High Frequency BJT Model
Cascode BJT Amplifier
Gain of 10 Amplifier – Non-ideal Transistor

Gain starts dropping at > 1MHz.

Why!
Because of internal transistor capacitances that we have ignored in our low frequency and mid-band models.
Sketch of Typical Voltage Gain Response for a CE Amplifier

\[|A_v|(dB) \]

Low Frequency Band

Due to external blocking and bypass capacitors.

Internal C's o.c.

Midband

ALL capacitances are neglected, i.e.

External C's s.c.

Internal C's o.c.

3 dB

20 \log_{10} |A_v|(dB)

High Frequency Band

Due to BJT parasitic capacitors \(C_\pi \) and \(C_\mu \).

External C's s.c.

\[f_L \]

\[f_H \]

\[BW = f_H - f_L \approx f_H \]

\[GBP = |A_{v=mid}| BW \]
High Frequency Small-signal Model (Fwd. Act.)

Two capacitors and a resistor added to mid-band small signal model.

- base-emitter capacitor, C_μ
- base-collector capacitor, C_π
- resistor, r_x, representing the base terminal resistance ($r_x \ll r_\pi$); ignored in hand calculations.
High Frequency Small-signal Model (Fwd. Act.)

\[
C_{\mu} = \frac{C_{\mu 0}}{(1 + \frac{V_{CB}}{V_{0cb}})^m}
\]

\[
C_{je} = \frac{C_{je0}}{(1 + \frac{V_{EB}}{V_{0eb}})^m}
\]

Non-linear, voltage controlled

\[m = \text{junction grading coefficient}\]

\[
C_{\pi} = C_{de} + C_{je} \approx C_{de} + 2 C_{je 0} \approx C_{de}
\]

\[
C_{de} = g_m \tau_F = \frac{I_C}{V_T} \tau_F
\]

\[
C_{\mu} \approx 2 C_{\mu 0}
\]

\[
C_{de} = \text{base-charging (diffusion) cap}
\]

\[
\tau_F = \text{forward-base transit time}
\]

Note
\[
C = \frac{\int i}{dV}
\]
High Frequency Small-signal Model (IC)

\[C_{CS} = \text{collector-substrate depletion capacitance, ignored in hand calcs.} \]
High Frequency Small-signal Model

The transistor parasitic capacitances have a strong effect on circuit high frequency performance!

- C_π attenuates base signal, decreasing v_{be} since $X_{C\pi} \rightarrow 0$ (short circuit) at high-frequencies.
- As we will see later; C_μ is principal cause of gain loss at high-frequencies.

 At the base base-collector C_μ looks like a capacitor of value $k \cdot C_\mu$ between base-emitter, where $k > 1$ and may be $>> 1$.

- This phenomenon is called the **Miller Effect**.
Prototype Common Emitter Circuit

At high frequencies, large blocking and bypass capacitors are “short circuits”

High frequency small-signal ac model
Multisim Simulation

\[A_{v \text{-mid}} = -g_{m} R_{C} = -204 \ (46 \text{ dB @ } 180^\circ) \]

Gain @ 8.69 MHz

Mid-band gain @ 100 kHz
Introducing the Miller Effect

The feedback connection of \(C_\mu \) between base-collector causes it to appear in the amplifier like a large capacitor \((1 - K)C_\mu\) between the base-emitter terminals. This phenomenon is called the “Miller effect” and capacitor multiplier “\(1 - K\)” acting on \(C_\mu \) equals the CE amplifier mid-band gain, i.e.

\[
K = A_{v-mid} = -g_m R_C
\]

