Arbitrages, and pricing of stock options

Alejandro Ribeiro
Dept. of Electrical and Systems Engineering
University of Pennsylvania
aribeiro@seas.upenn.edu
http://www.seas.upenn.edu/users/~aribeiro/

November 24, 2010
Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
Arbitrage

- Bet on different events with each outcome paying a random return
- **Arbitrage**: It is possible to devise a betting strategy that guarantees a positive return no matter the combined outcome of the events
- Arbitrages often involve operating in two different markets
Example

- Booker 1 ⇒ Phillies win pay 1.5:1, Phillies loose pay 3:1
 - Bet x on Phillies and y against Phillies. Guaranteed Earnings?

 Phillies win: $0.5x - y > 0 \Rightarrow x > 2y$
 Phillies lose: $-x + 2y > 0 \Rightarrow x < 2y$

 - Arbitrage not possible. Notice that $1/(1.5) + 1/3 = 1$

- Booker 2 ⇒ Phillies win pay 1.4:1, Phillies loose pay 3.1:1
 - Bet x on Phillies and y against Phillies. Guaranteed Earnings?

 Phillies win: $0.4x - y > 0 \Rightarrow x > 2.5y$
 Phillies lose: $-x + 2.1y > 0 \Rightarrow x < 2.1y$

 - Arbitrage not possible. Notice that $1/(1.4) + 1/(3.1) > 1$
First condition on Booker 1 and second on Booker 2 are compatible

Bet x on Phillies on Booker 1, y against Phillies on Booker 2

Guaranteed earnings possible. Make $y = 1,000$, $x = 2,066$

Phillies win: $0.5(2,066) - 1,000 = 33$
Phillies loose: $-2066 + 2.1(1000) = 34$

Notice that $1/(1.5) + 1/(3.1) < 1$

If you plan on doing this, do it on, e.g., currency exchange markets
Let events on which bets are posted be \(k = 1, 2, \ldots, K \)

Let \(j = 1, 2, \ldots, J \) index possible joint outcomes

- Joint realizations, also called “world realization”, or “world outcome”

If world outcome is \(j \), event \(k \) yields return \(r_{jk} \) per unit invested (bet)

Do not define probability \(p_j \) of outcome \(j \)

Invest (bet) \(x_k \) in outcome \(k \) \(\Rightarrow \) return for world \(j \) is \(x_k r_{jk} \)

Bets \(x_k \) can be positive (\(x_k > 0 \)) or negative (\(x_k < 0 \))

\(\Rightarrow \) Positive = regular bet. Negative = short bet

Total return \(\Rightarrow \sum_{k=1}^{K} x_k r_{jk} = \mathbf{x}^T \mathbf{r}_j \)

Vectors of returns for outcome \(j \) \(\Rightarrow \mathbf{r}_j := [r_{j1}, \ldots, r_{jK}]^T \) (given)

Vector of bets \(\Rightarrow \mathbf{x}_j := [x_{j1}, \ldots, x_{jK}]^T \) (controlled by gambler)
Arbitrage (clearly defined now)

- Arbitrage is possible if there exists investment strategy x such that
 \[x^T r_j > 0, \quad \text{for all } j = 1, \ldots, J \]

- Equivalently, arbitrage is possible if
 \[\max_x \left(\min_j (x^T r_j) \right) > 0 \]

- Portfolio x and returns r_j are vectors in \mathbb{R}^K
- Earnings $x^T r_j$ are the inner product of x and r_j

- Earnings are positive if angle between x and r_j is less than $\pi/2$ (90°)
When is arbitrage possible?

- There is a line that leaves all r_j vectors to one side

- There is not a line that leaves all r_j vectors to one side

- Arbitrage possible

- Prob. vector $p = [p_1, \ldots, p_J]^T$ on world outcomes such that

 $$E_p(r) = \sum_{j=1}^{J} p_j r_j = 0$$

 does not exist

- Arbitrage not possible

- There is prob. vector $p = [p_1, \ldots, p_J]^T$ on world outcomes such that

 $$E_p(r) = \sum_{j=1}^{J} p_j r_j = 0$$

 Think of p_j as scaling factor
Arbitrage theorem

Have “proved” following result, called arbitrage theorem

Theorem

Given vectors of returns r_j, associated with random outcome $j = 1, \ldots, J$ an arbitrage is not possible if and only if there exist a probability vector p such that $E_p(r) = 0$. Equivalently,

