Homework Assignment 6

Due: Tuesday, March 22, 2005, by 12 PM (IN CLASS)

Name: __

Student ID (8 digits): __

Email: ___

Signature: ___

PLEASE, READ THE FOLLOWING INSTRUCTIONS:

• Fill out this form with your name, student ID, email, and signature and return it as the cover page of your homework.

• Turn in your homework at the beginning of your class on the due date described at the top of this page.

• Late assignments will be penalized 25% and will not be accepted after 1:30PM of the day following the due date.

• Late assignments must be turned in to Janean Williams in room 308, 3rd floor, Levine Building.

• All writings must be neat, well-organized, and include sufficient explanations in the delineation of the solutions.

• Full credit will be given only in the case where the correct answer has been properly justified with complete explanations.

• Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: __
Problem 1 [25 points]

Show that the language L such that

$$L = \{ x \in \{a, b\}^* \mid x = ww, \text{ for some } w \in \{a, b\}^* = \{ \epsilon, aa, bb, aaaa, abab, baba, bbbb, \ldots \} \}$$

is not a regular language.

Guidelines:

You must be completely right for full credit. Partial credit is given as following: 5 points for refering to the Pumping Lemma; 10 points for giving a correct pumping string w and its correct decomposition xyz; and 10 points for finding an i such that xyz^iz not $\in L$, and its reason.
Problem 2 [25 points]

Show that the language \(L \) such that

\[
L = \{ w \in \{a\}^* \mid |w| = j^2, \text{ for some integer } j \} = \{ \epsilon, a, aaaa, aaaaaaaaaa, \ldots \}
\]

is not a regular language.

Guidelines:

You must be completely right for full credit. Partial credit is given as following: 5 points for refering to the Pumping Lemma; 10 points for giving a correct pumping string \(w \) and its correct decomposition \(xyz \); and 10 points for finding an \(i \) such that \(xy^iz \) not \(\in L \), and its reason.
Problem 3 [25 points]

Show that the language L such that

$$L = \{ w \in \{a, b\}^* \mid |w|_a \geq |w|_b \} = \{ \epsilon, a, aab, aba, baa, \ldots \}$$

is not a regular language.

Guidelines:

You must be completely right for full credit. Partial credit is given as following: 5 points for refering to the Pumping Lemma; 10 points for giving a correct pumping string w and its correct decomposition xyz; and 10 points for finding an i such that xy^iz not $\in L$, and its reason.
Problem 4 [25 points]

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Then, show that $L(D)$ is infinite if and only if there exists a string w in $L(D)$ such that $|Q| \leq |w| < 2|Q|$, where $|w|$ is the length of w and $|Q|$ is the number of states of Q.

Guidelines:

10 points: w exists such that $|Q| \leq |w| < 2|Q| \Rightarrow L(D)$ is infinite. 5 points for referring to the Pumping Lemma; and 5 points for infinite number strings like $xy^i z \in L(D)$.

15 points: $L(D)$ is infinite $\Rightarrow w$ exists such that $|Q| \leq |w| < 2|Q|$. 5 points for that there exists a string $w \in L(D)$ such that $|w| \geq |Q|; 5$ points for using the shortest string w with $|w| \geq 2|Q|$ and finding a contradiction afterwards; and 5 points for proving $|xy^0 z| \geq |Q|$ and finding the other contradiction.