NOTE: CB and CC amplifiers do not suffer from the Miller effect, since in these amplifiers, one side of \(C_\mu \) is connected directly to ground.
\[Z = \frac{1}{j 2\pi f C_\mu} \]

\[R_B \parallel r_\pi \gg R_S \]

\[A_{v-mid} = \frac{V_o}{V_{be}} \approx \frac{V_o}{V_{be}} = -g_m R_C \]
Miller's Theorem

\[I = I_1 \]

\[Z = V_1 - A_v V_1 \]

\[I_2 = -I \]

\[Z_1 = V_1 - A_v V_1 \]

\[V_2 = A_v V_1 \]

\[Z_2 = V_1 - A_v V_1 \]

\[Z = \frac{1}{j 2 \pi f C_\mu} \]

\[Z_1 = \frac{1}{j 2 \pi f C_\mu (1 - A_v)} \]

\[Z_2 = \frac{Z}{1 - \frac{1}{A_v}} \]

\[Z \approx Z \]

Ignored in practical circuits
Common Emitter Miller Effect Analysis

Determine effect of C_μ:

Using phasor notation:

$$I_{R_C} = -g_m V_{be} + I_{C_\mu}$$

or

$$V_o = I_{R_C} R_C = \left(-g_m V_{be} + I_{C_\mu}\right) R_C$$

where

$$I_{C_\mu} = \left(V_{be} - V_o\right) j 2\pi f C_\mu$$

$$I_{C_\mu} = \left(V_{be} + g_m V_{be} \frac{R_C - I_{C_\mu} R_C}{V_o}\right) j 2\pi f C_\mu$$

Note: The current through C_μ depends only on V_{be}!
Common Emitter Miller Effect Analysis II

From slide 13:

\[I_C = (V_{be} + g_m V_{be} R_C - I_C R_C) j 2\pi f C_\mu \]

Collect terms for \(I_C \) and \(V_{be} \):

\[(1 + j 2\pi f R_C C_\mu) I_C = (1 + g_m R_C) j 2\pi f C_\mu V_{be} \]

Miller Capacitance \(C_{eq} \):

\[C_{eq} = (1 - A_v) C_\mu = (1 + g_m R_C) C_\mu \]
\[C_{eq} = (1 - A_v) C_\mu = (1 + g_m R_C) C_\mu \]
Common Emitter Miller Effect Analysis III

\[C_{eq} = \left(1 + g_m R_C \right) C_\mu \]

For our example circuit \(C_\mu = 2 \text{ pF} \):

\[1 + g_m R_C = 1 + 0.040 \cdot 5100 = 205 \]

\[C_{eq} = (205) \cdot 2 \text{ pF} \approx 410 \text{ pF} \]
Simplified HF Model

\[V_s' = V_s \frac{R_B || r_\pi}{R_B || r_\pi + R_S} \]

\[R_S' = r_\pi || (R_B || R_S) \]

Thevenin Equiv.

\[R'_L = r_o || (R_C || R_L) \]
Simplified HF Model

$$V'_{s} = V_{s} \frac{R_{B}}{R_{B} || r_{\pi} + R_{S}}$$

$$R'_{L} = r_{o} || (R_{C} || R_{L})$$

$$R'_{S} = r_{\pi} || (R_{B} || R_{S})$$

$$C'_{eq} = \left(1 + g_{m} R_{C}\right) C'_{\mu}$$

$$C_{tot} = C_{\pi} + C_{eq}$$
Simplified HF Model

\[C_{\text{tot}} = C_\pi + (1 + g_m R_C) C_\mu \]

\[V_{\text{be}} = \frac{1/j2\pi f}{1/j2\pi f \cdot C_{\text{tot}} + R_S} V_s' \]

\[A_v(f) = \frac{V_o}{V_s} \approx -g_m R_L' \frac{1}{1 + j2\pi f \cdot C_{\text{tot}} R_S'} \]

\[A_{v\text{-mid}} = -g_m R_L' \quad \text{and} \quad f_H = \frac{1}{2\pi C_{\text{tot}} R_S} \]

\[R_L' = r_o \parallel (R_C \parallel R_L) \]

\[R_S' = r_{\pi} \parallel (R_B \parallel R_S) \]

\[V_s' = V_s \frac{R_B}{R_B \parallel r_{\pi} + R_S} \]
Frequency-dependent “beta”

The relationship \(i_c = \beta i_b \) does not apply at high frequencies \(f > f_H \)!

