Administrivia

◊ [Use of homework solutions]
◊ [Study groups?]

References, continued

Final example

NatArray = Ref (Nat → Nat);

newarray = λa:Unit. ref (λn:Nat. 0);
 : Unit → NatArray

lookup = λa:NatArray. λn:Nat. (!a) n;
 : NatArray → Nat → Nat

 let oldf = !a in
 a := (λn:Nat. if equal m n then v else oldf n);
 : NatArray → Nat → Nat → Unit
Syntax

\[t ::= \]

- unit
- \(x \)
- \(\Lambda x : T . t \)
- \(t t \)
- ref \(t \)
- \(!t \)
- \(t : = t \)

... plus other familiar types, in examples.

Typing Rules

\[\Gamma \vdash t_1 : T_1 \]
\[\Gamma \vdash \text{ref } t_1 : \text{Ref } T_1 \]
\[(\text{T-REF}) \]

\[\Gamma \vdash t_1 : \text{Ref } T_1 \]
\[\Gamma \vdash !t_1 : T_1 \]
\[(\text{T-DEREF}) \]

\[\Gamma \vdash t_1 : \text{Ref } T_1 \]
\[\Gamma \vdash t_2 : T_1 \]
\[\Gamma \vdash t_1 := t_2 : \text{Unit} \]
\[(\text{T-ASSIGN}) \]

Evaluation

What is the **value** of the expression `ref 0`?

Crucial observation: evaluating `ref 0` must do something.

Otherwise,

\[r = \text{ref } 0 \]
\[s = \text{ref } 0 \]

and

\[r = \text{ref } 0 \]
\[s = r \]

would behave the same.
Evaluation

What is the value of the expression `ref 0`?

Crucial observation: evaluating `ref 0` must do something.

Otherwise,

\[
\begin{align*}
 r &= \text{ref } 0 \\
 s &= \text{ref } 0
\end{align*}
\]

and

\[
\begin{align*}
 r &= \text{ref } 0 \\
 s &= r
\end{align*}
\]

would behave the same.

Specifically, evaluating `ref 0` should allocate some storage and return a reference (or pointer) to that storage.

The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

- Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
The Store

A reference is a pointer into the memory (the heap or store).

What is the store?

◊ Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
◊ More abstractly: an array of values

Locations

Syntax of values:

\[
\begin{align*}
\text{v} &::= \text{values} \\
& \quad \text{unit} \\
& \quad \Lambda x:T.t \\
& \quad l \\
\end{align*}
\]

... and since all values are terms...

Syntax of Terms

\[
\begin{align*}
\text{t} &::= \text{terms} \\
& \quad \text{unit} \\
& \quad x \\
& \quad \Lambda x:T.t \\
& \quad t \triangleright t \\
& \quad \text{ref } t \\
& \quad t := t \\
& \quad l \\
\end{align*}
\]

terms
unit constant
variable
abstraction
application
reference creation
dereference
assignment
store location
Aside

Does this mean we are going to allow programmers to write explicit locations in their programs?
No: This is just a modeling trick. We are enriching the language of terms to include some run-time structures, so that we can continue to formalize the evaluation relation as a relation between terms.

Evaluation

The result of evaluating a term now depends on the store in which it is evaluated. Moreover, the result of evaluating a term is not just a value — we must also keep track of the changes that get made to the store.
I.e., the evaluation relation should now map a term and a store to a reduced term and a new store.

\[t \mid \mu \rightarrow t' \mid \mu' \]

We use the metavariable \(\mu \) to range over stores.

Evaluation

Evaluation rules for function abstraction and application are augmented with stores, but don't do anything with them.

\[
\frac{\tau_1 \mid \mu \rightarrow \tau'_1 \mid \mu'}{t_1 \mid t_2 \mid \mu \rightarrow \tau'_1 \mid t_2 \mid \mu'}
\]

(E-APP1)

\[
\frac{\tau_2 \mid \mu \rightarrow \tau'_2 \mid \mu'}{v_1 \mid t_2 \mid \mu \rightarrow v_1 \mid \tau'_2 \mid \mu'}
\]

(E-APP2)

\[
(\lambda x : T_{11} \cdot t_{12}) \mid v_{2} \mid \mu \rightarrow [x \mapsto v_{2}] t_{12} \mid \mu
\]

(E-APPABS)

A term \(!t_1 \) first evaluates in \(t_1 \) until it becomes a value...

\[
\frac{\tau_1 \mid \mu \rightarrow \tau'_1 \mid \mu'}{t_1 \mid \mu \rightarrow !t'_1 \mid \mu'}
\]

(E-DEREF)

... and then looks up this value (which must be a location, if the original term was well typed) and returns its contents in the current store:

\[
\frac{\mu(1) = v}{!1 \mid \mu \rightarrow v \mid \mu}
\]

(E-DEREFLOC)
Typing Locations

Q: What is the type of a location?

