
Reliable Storage and Querying for Collaborative
Data Sharing Systems

Nicholas E. Taylor and Zachary G. Ives

Computer and Information Science Department, University of Pennsylvania
Philadelphia, PA, U.S.A.

{netaylor,zives}@cis.upenn.edu

Abstract— The sciences, business confederations, and medicine
urgently need infrastructure for sharing data and updates among
collaborators’ constantly changing, heterogeneous databases. The
ORCHESTRA system addresses these needs by providing data
transformation and exchange capabilities across DBMSs, com-
bined with archived storage of all database versions. ORCHESTRA
adopts a peer-to-peer architecture in which individual collabo-
rators contribute data and compute resources, but where there
may be no dedicated server or compute cluster.

We study how to take the combined resources of ORCHES-
TRA’s autonomous nodes, as well as PCs from “cloud” services
such as Amazon EC2, and provide reliable, cooperative storage
and query processing capabilities. We guarantee reliability and
correctness as in distributed or cloud DBMSs, while also sup-
porting cross-domain deployments, replication, and transparent
failover, as provided by peer-to-peer systems. Our storage and
query subsystem supports dozens to hundreds of nodes across
different domains, possibly including nodes on cloud services.

Our contributions include (1) a modified data partitioning
substrate that combines cluster and peer-to-peer techniques,
(2) an efficient implementation of replicated, reliable, versioned
storage of relational data, (3) new query processing and indexing
techniques over this storage layer, and (4) a mechanism for incre-
mentally recomputing query results that ensures correct, com-
plete, and duplicate-free results in the event of node failure during
query execution. We experimentally validate query processing
performance, failure detection methods, and the performance
benefits of incremental recovery in a prototype implementation.

I. INTRODUCTION

There is a pressing need today in the sciences, medicine,
and even business for tools that enable autonomous parties
to collaboratively share and edit data, such as information on
the genome and its functions, patient records, or component
designs shared across multiple teams. Such collaborations are
often characterized by diversity across groups, resulting in
different data representations and even different beliefs about
some data (such as competing hypotheses or diagnoses from
the same observations). Data is added and annotated by dif-
ferent participants, and occasionally existing items are revised
or corrected; all such changes may need to be propagated to
others. To maintain a record across changes, different versions
of the data may need to be archived. In these collaborative
settings, there is often no single authority, nor global IT group,
to manage the infrastructure. Hence, it may be economically or
politically infeasible to create centralized services in support
of data transformation, change propagation, and archival.

To address these needs, we have been developing the
ORCHESTRA collaborative data sharing system (CDSS) [1].

Briefly, ORCHESTRA adopts a peer-to-peer architecture for
data sharing, where each individual participant owns a local
DBMS with its own preferred schema, makes updates over
this DBMS, and periodically publishes updates to others. Then
the participant translates others’ published updates to its own
schema via schema mappings and imports them. ORCHESTRA
especially targets scientific data sharing applications such as
those in the life sciences, where data sets are typically in the
GB to 10s of GB, and changes are published periodically and
primarily consist of new data insertions.

Previous work on ORCHESTRA has developed the upper
layers of our system architecture: strategies and algorithms
for resolving conflicts [2], and for generating the necessary
queries to propagate data and updates across sites or peers [3].
Such work temporarily used a centralized DBMS to handle
storage and query processing. In this paper, we complete the
picture, with a highly scalable and reliable versioned storage
and query processing system for ORCHESTRA, which does
not require dedicated server machines. Rather, we employ the
existing CDSS nodes, possibly in combination with machines
leased as-needed from cloud services such as Amazon EC2.

Our goal is to provide the benefits of peer-to-peer ar-
chitectures [4], [5], [6], [7], [8] (such as support for au-
tonomous domains with no common filesystem, transparent
handling of membership changes, and plug-and-play opera-
tion), hybridized with the benefits commonly associated with
traditional parallel DBMSs and with emerging cloud data
management platforms [9], [10], [11], [12] (such as efficient
data partitioning, automatic failover and partial recomputation,
and guarantees of complete answers). We avoid what we
perceive to be the negative aspects of each architecture: the
lack of completeness or consistency guarantees in peer-to-peer
query systems, and requirements for shared filesystems and
centralized administration in the existing cloud data manage-
ment services (e.g. Google’s GFS [9], Amazon’s S3 [12]).

To accomplish this, we exploit the fact that our system
does not need all of the properties provided by existing
distributed substrates. Our problem space is less prone to
“churn” than a traditional peer-to-peer system like a distributed
hash table: we assume that membership in a CDSS, while not
completely stable, consists of perhaps dozens to hundreds
of participants at academic institutions or corporations, with
good bandwidth and relatively stable machines. We support
archived storage of data under a batch-oriented update load:

Data storage, partitioning, and
distributed lookup

Participant p
with local DB

Data trans-
formation query

Conflict
detection query

Update
Exchange

Versioned
Storage

Publication
Recon-
ciliation

Cloud
servers + storage All participants

DBMS
update log

Imported
updates

Updates,
partitioned

by key

Updates,
translated to p’s

schema

Transactions,
conflict sets

Distributed query
execution

Fig. 1. Basic architectural components in the ORCHESTRA system, as a
participant (peer) publishes its update logs and imports data from elsewhere.
Components on the left were the focus of [2], [3], and this paper focuses on
the components shown on the right.

in a CDSS, users first make updates only to their local storage,
and they occasionally publish a log of these updates (which
are primarily insertions of new data items) to the CDSS. Then
they perform an import (transforming and importing others’
newly published data to their local replica). Only in this step
is information actually shared across users, and it is then
that conflict resolution is performed. Hence, we do not need
special support for global consistency, such as distributed
locking or version vectors, at the distributed storage level.

We address these needs through a custom data partitioning
and storage layer, as well as a new distributed query processor.
We develop novel techniques for ensuring versioning, con-
sistency, and failure recovery in order to guarantee complete
answers. Our specific contributions are as follows:
• Modifications to the standard data partitioning tech-

niques used in distributed hash tables [4], customizing
them to a more stable environment, and providing greater
transparency of operation to the layers above.
• A distributed, replicated, versioned relational storage

scheme that ensures that queries see a consistent, com-
plete snapshot of the data.
• Mechanisms for detecting node failures and either com-

pletely restarting or incrementally recomputing the query,
while ensuring the correct answer set is returned.
• Experiments, using standard benchmarks for OLAP and

schema mapping tasks, across local and cloud computing
nodes, validating our methods under different network
settings and in the presence of failures.

We implement and evaluate our techniques within the
ORCHESTRA collaborative data sharing system. However, the
techniques are broadly applicable across a variety of emerging
data management applications, such as distributed version
control, data exchange, and data warehousing.

Section II presents the ORCHESTRA architecture, and Sec-
tion III details our modified data distribution substrate. Sec-
tion IV describes our storage and indexing layer, upon which
we build the fault-tolerant distributed query engine presented
in Section V. Section VI validates our techniques through ex-
perimental analysis. We describe related work in Section VII,
and conclude and discuss future work in Section VIII.

II. SYSTEM ARCHITECTURE AND REQUIREMENTS
Figure 1 shows ORCHESTRA’s architecture, and sketches

the dataflow involved in its main operations. Each participant

(illustrated on the left) operates a local DBMS with a possibly
unique schema, and uses this DBMS to pose queries and make
updates. ORCHESTRA is invoked when the participant has a
stable data instance it wishes to “synchronize” with the world:
this involves publishing updates from the local DBMS log
to versioned storage, and importing updates from elsewhere.
The import operation consists of update exchange [3] and
reconciliation [2]. Update exchange finds updates satisfying
a local participant’s filtering criteria and, based on the schema
mappings, executes SQL queries that convert data into the par-
ticipant’s local schema. Reconciliation finds sets of conflicts,
among both updates and the transactions they comprise, by
executing SQL queries over the versioned storage system.