Using the relationship \(-i_c = f(V_b')\) — find the new relationship between \(i_b \) and \(i_c \). For \(i_b \) (using phasor notation \(I_x \) & \(V_x \) for frequency domain analysis):

@ node B: \(I_b = \left(\frac{1}{r \pi} + j2\pi f (C_\pi + C_\mu) \right) V_b \) where \(r_x \approx 0 \) (ignore \(r_x \))
Frequency-dependent “beta”

\[I_b = \left(\frac{1}{r_{\pi}} + j2\pi f (C_{\pi} + C_{\mu}) \right) V_b \]
\[I_c = (g_m - j2\pi f C_{\mu}) V_b \]

@ node C:
\[I_c = (g_m - j2\pi f C_{\mu}) V_b \]

Leads to a new relationship between the \(I_b \) and \(I_c \):

\[\beta(jf) = \frac{I_c}{I_b} = \frac{g_m - j2\pi f C_{\mu}}{1 + j2\pi f (C_{\pi} + C_{\mu})} \]
Frequency Response of “beta”

\[\beta(jf) = \frac{g_m - j2\pi f C_\mu}{1 + j2\pi f (C_\pi + C_\mu) r_\pi} \]

For \(f = f_{low} \) s.t.

\[2\pi f_{low} \frac{C_\mu}{g_m} \ll 1 \leq \frac{1}{10} \]

and

\[2\pi f_{low} (C_\pi + C_\mu) r_\pi \ll 1 \leq \frac{1}{10} \]

\[\beta(jf) = g_m r_\pi = \beta \]

Multiplying N&D by \(r_\pi \)

\[\beta(jf) = \frac{(g_m - j2\pi f C_\mu) r_\pi}{1 + j2\pi f (C_\pi + C_\mu) r_\pi} \]

Factoring N to isolate \(g_m \)

\[\beta(jf) = \frac{(1 - j2\pi f \frac{C_\mu}{g_m}) g_m r_\pi}{1 + j2\pi f (C_\pi + C_\mu) r_\pi} \]
Frequency Response of “beta” cont.

\[
\beta(jf) = \frac{(1 - j2\pi f \frac{C_\mu}{g_m}) g_m r_{\pi}}{1 + j2\pi f (C_\pi + C_\mu) r_{\pi}} = \left(\frac{1 - j\frac{f}{f_z}}{1 + j\frac{f}{f_\beta}}\right) g_m r_{\pi} = \left(\frac{1 - j\frac{f}{f_z}}{1 + j\frac{f}{f_\beta}}\right) \beta
\]

Hence, the lower break frequency or \(-3dB\) frequency is \(f_\beta\)

\[
f_\beta = \frac{1}{2\pi (C_\pi + C_\mu) r_{\pi}} = \frac{g_m}{2\pi (C_\pi + C_\mu) \beta}
\]

the upper: \(f_z = \frac{1}{2\pi C_\mu / g_m} = \frac{g_m}{2\pi C_\mu}\)

where \(f_z \gg f_\beta\)
Frequency Response of “beta” cont.

Using Bode plot concepts, for the range where: \(f < f_\beta \)

\[
\beta(jf) = g_m r_{\pi} = \beta
\]

For the range where: \(f_\beta < f < f_z \) s.t. \(|1 - j f / f_z| \approx 1 \)

We consider the frequency-dependent numerator term to be 1 and focus on the response of the denominator:

\[
f_\beta < f < f_z \\
\beta(jf) \approx \frac{g_m r_{\pi}}{1 + j \frac{f}{f_\beta}} = \frac{\beta}{1 + j \frac{f}{f_\beta}}
\]
Frequency Response of “beta” cont.