A: It depends on the store! E.g., in the store \((l_1 \mapsto \text{unit}, l_2 \mapsto \text{unit}) \), the term \(!l_2\) has type \(\text{Unit}\). But in the store \((l_1 \mapsto \text{unit}, l_2 \mapsto \lambda x: \text{Unit}.x) \), the term \(!l_2\) has type \(\text{Unit} \to \text{Unit}\).
Typing Locations — first try

Roughly:

\[
\Gamma \vdash \mu(I) : T_1 \\
\Gamma \vdash I : \text{Ref } T_1
\]

More precisely:

\[
\Gamma \mid \mu \vdash \mu(I) : T_1 \\
\Gamma \mid \mu \vdash I : \text{Ref } T_1
\]

I.e., typing is now a four-place relation (between contexts, stores, terms, and types).

Problem

However, this rule is not completely satisfactory. For one thing, it can make typing derivations very large!

E.g., if

\[
(\mu - I_1 \mapsto \lambda x : \text{Nat.} \ 999,
I_2 \mapsto \lambda x : \text{Nat.} \ \! I_1 \ (\! I_1 \ x),
I_3 \mapsto \lambda x : \text{Nat.} \ \! I_2 \ (\! I_2 \ x),
I_4 \mapsto \lambda x : \text{Nat.} \ \! I_3 \ (\! I_3 \ x),
I_5 \mapsto \lambda x : \text{Nat.} \ \! I_4 \ (\! I_4 \ x)),
\]

then how big is the typing derivation for \(\! I_5 \)?
Store Typings

Observation: a given location in the store is always used to hold values of the same type.

These intended types can be collected into a store typing --- a partial function from locations to types.

\[\begin{align*}
\text{E.g., for} & \\
\mu &= (l_1 \mapsto \lambda x : \text{Nat}. \, 999, \\
& \quad l_2 \mapsto \lambda x : \text{Nat}. \, l_1 \, (l_1 \, x), \\
& \quad l_3 \mapsto \lambda x : \text{Nat}. \, l_2 \, (l_2 \, x), \\
& \quad l_4 \mapsto \lambda x : \text{Nat}. \, l_3 \, (l_3 \, x), \\
& \quad l_5 \mapsto \lambda x : \text{Nat}. \, l_4 \, (l_4 \, x),
\end{align*} \]

A reasonable store typing would be

\[\Sigma = (l_1 \mapsto \text{Nat} \rightarrow \text{Nat}, \\
& \quad l_2 \mapsto \text{Nat} \rightarrow \text{Nat}, \\
& \quad l_3 \mapsto \text{Nat} \rightarrow \text{Nat}, \\
& \quad l_4 \mapsto \text{Nat} \rightarrow \text{Nat}, \\
& \quad l_5 \mapsto \text{Nat} \rightarrow \text{Nat}) \]

Now, suppose we are given a store typing \(\Sigma \) describing the store \(\mu \) in which we intend to evaluate some term \(t \). Then we can use \(\Sigma \) to look up the types of locations in \(t \) instead of calculating them from the values in \(\mu \).

\[\frac{\Sigma (l) = T_1}{\Gamma, l \vdash t : \text{Ref} \, T_1} \]

\[(T-\text{Loc}) \]

i.e., typing is now a four-place relation between contexts, store typings, terms, and types.

Final typing rules

\[\frac{\Sigma (l) = T_1}{\Gamma, l \vdash t : \text{Ref} \, T_1} \quad (T-\text{Loc}) \]

\[\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{ref} \, t_1 : \text{Ref} \, T_1} \quad (T-\text{REF}) \]

\[\frac{\Gamma \vdash t_1 : \text{Ref} \, T_1}{\Gamma \vdash t_1 : T_1} \quad (T-\text{DEREF}) \]

\[\frac{\Gamma \vdash t_1 : \text{Ref} \, T_1}{\Gamma \vdash t_1 \, : = t_2 : \text{Unit}} \quad (T-\text{ASSIGN}) \]
Aside: garbage collection

[...]

Aside: pointer arithmetic

[...]

Exceptions