Homework Assignment 3

Due: Tuesday, February 8, 2005, by 12 PM (IN CLASS)

Please, read the following instructions:

- Fill out this form with your name, student ID, email, and signature and return it as the cover page of your homework.
- Turn in your homework at the beginning of your class on the due date described at the top of this page.
- Late assignments will be penalized 25% and will not be accepted after 1:30PM of the day following the due date.
- Late assignments must be turned in to Janean Williams in room 308, 3rd floor, Levine Building.
- All writings must be neat, well-organized, and include sufficient explanations in the delineation of the solutions.
- Full credit will be given only in the case where the correct answer has been properly justified with complete explanations.
- Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: ________________________________
Problem 1 [20 points]

Consider the NFA $M = (Q, \Sigma, \delta, q_0, F)$, where $Q = \{q, r, s, t\}$, $\Sigma = \{a, b\}$, $q_0 = q$, $F = \{t\}$, and $\delta : Q \times \Sigma \to \mathcal{P}(Q)$ is the transition function such that

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>${q, r}$</td>
<td>${q}$</td>
</tr>
<tr>
<td>r</td>
<td>${s}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>s</td>
<td>\emptyset</td>
<td>${t}$</td>
</tr>
<tr>
<td>t</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
</tbody>
</table>

Then,

(a) Compute $\bar{\delta}(q, bbaaba)$.

(b) Describe $L(M)$.
Problem 2 [20 points]

Use the subset construction given in class to compute a DFA D such that $L(D) = L(M)$, where M is the NFA defined in the previous problem.
Problem 3 [40 points]

We say that a state \(q \in Q \) of a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is reachable if there exists a string \(w \in \Sigma^* \) such that \(q = \bar{\delta}(q_0, w) \). Otherwise, we say that \(q \) is unreachable. Now, consider the following questions:

(a) Show that \(q_0 \) is a reachable state for any DFA \(M \).

(b) Is there any unreachable state in the DFA you computed for Problem 2? Justify your answer.

(c) Let \(M \) be the DFA of your answer for Problem 2 and build a DFA \(M' = (Q', \Sigma, \delta', q_0, F') \), where \(Q' = \{ q \in Q \mid q \text{ is reachable in } M \} \), \(F' = \{ q \in F \mid q \text{ is reachable in } M \} \), and \(\delta': Q' \times \Sigma \rightarrow Q' \) is the transition function defined as \(\delta'(q, a) = \delta(q, a) \), for all \(q \in Q' \) and \(a \in \Sigma \). Note that if your answer for item (b) was “no”, then \(M = M' \). Otherwise, \(M' \) can be viewed as \(M \) without the unreachable states.

(d) Show that, for every \(w \in \Sigma^* \), we must have \(\bar{\delta}(q_0, w) = \bar{\delta}'(q_0, w) \). Argue that \(L(M) = L(M') \).
Problem 4 [20 points]

Let $L \subseteq \{a, b, c\}^*$ be the language consisting of all strings w over $\{a, b, c\}$ such that w contains an odd number of a’s or an odd number of b’s an odd number of c’s; that is, $L = \{a, b, c, ab, ba, ac, ca, bc, cb, abc, \ldots\}$.

(a) Build an NFA M with 7 states such that $L(M) = L$.

(b) Can you design a DFA D such that $L(D) = L$ and D has less than 8 states? If so, describe the five parts of such a DFA. Otherwise, argue (informally) why such a DFA cannot exist.