Neglecting numerator term:

\[
\beta(jf) = \frac{g_m r_{pi}}{1 + j \frac{f}{f_B}} = \frac{\beta}{1 + j \frac{f}{f_B}}
\]

And for \(f/f_B \gg 1 \) (but \(f/f_z \)):

\[
|\beta(jf)| \approx \frac{\beta}{f/f_B} = \beta \frac{f_B}{f}
\]

Unity gain bandwidth:

\[
|\beta(jf)| = 1 \Rightarrow \beta \frac{f_B}{f}, \quad f = f_T = 1 \Rightarrow f_T = \beta f_B
\]

BJT unity-gain frequency or GBP:

\[
f_T = \frac{\omega_T}{2\pi} = \beta f_B
\]
Frequency Response of “beta” cont.

\[\beta = 100 \quad r_\pi = 2500 \Omega \quad C_\pi = 12 \, pF \quad C_\mu = 2 \, pF \quad g_m = 40 \cdot 10^{-3} \, S \]

\[\omega_\beta = \frac{1}{(C_\pi + C_\mu) r_\pi} = \frac{10^{12} \cdot 10^{-3}}{(12 + 2) \cdot 2.5} = 28.57 \cdot 10^6 \, rps \]

\[f_\beta = \frac{\omega_\beta}{2\pi} = \frac{28.57}{6.28} \cdot 10^6 \, Hz = 4.55 \, MHz \quad f_T = \beta \, f_\beta = 455 \, MHz \]

\[\omega_z = \frac{g_m}{C_\mu} = \frac{40 \cdot 10^{-3} \cdot 10^{12}}{2} \, Hz = 20 \cdot 10^9 \, rps \]

\[f_z = \frac{\omega_z}{2\pi} = 3.18 \cdot 10^9 \, Hz = 3180 \, MHz \]
Scilab f_T Plot

```scilab
//fT Bode Plot
Beta=100;
KdB= 20*log10(Beta);
fz=3180;
fp=4.55;
f= 1:1:10000;
term1=KdB*sign(f); //Constant array of len(f)
term2=max(0,20*log10(f/fz)); //Zero for f < fz;
term3=min(0,-20*log10(f/fp)); //Zero for f < fp;
BodePlot=term1+term2+term3;
plot(f,BodePlot);
```
"beta" Bode Plot

freq (dB) vs. Frequency

Freq. (MHz.)
Multisim Simulation

Insert 1 ohm resistors – we want to measure a current ratio.

\[\beta(jf) = \frac{I_c}{I_b} = \frac{g_m - j2\pi f C_\mu}{\frac{1}{r_\pi} + j2\pi f (C_\pi + C_\mu)} \]
Simulation Results

Low frequency $|\beta(jf)|$

Unity Gain frequency about 440 MHz

Theory: $f_T = \beta f_\beta = 455$ MHz
The Cascode Amplifier

A two transistor amplifier used to obtain simultaneously:

1. Reasonably high input impedance.
2. Reasonable voltage gain.
3. Wide bandwidth.

None of the conventional single transistor designs will satisfy all of the criteria above.
The cascode amplifier will satisfy all of these criteria.
A cascode is a CE Stage cascaded with a CB Stage.

(Historical Note: the cascode amplifier was a cascade of grounded cathode and grounded grid vacuum tube stages – hence the name “cascode,” which has remained in modern terminology.)
CE and CB Amplifier Feature Review

<table>
<thead>
<tr>
<th>Feature</th>
<th>CE Amplifier</th>
<th>CB Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Gain (A_V)</td>
<td>moderate ((-\frac{R_C}{R_E}))</td>
<td>High (\frac{R_C}{(R_s + r_e)})</td>
</tr>
<tr>
<td>Current Gain (A_I)</td>
<td>High (\beta)</td>
<td>low (about 1)</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>High (\frac{R_B}{</td>
<td></td>
</tr>
<tr>
<td>Output Resistance</td>
<td>High (\frac{R_C}{</td>
<td></td>
</tr>
</tbody>
</table>
The Cascode Amplifier

Comments:
1. R_1, R_2, R_3, and R_C set the bias levels for both Q1 and Q2.
2. Determine R_E for the desired voltage gain.
3. C_{in} and C_{byp} are to act as “open circuits” at dc and act as “short circuits” at all operating frequencies $f > f_{min}$.

