the provenance graph or compute
annotations based on a provenance graph. ProQL queries may in-
clude conditions in the WHERE clause specifying a set of tuples of
interest. For instance, perhaps we have a screenful of tuples from
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Figure 3: Provenance schema graph for running example

some relation R for which we wish to compute rankings. Rather
than compute a ProQL query over all tuples in R, we would like
to perform goal-directed computation such that we only evaluate
provenance for the selected tuples, as well as only for the paths
matching the path expressions in the query. Intuitively, this resem-
bles pushing selections through joins in relational algebra queries.

We assume that provenance graphs are stored in an RDBMS,
according to our relational encoding of the previous section. Thus,
our approach relies on converting ProQL queries into SQL queries
(or, generally, sets of SQL queries) that can ultimately be executed
over an underlying RDBMS. More precisely, we break the query
answering process into several stages:

• Convert the schema mappings into a provenance schema graph
(this is common for all queries).

• Match the ProQL query against the provenance schema graph
to identify nodes that match path expressions.

• Create a Datalog program based on the set of schema map-
pings and provenance relations that correspond to the schema
graph nodes, as well as the source relations whose EDB data
is to be included.

• Execute the program in an SQL DBMS, in a goal-directed
fashion, based on tuples and mappings of interest.

We explain each of these stages in more detail below.

4.2.1 Provenance Schema Graph
While paths in the provenance graph exist at the instance (tu-

ple) level, in fact these tuples belong to specific relations that are
connected through mappings defined at the schema level. Hence, it
makes sense to abstract the set of possible provenance relationships
among tuples into a set of potential derivations among relations —
in essence to define a schema for the provenance. Intuitively simi-
lar to a Dataguide [27] over the provenance, this graph is useful as
a basis for matching patterns and ultimately defining queries.

We term this graph among relations and mappings a provenance
schema graph, constructed as follows. First, we create one node for
each relation (a relation node, labeled with the name of the relation)
and one mapping node for each mapping (labeled with the mapping
name). Then, we add directed edges from the mapping node to a
relation node if the mapping has a target atom matching the relation
node’s label. Finally, we add directed edges from a relation node to
the mapping node if the mapping has a source atom matching the
relation node’s label. The result looks like Figure 3, where we show
relation nodes with rectangles and mapping nodes with ellipses.

4.2.2 Matching ProQL Patterns
The next step is to determine which subgraphs of the provenance

schema graph match the ProQL patterns. We start with the dis-
tinguished reference nodes of the ProQL query: these nodes can
range over all relations or may be restricted to a single relation, if
specified by the query. For each path expression in the FOR clause,
our algorithm traverses the schema graph from each node that can
match the “originating” node of the path, using a nondeterministic-
state-machine-based scheme to find paths that match the pattern.
(We prevent paths from cycling back upon themselves.) The ulti-
mate result is a set of mapping nodes and relation nodes.

4.2.3 Creating a Datalog Program
As an intermediate step towards creating the ultimate SQL queries

to return answers, we first create a Datalog program based on the set
of mapping and relation nodes returned by the pattern-match.4 This
process is fairly straightforward. For each mapping node returned
from the matching step, we add the corresponding mapping to the
program. For every relation node matched in the schema graph, we
also add rules to test if we have reached a local contribution relation
(containing leaf nodes of the provenance graph).

EXAMPLE 4.2. For our running example, suppose we want to
evaluate a query returning all derivations of tuples in O from tu-
ples in A and N . From the provenance schema graph of Figure 3
the matching step will return m4, which defines O in terms of A,
as well as m1, which derives tuples in C from A and N , which can
then be combined with A through m5, to derive tuples in O. Then,
the Datalog program contains rules for these mappings involving
the corresponding provenance relations; e.g., for m5 this rule is:
O(n, h, true) :- P 5(i, n), A(i, _, h), C(i, n)

Moreover, the Datalog program contains rules L1, L3, L4 from Ex-
ample 2.1, in order to test whether tuples of interest may be derived
from the local contributions of one of the matched relations.

In order to represent the returned graph of a ProQL query we
create a set of output tables — one for each relevant provenance
relation — and populate them with the edges in the output sub-
graph. Queries also return a relational result containing the tuple
keys (possibly paired with an annotation from some semiring) for
the bindings in the RETURN clause.