To this point, our work has focused on the left half of
the figure: the logic needed to create and use the SQL
queries supporting update exchange and reconciliation, and
the modules to “hook” into the DBMS to obtain update logs.
In this paper, we focus on the right half of the diagram: how to
implement distributed, versioned storage and distributed query
execution. We are particularly concerned with performance
in support of update exchange (data transformation) queries,
which are more complex than the conflict detection queries,
and by far the main bottleneck in performance [2], [3]. We also
develop capabilities in the query execution layer to support
mapping and OLAP-style queries directly over the distributed,
versioned data. Data is primarily stored and replicated among
the various participants’ nodes. However, as greater resources,
particularly in terms of CPU, are required, participants may
purchase cycles on a cloud computing service capable of
running arbitrary code, such as Amazon’s EC2 (considered
in this paper) or Microsoft’s Azure.

In the remainder of this section, we explain the unique
requirements of ORCHESTRA and why they require new
solutions beyond the existing state of the art. In subsequent
sections, we describe our actual solutions.
A. Data Storage, Partitioning, and Distributed Lookup

As discussed previously, we assume that the participants
number in the dozens to hundreds, are usually connected,
and have enough storage capacity to maintain a log of all
data versions. Our target domain differs from conventional
P2P systems where connectivity is highly unstable. We only
expect low “churn” (nodes joining and leaving the system)
rates, perhaps as participants go down for maintenance or
are replaced with new machines. We expect failures to be
infrequent enough that keeping a few replicas of every data
item is sufficient. We avoid single points of failure, as we want
the service to remain available at all times, even if some nodes
go down for maintenance.

In a distributed implementation of a CDSS, we need a means
of (1) partitioning the stored data (such that it is distributed
reasonably uniformly across the nodes), (2) ensuring efficient
re-partitioning when nodes join and leave, (3) supporting
distributed query computation, and (4) supporting background
replication. There are two main schemes for doing this in
a distributed system: distributing data page-by-page in a
distributed filesystem, and then using a sort- or hash-based

scheme to combine and process the data; and distributing data
tuple-by-tuple according to a key, and using a distributed hash
scheme to route messages to nodes in a network. Google’s
MapReduce and GFS, as well as Hadoop and HDFS, use the
former model. Distributed hash tables (DHTs) [4], [7], [8] and
directory-based schemes use the latter.

Distributed filesystems suffer from several drawbacks as
the basis of a query engine. First, they require a single
administrative domain and (at least in current implementations
like HDFS) a single coordinator node (the NameNode), which
introduces a single point of failure. Moreover, they actually use
two different distribution models: base data is partitioned on
a per-page basis, then all multi-pass query operations (joins,
aggregation, nesting) must be executed through a MapReduce
scheme that partitions the data on keys (via sorting or hashing).

We instead adopt a tuple-by-tuple hash-based distribution
scheme for routing messages: this is commonly referred to as a
content addressable overlay network and is exemplified by the
DHT. Our goal is to provide good performance and to tolerate
nodes joining or failing, but we do not require scalability to
millions of nodes as with the DHT. In Section III we adapt
some of the key ideas of the DHT in order to accomplish this.
B. Versioned Storage

Each time a participant in ORCHESTRA publishes its up-
dates, we create a new version of that participant’s update
log (stored as tables). This also results in a new version
of the global state published to the CDSS. Now, when a
participant in ORCHESTRA imports data via update exchange
and reconciliation, it expects to receive a consistent, complete
set of answers according to some version of that global
state. We support this with a storage scheme (described in
Section IV) that tracks state across versions, and manages
replication and failover when node membership changes, such
that queries receive a “snapshot” of the data according to a
version. We optimize for the fact that most published updates
will be new data rather than revisions to current data.

When data is stored in a traditional content-addressable
network, background replication methods ensure that all data
eventually is replicated, and gets placed where it belongs when
a node fails — but if the set of participants is changing then
data may temporarily be missed during query processing. Fur-
thermore, such systems also require the data assigned to each
key to be immutable. Similarly, existing distributed filesystems
like GFS and HDFS assume data is within immutable files,
and they are additionally restricted to a single administrative
domain.

Hence our versioned storage scheme must provide book-
keeping than a traditional distributed hash table, but offers
more autonomy and flexibility than a distributed filesystem.
In Section III we describe our customized data storage, parti-
tioning, and distributed lookup layer.
C. Query Processing Layer

As is further discussed in Section VII, a number of exist-
ing query processing systems, including PIER [5] and Sea-
weed [6], have employed DHTs to perform large-scale, “best-
effort” query processing of streaming data. In essence, the

(a) Pastry-style range allocation (b) Balanced range allocation

Fig. 2. Range allocation schemes

DHT is treated like a very large parallel DBMS, where hashing
is used as the basis of intra-operator parallelism. Immutable
data can be stored at every peer, accessed by hashing its index
key. Operations like joins can be performed by hashing both
relations according to their join key, co-locating the relations to
be joined at the same node. Such work has two shortcomings
for our context: multiple data versions are not supported, and
their “best-effort” consistency model in the presence of failures
or node membership changes is insufficient.

Our goal is not only to support efficient distributed compu-
tation of query answers, but also to detect and recover from
node failure. We emphasize that this is different from recovery
in a transactional sense: here our goal is to compensate for
missing answers in a query, ideally without redoing the entire
query from scratch (whereas transactional recovery typically
does involve aborting and recomputing from the beginning).
Failure recovery in query answering requires us (in Section V)
to develop techniques to track the processing of query state,
all the way from the initial versioned index and storage layer,
through the various query operators, to the final output.

Furthermore, we develop techniques for incrementally re-
computing only those results that a failed node was responsible
for producing. Given that every operator in the query plan may
be executed in parallel across all nodes, the failure of a single
node affects intermediate state at all levels of the plan. Our
goal is to restart the query only over the affected portions of
the data, and yet to ensure that the query does not produce
duplicate or incorrect answers.

III. HASHING-BASED SUBSTRATE
Any scalable substrate for data storage in a peer-to-peer

setting needs to adopt techniques for (1) data partitioning,
(2) data retrieval, and (3) handling node membership changes,
including failures. We describe how our custom hashing-based
storage layer addresses these issues, in a way that is fully
decentralized and supports multiple administrative domains.
A. Data Partitioning

Like most content-addressable overlay networks, we adopt
a hash-based system for data placement. Similar to previous
well-known distributed hash tables (DHTs) such as Pastry [4],
we use as our key space 160-bit unsigned integers, matching
the output of the SHA-1 cryptographic hash function.

It is convenient to visualize the key space as a ring of values,
starting at 0 and increase clockwise until they get to (2160−1)
and then overflow back to 0. Figure 2 shows two examples of
this ring that we will discuss in more detail.

Most overlay networks assign a position in the ring to each
node according to a SHA-1 hash of the node’s IP address
(forming a DHT ID). Values are placed at nodes according to
the relationship with their hash keys. In Chord, keys are placed

at the node whose hashed IP address lies ahead of them on the
ring; in Pastry the keys are placed at the node with nearest hash
value. The Pastry scheme is visualized in Figure 2(a). Both
of these approaches can determine the range a node “owns,”
given its ID and the IDs of its neighbors. These schemes
are optimized for settings with large numbers of nodes, and
assume the nodes will be more or less uniformly distributed
across the ring. Each node maintains information about the
position of a limited number of its neighbors, as it has a routing
table with a number of entries logarithmic in the membership
of the DHT. When there are only dozens or hundreds of nodes,
we often see highly nonuniform distributions of values among
the peers. Indeed, in the figure, nodes n3 and n4 are together
responsible for more than 3

4 of the key space, while node n2

is only responsible for 1
16 of it.