$$
\max_x \left(\min_j (x^T r_j) \right) \leq 0 \iff \sum_{j=1}^J p_j r_j = 0
$$

Prob. vector p is NOT the prob. distribution of events $j = 1, \ldots, J$
Consider a stock price $X(nh)$ that follows a geometric random walk

$$X((n+1)h) = X(nh)e^{\sigma \sqrt{h}Y_n}$$

where Y_n is a binary random variable with probability distribution

$$P[Y_n = 1] = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{h} \right), \quad P[Y_n = -1] = \frac{1}{2} \left(1 - \frac{\mu}{\sigma} \sqrt{h} \right)$$

Recall that as $h \to 0$, $X(nh)$ becomes geometric Brownian motion.

Are there arbitrage opportunities in the price of the stock?

⇒ Too general, let us consider a narrower problem.
Consider the following investment strategy (stock flip):

Buy: Buy $1 in stock at time 0 for price $X(0)$ per unit of stock

Sell: Sell stock at time h for price $X(h)$ for unit of stock

- Cost of transaction is 1. Units of stock purchased are $1/X(0)$
- Cash after selling stock is $X(h)/X(0)$
- Return on investment is $X(h)/X(0) - 1$

There are two possible outcomes for the price of the stock at time h

- As per model we may have $Y_0 = 1$ or $Y_0 = -1$ respectively yielding
 \[X(h) = X(0)e^{\sigma\sqrt{h}}, \quad X(h) = X(0)e^{-\sigma\sqrt{h}} \]

Possible returns are therefore

\[r_1 = \frac{X(0)e^{\sigma\sqrt{h}}}{X(0)} - 1 = e^{\sigma\sqrt{h}} - 1, \quad r_2 = \frac{X(0)e^{-\sigma\sqrt{h}}}{X(0)} - 1 = e^{-\sigma\sqrt{h}} - 1 \]
Present value of returns

- One dollar at time h is not the same as 1 dollar at time 0
- Interest rate of a risk-free investment is α continuously compounded
- In practice, α is the money market rate
- Prices have to be compared at their present value

- The present value of $X(h)$ at time 0 is $X(h)e^{-\alpha h}$
- Then, return on investment is $e^{-\alpha h}X(h)/X(0) - 1$
- Present value of possible returns (whether $Y_0 = 1$ or $Y_0 = -1$) are

$$r_1 = \frac{e^{-\alpha h}X(0)e^{\sigma \sqrt{h}}}{X(0)} - 1 = e^{-\alpha h}e^{\sigma \sqrt{h}} - 1,$$

$$r_2 = \frac{e^{-\alpha h}X(0)e^{-\sigma \sqrt{h}}}{X(0)} - 1 = e^{-\alpha h}e^{-\sigma \sqrt{h}} - 1$$
Arbitrage not possible if and only if there exists $0 \leq q \leq 1$ such that

$$qr_1 + (1 - q)r_2 = 0$$

Arbitrage theorem in 1 dimension (only one bet, buy stock)

Substituting r_1 and r_2 for their respective values

$$q \left(e^{-\alpha h} e^{\sigma \sqrt{h}} - 1\right) + (1 - q) \left(e^{-\alpha h} e^{-\sigma \sqrt{h}} - 1\right) = 0$$

Can be easily solved for q. Expanding product and reordering terms

$$qe^{-\alpha h} e^{\sigma \sqrt{h}} + (1 - q)e^{-\alpha h} e^{-\sigma \sqrt{h}} = 1$$

Multiplying by $e^{\alpha h}$ and grouping terms with a q factor

$$q \left(e^{\sigma \sqrt{h}} - e^{-\sigma \sqrt{h}}\right) = e^{\alpha h} - e^{-\sigma \sqrt{h}}$$
Solving for q finally yields \[q = \frac{e^{\alpha h} - e^{-\sigma \sqrt{h}}}{e^{\sigma \sqrt{h}} - e^{-\sigma \sqrt{h}}} \]

For small h we have $e^{\alpha h} \approx 1 + \alpha h$ and $e^{\pm \sigma \sqrt{h}} \approx 1 \pm \sigma \sqrt{h} + \sigma^2 h/2$