4.2.4 Executing the Program
We now consider how to execute the Datalog version of our

ProQL query over a provenance graph stored in an RDBMS. Re-
call the contents of the provenance relations for our running exam-
ple, as shown in Figure 2. In order to reconstruct partial or com-
plete derivations of a tuple — as described in path expressions in
the graph projection part of ProQL queries — we need to com-
bine tuples from multiple provenance relations. Moreover, to exe-
cute ProQL queries with an annotation computation component, we
need to identify complete derivations from leaf nodes, for which an
assignment of semiring values is given in the query.

For acyclic provenance graphs, each tuple can only have a finite
number of distinct derivation tree shapes. For each of those deriva-
tion shapes, we can compute a conjunctive rule that reconstructs
them from the one-step derivations stored in the provenance rela-
tions, by recursively unfolding the rules of the Datalog program of
Section 4.2.3. The result is a union of conjunctive rules over prove-
nance relations and base data “reachable” from them.

EXAMPLE 4.3. Continuing our running example, in the body
of the rule shown in Example 4.2, tuples in A can only be derived
locally (from Al) while tuples in C can be derived either from Cl

or through m1 (m3 does not match since the query only asked for
derivations from tuples in A and N ). Then, one (breadth-first) un-
folding step yields the rules:
O(n, h, true) :- P 5(i, n), Al(i, _, h), Cl(i, n)

O(n, h, true) :- P 5(i, n), Al(i, _, h), P 1(i, n), A(i, s, _), N(i, n, false)

We repeat this process (using only rules matching the ProQL pat-
tern) until all body atoms in all rules are either provenance relation
atoms or local contribution relation atoms.

During this unfolding we can create a semiring expression cor-
responding to this derivation tree shape. This expression can then
4This program can be recursive for cyclic provenance graphs.
However, in this paper we focused on ProQL evaluation over
acyclic provenance graphs, for which this program is not recursive.



be used to compute annotations, by “plugging in” annotations for
leaf nodes and combining them with the appropriate semiring mul-
tiplication operation at intermediate tree nodes.

Of course, each conjunctive rule only computes a subset of the
tuples and their provenance — specifically the tuples and prove-
nance values for one potential derivation tree. We convert each
conjunctive rule into SQL (adding an additional attribute for the
provenance expression evaluation). Then, we take the resulting
SQL SELECT..FROM..WHERE blocks and combine their output
using SQL UNION ALL. Finally, we evaluate an aggregation query
over the combined output, in which we GROUP BY the values of
the tuples, then combine the provenance attributes using an aggre-
gation function, and finally threshold the results with a HAVING
expression. Referring to Table 1, for the first two semirings (deriv-
ability and trust), we can SUM the annotations (assuming we repre-
sent true as 1 and false as 0), then add a HAVING clause testing for
a non-zero annotations. The next two expressions can be evaluated
using MIN; and the number of derivations can be SUMmed.

These components form a baseline implementation of ProQL,
providing all the required functionality. However, more can be
done to improve its performance. In the next section we intro-
duce indexing techniques that can be used to speed up processing
of provenance queries.

5. INDEXING DATA PROVENANCE
The main challenge in answering ProQL queries lies in navigat-

ing through graph-structured data, according to unrooted path ex-
pressions. As we explained in Section 4.2, such path traversals are
translated into joins among provenance relations, each representing
a one-step derivation. Such paths in provenance graphs can often
be long, and their translation produces unfolded rules containing
multi-way joins, whose execution can be expensive. Moreover, dif-
ferent unfolded rules may contain overlapping paths, meaning that
multiple rules may contain common join subexpressions.

A natural question to ask is whether one could optimize ProQL
queries by precomputing the shared joins, i.e., indexing paths in a
provenance graph. Then, queries involving those paths can start at
one node and find sets of nodes reachable within a certain number
of hops directly from this index, without needing to join individ-
ual provenance relations. Ideally, such an index structure could be
retrofitted into a relational DBMS engine, so that our SQL-based
strategy could benefit from it.