Our substrate adopts Pastry’s routing approach for large
numbers of peers (with an expanded routing table, as discussed
later in this section). However, for smaller numbers of peers,
we support an alternative solution that provides more uniform
data distribution (which we use for the experiments in this
paper). We divide the key space into evenly sized sequential
ranges, one for each node, and assign the ranges in order
to the nodes, sorted by their hash ID. Such an assignment
for the same network we examined for Pastry-style routing
is shown in Figure 2(b); it distributes the key space, and
therefore the data, uniformly among the nodes. In principle,
we could also use many virtual nodes at each physical node to
better distribute the key space. However, it is advantageous to
assign a single contiguous key range to each node; in addition
to reducing the size of the routing table, this improves data
retrieval performance, as discussed in Section IV. In response
to node arrival or failure, we redistribute the ranges over the
new node set. We consider the implications of this when we
describe node arrival and departure later in this section.

B. Data Retrieval

As mentioned above, a traditional DHT node maintains a
routing table with only a limited number of entries (typically
logarithmic in the number of nodes). This reduces the amount
of state required, enabling greater scale-up, but requires mul-
tiple hops to route data. Recent peer-to-peer research has
shown [13] that storing a complete routing table (describing
all other nodes) at each node provides superior performance
for up to thousands of nodes, since it provides single-hop
communication in exchange for a small amount of state; we
therefore adopt this approach. Our system requires a reliable,
message-based networking layer connection with flow control.
We found experimentally that, for scaling at least to one
hundred nodes, maintaining a direct TCP connection to each
node was feasible. With the use of modern non-blocking I/O,
a single thread easily supports hundreds or thousands of open
connections. For larger networks, a UDP-based approach could
be developed to avoid the overhead of maintaining TCP’s in-
order delivery guarantees, as all of the techniques in this paper
are independent of message ordering.

C. Node Arrival and Departure
Traditional DHTs deal with node arrival and departure

through background replication. Each data item is replicated
at some number of nodes (known as the replication factor).
In Pastry, for example, for a replication factor r , each item is
replicated at

⌊
r
2

⌋
nodes clockwise from the node that owns it,

and the same number counterclockwise from it, leading to r
total copies. In the ring of Figure 2(a), if r = 3, each data item
that is owned by node n1 will be replicated to n4 and n2 as
well. When a node joins, background replication slowly brings
all data items that a node owns to it, as they must be stored
at one of its neighbors. If a node leaves, each of its neighbors
already has a copy of the data that it owned, so they are ready
to respond to queries for data stored at the departed node.

This approach makes an implicit assumption that all of the
state at the nodes is stored in the DHT, and therefore that
any node that has a copy of a particular data item can handle
requests for it. If a node joins or fails, certain requests will
suddenly be re-routed to different nodes, which are assumed
to provide identical behavior (and hence do not get notified of
this change). This does not work in the case of a distributed
query processor, where in addition to persistent stored data
there may be distributed “soft state” that is local to a query
and is not replicated; this includes operator state, such as the
intermediate results stored in a join operator or an aggregator.
If data for a particular range is suddenly rerouted from one
node to another, tuples might never “meet up” with other tuples
they should join with, or data for a single aggregate group may
be split across multiple nodes, causing incorrect results.

To solve this problem, our system works on snapshots of
the routing table. When a participant initiates a distributed
computation, it sends out a snapshot of its current routing
table, which all nodes will use in processing this request.
Therefore, if a new node joins in mid-execution, it does not
participate in the current computation (otherwise it may be
missing important state from messages prior to its arrival). If
a node fails, the query processor can detect what data was
owned by the failed node, and thus can reprocess this state
(this is discussed in Section V-D).

Our system must still handle replication of base data,
which is done in a manner very similar to that of Pastry;
each data point is replicated at

⌊
r
2

⌋
nodes clockwise and

counterclockwise from the node that owns it. This ensures
that data can survive multiple node failures, and that in the
event of a node failure, the nodes that take over for a failed
node have copies of the base data for the sections of the ring
they are newly responsible for. Unlike in Pastry, a single node
arrival or departure will cause all the ranges in the range to
change slightly; this causes a membership change to be more
expensive, but we are assuming reasonable bandwidth and
less frequent failures. With smaller numbers of fairly reliable
nodes, the performance benefits of uniform distribution likely
outweigh the costs of extra shipping.

Currently we only replicate data as it is inserted into
the DHT. This has been sufficient for the development and
experimental analysis of our system, since we inserted data

before any node failures, and failed few enough nodes that
data was never lost. For completeness we plan to implement
the Bloom filter-based background replication approach of the
Pastry-based PAST storage system [14], which can be directly
applied to our context.

IV. VERSIONED DATA STORAGE
Recall from our earlier discussion that ORCHESTRA sup-

ports a batched publish/import cycle, where each participant
stores its own updates in the CDSS, disjoint from all others.
There is no need for traditional concurrency control mech-
anisms, as conflicts among concurrent updates are resolved
during the import stage (via reconciliation) by the participant.

However, there is indeed a notion of global consistency. We
assign a logical timestamp (epoch) that advances after each
batch of updates is published by a peer. When a participant
performs an import or poses a distributed query, it is with
respect to the data available at the specific epoch in which
the import starts. The participant should receive the effects of
all state published up to that epoch, and no state published
thereafter (until its next import). The current epoch can be
determined through a simple “gossip” protocol and does not
require a single point of failure.

Of course, in order to support queries over versioned data,
we must develop a storage and access layer capable of
managing such data. There are several key challenges here:

• Between database versions, we want to efficiently reuse
storage for data values that have not changed.

• We must track which tuples belong to the desired version
of a database. Such metadata should be co-located with
the data in a way that minimizes the need for communi-
cation during query operation.

• Each tuple must be uniquely identifiable using a tuple
identifier that includes its version. Yet, for efficiency of
computation, we must partition data along a set of key
attributes (as with a clustered index). It must be possible
to convert from the tuple ID to the tuple key, so that
a tuple can be retrieved by its ID; therefore a tuple’s
hash key must be derived from (possibly a subset of) the
attributes in its ID.

We maintain all versions of the database in a log-like
structure across the participants: instead of replacing a tuple,
we simply update our records to include the new version rather
than the old version, which remains in storage. Disk space is
rarely a constraint today, and the benefits of full versioning,
such as support for historical queries, typically outweigh the
drawbacks.

Each node, therefore, may contain many versions of each
tuple. If the set of nodes is in flux, nodes may come and go
between when a tuple is inserted or updated and when it is used
in a query; therefore, a node may not have the correct version
of a particular tuple. We assume that background replication
is sufficient to ensure that each tuple exists somewhere in the
system, but that it may not exist where the standard content-
addressable networking scheme can find it. The key to our
approach is a hierarchical structure that maps from a point in
time to the collection of tuple IDs present in a relation at that

Page ID
Relation @epoch

Relation Coordinator

List of pages’ IDs & tuple ID hash ranges
Inverse page ID

Relation @epoch
Page ID

Index Node

Min & max tuple ID hashes
List of tuple IDs in page

Page IDInverse Page ID

Inverse Node
Tuple Hash Key

Data Storage Node

Tuple ID → value
B+ Tree:
Tuple ID hash → page ID

Fig. 3. Storage scheme to ensure version consistency and efficient retrieval.
Rounded rectangles indicate the key used to contact each node (whose state
is indicated with squared rectangles).

time. This collection is used during processing to detect which
tuples are missing or stale, and must therefore be retrieved
from another node in the system.

