CIS 500 — Software Foundations

Midterm I, Review Questions
1. (2 points) We have seen that a linear expression like \(\lambda x. \lambda y. x \ y \ x \) is shorthand for an abstract syntax tree that can be drawn like this:

\[
\begin{align*}
\lambda x \\
\downarrow \\
\lambda y \\
\downarrow \\
apply \\
\downarrow \\
apply \\
\downarrow \\
x \\
\downarrow \\
y
\end{align*}
\]

Draw the abstract syntax trees corresponding to the following expressions:

(a) \(a \ b \ c \)

(b) \((\lambda x. \ b) \ (c \ d) \)
2. (10 points) Write down the normal forms of the following \(\lambda \)-terms:

(a) \((\lambda t. \lambda f. t) (\lambda t. \lambda f. f) (\lambda x. x)\)

(b) \((\lambda x. x) (\lambda x. x) (\lambda x. x) (\lambda x. x)\)

(c) \(\lambda x. x (\lambda x. x) (\lambda x. x)\)

(d) \((\lambda x. x (\lambda x. x)) (\lambda x. x (\lambda x. x))\)

(e) \((\lambda x. x x x) (\lambda x. x x x)\)

3. (4 points) Recall the following abbreviations from Chapter 5:

\[
\text{tru} = \lambda t. \lambda f. t \\
\text{fls} = \lambda t. \lambda f. f \\
\text{not} = \lambda b. b \text{ fls} \text{ tru}
\]

Complete this definition of a lambda term that takes two church booleans, \(b\) and \(c\), and returns the logical "exclusive or" of \(b\) and \(c\).

\[
\text{xor} = \lambda b. \lambda c. _________________________________
\]
4. (8 points) A list can be represented in the lambda-calculus by its fold function. (OCaml's name for this function is fold_right; it is also sometimes called reduce.) For example, the list \([x, y, z]\) becomes a function that takes two arguments \(c\) and \(n\) and returns \(c x (c y (c z n))\). The definitions of \(\text{nil}\) and \(\text{cons}\) for this representation of lists are as follows:

\[
\begin{align*}
\text{nil} & = \lambda c. \lambda n. n; \\
\text{cons} & = \lambda h. \lambda t. \lambda c. \lambda n. c \, h \, (t \, c \, n);
\end{align*}
\]

Suppose we now want to define a \(\lambda\)-term \(\text{append}\) that, when applied to two lists \(l_1\) and \(l_2\), will append \(l_1\) to \(l_2\) — i.e., it will return a \(\lambda\)-term representing a list containing all the elements of \(l_1\) and then those of \(l_2\). Complete the following definition of \(\text{append}\).

\[
\text{append} = \lambda l_1. \lambda l_2. \lambda c. \lambda n. \text{______________________________}
\]

5. (6 points) Recall the call-by-value fixed-point combinator from Chapter 5:

\[
\text{fix} = \lambda f. (\lambda x. f (\lambda y. x \, x \, y)) (\lambda x. f (\lambda y. x \, x \, y));
\]

We can use \(\text{fix}\) to write a function \(\text{sumupto}\) that, given a Church numerals \(m\), calculates the sum of all the numbers less than or equal to \(m\), as follows.

\[
\begin{align*}
g & = \lambda f. \lambda m. \\
& \quad (\text{iszro} \, m) \\
& \quad (\lambda x. c_0) \\
& \quad (\lambda x. \text{plus} \, \text{_______} \, (\text{_______} \, (\text{prd} \, m))) \\
& \text{tru}; \\
\text{sumupto} & = \text{fix} \, g;
\end{align*}
\]

Fill in the two omitted subterms.
6. (4 points) Suppose we have defined the naming context $\Gamma = a, b, c, d$. What are the deBruijn representations of the following λ-terms?

(a) $\lambda x. \lambda y. x \ y \ d$

(b) $\lambda x. c (\lambda y. (c \ y) \ x) \ d$

7. (4 points) Write down (in deBruijn notation) the terms that result from the following substitutions.

(a) $[0 \rightarrow \lambda.0](\lambda.0\ 1)\ 1$

(b) $[0 \rightarrow \lambda.\ 0\ 1](\lambda.\ 0\ 1)\ 0$
Typed arithmetic expressions

The full definition of the language of typed arithmetic and boolean expressions is reproduced, for your reference, on page 10.

8. (9 points) Suppose we add the following new rule to the evaluation relation:

\[
\text{succ true } \rightarrow \text{ pred (succ true)}
\]

Which of the following properties will remain true in the presence of this rule? For each one, write either “remains true” or else “becomes false,” plus (in either case) a one-sentence justification of your answer.