Kenneth R. Laker, update 07Oct13 KRL
Cascode Mid-Band Small Signal Model

ASSUME: $Q1 = Q2$; e.g. β's identical, and both Forward Active
Cascode Small Signal Analysis

1. Show reduction in Miller effect
2. Evaluate small-signal voltage gain

OBSERVATIONS

a. The emitter current of the CB Stage is the collector current of the CE Stage. (This also holds for the dc bias currents.)

\[i_{e1} = i_{c2} \]

b. The base current of the CB Stage is:

\[i_{bl} = \frac{i_{e1}}{\beta + 1} = \frac{i_{c2}}{\beta + 1} \]

c. Hence, both stages have about same collector current \(i_{c1} \approx i_{c2} \) and same \(g_m, r_e, r_\pi \).
The input resistance R_{in1} to the CB Stage is the small-signal “r_{e1}” for the CB Stage.

$$i_{bl} = \frac{i_{e1}}{\beta + 1} = \frac{i_{c2}}{\beta + 1}$$

The CE output voltage, the voltage drop from Q2 collector to ground, is:

$$v_{c2} = v_{el} = -r_{\pi}i_{bl} = -\frac{r_{\pi}}{\beta + 1}i_{el} = -\frac{r_{\pi}}{\beta + 1}i_{c2}$$

Therefore, the CB Stage input resistance is:

$$R_{in1} = \frac{v_{el}}{-i_{el}} = \frac{r_{\pi}}{\beta + 1} = r_{e1}$$

$$A_{vCE-Stage} = \frac{v_{c2}}{v_s} \approx -\frac{R_{in1}}{R_E} = -\frac{r_e}{R_E} < 1 \implies C_{eq} = \left(1 + \frac{r_e}{R_E}\right)\mu C < 2\mu C$$

Miller Effect

Much reduced
Cascode Small Signal Analysis - cont.

Now, find the CE collector current in terms of the input voltage \(v_s \):

Recall \(i_{c1} \approx i_{c2} \)

\[
\begin{align*}
i_{b2} & \approx \frac{v_s}{R_S \| R_B + r_\pi + (\beta + 1)R_E} \\
\beta i_{b2} & \approx \frac{\beta v_s}{R_S \| R_B + r_\pi + (\beta + 1)R_E} \\
& \approx \frac{\beta v_s}{(\beta + 1)R_E}
\end{align*}
\]

for bias insensitivity: \((\beta + 1)R_E \gg R_S \| R_B + r_\pi \)

\[
\begin{align*}
i_{c2} & = \beta i_{b2} \\
& \approx \frac{\beta v_s}{R_S \| R_B + r_\pi + (\beta + 1)R_E} \\
& \approx \frac{\beta v_s}{(\beta + 1)R_E} \\
& \approx \frac{v_s}{R_E}
\end{align*}
\]

\[v_o \approx -i_{c2} R_C \]

\[
A_v = \frac{v_o}{v_s} \approx -\frac{R_C}{R_E}
\]

OBSERVATIONS:

1. Voltage gain \(A_v \) is about the same as a stand-alone CE Amplifier.
2. HF cutoff is much higher than a CE Amplifier due to the reduced \(C_{eq} \).
Common Emitter Stage

\[C_{\text{tot}} = C_\pi + (1 + g_m R_C) C_\mu \]

Cascode Stage

\[C_{\text{tot}} = C_\pi + \left(1 + \frac{r_e}{R_E}\right) C_\mu \]

\[< 2 C_\mu \]
Cascode Biasing

1. Choose I_{E1} – make it relatively large to reduce $R_{in1} = r_e = V_T / I_{E1}$ to push out HF break frequencies.

2. Choose R_C for suitable voltage swing V_{C1} and R_E for desired gain.

3. Choose bias resistor string such that its current I_I is about 0.1 of the collector current I_{C1}.

4. Given R_E, I_{E2} and $V_{BE2} = 0.7 V$ calc. R_3.

5. Need to also determine R_1 & R_2.

\[\alpha_2 I_{E2} = I_{C2} = I_{E1} = \frac{1}{\alpha_1} I_{C1} \Rightarrow I_{C1} \approx I_{E2} \]
Since the CE-Stage gain is very small:

a. The collector swing of Q2 will be small.
b. The Q2 collector bias \(V_{C2} = V_{B1} - 0.7 \, V \).