Thus, the value of q as $h \to 0$ may be approximated as

\[q \approx \frac{1 + \alpha h - (1 - \sigma \sqrt{h} + \sigma^2 h/2)}{1 + \sigma \sqrt{h} - (1 - \sigma \sqrt{h})} = \frac{\sigma \sqrt{h} + (\alpha - \sigma^2/2) h}{2\sigma \sqrt{h}} \]

\[= \frac{1}{2} \left(1 + \frac{\alpha - \sigma^2/2}{\sigma} \sqrt{h}\right) \]

Approximation proves that at least for small h $0 < q < 1 \Rightarrow$ Arbitrage not possible

Also, suspiciously similar to probabilities of geometric random walk \Rightarrow Fundamental observation as we’ll see next
Risk neutral measure

Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
No arbitrage condition on geometric random walk

- Stock prices $X(t)$ follow geometric random walk (drift μ, variance σ^2)
- Risk free investment has return α (cost of money, money market)
- Arbitrage is not possible in stock flips if there is $0 \leq q \leq 1$ such that

$$q = \frac{e^{\alpha h} - e^{-\sigma \sqrt{h}}}{e^{\sigma \sqrt{h}} - e^{-\sigma \sqrt{h}}}$$

- Notice that q satisfies the equation (which we’ll use later on)

$$qe^{\sigma \sqrt{h}} + (1 - q)e^{-\sigma \sqrt{h}} = e^{\alpha h}$$

- Can we have arbitrage using a more complex set of possible bets?
Consider the following general investment strategy:

Observe: Observe the stock price at times $h, 2h, \ldots, nh$

Compare: Is $X(h) = x_1, X(2h) = x_2, \ldots, X(nh) = x_n$?

Buy: If above answer is yes, buy stock at price $X(nh)$

Sell: Sell stock at time mh for price $X(mh)$

Possible bets are the observed values of the stock x_1, x_2, \ldots, x_l

\Rightarrow There are 2^n possible bets

Possible outcomes are value at time mh and observed values

\Rightarrow There are 2^m possible outcomes
Explanation of general investment strategy

- Bet 1 = \(n \) price increases, bet 2 = price increases in 1, \ldots, \(n-1 \) and price decrease in \(n \) ...
- For each bet we have \(2^{m-n} \) possible outcomes: \(m-n \) price increases, price increases in \(n+1, \ldots, m-1 \) and price decrease in \(m \) ...

<table>
<thead>
<tr>
<th></th>
<th>(X(h))</th>
<th>(X(2h))</th>
<th>(X(3h))</th>
<th>(X(nh))</th>
<th>(X((n+1)h))</th>
<th>(X((n+2)h))</th>
<th>(X(mh))</th>
</tr>
</thead>
<tbody>
<tr>
<td>bet 1</td>
<td>(e^{\sigma \sqrt{h}})</td>
<td>(e^{2\sigma \sqrt{h}})</td>
<td>(e^{3\sigma \sqrt{h}})</td>
<td>(e^{n\sigma \sqrt{h}})</td>
<td>(X(nh)e^{\sigma \sqrt{h}})</td>
<td>(X(nh)e^{2\sigma \sqrt{h}})</td>
<td>(X(nh)e^{m\sigma \sqrt{h}})</td>
</tr>
<tr>
<td>bet 2</td>
<td>(e^{\sigma \sqrt{h}})</td>
<td>(e^{2\sigma \sqrt{h}})</td>
<td>(e^{3\sigma \sqrt{h}})</td>
<td>(e^{(n-2)\sigma \sqrt{h}})</td>
<td>(X(nh)e^{\sigma \sqrt{h}})</td>
<td>(X(nh)e^{2\sigma \sqrt{h}})</td>
<td>(X(nh)e^{(m-2)\sigma \sqrt{h}})</td>
</tr>
<tr>
<td>bet (2^n)</td>
<td>(e^{-\sigma \sqrt{h}})</td>
<td>(e^{-2\sigma \sqrt{h}})</td>
<td>(e^{-3\sigma \sqrt{h}})</td>
<td>(e^{-n\sigma \sqrt{h}})</td>
<td>(X(nh)e^{-\sigma \sqrt{h}})</td>
<td>(X(nh)e^{-2\sigma \sqrt{h}})</td>
<td>(X(nh)e^{-m\sigma \sqrt{h}})</td>
</tr>
</tbody>
</table>