Figure 3 shows the main data structures used to ensure con-
sistency. All data structures are replicated using the underlying
network substrate, so failure of any node will cause all of
its functionality to be assumed transparently by one or more
neighboring nodes. We distribute all tuples are according to a
hashing scheme. Relations are divided into versioned pages,
each of which represents a partition over the space of possible
tuple keys’ hash values. Tuples assigned to the same page
will be likely be co-located on a single node, or span two
nodes in the worst case. As an optimization, we place the
index node entry at the same node as the tuples it references,
by storing the index page at the middle of the range of tuple
keys it encompasses. This is why the network substrate, as
discussed in Section III-A, assigns a large, contiguous region
in the key space to each node; it means that the vast majority
of tuple keys are never sent over the network. If each node
is responsible for many smaller ranges, this is no longer the
case, and performance suffers.

When requesting a given relation at a given epoch, the
storage system hashes these values to get the address of a
relation coordinator, who has a list of the pages in the relation
at that epoch. The system uses this list, which contains the
hash ID associated with each page, to find the index nodes
that contain these pages. From the index nodes, the system
retrieves the tuple IDs belonging to the relation at the epoch,
which are used to retrieve the full versions of all the tuples
in the relation from the data storage node. Recall that as the
pages are colocated with most of the tuples they reference,
typically a single node serves as both the index node and the
data storage node for an entire page, reducing network traffic
and improving performance.

Our scheme is designed to efficiently support small changes
to tables. Modifying a tuple in a relation requires us to look
up the page holding the old version of the tuple using an
inverse node, modify that page to include the ID of the new
tuple, and write out that modified page as the new index page
for the region of the table surrounding the updated tuple. The
entire contents of the new tuple must also be written out to
the network. The system then creates a new version record
linking to the updated index page, and all of the unaffected
pages from the previous version.

We were initially inspired by filesystem i-nodes, the CFS
filesystem [15], and log-structured filesystems, where for ap-

Fig. 4. Final state for example. Data is partitioned across nodes by the key
(the first attribute), which is a subset of the Tuple ID. Redundant copies of
replicated data are not shown. The left brackets indicate which nodes a tuple
is stored on, while the right brackets indicate which index page a tuple’s ID
is on.

Fig. 5. Lookup of relation R at epoch 2 for the example instance.

pend operations and small changes, the page-level data in a
large file mostly remains unchanged. Such schemes all make
use of a versioned system for tracking the contents of a file,
which greatly resembles our index nodes. A direct translation
of the CFS approach would create a small number of index
node entries with tuple IDs arranged in the order they appear
in the table; retrieval of the referenced tuples would require
communication with many data storage nodes. We instead use
a slightly higher number of entries representing partitions of
the tuple space; each such page can be retrieved from one or
at most a few data storage nodes.

A key property we adopt from CFS is that, once there is
enough information to begin a request (i.e. the current epoch
has been determined), it is always clear what data should be
present in the distributed storage layer. Therefore stale data
will never be retrieved. If expected data is not found at the
node that should own it, this is likely due to network churn.
The request can either be retried after background replication
has moved state around, or the system can proactively try to
retrieve the missing state from other nearby nodes.

Example 4.1: Suppose we have three participants, each
storing a partition of a simple, one-table database, R(x, y),
where x is the key and y is a non-key attribute. Node
n1 is responsible for the range [0x00. . . ,0x55. . .], n2 for
[0x55. . . ,0xAA. . .], and n3 [0xAA. . . ,0x00. . .]. In the first
epoch (epoch 0), a participant inserts the tuples R(a, b) and
R(f, z). In epoch 1, someone inserts R(b, c), R(e, e), and
R(c, f) while also changing R(f, z) to R(f, a). In epoch 2,
someone inserts R(d, d). The final state of the system is shown
in Figure 4. The Tuple ID is the key attribute of a tuple and the
epoch in which it was last modified, e.g., 〈f, 1〉 for R(f, a).
The index page ID consists of the relation name, the epoch
in which it was last modified, and a unique identifier for that
relation and epoch, which is 0 for both example pages here.
It also includes the hash ID where the index page is stored.

Pseudocode for performing a lookup appears as Algo-

rithm 1. Retrieval starts at the relation coordinator for the
requested epoch, from which a list of index nodes can be
obtained. It sends a scan request to each index node, along
with the sargable predicate. The index nodes apply the sargable
predicates to the list of tuples for each index page, and requests
that the matching tuples be retrieved. This operation is highly
parallelizable; the only operation done at a single node is the
sending of the scan requests, which is very fast.

Example 4.2: Figure 5 shows how the lookup procedure
works for our example instance. First, the lookup request from
n2 for relation R at epoch 2 is hashed to find the node (in this
case, n1) that is the relation coordinator for the relation at the
desired epoch. The data stored there contains the list of index
pages that contain the tuple IDs for that version of the relation.
The request to scan those pages is sent to the index nodes that
contain the contents of the pages, in this case n1 and n3. Those
index nodes then send requests on to the data storage nodes
that contain the full tuples (stored as a mapping from Tuple
ID to full tuple) to scan the desired tuples given their IDs. The
data storage nodes then retrieve the desired tuples and return
them to the requester (not shown). Note that only two of the
six Tuple IDs were actually sent over the network, due to the
colocation of index pages and tuple data.

As mentioned before, this approach avoids any possibility
of seeing stale data due to replication lag. Suppose that, for
some reason, n1 had not yet received a copy of the record for
R at epoch 2. It would search other nodes nearby in the system
until it found a copy before proceeding. Similarly, if n1 had
not yet received the data 〈f, 1〉, it would never simply return
the data for 〈f, 0〉; it knows that data is stale because it does
not appear in the index page. It would instead try to retrieve
the full tuple for 〈f, 1〉 from the network before proceeding.

Algorithm 1 Retrieve(R, e, f(k̄)). Input: R relation, e epoch,
f(k̄) filter function over key k̄. Output: Matching tuples t ∈ R
satisfying f(k̄).

1: relCoord ← h(〈R, e〉)
2: Contact Relation Coordinator at relCoord , retrieve pageIDList
3: for page ∈ pageIDList do
4: Ask Index node at h(〈e, (page.max+page.min)/2〉) to scan

page page
5: Index node retrieves page contents Tuples
6: Index node filters Tuples with f(k̄)→ fTuples
7: for t ∈ fTuples do
8: Index node requests that Data Storage node at h(t.key)

scan the tuple t
9: Data Storage node sends t to node that requested scan,

bypassing the Index node and Relation Coordinator
10: end for
11: end for

V. RELIABLE QUERY EXECUTION
As in prior peer-to-peer query engines [5], [6], we adopt

a dataflow (“push”) style of distributed query processing. The
operators at each node either receive data directly from a local
scan of persistent storage, or receive tuples as they arrive from
other nodes in system. All data is ultimately collected at the
query initiator node, which may do final processing, such as
the last stage of aggregation, or a final sort.

The main difference in ORCHESTRA is that we are con-
cerned with computing the exact (i.e., correct and complete)
answer set over finite relations, rather than doing best-effort
computations over unbounded streams. Moreover, we support
scientific data sharing confederations with hundreds of peers,
not hundreds of thousands or millions of peers.
A. Architecture for Performance and Failure Detection

Several aspects of our query processing architecture are
enabled by our custom hash-based substrate, versus an existing
DHT like those used in PIER (Chord [8] or a hybrid between
Gnutella and Chord [16]) or Seaweed (Pastry). However, we
additionally develop several techniques at the query execution
level that are vital for performance and correctness.