(a) Termination of evaluation (for every term \(t \) there is some normal form \(t' \) such that \(t \rightarrow^* t' \))

(b) Progress (if \(t \) is well typed, then either \(t \) is a value or else \(t \rightarrow t' \) for some \(t' \))

(c) Preservation (if \(t \) has type \(T \) and \(t \rightarrow t' \), then \(t' \) also has type \(T \))

9. (9 points) Suppose, instead, that we add this new rule to the evaluation relation:

\[
t \rightarrow \text{ if true then t else succ false}
\]

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term \(t \) there is some normal form \(t' \) such that \(t \rightarrow^* t' \))

(b) Progress (if \(t \) is well typed, then either \(t \) is a value or else \(t \rightarrow t' \) for some \(t' \))

(c) Preservation (if \(t \) has type \(T \) and \(t \rightarrow t' \), then \(t' \) also has type \(T \))
10. (9 points) Suppose, instead, that we add a new type, Funny, and add this new rule to the typing relation:

\[
\text{if true then false else false : Funny}
\]

Which of the following properties remains true? (Answer in the same style as the previous question.)

(a) Termination of evaluation (for every term \(t \) there is some normal form \(t' \) such that \(t \rightarrow^* t' \))

(b) Progress (if \(t \) is well typed, then either \(t \) is a value or else \(t \rightarrow t' \) for some \(t' \))

(c) Preservation (if \(t \) has type \(T \) and \(t \rightarrow t' \), then \(t' \) also has type \(T \))
Simply typed lambda-calculus

The definition of the simply typed lambda-calculus with booleans is reproduced for your reference on page 12.

11. (6 points) Write down the types of each of the following terms (or “ill typed” if the term has no type).

(a) $\lambda x: \text{Bool}. x \ x$

(b) $\lambda f: \text{Bool} \to \text{Bool}. \lambda g: \text{Bool} \to \text{Bool}. g \ (f \ (g \text{true}))$

(c) $\lambda h: \text{Bool}. (\lambda i: \text{Bool} \to \text{Bool}. i \text{false}) \ (\lambda k: \text{Bool}. \text{true})$
12. (9 points) Recall the rules for “big-step evaluation” of arithmetic and boolean expressions from HW 3.

\[
\begin{align*}
\text{v} & \Downarrow \text{v} \\
\text{t}_1 & \Downarrow \text{true} & \text{t}_2 & \Downarrow \text{v}_2 \\
\text{if} \text{t}_1 \text{then} \text{t}_2 \text{else} \text{t}_3 & \Downarrow \text{v}_2 \\
\text{t}_1 & \Downarrow \text{false} & \text{t}_3 & \Downarrow \text{v}_3 \\
\text{if} \text{t}_1 \text{then} \text{t}_2 \text{else} \text{t}_3 & \Downarrow \text{v}_3 \\
\text{ succ} \text{t}_1 & \Downarrow \text{ succ} \text{v}_1 \\
\text{pred} \text{t}_1 & \Downarrow 0 \\
\text{iszero} \text{t}_1 & \Downarrow \text{true} \\
\text{iszero} \text{t}_1 & \Downarrow \text{false} \\
\end{align*}
\]

The following OCaml definitions implement this evaluation relation almost correctly, but there are three mistakes in the eval function—one each in the TmIf, TmSucc, and TmPred cases of the outer match. Show how to change the code to repair these mistakes. (Hint: all the mistakes are omissions.)

```ocaml
let rec isnumericval t = match t with
    | TmZero(_) -> true
    | TmSucc(_,t1) -> isnumericval t1
    | _ -> false

let rec isval t = match t with
    | TmTrue(_ -> true
    | TmFalse(_) -> true
    | t when isnumericval t -> true
    | _ -> false

let rec eval t = match t with
    | v when isval v -> v
    | TmIf(_,t1,t2,t3) ->
        (match t1 with
        | TmTrue _ -> eval t2
        | TmFalse _ -> eval t3
        | _ -> raise NoRuleApplies)
    | TmSucc(fi,t1) ->
        (match eval t1 with
        | nv1 -> TmSucc (dummyinfo, nv1)
        | _ -> raise NoRuleApplies)
    | TmPred(fi,t1) ->
        (match eval t1 with
        | TmZero _ -> TmZero(dummyinfo)
        | _ -> raise NoRuleApplies)
    | TmIsZero(fi,t1) ->
        (match eval t1 with
        | TmZero _ -> TmTrue(dummyinfo)
        | TmSucc(_, _) -> TmFalse(dummyinfo)
        | _ -> raise NoRuleApplies)
    | _ -> raise NoRuleApplies
```
For reference: Untyped boolean and arithmetic expressions

