• Sipser 4.2
The language can be expressed as this set
\{ <D,R> | D is a dfa and R is a regex where L(D) = L(R) \}
The algorithm for deciding this language is
1. Convert the input regular expression R to an NFA N.
2. Convert N to a DFA D'.
3. Use the fact that the equivalence of two DFAs is a decidable problem. Feed D and D' to a Turing Machine M that decides whether or not they are equal
 (a) If M says that D and D' are equivalent then return accept
 (b) If M says D and D' are not equivalent then return reject.

• Sipser 4.3
There are several possible solutions for this question. One of them was discussed in the recitation where we used EQ_{DFA} as the subroutine. Here is a different solution where we will use E_{DFA} as a subroutine. Remember that E_{DFA} is the one that tells you whether the input DFA has an empty language. In other words, the question ‘does a DFA accept anything at all’ is decidable.
On input \(<A>\), where A is a DFA, do the following
1. Convert A to A^c, the DFA that accepts the complement of the language being accepted by A.
2. Using E_{DFA} as a subroutine, check and see if L(A^c) = \emptyset or not.
3. If L(A^c) = \emptyset return accept else return reject.

• Sipser 4.4
Again, there are a few different ways to do this question. Honglin described one solution using the idea of ‘marking’.
Another solution is to the following
1. Convert G to Chomsky Normal Form. Let the collection of rules after this conversion process be represented by R_{CNF}.
2. Loop over the rules in R_{CNF}. If you find a rule $S \rightarrow \varepsilon$, then the grammar does generate ε so return accept. Otherwise return reject.

- Sipser 4.5 is solved in the book. Please read that and ask us if you have any trouble understanding.

- Sipser 4.12

Several possible ways to do this. We will rely on three things here. That we can make a DFA that only accepts strings containing odd number of 1s. We can ‘intersect’ two DFAs and finally that checking the ‘emptiness’ of a DFA is a decidable thing.

Formally speaking here are the steps

1. Make D_{odd} which is a DFA that accepts only strings that have an odd number of 1s.
2. Use the input DFA M to create a DFA D_{inter} which accepts the intersection of $L(D_{odd})$ and $L(M)$.
3. Use E_{DFA} as a subroutine to check and see if D_{inter} accepts any string at all. If D_{inter} accepts a string then return reject. Else return accept.

- Sipser 4.13

We know how to convert regular expressions to DFAs. Note that $A \cap B = A$ iff $A \subseteq B$.

So we use this idea in the following steps

1. Convert R to D_R and S to D_S.
2. Use the intersection construction to make D_{inter}, a DFA that accepts $D_R \cap D_S$.
3. Use E_{DFA} as a subroutine to check equivalence of D_{inter} and D_R. So feed $<D_{inter}, D_R>$ to E_{DFA}.
 - If E_{DFA} returns accept then return accept.
 - If E_{DFA} return reject then return reject.