- Figure assumes \(X(0) = 1 \) for simplicity

Outcomes per each bet
Explanation of general investment strategy

- Define the prob. distribution \(q \) over possible outcomes as follows
- Start with a sequence of independent identically distributed \(Y_n \)
- Each element \(Y_n \) is a binary random variable with probabilities

\[
P[Y_n = 1] = q, \quad P[Y_n = -1] = 1 - q
\]

- Joint prob. distribution \(q \) on \(X(h), X(2h), \ldots, X((n + m)h) \) outcomes obtained through transformation

\[
X((n + 1)h) = X(nh)e^{\sigma \sqrt{h}Y_n}
\]

- Notice once more that this is NOT the prob. distribution of \(X(nh) \)
- Will show that expected value of earnings with respect to \(q \) is null

\[
\Rightarrow \text{Thus, arbitrages are not possible}
\]
Consider a time 0 unit investment in given arbitrary outcome

Stock units purchased depend on the price $X(nh)$ at buying time

\[
\text{Units bought} = \frac{1}{X(nh)e^{-\alpha nh}}
\]

Have corrected $X(nh)$ to express it in time 0 values

Cash after selling stock given by price $X(mh)$ at sell time $m + n$

Expressed in time 0 values

\[
\text{Cash after sell} = \frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}}
\]

Return is then

\[
\Rightarrow r(X(h), \ldots, X(mh)) = \frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1
\]

Depends on $X(mh)$ and $X(nh)$ only
Expected return with respect to measure q

Consider expected value of all possible returns with respect to q

$$\mathbb{E}_q \left[r(X(h), \ldots, X(mh)) \right] = \mathbb{E}_q \left[\frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1 \right]$$

Condition on observed values $X(h), \ldots, X(nh)$

$$\mathbb{E}_q \left[r(X(h), \ldots, X(mh)) \right] = \mathbb{E}_{q(1:n)} \left[\mathbb{E}_{q(n+1:m)} \left[\frac{X(mh)e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1 \mid X(h), \ldots, X(nh) \right] \right]$$

In innermost expectation $X(nh)$ is given. Furthermore, process $X(t)$ is Markov, thus conditioning on $X(h), \ldots, X((n - 1)h)$ is irrelevant. Thus

$$\mathbb{E}_q \left[r(X(h), \ldots, X(mh)) \right] = \mathbb{E}_{q(1:n)} \left[\frac{\mathbb{E}_{q(n+1:m)} \left[X(mh) \mid X(nh) \right] e^{-\alpha mh}}{X(nh)e^{-\alpha nh}} - 1 \right]$$
Expected value of future values (measure q)

- Need to find expectation of future value $\mathbb{E}_{q(n+1:m)} [X(mh) \mid X(nh)]$.
- From recursive relation for $X(nh)$ in terms of Y_n sequence:

$$X(mh) = X((m - 1)h)e^{\sigma\sqrt{h}Y_{m-1}}$$

$$= X((m - 2)h)e^{\sigma\sqrt{h}Y_{m-1}}e^{\sigma\sqrt{h}Y_{m-2}}$$

$$\vdots$$

$$= X(nh)e^{\sigma\sqrt{h}Y_{m-1}}e^{\sigma\sqrt{h}Y_{m-2}}\ldots e^{\sigma\sqrt{h}Y_{n+1}}$$

- All the Y_n are independent. Then, upon taking expected value:

$$\mathbb{E}_{q(n+1:m)} [X(mh) \mid X(nh)] = X(nh)\mathbb{E} [e^{\sigma\sqrt{h}Y_{m-1}}] \mathbb{E} [e^{\sigma\sqrt{h}Y_{m-2}}] \ldots \mathbb{E} [e^{\sigma\sqrt{h}Y_{n+1}}]$$

- Need to determine expectation of relative price increase $\mathbb{E} [e^{\sigma\sqrt{h}Y_n}]$.
The expected value of the relative price increase $E\left[e^{\sigma \sqrt{h} Y_n} \right]$ is

$$E\left[e^{\sigma \sqrt{h} Y_n} \right] = e^{\sigma \sqrt{h}} \Pr [Y_n = 1] + e^{-\sigma \sqrt{h}} \Pr [Y_n = -1]$$

According to definition of measure q, it holds

$$\Pr [Y_n = 1] = q, \quad \Pr [Y_n = -1] = 1 - q$$

Substituting in expression for $E\left[e^{\sigma \sqrt{h} Y_n} \right]$:

$$E\left[e^{\sigma \sqrt{h} Y_n} \right] = e^{\sigma \sqrt{h}} q + e^{-\sigma \sqrt{h}} (1 - q) = e^{\alpha h}$$

where last equality follows from definition of probability q.