Among a variety of path indices that have been studied in the
literature [17, 27, 35, 37], the most natural indexing technique to
adapt for our provenance query scheme is the access support rela-
tion [35] (ASR) originally developed for object-oriented databases.
An ASR is an n-ary relation among sets of objects connected through
paths that can be used to speed up queries involving path expres-
sions in object-oriented query languages. Unlike the other types
of path indices, ASRs can be emulated using conventional rela-
tional tables, which reference the base tables on (B-Tree) indexed
attributes. This provides very similar performance to having built-
in support for ASR structures, while having the virtue that it will
run on any off-the-shelf RDBMS.

In the case of object-oriented databases, each object has a unique
object identifier (OID) and the ASR is an auxiliary structure known
to the DBMS, consisting of tuples with references to objects by
their OIDs. Clearly, in our case we neither have objects nor OIDs.
Moreover, our patterns have some subtle differences from paths in
the object-oriented sense. However, one can take most of the basic
principles of the ASR and extend them to match our setting.

In particular, we can define ASRs for paths in provenance graphs
by creating materialized views for joins among provenance rela-

tions that correspond to paths of mappings along some derivations.
These views can also be stored as relations in the RDBMS, to-
gether with the provenance relations. Then, rewriting unfolded
rules to take advantage of such ASRs amounts to a case of answer-
ing queries using materialized views [30]. Moreover, we can define
relational indices on key columns of the ASRs to provide efficient
lookup of specific rows (corresponding to paths in particular deriva-
tions) as well as to optimize queries that involve longer paths (and,
therefore, need to join multiple ASRs).

In the rest of this section we explore different options regarding
how to adapt ASRs so that they can be combined with our relational
storage of provenance to speed up processing of ProQL queries.
These options also determine the appropriate schema for the rela-
tional storage of the resulting ASRs.

5.1 ASR Design Choices
To index paths in a provenance graph, we need to materialize the

results of joins among provenance relations: each relation repre-
sents an edge traversal, and an index represents a traversal of mul-
tiple edges. However, as we index a path within an ASR, we have
several choices about whether to also index some or all of its sub-
paths. In this section, we discuss these options and their likely ad-
vantages and disadvantages. Later we discuss their implementation
and experimentally compare them.

The choice of whether to materialize only the complete path or
(some or all of) its subpaths impacts how we join the provenance
relations in forming the ASR. In particular, for a two-step ASR, an
inner join among provenance relations represents a complete path,
a left outerjoin results in a path and its prefixes (padded by NULLs
in the resulting ASR), a right outerjoin represents a path and its
suffixes, and a full outerjoin represents a path and all its subpaths.

To include paths and subpaths within a longer (e.g., 3-step) ASR,
we may need to union together the results of multiple queries. Sup-
pose we have a path through provenance tables P 3 ← P 2 ← P 1.
Naively outerjoining multiple steps, e.g., some set of linked prove-
nance tables P 3 −

−
1−
− P 2 −

−
1−
− P 1, might result in ASR tuples con-

taining entries from P 3 and P 1, with NULLs in place of P 2 (since
there might not exist an edge connecting these steps). Instead, we
can index all subpaths in this case by unioning a pair of joins:

P (3,2,1) = P 3 1 P 2 −
−
1−
− P 1 ∪ P 3 −

−
1−
− P 2 1 P 1

In the rest of this paper, we use the terms subpath ASR, prefix
ASR and suffix ASR to refer to ASRs based on these operations,
which index a path as well as all its subpaths, prefixes or suffixes,
respectively, and complete path ASR for the ASR that only con-
tains the inner join of all mappings. We note that inner joins can
be expressed as Datalog rules and thus can easily be maintained
incrementally, together with regular provenance relations [28]. In-
cremental maintenance of outerjoins is more complicated and we
intend to explore it in future work.

5.2 Using ASRs in ProQL Query Evaluation
In order to take advantage of ASRs, we need to rewrite the rules

in the Datalog program of Section 4.2.4 — replacing provenance
relation atoms with ASRs that contain those provenance relations.
In essence, this is a matter of substituting materialized views, which
we cannot always depend on from an underlying RDBMS.