First, for failure detection and efficiency, the query pro-
cessor benefits from the fact our substrate uses TCP to
manage connections between machines. A “downstream” node
almost immediately detects when an “upstream” node has
failed, because the TCP connection drops. It also automatically
provides flow control in the event of a congested network. In
contrast, the DHTs in prior work tend to do little or no flow
control, and they rely on occasional pings to eventually detect
failures. (Of course, we could have alternatively used UDP,
and implemented fast failure detection and flow control via
periodic handshaking.)

Second, for failure recovery, the query processor is given
direct information about the state of the routing tables. A
snapshot of the routing tables is taken by the query initiator
as it invokes the query. This snapshot is disseminated along
with the query plan to all nodes, in order to ensure absolute
consistency of the routing tables. If one or more nodes fail
in the middle of execution, the difference in the routing
tables is reported back to the query initiator, such that it can
incrementally recompute only the lost portion of the query
state (Section V-D).

Third, for performance, the query processor batches tu-
ples into blocks by destination, compressing them (using
lightweight Zip-based compression) and marshalling them in
a format that exploits their commonalities. This makes query
processing much more efficient than if it were built over a
DHT with many smaller messages, and reduces CPU and
bandwidth use.

Finally, for correctness, each tuple is annotated with in-
formation about which source nodes supplied the data from
which the tuple was derived. This is used to prevent duplicate
answers when recovering from a failed node.
B. Query Execution

A query plan consists of the operators listed in Table I.
The query is “driven” by some combination of the leaf-level
scan operators described in the table — each is novel to our
system, as it exploits the specific versioned indexing scheme
used in our storage system. Such operators typically are run
concurrently across all of the nodes in the system — each
operating on a data partition stored at those nodes.

From there, the retrieved data may be passed locally through
a series of pipelined operators, such as joins or function eval-
uation. This continues until the next operator is either a ship

Covering index scan retrieves data directly from the index nodes,
if only key attributes are required, bypassing the data storage nodes.
Distributed scan executes at both index nodes and data storage
nodes, similar to in Algorithm 1, with the data storage nodes received
filtered collections of tuple IDs that pass a sargable predicate. The
tuples from each index page are stored nearby on disk, and are
retrieved in a single pass through the hash ID range for that page.
Instead of being sent back to the query initiator, the resulting tuples
are pushed through the query plan.
Select implements selection on intermediate results.
Project is the standard projection operator.
Join is a pipelined hash join [17].
Aggregate is a a blocking, hash-based grouping operator, which
supports re-aggregation of partially aggregated intermediate results.
Ship sends the tuples it receives to the query initiator.
Rehash partitions its input among the system nodes by hashing on
some subset of the tuples’ attributes.
Compute-function performs scalar function evaluation, such as
arithmetic or string concatenation.

TABLE I
OPERATORS IN THE ORCHESTRA QUERY ENGINE

operator or a rehash operator. The ship operator sends the data
it receives to the query initiator. The rehash operator partitions
its input tuples by their hash IDs in the networking substrate
and sends them to other nodes in the system. Rehashing is
commonly used to enable joins or aggregation, when a relation
needs to be re-partitioned on a join or grouping key. The rehash
operator routes tuples to a destination node by first hashing
the key using the SHA-1 hash function, then consulting the
snapshot of the query routing table described previously.

Each operator sends an end-of-stream notification to its
parent operator when it finishes executing. Scans can easily
detect when they are done, and most other operators simply
propagate an end-of-stream notification downstream after they
receive it (perhaps first performing some final computation
to produce results, as in a aggregate operator). However,
detecting end-of-stream with the rehash operator is slightly
tricky: it cannot complete until it has acknowledgment from
all downstream nodes that they have received all of the data
it sent. Once all operators have encountered the end of the
stream, the query is complete.

Example 5.1: Continuing our example, a given node may
initiate the following query:

SELECT x, MIN(z) FROM R, S
WHERE R.y = S.y GROUP BY x

ORCHESTRA can use the execution plan in Figure 6 (an-
notated with the tuples at each stage in the plan, in italics).
Each node joins tuples from relations R and S on attribute y,
and then groups the results by x. Before this computation can
begin, tuples must be redistributed so items that join are on
the same node. We rehash tuples from R on the y attribute:
now both R and S are partitioned according to their join
key. Next we execute the join, producing intermediate relation
RS, partitioned on the y attribute. The group-by operation
requires one additional rehash, this time on its grouping
attribute x. Each node aggregates its values, then all nodes
ship their results to Node 1, the query initiator. When the
scans complete, they propagate end-of-stream to the rehash
operators. The rehash operators confirm that all of their sent

R(a,b) S(f,k) R(c,d) S(b,j)

R(c,d) R(a,b)

RS(a,b,j)

RS(a,b,j)

RS(a,b,j)

RS(a,b,j)

Fig. 6. Distributed query plan for running example.

data has been received, then propagate the end-of-stream. The
process continues until the Group operators are encountered.
When these operators receive end-of-stream, they first output
their final aggregate values, before propagating the end-of
stream, which gets forwarded to the query initiator.
C. Handling Node Membership Changes

The major challenge of reliable query processing is how to
handle changes to the node set. Recall from Section III that
the query initiator takes a snapshot of the routing tables in the
system during query initiation. It disseminates this snapshot
along with the query plan so all machines will use a consistent
assignment between hash values and nodes.
Node arrival. Suppose a node joins the system in the midst
of execution. In a DHT, such a change immediately affects the
routing of the system — and begins forwarding messages to
the new node, which may not have participated in any prior
computation. In principle, one might develop special protocols
by which the new node would be “brought up to speed” by
its neighbors. However, this becomes quite complex when
multiple nodes join at different times. Instead, we let the query
complete on its initial set of nodes, and only make use of
the new node when a fresh query (with a new routing table
snapshot) is invoked. This approach provides simplicity and
avoids expensive synchronization.
Node departure/failure. Our use of TCP connections be-
tween nodes is generally adequate to detect a total node
failure (we assume complete failure rather than incorrect
operation) or network partition. If a sending node (and query
operator) drops its connection before sending an end-of-stream
message, or a receiving node drops its connection before query
completion, then this represents a failure. Additionally, the
system performs periodic ping operations in the background
to detect a “hung” machine. Clearly in this case, continuing
query computation will result in missing or possibly incorrect
answers. This leads us to the problem of recomputation,
described in the next subsection.
D. Recovery from Failure

Our system supports two forms of recovery from failure.
One option, upon detecting a node failure, is to terminate and
and restart any in-process queries. Assuming low failure rates,
we will ultimately get the answers this way. This approach is

straightforward to implement in ORCHESTRA, since we can
detect which queries are still in-flight — in contrast to systems
like PIER or Seaweed.

When failures are more common, as in longer-lived queries
running on large numbers of nodes, better performance might
be obtained by performing incremental recomputation, where
we only repeat the computations affected by the failed node,
using a different node that has data replicated from the failed
one. The key challenge here is that simply recomputing will
likely result in the creation of some number of duplicate tuples
— which in turn will either lead to duplicate answers or (in
many cases) to incorrect aggregate results.

After a failure, any derived state in the system that origi-
nated from the failed nodes is likely to be inconsistent, due
to propagation and computation delays. We can re-invoke the
computation from the failed nodes and then remove duplicate
answers, or instead we can remove all state derived from the
failed nodes’ data before performing the recomputation. We
adopt the latter approach due to the difficulty of detecting
which tuples are duplicates. As was hinted at previously, this
means we must track which intermediate and final results are
derived from data processed at one of the failed nodes. We
tag each tuple in the system with the set of nodes that have
processed it (or any tuple used to create it), and maintain these
sets of nodes as the tuples propagate their way through the
operator graph. As we validate experimentally, this can be
done with minimal overhead.