Syntax

\[
\begin{align*}
 t & ::= \\
 & \text{true} \\
 & \text{false} \\
 & \text{if } t \text{ then } t \text{ else } t \\
 & 0 \\
 & \text{succ } t \\
 & \text{pred } t \\
 & \text{iszero } t
\end{align*}
\]

\[
\begin{align*}
 v & ::= \\
 & \text{true} \\
 & \text{false} \\
 & \text{nv}
\end{align*}
\]

\[
\begin{align*}
 \text{nv} & ::= \\
 & 0 \\
 & \text{succ } \text{nv}
\end{align*}
\]

\[
\begin{align*}
 T & ::= \\
 & \text{Bool} \\
 & \text{Nat}
\end{align*}
\]

Evaluation

\[
\begin{align*}
 \text{if true then } t_2 \text{ else } t_3 \to t_2 & \quad \text{(E-IfTrue)} \\
 \text{if false then } t_2 \text{ else } t_3 \to t_3 & \quad \text{(E-IfFalse)} \\
 t_1 \to t'_1 & \quad \text{(E-If)} \\
 \text{succ } t_1 \to \text{succ } t'_1 & \quad \text{(E-Succ)} \\
 \text{pred } 0 \to 0 & \quad \text{(E-PredZero)} \\
 \text{pred } (\text{succ } \text{nv}_1) \to \text{nv}_1 & \quad \text{(E-PredSucc)} \\
 t_1 \to t'_1 & \quad \text{(E-Pred)} \\
 \text{iszero } 0 \to \text{true} & \quad \text{(E-IszeroZero)} \\
 \text{iszero } (\text{succ } \text{nv}_1) \to \text{false} & \quad \text{(E-IszeroSucc)} \\
 t_1 \to t'_1 & \quad \text{(E-Iszero)} \\
 \text{iszero } t_1 \to \text{iszero } t'_1 & \quad \text{(E-Iszero)}
\end{align*}
\]

continued on next page...
true : Bool
false : Bool

\(t_1 : \text{Bool} \quad t_2 : \text{T} \quad t_3 : \text{T} \)

\(\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \text{T} \)

0 : Nat

\(t_1 : \text{Nat} \)

\(\text{succ } t_1 : \text{Nat} \)

\(t_1 : \text{Nat} \)

\(\text{pred } t_1 : \text{Nat} \)

\(t_1 : \text{Nat} \)

\(\text{iszero } t_1 : \text{Bool} \)
For reference: Simply typed lambda calculus with booleans

Syntax

\[
\begin{align*}
\text{t} & ::= \text{true} \\
& \quad \text{false} \\
& \quad \text{if } t \text{ then } t \text{ else } t \\
& \quad x \\
& \quad \lambda x: T. t \\
\end{align*}
\]

\[
\begin{align*}
\text{v} & ::= \text{true} \\
& \quad \text{false} \\
& \quad \lambda x: T. t \\
\end{align*}
\]

\[
\begin{align*}
T & ::= \text{Bool} \\
& \quad T \rightarrow T
\end{align*}
\]

Evaluation

\[
\begin{align*}
\text{if } \text{true} \text{ then } t_2 \text{ else } t_3 & \rightarrow t_2 \\
\text{if } \text{false} \text{ then } t_2 \text{ else } t_3 & \rightarrow t_3 \\
\text{if } t_1 \text{ then } t_2 \text{ else } t_3 & \rightarrow \text{if } t_1' \text{ then } t_2 \text{ else } t_3 \\
\text{E-IfTRUE} & \\
\text{E-IffFALSE} & \\
\end{align*}
\]

\[
\begin{align*}
\text{t}_1 & \rightarrow \text{t}_1' \\
\text{E-IF} & \\
\text{t}_1 \text{ t}_2 & \rightarrow \text{t}_1' \text{ t}_2 \\
\text{E-APP1} & \\
\text{t}_2 & \rightarrow \text{t}_2' \\
\text{E-APP2} & \\
\text{v}_1 \text{ t}_2 & \rightarrow \text{v}_1 \text{ t}_2' \\
\text{E-APPABS} & \\
(\lambda x: T_{11}. t_{12}) \text{ v}_2 & \rightarrow [x \mapsto \text{v}_2] t_{12} \\
\end{align*}
\]

Typing

\[
\begin{align*}
\text{true} : \text{Bool} \\
\text{false} : \text{Bool} \\
\text{t}_1 : \text{Bool} \quad \text{t}_2 : T \quad \text{t}_3 : T \\
\text{if } \text{t}_1 \text{ then } \text{t}_2 \text{ else } \text{t}_3 : T \\
\text{E-IF} & \\
x : T \in \Gamma \\
\Gamma \vdash x : T \\
\text{E-VAR} & \\
\Gamma, x : T_{11} \vdash t_2 : T_2 \\
\Gamma \vdash \lambda x : T_{11}. t_2 : T_{11} \rightarrow T_2 \\
\text{E-ABS} & \\
\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11} \\
\Gamma \vdash t_1 \text{ t}_2 : T_{12} \\
\text{E-APP} & \\
\end{align*}
\]