CIT 596 – Theory of Computation
Spring 2005, 212 Moore, TR 12-1.30PM

Homework Assignment 4

Due: Tuesday, February 15, 2005, by 12 PM (IN CLASS)

Name: __
Student ID (8 digits): ______________________________
Email: ___
Signature: __

PLEASE, READ THE FOLLOWING INSTRUCTIONS:

• Fill out this form with your name, student ID, email, and signature and return it as the cover page of your homework.
• Turn in your homework at the beginning of your class on the due date described at the top of this page.
• Late assignments will be penalized 25% and will not be accepted after 1:30PM of the day following the due date.
• Late assignments must be turned in to Janean Williams in room 308, 3rd floor, Levine Building.
• All writings must be neat, well-organized, and include sufficient explanations in the delineation of the solutions.
• Full credit will be given only in the case where the correct answer has been properly justified with complete explanations.
• Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: __
Problem 1 [25 points]

Consider the ϵ-NFA $M = (Q, \Sigma, \delta, q_0, F)$, where $Q = \{s_0, s_1, s_2, s_3\}$, $\Sigma = \{a, b, c\}$, $q_0 = s_0$, $F = \{s_3\}$, and $\delta : Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ is the transition function such that

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>${s_1}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>s_1</td>
<td>\emptyset</td>
<td>${s_2}$</td>
<td>\emptyset</td>
<td>${s_0}$</td>
</tr>
<tr>
<td>s_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${s_3}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>s_3</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>${s_1}$</td>
</tr>
</tbody>
</table>

Then,

(a) Compute ϵ-closure of s_0.
(b) Compute ϵ-closure of s_1.
(c) Compute ϵ-closure of s_2.
(d) Compute ϵ-closure of s_3.
(e) Compute $\delta(s_0, aabc)$.
Problem 2 [25 points]

Build a nondeterministic finite automaton (NFA) \textit{without} \(\epsilon\)-transitions that recognizes the same language recognized by the \(\epsilon\)-NFA in the previous problem.
Problem 3 [50 points]

Given a nondeterministic finite automaton (NFA) N without ϵ-transitions, prove that it is possible to construct a nondeterministic finite automaton N_1 with ϵ-transitions such that N_1 has exactly one final state, and $L(N_1) = L(N)$.