One factor that can significantly complicate this rewriting pro-
cess is the existence of overlapping ASR definitions, i.e., when dif-
ferent ASRs may index overlapping (sub)paths. Here, in order to
produce a minimal rewriting (i.e., one with the smallest possible
number of atoms) we would need to follow an expensive dynamic
programming approach, considering the ASRs in all possible or-
ders. We note that this rewriting needs to be performed at execution



Algorithm unfoldASRs
Input: set of rules R, set of ASRs A
Output: set of rules with ASRs S
1. S← ∅
2. for every rule r in R
3. do repeat
4. didSomething← false
5. for every ASR a in A
6. do foundUnfolding← false
7. P ← paths indexed by a listed in inverse order of

length
8. for every path p in P
9. do if (!foundUnfolding)
10. then foundUnfolding← unfoldPath(r,p)
11. if (foundUnfolding)
12. then didSomething← true
13. until (!didSomething)
14. S← S ∪ {r}
15. return S

Algorithm unfoldPath
Input: rule r (modified if unfolding is found), rule p (representing a path

in an ASR)
Output: true if unfolding was found, false otherwise
1. h← findHomomorphism(r,p)
2. if (h 6= ∅)
3. then for each variable x in the head and body of p
4. do replace x with h(x)
5. for each atom a in the body of p
6. do remove a from the body of r
7. add the head of p to the body of r
8. return true
9. else
10. return false

Algorithm findHomomorphism
Input: rule r, rule p
Output: a homomorphism from r to p (i.e., set of mappings from variables

in p to variables and constants in r) or ∅, if no homomorphism exists
1. elided for brevity

Figure 4: ASR Rewriting Algorithm

time for each ProQL query, so being able to perform it efficiently
is crucial for overall query performance.

For this reason, we chose to allow only non-overlapping ASR
definitions, for which a minimal unfolding can always be produced
by the greedy algorithm unfoldASRs of Figure 4. This algorithm
considers each path contained in an ASR in inverse order of length.
If there are no overlapping ASRs, this guarantees that the resulting
unfolding is minimal, since (shorter) subpaths are only unfolded if
it was impossible to unfold any of their (longer) superpaths.

In step 10, unfoldASRs employs algorithm unfoldPath, which
first looks for a homomorphism from the body of the path p to that
of the rule r, i.e., a mapping from variables in p to variables and
constants in r such that each atom in the body of p is mapped to an
atom in the body of r. If such a homomorphism is found, it replaces
those mapped atoms in the body of r with the image of the head of
p (i.e., an ASR atom “selecting” the part of the ASR representing
this subpath) under the homomorphism (replacing variables with
the values to which they are mapped).

EXAMPLE 5.1. In our running example, if we define an ASR
P (5,1) for the path of m1 followed by m5, the unfolding algorithm
would replace the P 5 and P 1 atoms in the second rule of Exam-
ple 4.3 with a P (5,1) atom, producing the following rule which con-
tains one join fewer than the original one:
O(n, h, true) :- P 5,1(i, n), Al(i, _, h), A(i, s, _), N(i, n, false)

6. EXPERIMENTAL EVALUATION
Given the lack of established provenance query systems and bench-

marks, we developed microbenchmarks for provenance queries. We

investigate the performance of path traversal queries, which are at
the core of any provenance query, and the optimization benefits of
ASRs for such queries on CDSS settings with different mapping
topologies. First, we consider a simple topology, where all peers
are connected through mappings that form a chain, as shown in the
provenance schema graph of Figure 5, in order to focus on specific
factors that affect performance of provenance querying and illus-
trate ASR optimization opportunities. Next, we experiment with
a more realistic branched topology, as shown in Figure 6, and in-
vestigate the performance and scalability of provenance query pro-
cessing, for different numbers of peers and amounts of data at each
peer. Finally, we consider grouping mappings along paths in ASRs
and analyze the performance benefits of ASRs of different types
and lengths.

6.1 Experimental Setup
Our ProQL prototype, including parsing, unfolding and transla-

tion to SQL queries was implemented as a Java layer running atop a
relational DBMS engine. We used Java 6 (JDK 1.6.0_07) and Win-
dows Server 2008 on a Xeon ES5440-based server with 8GB RAM.
Our underlying DBMS was DB2 UDB 9.5 with 8GB of RAM.

6.1.1 Settings and Terminology
Due to the lack of real-world data sharing settings that are suf-

ficiently large and complex to test our system at scale, we cre-
ated synthetic workloads based on bioinformatics schemas and data
from the SWISS-PROT protein database [3]. We generate peer
schemas and mappings by partitioning the 25 attributes in the SWISS-
PROT universal relation into two relations and adding a shared key
to preserve losslessness. Then, each mapping has a join between
two such relations in the body and another join between two rela-
tions in the head.

