Recitation 1

Friday, January 14, 2005
Problem 1. Determine \(\{1\} \times \{1, 2\} \times \{1, 2, 3\} \).

Solution:

Given sets \(A_1, A_2, \ldots, A_k \), recall that \(A_1 \times A_2 \times \cdots A_k \) is the set of all \(k \)-tuples \((a_1, a_2, \ldots, a_k)\) such that \(a_i \in A_i \) for \(i = 1, 2, \ldots, k \). So,

\[
{1} \times {1, 2} \times {1, 2, 3} = \{(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (1, 2, 3)\}.
\]
Problem 2. Let \(S = \{a, b, c, d\} \). List all partitions of \(S \) with exactly two elements.

Solution:

By definition, a partition of a nonempty set \(S \) is a set of nonempty subsets of \(S \) such that each element of \(S \) belongs to exactly one set of the partition. The problem asks us to list all partitions of \(S \) with exactly two elements, i.e., with exactly two subsets of \(S \), say \(S_1 \) and \(S_2 \). What are all possibilities for \(S_1 \) and \(S_2 \)? In the following we enumerate all of them:

- \(S_1 = \{a\} \) and \(S_2 = \{b, c, d\} \).
- \(S_1 = \{b\} \) and \(S_2 = \{a, c, d\} \).
- \(S_1 = \{c\} \) and \(S_2 = \{a, b, d\} \).
- \(S_1 = \{d\} \) and \(S_2 = \{a, b, c\} \).
- \(S_1 = \{a, b\} \) and \(S_2 = \{c, d\} \).
- \(S_1 = \{a, c\} \) and \(S_2 = \{b, d\} \).
- \(S_1 = \{a, d\} \) and \(S_2 = \{b, c\} \).

So, \(S \) has exactly seven partitions \(\Pi = \{S_1, S_2\} \) with exactly two elements, \(S_1 \) and \(S_2 \), which are listed above.
Problem 3. Let \(n \) be a nonzero integer. Show that the binary relation \(R \) on \(\mathbb{Z} \) such that

\[
R = \{(x, y) \in \mathbb{Z}^2 \mid x \equiv y \pmod{n}\}.
\]

Solution:

To prove that \(R \) is an equivalence relation, we must show that \(R \) is (1) reflexive, (2) symmetric, and (3) transitive.

(1) To prove that \(R \) is reflexive, we must show that \(xRx \) for every \(x \in \mathbb{Z} \).

So, let \(x \) be any element of \(\mathbb{Z} \). Since \(n \mid (x - x) \) for every \(x \in \mathbb{Z} \), we have that \(x \equiv x \pmod{n} \), and therefore \(xRx \).

(2) To prove that \(R \) is symmetric, we must show that \(yRx \) whenever \(xRy \). So, let \((x, y)\) be any pair of \(R \). By definition of \(R \), if \(xRy \) then \(x \equiv y \pmod{n} \). But, since \(x \equiv y \pmod{n} \) implies \(y \equiv x \pmod{n} \), we also have that \(yRx \).

(3) To prove that \(R \) is transitive, we must show that \(xRz \) whenever \(xRy \) and \(yRz \). So, let \((x, y)\) and \((y, z)\) be any two pairs of \(R \). By definition of \(R \), if \(xRy \) then \(x \equiv y \pmod{n} \). Similarly, if \(yRz \) then \(y \equiv z \pmod{n} \). But, since \(x \equiv y \pmod{n} \) and \(y \equiv z \pmod{n} \) implies \(x \equiv z \pmod{n} \), we also have \(xRz \).
Problem 4. Is there a *simple* graph of order 3 such that every two vertices are adjacent and every two edges are adjacent? Does such a graph of order 4 exist?

Solution:

For the first question, the answer is “yes”. Let G_1 be a graph with vertex set $V(G_1) = \{v_1, v_2, v_3\}$ and edge set $E(G_1) = \{v_1v_2, v_1v_3, v_2v_3\}$. Graph G_1 has order 3, and every edge of G_1 has exactly two adjacent edges. For the second question, the answer is “no”. Why?

Aiming at a contradiction, assume that such a graph exist. So, let G be a graph of order 4 satisfying the property that every two vertices are adjacent and every two edges are adjacent. Since G has four vertices and every two vertices are adjacent, there must be an edge connecting any two vertices of G. Let $V(G)$ be the set $\{u, v, w, z\}$. Consider the vertices u and v. Since they are adjacent, the set $E(G)$ must contain the edge uv. Now, consider the vertices w and z. Since they are adjacent, the set $E(G)$ must also contain the edge wz. However, these two edges are not adjacent, as they have no vertex in common. But, this contradicts the fact that every two edges of G are adjacent. So, such a graph G cannot exist.
Problem 5. Show that, for any simple graph G, the sum of the degree of all vertices of G is twice the number of edges of G.

Solution:

By definition, the degree of a vertex is the number of edges the vertex is incident to. Since there are exactly two vertices incident to each edge of a simple graph, by adding the degree of the vertices of a graph, we are counting each edge “twice”; that is, if u and v are two vertices of G and G contains the edge uv, the sum $d(u) + d(v)$ counts uv twice, once for each of the two vertices incident to uv. So, the sum

$$
\sum_{v \in V(G)} d(v)
$$

counts each edge of G twice, and therefore $\sum_{v \in V(G)} d(v)$ is equal to $2 \cdot |E(G)|$, where $|E(G)|$ is the cardinality of $E(G)$.