We divide incremental recomputation into four stages.
Determine change in assignment of ranges to nodes.
When a node or set of nodes fail, other nodes “inherit” a
portion of the hash key space from failed nodes. The query
initiator computes a new routing table from the original one,
assigning the ranges owned by the failed nodes to remaining
ones. If the failed nodes’ data is available on more than one
replica, the initiator will evenly divide among them the task
of recomputing the missing answers.
Drop all intermediate results dependent on data from the
failed nodes. To prevent duplicate answers, we scan the
internal state of all operators and discard any tuples that are
tagged as having passed through a failed node (we term these
tainted tuples). It is critical that any state not dependent on
the failed nodes remains available. This is easy to accomplish
with join operator state. For aggregate operators, we partition
each group into sub-groups that summarize the effects of all
of the tuples for each possible set of contributing nodes, and
drop the sub-groups for failed nodes. While the number of
subgroups is exponential in the number of rehashes (for n
nodes and m rehashes,

∑m+1
k=1

(
n
k

)
), this number is typically

small; critically, it does not depend on the number of input
tuples. Tuples that are in flight between operators (or crossing
the network) must also be filtered in this way.
Restart leaf-level operations for the failed nodes’ hash
key space ranges. We restart leaf-level operations such as
tablescans, re-producing any data that would have originated
at the failed nodes. As the data propagate through the system,
they will be re-processed against the data from other nodes,

generating all join and grouping results dependent on them.
Re-create data that was sent to the failed nodes’ hash
key space ranges. Additionally, any data that was sent to
a failed node was either lost when the node failed or has
become tainted by passing through the node and will therefore
be discarded. Now all data that was to have been sent to the
failed nodes must be retransmitted. If an operator maintains
an in-memory snapshot of all data necessary to re-produce
its answers (as with a pipelined hash join) this is relatively
efficient. For more costly operations such as tablescans, we
add a cache of their output data, at the downstream rehash
or ship operator. It is easy to detect which of the reproduced
tuples would have been sent to a failed node by consulting the
query’s original routing table.

Perhaps the most difficult task in recovery is avoiding race
conditions that lead to subtly incorrect query results. We
have chosen to divide computation into phases corresponding
to the initial execution, followed by successive incremental
recovery invocations. Each tuple gets tagged with a phase. As
each stateful operator processes a recovery message, it purges
tainted data and increments its phase counter. All tuples it
(re)produces are in this new phase. This allows the system to
differentiate between old, in-flight data from a failed node and
new, recomputed results from recovery.

VI. EXPERIMENTAL EVALUATION
We briefly describe our implementation, which has been

under development for more than two years.
Query Engine. Our execution engine is implemented in
approximately 50,000 lines of Java. It uses BerkeleyDB Java
Edition 3.3.69 for persistent storage of data. We conducted
most experiments on a 16-node cluster of dual-core 2.4GHz
Xeon machines with 4GB RAM running Fedora 10, connected
by Gigabit Ethernet. To study performance at scale, we used
up to 100 2GHz dual core nodes from Amazon’s EC2 cloud
computing service.
Query Optimizer. The focus of this paper is on the distributed
execution engine of ORCHESTRA, but we briefly describe
its optimizer. It currently handles single-block SQL queries,
including function evaluation and grouping. It adopts the
Volcano [18] transformational model, using top-down enu-
meration of plans with memoization, and employing branch-
and-bound pruning to discard alternative query plans when
their cost exceeds the cost of a known query plan. Our
optimizer considers bushy as well as linear query plans. It
relies on information (previously computed and stored) about
machine CPU and disk performance, as well as pairwise
bandwidth. The optimizer estimates costs by assuming that
each horizontally partitioned relation will be evenly distributed
by the storage layer across all nodes. It then estimates the cost
of a subplan by considering the cost at the slowest node or
link that must be used at each stage — in a sense estimating
the worst-case expected completion time of each operation.
A. Workload

Queries that are generated from schema mappings, as in data
exchange and collaborative data sharing systems, are primarily
select-project-join queries that vary from domain to domain,

and are seldom publicly available. A recent benchmark suite,
STBenchmark [19], has been proposed to create synthetic data
exchange schema mappings along a variety of dimensions.
We ran the STBenchmark instance and mapping generator
with the default parameters, but with the nesting depth set
to zero to produce relational data. We varied the size of each
generated relation from 100K to 1.6M tuples (the maximum
the ToXGene generator would produce due to memory con-
straints). Except for one field, all STBenchmark tables are
wide relations containing many 25-character variable length
strings (which are not necessarily representative of typical
data exchange settings). Nonetheless, we selected a repre-
sentative subset of the STBenchmark mapping scenarios to
study: (1) Copy, which retrieves an entire 7-attribute relation,
(2) Select, which retrieves the tuples from a 6-attribute relation
that satisfy a simple integer inequality predicate, (3) Join,
which combines a 7-, a 5-, and a 9-attribute relation by joining
them on two attributes, (4) Concatenate, which retrieves
a 6-attribute relation, concatenates three of those attributes
together, and returns the result along with the remaining
three attributes, and (5) Correspondence, which retrieves a
7-attribute relation and uses a correspondence table to add an
integer-valued ID based on two of the input attributes to the
result. The last query used a Skolem function (ID generator)
in the output, which we replaced with a value correspondence
table, as would likely be used in practice.

To add diversity and scale to our data and queries, we also
experimented with the standard TPC-H OLAP benchmark:
(1) it scales to a variety of sizes, enabling us to consider
dataset scalability, (2) it contains a diverse set of queries,
enabling us to identify different performance factors, (3) it is a
well-understood and standard benchmark for comparison. We
used the standard TPC-H data generator to create source data
at several scale factors, and we selected the TPC-H queries
meeting the single-SQL-block requirement of our optimizer.
We distributed the 8 TPC-H tables by partitioning on their
key attribute (first key attribute, if more than one attribute
was present). Two of the tables, Nation and Region, were
small enough that we replicated them at each node; together
they take up less than 3KB on disk. We use TPC-H queries
1, 3, 5, 6, and 10, and measure running time to completion
of the full query. Queries 1 and 6 are aggregation queries
over the Lineitem table; Q1 performs a distributed aggregation
followed by re-aggregation at the query coordinator, while Q6
only performs an aggregation at the coordinator. Queries 3,
5, and 10 are 3-way, 6-way, and 4-way joins, respectively,
followed by aggregation.

All measurements were taken after results converged to a
stable range of values; this is done to ensure warm caches and
to avoid invoking the Java JIT compiler, which otherwise adds
a large amount of noise. We present the average of five runs,
and show 95% confidence intervals for all data points.
B. Performance in the Local Area

We first study the performance of our engine over our
cluster’s local network (running at the full Gigabit speed), to
see how the architecture scales.

0 4 8 12 16
Number of Nodes

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

Join
Corresp.
Concatenate
Copy
Select

Fig. 7. Running time: STBenchmark, 800K
tuples/relation, 1-16 nodes.

0 4 8 12 16
Number of Nodes

0

50

100

150

200

Ne
tw

or
k

Tr
af

fic
 (M

B)

Join
Corresp.
Copy
Concatenate
Select

Fig. 8. Network traffic: STBenchmark, 800K
tuples/relation, 1-16 nodes.