Reweave the quilt \Rightarrow use expected relative price increase to compute expected future value to find expected return.
Reweave the quilt

- Substitute expected relative price increase into expression for expected future value

\[E_{q(n+1:m)} [X(mh) | X(nh)] = X(nh) e^{\alpha h} e^{\alpha h} \ldots e^{\alpha h} = X(nh) e^{\alpha (m-n)h} \]

- Substitute result into expression for expected return

\[E_q [r(X(h), \ldots, X(mh))] = E_{q(1:n)} \left[\frac{X(nh) e^{\alpha (m-n)h} e^{-\alpha mh}}{X(nh) e^{-\alpha nh}} - 1 \right] \]

- Exponentials cancel each other, finally yielding

\[E_q [r(X(h), \ldots, X(mh))] = E_{q(1:n)} [1 - 1] = 0 \]

- Arbitrage not possible in any trading strategy if \(0 \leq q \leq \) exists
If prices follow geometric Brownian motion

Stock prices follow a geometric Brownian motion, i.e.,

\[X(t) = X(0)e^{Y(t)} \]

with \(Y(t) \) Brownian motion with drift \(\mu \) and variance \(\sigma^2 \)

What is the no arbitrage condition?

Approximate geometric Brownian motion by geometric random walk

No arbitrage measure \(q \) exists for geometric random walk

This requires \(h \) sufficiently small

Notice that prob. distribution \(q = q(h) \) is a function of \(h \)

Approximation arbitrarily accurate by letting \(h \to 0 \)

Existence of the prob. distribution \(q := \lim_{h \to 0} q(h) \) proves that arbitrages are not possible in stock trading
Recall that as $h \to 0 \Rightarrow q \approx \frac{1}{2} \left(1 + \frac{\alpha - \sigma^2/2}{\sigma} \sqrt{h}\right)$

And consequently $\Rightarrow (1 - q) = \frac{1}{2} \left(1 - \frac{\alpha - \sigma^2/2}{\sigma} \sqrt{h}\right)$

Thus, measure $q := \lim_{h \to 0} q(h)$ is geometric Brownian motion

\[\Rightarrow \text{Variance} \Rightarrow \sigma^2 \text{ (same as stock price)} \]

\[\Rightarrow \text{Drift} \Rightarrow \alpha - \sigma^2/2 \]

Measure showing arbitrage not possible is a geometric random walk

Which is also the way stock prices evolve

Furthermore, the variance is the same as that of stock prices

The drifts are different $\Rightarrow \mu$ for stocks and $\alpha - \sigma^2/2$ for no arbitrage
Expected investment growth

- Compute expected return on an investment on stock $X(t)$
- Buy 1 share of stock at time 0. Cash invested $\Rightarrow X(0)$
- Sell stock at time t. Cash after sell $\Rightarrow X(t)$
- Expected value of cash after sell given $X(0)$ is

$$
\mathbb{E} [X(t) \mid X(0)] = X(0)e^{(\mu + \sigma^2/2)t}
$$

- Alternatively, invest $X(0)$ risk free in the money market
- Guaranteed cash at time t is $X(0)e^{\alpha t}$
- **Invest in stock only if** $\mu + \sigma^2/2 > \alpha \Rightarrow \text{risk premium}$
Compute expected return as if q were the actual distribution
▶ And recall that q is NOT the actual distribution
▶ As before, cash invested is $X(0)$ and cash after sale is $X(t)$
▶ Expected cash value is different because prob. distribution is different

$$E_q [X(t) \mid X(0)] = X(0)e^{(\alpha - \sigma^2/2 + \sigma^2/2)t} = X(0)e^{\alpha t}$$

▶ Same return as risk free investment regardless of parameters’ values
▶ Measure q is called risk neutral measure
▶ Risky stock investments yield same return as risk free investments
▶ “Alternate universe” in which investors do not demand risk premiums
▶ Pricing of derivatives, e.g., options, is always based on expected returns with respect to risk neutral valuation (pricing in alternate universe)
▶ Basis for Black-Scholes. More later
Arbitrages

