Name: __
Student ID (8 digits): ________________________________
Email: __
Signature: __

PLEASE, READ THE FOLLOWING INSTRUCTIONS:

• Fill out this form with your name, student ID, email, and signature and return it as the cover page of your homework.

• Turn in your homework at the beginning of your class on the due date described at the top of this page.

• Late assignments will be penalized 25% and will not be accepted after 1:30PM of the day following the due date.

• Late assignments must be turned in to Janean Williams in room 308, 3rd floor, Levine Building.

• All writings must be neat, well-organized, and include sufficient explanations in the delineation of the solutions.

• Full credit will be given only in the case where the correct answer has been properly justified with complete explanations.

• Good luck!

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL: __
Problem 1 [25 points]

\[L = \{ x \in \{a, b\}^* \mid x = ww, \text{ for some } w \in \{a, b\}^* \} = \{\epsilon, aa, bb, aaaa, abab, baba, bbbb, \ldots\} \]

is not a regular language.

Solution:

We show that \(L \) is not regular by using the contrapositive form of the Pumping Lemma. Given any nonnegative integer \(p \), consider any integer \(n \) such that \(n > p \), and let \(w \) be the string \(0^n1^n0^n1^n \). Note that \(w \in L \) and \(|w| \geq p \). For all strings \(x, y \) and \(z \) from \(\{a, b\}^* \) such that \(xyz = w \), \(|y| > 0 \), and \(|xy| \leq p \), we want to show that \(xy^iz \not\in L \), for some \(i \geq 0 \). We now claim that \(i = 2n + 1 \) does the job. Since \(|xy| \leq p \) and \(p < n \), we must have \(x = 0^k \), \(y = 0^l \), and \(z = 0^n1^n0^n1^n \), with \(k + l + m \leq p \). Since \(|y| > 0 \) and \(l = |y| \), we must have \(0 < l \leq p \). So, \(xy^{2n+1}z = 0^k0^{2nl+l}0^n1^n0^n1^n = 0^{2nl+n}1^n0^n1^n \). Since \(n > p \) and \(l > 0 \), we must have that \(2nl + n = (2 + l)n > 3n \), which means that \(0^{2nl+n}1^n0^n1^n \not\in L \). To see why, we consider two cases: (1) \(2nl + n + 3n \) is odd, and (2) \(2nl + n + 3n \) is even. If (1) holds then \(0^{2nl+n}1^n0^n1^n \not\in L \), as every string in \(L \) must have even length. If (2) holds then we can break \(0^{2nl+n}1^n0^n1^n \) into two strings with the same length, say \(u \) and \(v \). Since \(2nl + n \geq 3n \), the string \(u \) must be of the form \(0^{(2nl+4n)/2} \), and therefore \(u \) and \(v \) cannot be equal. Hence, \(0^{2nl+n}1^n0^n1^n \not\in L \), and \(L \) is not a regular language.
Problem 2 [25 points]

Show that the language L such that

$$L = \{ w \in \{a\}^* \mid |w| = j^2, \text{ for some integer } j \} = \{ \epsilon, a, aaaa, aaaaaaa, \ldots \}$$

is not a regular language.

Solution:

We show that L is not regular by using the contrapositive form of the Pumping Lemma. Given any nonnegative integer p, let n be any integer greater than p, and let w be the string a^n. Note that $w \in L$ and $|w| \geq p$. For all strings x, y and z from $\{a\}^*$ such that $xyz = w$, $|y| > 0$, and $|xy| \leq p$, we want to show that $xy^iz \notin L$, for some $i \geq 0$. We now claim that $i = 2$ does the job. Since $|xy| \leq p$ and $p < n$, we must have $x = a^k$, $y = a^l$, and $z = a^m$, with $k + l + m = n^2$ and $k + l \leq p$. Since $|y| > 0$ and $l = |y|$ and $k + l < p$, we also have that $l > 0$ and $l \leq p$. So, $xy^2z = a^k a^{2l} a^m = a^{n^2 + l}$. Since $l > 0$, we have that $n^2 + l > n^2$. Since $l \leq p$ and $p < n$, we have that $n^2 + l \leq n^2 + p < n^2 + n < (n + 1)^2$, which is the smallest perfect square greater than n^2. So, $n^2 < |xy^2z| < (n + 1)^2$, which implies that $xy^2z \notin L$, and consequently L is not a regular language.
Problem 3 [25 points]

Show that the language \(L \) such that

\[
L = \{ w \in \{a, b\}^* \mid |w|_a \geq |w|_b \} = \{ \epsilon, a, aab, aba, baa, \ldots \}
\]

is not a regular language.