0 4 8 12 16
Number of Nodes

0

10

20

30

40

50

60

Ne
tw

or
k

Tr
af

fic
 p

er
 N

od
e

(M
B)

Join
Corresp.
Copy
Concatenate
Select

Fig. 9. Per-node network traffic: STBenchmark,
800K tuples/relation, 1-16 nodes.

0 4 8 12 16
No. of Nodes

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Q10
Q5
Q3
Q1
Q6

Fig. 10. Running time: TPC-H Scale Factor 0.5,
1-16 nodes.

0 4 8 12 16
No. of Nodes

0

2

4

6

8

10

Ne
tw

or
k

Tr
af

fic
 (M

B)

Q10
Q3
Q5
Q6
Q1

Fig. 11. Network traffic: TPC-H Scale Factor
0.5, 1-16 nodes.

0 4 8 12 16
No. of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

Pe
r-N

od
e

Ne
tw

or
k

Tr
af

fic
 (M

B)

Q10
Q3
Q5
Q6
Q1

Fig. 12. Per-node network traffic: TPC-H scale
factor 0.5, 1-16 nodes.

0 400K 800K 1.2M 1.6M
Tuples/Relation

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Join
Corresp.
Copy
Concatenate
Select

Fig. 13. Running time vs. data size, STBench-
mark, 8 nodes.

0 1 2 3 4
Database Scale Factor

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Q10
Q3
Q5
Q1
Q6

Fig. 14. Running time vs. data size, TPC-H, 8
nodes.

0 400K 800K 1.2M 1.6M
Tuples/Relation

0

50

100

150

200

250

300

350

400

Ne
tw

or
k

Tr
af

fic
 (M

B)

Join
Corresp.
Copy
Concatenate
Select

Fig. 15. Network traffic vs. data size, STBench-
mark, 8 nodes.

Scaling Nodes. Figure 7 shows execution times for STBench-
mark (at 800,000 tuples/relation) for 1 to 16 physical nodes,
while Figure 10 shows times for TPC-H queries over the
500MB data set (scale factor 0.5). Note that results for
STBenchmark are directly above the corresponding results for
TPC-H to emphasize that the trends are very similar. Ideally,
the running times would be halved each time we double the
number of nodes. Our results come very close to matching this
expectation for all of the TPC-H queries and about half of the
STBenchmark queries. In the other STBenchmark queries (in
particular Copy), so much data is returned (because the tuples
consist of many long strings), that collecting the results at the
query initiator becomes a bottleneck. With 16 nodes, all but
0.1 sec of the Copy query is spent transmitting and receiving
the results. We conducted separate experiments to verify that
performance is mostly limited by network bandwidth, with
some additional performance degradation due to the unmar-
shaling and storage at the query initiator. All queries continue
to show some performance improvement as the number of
processing nodes increases.

Figures 8 and 11 show the total network traffic while
executing these queries, and Figures 9 and 12 show the per-
node traffic. As expected, the network traffic increases as we
scale up the number of nodes, but not dramatically so, and the
per-node traffic (after rising significantly when we move from
single-node computation to distributed operation) continues to
decrease as nodes are added to the system.

Scaling Data Set Size. We next consider the effects of scaling
the data. Figure 13 shows execution times for STBenchmark
on the 16-node cluster for 100K to 1.6M tuples/relation, and
Figure 14 shows the same for the TPC-H queries over the 8-
node cluster while varying the data size from 250MB to 4GB
(scale factors 0.25 to 4). Figures 15 and Figure 16 show total
network traffic for the same scenarios. Execution times and
network traffic for all queries scale approximately linearly in
the size of the data, as one would expect since there are only
foreign-key joins and the data is fairly evenly distributed. We
conclude that our system scales well on a LAN, and move on
to consider other network settings.

C. Performance over a Simulated Wide Area Network
We next consider possible variations on Internet connectiv-

ity among compute nodes. We made use of the traffic shaping
and network emulation features built into recent versions of
Linux to simulate various parameter changes. Specifically, we
used NetEm to delay outgoing packets, simulating a higher
latency network, and we used the HTB queue discipline
to simulate a lower bandwidth network. Here we focus on
the TPC-H benchmark, since STBenchmark, due to its large
strings, becomes increasingly bandwidth-constrained at the
query initiator, and since we feel its data is actually less
representative than TPC-H’s.
Limited Bandwidth Settings. Our experimental results,
shown in Figure 17, demonstrate that while performance
suffers in very low-bandwidth connections, execution times

0 1 2 3 4
Database Scale Factor

0

10

20

30

40

50

60

70
Ne

tw
or

k
Tr

af
fic

 (M
B)

Q10
Q3
Q5
Q6
Q1

Fig. 16. Network traffic vs. data size, TPC-H,
8 nodes.

0 400 800 1200 1600 2000 2400 2800 3200
Per-Node Bandwidth KB/sec

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Q10
Q3
Q5
Q1
Q6

Fig. 17. Running time vs. per-node bandwidth,
8 nodes, TPC-H scale factor 4.

0 10 20 30 40 50 60 70 80 90 100
Number of Nodes

0

10

20

30

40

50

60

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Q10
Q5
Q3
Q1
Q6

Fig. 18. Larger-scale performance on EC2,
TPC-H scale factor 10.

0 20 40 60 80 100
Number of Nodes

0

50

100

150

200

250

Ne
tw

or
k

Tr
af

fic
 (M

B)

Q10
Q3
Q5
Q6
Q1

Fig. 19. Total traffic on EC2, TPC-H scale factor
10.

0 20 40 60 80 100
Number of Nodes

0

5

10

15

20

Pe
r-n

od
e

Ne
tw

or
k

Tr
af

fic
 (M

B)

Q10
Q3
Q5
Q6
Q1

Fig. 20. Per-node traffic on EC2, TPC-H scale
factor 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Failure Time (sec)

0

4

8

12

Ti
m

e
(s

ec
)

Restart
Recovery

Q1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Failure Time (sec)

0

4

8

12

Ti
m

e
(s

ec
)

Restart
Recovery

Q10

Fig. 21. Running times for Q1 and Q10 with a
failure with and without incremental recovery, 8
nodes, TPC-H scale factor 2.

are degraded but reasonable for the bandwidths likely to be
available between academic, institutional, or corporate users
(> 400 kB/sec). Queries 1 and 6, which perform no rehash
operations and therefore send much less data over the network,
are less impacted than queries 3, 5, and 10, which join multiple
relations and rehash data while doing so.
Higher Latency Settings. We omit a full presentation of our
latency experiments due to space constraints. Realistic laten-
cies (up to 200ms) had little impact on query performance.
D. Scalability to Larger Numbers of Nodes

Since we have a limited number of local machines in our
cluster, we next tried several alternatives to scale to higher
numbers. Our initial efforts were with the PlanetLab network
testbed — but disappointingly, we found that most nodes here
were severely underpowered and overloaded, and disk- and
memory-intensive tasks like ours were constantly thrashing,
resulting in inconsistent and uninformative results.

Instead, we leased virtual nodes from Amazon’s EC2 service
— something we envision ORCHESTRA’s user base doing as
needed. Amazon has data centers geographically distributed
across the world, so round-trip times are short and bandwidth
is high. We used EC2’s “large” instances with 7.5GB RAM,
and a virtualized dual-core 2GHz Opteron CPU. We show
settings with only EC2 nodes to make the execution time
results simpler to understand, although we performed addi-
tional experiments showing similar results using a mixture
of local and EC2 nodes. We experimented with the TPC-H
scenario, as performance on STBenchmark at the data sizes
we could generate was either too fast to be measured reliably
or dominated by the cost of collecting the results.

