PLEASE, READ THE FOLLOWING INSTRUCTIONS:

• Fill out this form with your name, student ID, email, and signature and return it as the cover page of your homework.

• Turn in your homework at the beginning of your class on the due date described at the top of this page.

• Late assignments will be penalized 25% and will not be accepted after 1:30PM of the day following the due date.

• Late assignments must be turned in to Janean Williams in room 308, 3rd floor, Levine Building.

• All writings must be neat, well-organized, and include sufficient explanations in the delineation of the solutions.

• Full credit will be given only in the case where the correct answer has been properly justified with complete explanations.

• Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>15</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL: ____________________________
Problem 1 [15 points]

Let $\Sigma = \{a, b, c\}$. Then,

(a) Give a regular expression that describes the set of all strings w in Σ^* such that $|w|$ is odd and w ends with a b.

(b) Give a regular expression that describes the set of all strings w in Σ^* such that w do not contain two consecutive c’s.
Problem 2 [25 points]

We saw in class that regular languages are closed under complementation, union, concatenation, Kleene closure, and intersection. Use one of these facts and the given fact that the language

$$L_1 = \{ w \in \{0, 1\}^* \mid w = 0^n1^n \text{ for some non-negative integer } n \}$$

is not regular to prove that the language

$$L_2 = \{ w \in \{0, 1\}^* \mid w = 0^j1^k \text{ for some non-negative integers } j, k \text{ such that } j \neq k \}$$

is also not regular.
Problem 3 [20 points]

Let Σ be an alphabet, and let L be any language over Σ. Then, we define the unary operator E as

$$E(L) = \{ w \in \Sigma^* \mid w = xy, \text{ where } x \in \Sigma^+ \text{ and } y \in L \}.$$

(a) Given a DFA accepting L, describe how to modify this DFA to create another DFA (or an NFA, or an ϵ-NFA) accepting $E(L)$.

(b) Assuming that your construction for (a) is correct, argue that the set of all regular languages closed under the operator E.
Problem 4 [25 points]

Let L be a language over an alphabet Σ, and let a be a symbol of Σ. We define the quotient L/a of L and a to be the language of all strings w in Σ^* such that wa is in L. For example, if $\Sigma = \{0, 1\}$ and $L = \{0, 001, 100\}$ then $L/0 = \{\epsilon, 10\}$.

(a) Given a DFA accepting L, describe how to modify this DFA to create another DFA (or an NFA, or an ϵ-NFA) accepting L/a.

(b) Prove that the finite state machine you provided as an answer for (a) is correct.
Problem 5 [15 points]

Let \mathcal{N}_Σ be the set of all languages over an alphabet Σ that are not regular. Is \mathcal{N}_Σ closed under union? If your answer is yes, prove it. Otherwise, give a counterexample.