Risk neutral measure

Black-Scholes formula for option pricing
Options

- An option is a contract to buy shares of a stock at a future time.
- Strike time $t = \text{Convened time for stock purchase}$.
- Strike price $K = \text{Price at which stock is purchased at strike time}$.
- At time t, option holder may decide to:
 - Buy a stock at strike price $K = \text{exercise the option}$.
 - Do not exercise the option.
- May buy option at time 0 for price c.
- How do we determine the option’s worth, i.e., price c, at time 0?
- Answer given by Black-Scholes formula for option pricing.
Stock price model

- Let $e^{\alpha t}$ be the compounding of a risk free investment
- Let $X(t)$ be the stock’s price at time t
- Price modeled as geometric Brownian motion, drift μ, variance σ^2
- Risk neutral measure q is also a geometric Brownian motion
 \[\Rightarrow \text{Variance } \sigma^2 \text{ and drift } \alpha - \sigma^2/2 \]
Return of option investment

- At time t, the option’s worth depends on the stock’s price $X(t)$
- If stock’s price smaller or equal than strike price $\Rightarrow X(t) \leq K$
 \Rightarrow Option is worthless (better to buy stock at current price)
- Since had paid c for the option at time 0, lost c on this investment
 \Rightarrow return on investment is $r = -c$
- If stock’s price larger than strike price $\Rightarrow X(t) > K$
 \Rightarrow Exercise option and realize a gain of $X(t) - K$
- To obtain return express as time 0 values and subtract c
 \[r = e^{-\alpha t}(X(t) - K) - c \]
- May combine both in single equation $\Rightarrow r = e^{-\alpha t}(X(t) - K)^+ - c$
- $(\cdot)^+$ denotes projection on positive reals
Consider mixed positions on stocks and options
Is there a position guaranteeing positive return, i.e., an arbitrage?
Assume expected return under risk neutral measure is nonzero

\[
\mathbb{E}_q [r] = \mathbb{E}_q \left[e^{-\alpha t} (X(t) - K)^+ - c \right] \neq 0
\]

Then, an arbitrage is possible according to arbitrage theorem
If expected return under risk neutral measure is zero

\[
\mathbb{E}_q [r] = \mathbb{E}_q \left[e^{-\alpha t} (X(t) - K)^+ - c \right] = 0
\]

Then, no arbitrage is possible according to arbitrage theorem
Select options price \(c \) to prevent arbitrage opportunities
To have no arbitrage, must select option’s price \(c \) so that

\[
\mathbb{E}_q \left[e^{-\alpha t} (X(t) - K)^+ - c \right] = 0
\]

where expectation is with respect to risk neutral measure.

From above condition, the no-arbitrage price of the option is

\[
\begin{align*}
c & = e^{-\alpha t} \mathbb{E}_q \left[(X(t) - K)^+ \right] \\
& = e^{-\alpha t} \mathbb{E}_q \left[(X(t) - K)^+ \right]
\end{align*}
\]

Source of Black-Scholes formula for option valuation.

Rest of derivation is just evaluation of expected value.

Same argument used to price any derivative of the stock’s price.
Use fact that prices are a geometric random walk

- Let us evaluate expectation to compute option’s price c
- Prices follow a geometric random walk $\Rightarrow X(t) = X_0 e^{Y(t)}$
- $X_0 =$ price at time 0,
- $Y(t)$ random walk with drift parameter μ and variance parameter σ^2
- Can rewrite no arbitrage condition as

$$c = e^{-\alpha t} \mathbb{E}_q \left[(X_0 e^{Y(t)} - K)^+ \right]$$

- $Y(t)$ random walk. Then, in particular, $Y(t) \sim \mathcal{N}(\mu t, t\sigma^2)$

$$c = e^{-\alpha t} \frac{1}{\sqrt{2\pi t\sigma^2}} \int_{-\infty}^{\infty} (X_0 e^y - K)^+ e^{-(y-\mu t)^2/(2t\sigma^2)} dy$$
Evaluation of the integral

- Note that \((X_0 e^{Y(t)} - K)^+ = 0\) for all values \(Y(t) \leq \log(K/X_0)\)
- Because integrand is null for \(Y(t) \leq \log(K/X_0)\) can write

\[
c = e^{-\alpha t} \frac{1}{\sqrt{2\pi t\sigma^2}} \int_{\log(K/X_0)}^{\infty} (X_0 e^{y} - K) e^{-\left(y - \mu t\right)^2/(2t\sigma^2)} \, dy
\]

- Change of variables \(z = (y - \mu t)/\sqrt{t\sigma^2}\). Associated replacements