We varied the number of total participants in the setting
from 10 to 100, using TPC-H scale factor 10 (10GB data).
Network traffic results, shown in Figures 19 and 20, are similar
to the results shown in Figures 11 and 12 for smaller numbers
of nodes. Execution times are shown in Figure 18. As before,
increasing the number of nodes leads to a dramatic decrease

in execution time. This experiment validates the scalability of
our system to large numbers of nodes.
E. Failure and Recomputation

Finally, we study recovery when a node fails or becomes
unreachable. One option is to abort the query and restart it
over the remaining nodes. The other is to use the remaining
nodes to recompute the “lost” results. Our experiments used
8 nodes and TPC-H scale factor 2.
Incremental Recomputation vs. Total Restart. To explore
the trade-offs between incremental recomputation versus full
restart, we first ran a series of experiments using Q1 (a
selection and aggregation query) and Q10 (which performs
three joins followed by an aggregation), chosen to represent
the two classes of TPC queries we studied. We started each
query and at varying points after the start of the query (before
it finished) we caused one of the nodes to fail. To avoid giving
incremental recomputation an unfair advantage, we recompute
using the same routing tables (which spreads the range of
the failed node evenly over the nodes holding its replicated
data). Figure 21 shows performance results for Q1 and Q10.
In both cases, incremental recovery outperforms aborting and
restarting by approximately 20%, validating the approach.
Execution is slow for both techniques (compared to no failure)
due to the cache misses inherent when a new node takes over
a portion of the substrate key space.
Overhead of Incremental Recomputation. Incremental
recomputation requires more data to be stored and sent over
the network (to track the provenance of intermediate results),
and requires that all intermediate results be kept around until
the end of the query. Clearly, if this adds significant overhead
to an average query, it may actually be preferable to restart
after nodes fail. We measured the overhead of incremental
recovery support on the TPC-H queries, which we briefly sum-
marize due to space constraints. As expected, recovery support
slightly increased execution time: queries ran from 2%-7%
slower. Network traffic increased by negligible amounts, at

most 2% (for Q10). In our view, this overhead is low enough
to make it worthwhile if there is a reasonable expectation of
node failure — particularly for long-running queries where the
cost of restart may be high. Such an expectation goes up as
more nodes join (and query running times go down, reducing
the overall amount of overhead). Also, if query performance is
limited by available network bandwidth, incremental recovery
becomes almost free due to the low network overhead, and
restarting becomes more expensive.

VII. RELATED WORK
Distributed hash table-based query processors have largely

targeted the domain of Internet-scale network monitoring,
where nodes located throughout the Internet each process large
amounts of typically streaming data. The PIER system [5]
developed implementations of the pipelined hash join and
Bloomjoin over a DHT, as well as schemes for computing
aggregation over a tree-like structure of nodes. Seaweed [6]
focuses on distributed aggregation, including proactive com-
putation of aggregates, and latency-based cost estimation.
In both of these systems, the focus is on throughput and
best-effort query processing using many peers operating on
large amounts of data; completeness and consistency are not
essential. Our target domain is more controlled and smaller —
with certain parameters closer to distributed DBMSs — but
also has storage, consistency, and completeness requirements.

Reliable query processing is a topic of study dating back at
least to IBM’s R* [20] and perhaps best known commercially
as Tandem NonStop SQL [21]. However, their consistency
model and definition of reliability differ from ours. In existing
work, the problem is detecting a failed machine in a local
cluster and possibly aborting and restarting a query. Our goal is
to incrementally recompute “missing” answers where possible,
in order to complete query computation. Also, our consistency
model is somewhat simpler because we do not consider
transactions, and relations are only updated by their “owners.”
Recent work on cloud data services, such as [10], [11] seeks to
develop reliable, batch-oriented, DBMS-like capabilities over
Hadoop and immutable files stored in HDFS. Sinfonia [22]
seeks to develop failure-tolerant “mini-transactions” to support
distributed state management in a cluster.

VIII. CONCLUSIONS AND FUTURE WORK
This paper has shown how to provide a reliable peer-

to-peer storage and query execution engine for a CDSS.
This involves a richer networking substrate, novel differential
indexing schemes to guarantee the correct versions of all tuples
are used during processing, and a query evaluator that is care-
fully matched to this substrate. We developed techniques for
handling failures through incremental or full recomputation,
and showed the trade-offs between these approaches.

There are a number of directions in which we would like
to extend this work. One is to make use of materialized
views, perhaps arising from the cached results of previous
queries, to improve execution performance, though as in
a centralized database the cost of freshening and using a
view may outweigh its benefit. Another promising avenue
is to implement automatic load-balancing by adjusting the

routing table, to compensate for unequal network bandwidth
or available machine resources. Finally and most importantly,
now that the system is stable and fully functional, we plan
to integrate it as a component of the ORCHESTRA system,
realizing the truly peer-to-peer nature of a CDSS.

ACKNOWLEDGMENTS
This work was funded in part by NSF grants IIS-0477972,

IIS-0713267, IIS-0513778, and CNS-0721541. We thank
the Penn Database Group, especially TJ Green, Greg Kar-
vounarakis, and Svilen Mihaylov, and our anonymous review-
ers for their feedback. We are also grateful to the authors of
STBenchmark for their technical assistance.

REFERENCES

[1] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P.
Talukdar, M. Jacob, and F. Pereira, “The ORCHESTRA collaborative data
sharing system,” SIGMOD Rec., 2008.

[2] N. E. Taylor and Z. G. Ives, “Reconciling while tolerating disagreement
in collaborative data sharing,” in SIGMOD, 2006.

[3] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007, amended
version available as Univ. of Pennsylvania report MS-CIS-07-26.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in Middleware,
2001.

[5] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi, “The architec-
ture of PIER: an Internet-scale query processor.” in CIDR, 2005.

[6] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron, “Delay aware
querying with Seaweed,” in VLDB, 2006.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in SIGCOMM, 2001.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” in SIGCOMM, 2001.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in SOSP, 2003.

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: a not-so-foreign language for data processing,” in SIGMOD, 2008.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS:
Yahoo!’s hosted data serving platform,” PVLDB, vol. 1, no. 2, 2008.

[12] “Amazon Simple Storage Service (Amazon S3),” 2008, aws.amazon.
com/s3.

[13] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for peer-to-
peer overlays,” in NSDI, 2004.

[14] P. Druschel and A. I. T. Rowstron, “PAST: A large-scale, persistent
peer-to-peer storage utility,” in HotOS, 2001, pp. 75–80.

[15] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in SOSP, 2001.

[16] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica,
“Enhancing p2p file-sharing with an internet-scale query processor,” in
VLDB, 2004.

[17] L. Raschid and S. Y. W. Su, “A parallel processing strategy for evaluating
recursive queries,” in VLDB, 1986.

[18] G. Graefe and W. J. McKenna, “The Volcano optimizer generator:
Extensibility and efficient search,” in ICDE, 1993.

[19] B. Alexe, W. C. Tan, and Y. Velegrakis, “STBenchmark: towards a
benchmark for mapping systems,” PVLDB, vol. 1, no. 1, pp. 230–244,
2008.

[20] B. G. Lindsay, L. M. Haas, C. Mohan, P. F. Wilms, and R. A.
Yost, “Computation and communication in R*: a distributed database
manager,” ACM Trans. Comput. Syst., vol. 2, no. 1, 1984.

[21] Tandem Database Group, “NonStop SQL, a distributed, high-
performance, high-availability implementation of SQL,” HP Labs, Tech.
Rep., April 1987, report TR-87.4.

[22] M. K. Aguilera, A. Merchant, M. A. Shah, A. C. Veitch, and C. T.
Karamanolis, “Sinfonia: a new paradigm for building scalable distributed
systems,” in SOSP, 2007.