Solution:

We show that \(L \) is not regular by using the contrapositive form of the Pumping Lemma. Given any nonnegative integer \(p \), let \(n \) be any integer greater than \(p \), and let \(w \) be the string \(a^n b^n \). Note that \(w \in L \) (as \(|w|_a = |w|_b \) and \(|w| \geq p \)). For all strings \(x, y \) and \(z \) from \(\{a\}^* \) such that \(xyz = w \), \(|y| > 0\), and \(|xy| \leq p\), we want to show that \(xy^i z \not\in L \), for some \(i \geq 0 \). We now claim that \(i = 0 \) does the job. Since \(|xy| \leq p \) and \(p < n \), we must have \(x = a^k \), \(y = a^l \), and \(z = a^m b^n \), with \(k + l + m = n \) and \(k + l \leq p \). Since \(|y| > 0 \) and \(l = |y| \) and \(k + l < p \), we also have that \(l > 0 \) and \(l \leq p \). So, \(xy^0 z = a^k a^m b^n = a^{k+m} b^n = a^{n-l} b^n \). Since \(l > 0 \) and \(l \leq p \) and \(p < n \), we must have that \(0 < n - l < n \). So, \(xy^0 z = a^{n-l} b^n \not\in L \), as \(|w|_a = n - l < n = |w|_b \). So, \(L \) is not a regular language.
Problem 4 [25 points]

Let \(D = (Q, \Sigma, \delta, q_0, F) \) be a deterministic finite automaton. Then, show that \(L(D) \) is infinite if and only if there exists a string \(w \) in \(L(D) \) such that \(|Q| \leq |w| < 2|Q| \), where \(|w| \) is the length of \(w \) and \(|Q| \) is the number of states of \(Q \).

Solution:

First, assume that there exists a string \(w \) in \(L(D) \) such that \(|Q| \leq |w| < 2|Q| \). Since \(L(D) \) is a regular language, we can invoke the Pumping Lemma to conclude that \(L(D) \) is infinite. That is, according to the Pumping Lemma, if \(|w| \geq |Q| \) then there are strings \(x, y, z \) in \(\Sigma^* \), with \(w = xyz \), \(y \neq \epsilon \), and \(|xy| \leq |Q| \), such that \(xy^iz \in L(D) \) for all \(i \geq 0 \). So, \(L(D) \) is indeed infinite. Conversely, if \(L(D) \) is infinite then there exists a string \(w \in L(D) \) such that \(|w| \geq |Q| \). Otherwise, \(L(D) \) would be finite. If \(|w| < 2|Q| \), we are done. If \(L(D) \) has no string of length between \(|Q| \) and \(2|Q| - 1 \), assume that \(w \) is the shortest string of \(L(D) \) whose length is equal to or greater than \(2|Q| \). Again, according to the Pumping Lemma, we can write \(w \) as \(w = xyz \), with \(x, y, z \in \Sigma^* \), \(y \neq \epsilon \), and \(|xy| \leq |Q| \), such that \(xy^iz \in L(D) \), for all \(i \geq 0 \). This means that \(xy^0z = xz \in L(D) \). But, since \(|y| > 0 \) and \(|xy| \leq |Q| \), we must have that \(|xy^0z| < |w| \) and \(|xy^0z| \geq |w| - |Q| \geq |Q| \). So, either \(|xy^0z| \) satisfies \(|Q| \leq |xy^0z| < 2|Q| \) or \(2|Q| \leq |xy^0z| < |w| \). The former case contradicts the assumption that \(L(D) \) has no string whose length is between \(|Q| \) and \(2|Q| - 1 \), and the latter case contradicts the fact that \(w \) is the shortest string whose length is equal to or greater than \(2|Q| \). So, \(L(D) \) must contain a string \(w \) whose length is between \(|Q| \) and \(2|Q| - 1 \).