In typical bioinformatics CDSS settings, one would expect most
of the data to be contributed by a small subset of authoritative peers;
thus, in most of our experiments we consider settings with rela-
tively few peers with local data, while the remaining peers import
data along incoming mappings, edit them according to their trust
policies, and propagate them further along outgoing mappings. In
our first experiment we also explore the scalability of provenance
querying in a setting with local data at all peers, as a stress test.

Both of the topologies we experimented on have a target peer,
which is the one that all mappings are propagating data to, directly
or indirectly. This does not imply that we expect real-world settings
to form rooted trees. In fact, these topologies should not be inter-
preted as a complete CDSS setting, but rather as a projection of the
complete mapping graph that only contains peers from which our
target peer of interest is reachable. However, this projection allows
us to focus on the extreme case, where all peers and mappings prop-
agate data to this particular target peer. Typically, in a CDSS, there
will be many peers and mappings that do not propagate data to this
peer (e.g., other peers that import data from common authoritative
sources) but those mapping paths do not affect the evaluation or the
result of the provenance queries whose performance we measure.

We generate local data for each peer by sampling from the SWISS-
PROT database and generating a new key by which the partitions
may be rejoined. For these experiments, we substituted integer hash
values for each large string in the SWISS-PROT database, model-
ing the amount overhead taken by CLOBs in a real bioinformatics
database. We refer to the base size of a workload to mean the num-
ber of SWISS-PROT entries inserted locally at each peer and prop-
agated to the other peers before provenance queries were executed.

6.1.2 Provenance Queries
The main goal of these experiments is to evaluate the perfor-

mance of the path traversal component of ProQL, with or without



Figure 5: Chain topology
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Figure 7: Query processing times and unfolded rules
for chain of varying length with data at every peer
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Figure 8: Query processing times and
unfolded rules for chain of 20 peers
with varying number of peers with data
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Figure 9: Query processing times and in-
stance size for chain and branch topolo-
gies of 20 peers and varying base sizes
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Figure 10: Query processing times
and instance size for chain and branch
topologies of varying numbers of peers

the use of ASRs. As a result, for our experiments, we used queries
of the form (hereby called target query):
FOR [R0 $x]
INCLUDE PATH [$x] <-+ []
RETURN $x

where R0 is a relation at the target peer of the corresponding topol-
ogy. Such queries traverse all the paths in the mapping graphs up
to their end, and thus are ideal in order to evaluate path traversal.

We also experimented with similar queries involving annotation
computation similar to Q7 from Section 3.2. Perhaps surprisingly,
we found that the execution time for queries involving such annota-
tion computations was very similar to that of their graph projection
component, i.e., the graph projection component dominates execu-
tion time. Thus, for simplicity, in the experiments below we focus
on graph projection queries without annotation computation.

6.1.3 Experimental Methodology
Each experiment was repeated seven times, with the best and

worst results discarded, and the remaining five numbers averaged.
In all of our experiments, the results were very similar among these
five runs, and thus the confidence intervals were too small to be
visible on the graphs.
6.2 Number of Peers with Local (Base) Tables

In the experiments of this section we use the chain topology of
Figure 5. For the first experiment, we perform a “stress-test” by
assuming that all peers have local data and investigate the perfor-
mance of the target query shown above. Figure 7 shows that, in
this case, the number of unfolded rules grows exponentially with
the number of peers. Intuitively, this is because every tuple at ev-
ery peer may either be inserted locally or derived from some peer
further “downstream” in the graph of mappings, and the unfolding
needs to cover all these possible derivations. Moreover, for every
join we need to consider all combinations for each side of the join.
Thus, as also shown in Figure 7, unfolding time and evaluation time

for the unfolded rules also grow exponentially, remaining efficient
(sub-20 sec.) for up to 8 peers.

To isolate the effect of the number peers with local data we re-
peated this experiment for a fixed total number of peers, varying
the number of local contribution relations. Figure 8 shows that
the number of unfolded rules, as well as unfolding and evaluation
times, also grow exponentially with the number of peers supplying
local data, for a setting with 20 total peers.