 Variable: \(y \Rightarrow \sqrt{t\sigma^2} z + \mu t\)

 Differential: \(dy \Rightarrow \sqrt{t\sigma^2} \, dz\)

 Integration limit: \(\log(K/X_0) \Rightarrow a := \frac{\log(K/X_0) - \mu t}{\sqrt{t\sigma^2}}\)

- Option price then given by

\[
c = e^{-\alpha t} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \left(X_0 e^{\sqrt{t\sigma^2} z + \mu t} - K\right) e^{-z^2/2} \, dz
\]
Separate in two integrals $c = e^{-\alpha t}(l_1 - l_2)$ where

$$l_1 := \frac{1}{\sqrt{2\pi}} \int_a^{\infty} X_0 e^{\sqrt{t\sigma^2}z + \mu t} e^{-z^2/2} dz$$

$$l_2 := \frac{K}{\sqrt{2\pi}} \int_a^{\infty} e^{-z^2/2} dz$$

Gaussian Q function (ccdf of normal RV with mean 0 and variance 1)

$$Q(x) := \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-z^2/2} dz$$

Comparing last two equations we have $l_2 = KQ(a)$

l_1 requires some more work
Evaluation of the integral (continued)

- Reorder terms in integral I_2

$$I_1 := \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} X_0 e^{\sqrt{t\sigma^2}z + \mu t} e^{-z^2/2} \, dz = \frac{X_0 e^{\mu t}}{\sqrt{2\pi}} \int_{a}^{\infty} e^{\sqrt{t\sigma^2}z - z^2/2} \, dz$$

- The exponent can be written as a square minus a “constant” (no z)

$$-\left(z - \sqrt{t\sigma^2}\right)^2 / 2 + t\sigma^2 / 2 = -z^2/2 + \sqrt{t\sigma^2}z - t\sigma^2/2 + t\sigma^2/2$$

- Substituting the latter into I_1 yields

$$I_1 = \frac{X_0 e^{\mu t}}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\left(z - \sqrt{t\sigma^2}\right)^2 / 2 + t\sigma^2 / 2} \, dz = \frac{X_0 e^{\mu t + t\sigma^2 / 2}}{\sqrt{2\pi}} \int_{a}^{\infty} e^{-\left(z - \sqrt{t\sigma^2}\right)^2 / 2} \, dz$$
Evaluation of the integral (continued)

- Change of variables \(u = z - \sqrt{t\sigma^2} \Rightarrow du = dz \) and integration limit
 \[
a \Rightarrow b := a - \sqrt{t\sigma^2} = \frac{\log(K/X_0) - \mu t}{\sqrt{t\sigma^2}} - \sqrt{t\sigma^2}
\]

- Implementing change of variables in \(I_1 \)
 \[
 I_1 = \frac{X_0 e^{\mu t + t\sigma^2/2}}{\sqrt{2\pi}} \int_b^\infty e^{u^2/2} \, du = X_0 e^{\mu t + t\sigma^2/2} Q(b)
 \]

- Putting together results for \(I_1 \) and \(I_2 \)
 \[
 c = e^{-\alpha t} (I_1 - I_2) = e^{-\alpha t} X_0 e^{\mu t + t\sigma^2/2} Q(b) - e^{-\alpha t} KQ(a)
 \]

- For non-arbitrage stock prices \(\Rightarrow \alpha = \mu + \sigma^2/2 \)

- Substitute to obtain Black-Scholes formula
Black-Scholes formula for option pricing

\[c = X_0 Q(b) - e^{-\alpha t} K Q(a) \]

Where: \(a \) is given by
\[a = \frac{\log(K/X_0) - \mu t}{\sqrt{t \sigma^2}} \]
and \(b = a - \sqrt{t \sigma^2} \).

Note further that \(\mu = \alpha - \sigma^2/2 \). Can then write \(a \) as
\[a = \frac{\log(K/X_0) - (\alpha - \sigma^2/2) t}{\sqrt{t \sigma^2}} \]

- \(X_0 \) is the stock price at time 0, \(c \) is the option cost at time 0,
- \(K \) is the option's strike price, \(t \) is the option's strike time,
- \(\alpha \) is the benchmark risk-free rate of return (cost of money),
- \(\sigma^2 \) is the volatility of the stock,
- Black-Scholes formula independent of stock's mean tendency \(\mu \).