6.3 Number of Peers and Base Size
As we explained earlier, in real-world bioinformatics settings it

is more likely that only a small number of authoritative sources will
contribute local data, that is then propagated along (possibly long)
paths of mappings. For this reason, in the next experiments, we
consider CDSS settings that have data at a few of the peers near
the right-hand side of the topologies of Figures 5 and 6. Figure 9
shows that the size of the instances produced as a result of the prop-
agation of local data at the grows linearly with the base size. Query
processing time (i.e., the sum of unfolding and evaluation times)
also grows linearly up to a few seconds, even for a base size of 80k
tuples per peer relation.

In Figure 10 we show that the size of the instance that results
from the propagation of 10k tuples inserted locally at a few (2-3)
of the peers grows linearly with the total number of peers through
which they are propagated. Query processing time also grows at a
roughly linear rate for both topologies, although a bit faster for the
branched topology. Moreover, it is within a few seconds, even for
topologies of 80 peers. This implies that our implementation could
scale to at least a few hundreds of peers, but we were unable to
run experiments for settings with more than 80 peers because the
resulting SQL queries were too large for DB2 (as each unfolded
rule can contain up to n-way joins, where n is roughly equal to the
number of nodes in a derivation tree of the target peer).
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Figure 13: Query processing time for
different ASR types and lengths, for
branched topology of 20 peers

6.4 Different ASR Sizes and Types
Even though we showed that query processing is fairly efficient

— perhaps surprisingly so, given the size and complexity of the
unfolded rules in some cases — there is a lot of room for optimiza-
tion, using ASRs to materialize joins that appear in many of these
unfolded rules. As we discussed earlier, there are several options
about which (sub)paths to store in an ASR. Moreover, there are are
different options in terms of the length of the paths to index in each
case. In this section, we investigate — for the topologies presented
above — the effect of different options to query processing times.

First, we consider a chain topology of 20 peers, 2 of which
have local data, with a base size of 50k for each peer. For each
maximum path length, we essentially “split” the chain into paths
up to this length, and possibly store the remaining mappings in a
shorter ASR, if the number of mappings is not a multiple of this
path length. Figure 11 shows the total query processing time (i.e.,
the sum of evaluation and unfolding times) for the target query for
different maximum lengths of all ASR types. The dashed line in-
dicates the processing time for this query without using any ASRs.
We observe that all ASR types provide a significant performance
improvement, which increases with path length. Intuitively, in this
topology and for all lengths shown in the graph, the paths covered
by ASRs are subsumed completely by the paths traversed by the
query. Thus we can take full advantage of the ASRs, even in if they
only contain the complete path. Moreover, the use of longer ASRs
results in SQL queries with fewer joins that are faster to evaluate.

We also experimented with a topology with fewer peers, more of
which have local data. In particular, we used a chain of 8 peers, 4
of which have a base size of 50k. As illustrated in Figure 12, for
all ASR types and lengths we again get a significant benefit. In this
case there is a larger number of unfolded rules involving combi-
nations of subpaths of the chain. As a result, subpath, prefix and
suffix ASRs generally perform better than complete path ASRs.
We note that suffix ASRs perform better than prefix ASRs. This
is due to the fact that our target query is looking for paths starting
from any node but ending in a specific node. For queries, e.g., re-
turning all tuples that can be derived from a particular base tuple,
prefix ASRs would provide a larger benefit. Finally, we note that
the performance benefit of ASRs increases for greater lengths up
to 4 but then decreases for longer paths. This is both due to the in-
creased unfolding cost, for longer subpath/prefix/suffix ASRs, and
due to the fact that longer complete path ASRs can be utilized by
fewer unfolded rules because the complete paths they index are not
subsumed by the paths in the rules.

Finally, we performed the same experiment on a branched topol-
ogy of 20 peers, 4 of which have a base size of 50k. In this topology,
the target query is translated to 40 unfolded rules, each containing

paths along combinations of these branches. As illustrated in Fig-
ure 13, this branching raises challenges for some ASR types. In
particular, because the unfolded rules contain paths along different
branches, complete path and prefix ASRs that cross the boundaries
of the branches in the topology can be exploited by fewer of the
unfolded rules and thus yield a smaller performance benefit. Still,
for up to medium lengths (6 steps), complete path ASRs provide a
significant benefit, because of the existence of short subpaths in the
topology with no branches and no local data. On the other hand,
subpath and suffix ASRs provide an even larger benefit for greater
lengths, since the different subpaths they contain can be used for
path traversals along different branches.

6.5 Overall Conclusions
Our final conclusion from these experiments is that ProQL query

processing can be performed within the requirements of target CDSS
applications, i.e., with execution times under a minute for various
mapping topologies of tens of peers. In particular, query processing
times are in the scale of seconds or tens of seconds, even for set-
tings with tens of peers, and the main obstacle for scaling to larger
settings comes from limitations of the underlying DBMS, regard-
ing the size and complexity of the generated SQL queries. More-
over, ASRs yield significant performance benefits for path traversal
queries, and the speedup is often higher for longer ASRs, especially
in the case of subpath and suffix ASRs.

7. RELATED WORK
This paper focuses on querying data provenance, as captured in

systems like [6, 10, 26, 28]. However, some of our provenance
querying use cases have been influenced by work on workflow
provenance querying [8, 13, 38] and business process querying [5].
Despite the shared motivations and use cases with workflow prove-
nance querying, there is a fundamental difference with our work:
our underlying model of data provenance deals with declarative
queries involving operations such as union and join, while work-
flow provenance models, such as [38], typically describe proce-
dural workflows and involve operations that are treated as black
boxes. Identifying workflows whose runs can be described declar-
atively or designing a more user-friendly visual layer over ProQL
— as the one presented in [5] for BPEL processes — are interesting
directions for future work.

The design of ProQL has been influenced by graph query lan-
guages, such as GraphLog [16], Lorel [1], StruQL [22] and RQL [32].
However, as we explained in Section 3.1, there are fundamental
differences between provenance graphs and the underlying graph
models of these languages, as well as between the semantics of
provenance querying and those of graph query languages. Some
simple query languages have been proposed for models of data an-



notations that are (explicitly or implicitly) computed through user
queries [7, 15, 25]. Finally, [11] studied the expressive power
of languages that manipulate annotations explicitly, and compared
them with the implicit where-provenance associated with a query
or update. However, none of these models can facilitate a variety of
annotation computations — supported by how-provenance — that
are crucial for applications such as those discussed in Sections 1–2.

Our encoding of the provenance graph in relations leverages many
ideas from [28] and resembles the approach of [23], where edge
relations are used to store XML in an RDBMS. In terms of in-
dexing to improve evaluation of path expressions, a wide variety
of techniques have been studied in the literature for different data
models, ranging from semi-structured data [27, 37] to objects [35]
to XML [17, 34]. However, virtually all XML index techniques
are based on the notion of a distinguished document root, while
our queries can have multiple relation nodes of interest. More-
over, XML index techniques have been designed for tree- or DAG-
shaped data, and most do not generalize to graphs with cycles.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed ProQL, a query language for prove-

nance graphs which is useful in supporting a wide variety of ap-
plications with derived data. In particular, we showed that ProQL
queries can be used to assess trust and derivability or detect side
effects of possible updates, as required in basic CDSS operations,
as well as to express more complicated provenance queries and,
optionally, compute data annotations in particular semirings. We
developed a prototype implementation of ProQL over an RDBMS,
introduced indexing techniques for speeding up ProQL queries that
involve path traversals and provided a detailed experimental study
of the performance of provenance query processing in a variety of
CDSS settings and the benefits of our indexing techniques.

In future work, we intend to deploy ProQL in real-world bioin-
formatics data sharing applications in order to assess its impact in
practice, and possibly identify new use cases to be handled by fu-
ture ProQL extensions. Moreover, we plan to develop an alternative
ProQL implementation scheme that can handle cyclic provenance
graphs and run over our distributed ORCHESTRA engine [43]. One
possible approach — that may also provide better performance if
there are large numbers of possible derivations for each tuple — is
to execute the set of rules in bottom-up fashion, materializing the
intermediate results. Finally, we would like to explore automated
index selection techniques for generating appropriate ASR defini-
tions automatically, for a given mapping topology and workload of
ProQL queries over a stored provenance graph. In particular, we
plan to investigate whether techniques such as [2], can be applied
in our case, directly or with some extensions and combined with
cost estimates from the optimizer of the underlying RDBMS.
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