6. Set \(V_{B1} - V_{B2} = 1 \, V \Rightarrow V_{CE2} = 1 \, V \).

Since \(V_{CE2} = 1 \, V > V_{CE2\text{sat}} \) Q2 forward active.

7. Next determine \(R_2 \). Its drop \(V_{R2} = 1 \, V \) with the known current.

\[
R_2 = \frac{V_{B1} - V_{B2}}{I_1}
\]
Cascode Biasing - cont.

8. Then calculate R_3.

$$R_3 = \frac{V_{B2}}{I_1}$$

where

$$V_{B2} = 0.7V + I_E R_E$$

Note: $R_1 + R_2 + R_3 = \frac{V_{CC}}{I_1}$

9. Then calculate R_1.

$$R_1 = \frac{V_{CC}}{0.1I_C} - R_2 - R_3$$
Cascode Bias Summary

SPECIFIED: A_v, V_{CC}, V_{C1} (CB collector voltage);
SPECIFIED: I_E (or I_C) directly or indirectly through BW.
DETERMINE: R_C, R_E, R_1, R_2 and R_3.

SET: $V_{B1} - V_{B2} = 1\, V \Rightarrow V_{CE2} = 1\, V$

STEP1: $R_C = \frac{V_{C1}}{I_C}$, $R_E = \frac{R_C}{|A_v|}$

STEP2: $R_2 = \frac{V_{B1} - V_{B2}}{I_1} = \frac{1\, V}{0.1\, I_C}$

STEP3: $R_3 = \frac{V_{B2}}{I_1} = \frac{0.7\, V + I_E R_E}{0.1\, I_C}$

STEP4: $R_1 = \frac{V_{CC}}{0.1\, I_C} - R_2 - R_3$

$I_{C2} = I_{E1} \approx I_{C1} \approx I_{E2} = I_C$
Cascode Bias Example

Typical Bias Conditions

\[V_{CE1} = V_{CC} - I_C R_C - V_{CE2} - I_C R_E \]

\[V_{CC} = 12 \text{ V} \]

\[I_{E2} \approx I_{C2} = I_{E1} \approx I_{C1} \Rightarrow I_{C1} \approx I_{E2} \]

Cascode Amp

\[V_{CE1} = V_{CC} - I_C R_C - V_{CE2} - I_C R_E \]

\[V_{CC} = 12 \text{ V} \]
Cascode Bias Example cont.

1. Choose I_{E1} – to set r_e.
Try $I_{E1} = 5 \, mA \Rightarrow r_e = 0.025 \, V / I_E = 5 \, \Omega$.

2. Set desired gain magnitude. For example if $A_V = -10$, then $R_C / R_E = 10$.

3. Since the CE stage gain is very small, V_{CE2} can be small, i.e. $V_{CE2} = V_{B1} - V_{B2} = 1 \, V$.

\[V_{CE1} = V_{CC} - I_C R_C - 1 - I_C R_E \]

\[V_{CE2} = 1 \]

\[V_{cc} = 12 \, V \]
Cascode Bias Example cont.

Specs:
\[V_{cc} = 12 \text{ V} \quad V_{c1} = 7 \text{ V} \quad I_c = 5 \text{ mA} \quad |A_v| = \frac{R_C}{R_E} = 10 \]
\[\beta = 100 \]

Determine \(R_C \) for \(V_{c1} = 7 \text{ V} \).
\[R_C = \frac{V_{cc} - V_{c1}}{5 \cdot 10^{-3} \text{ A}} = \frac{5 \text{ V}}{5 \cdot 10^{-3} \text{ A}} = 1000 \Omega \]
\[R_E = \frac{R_C}{|A_v|} = \frac{R_C}{10} = 100 \Omega \]
Cascode Bias Example cont.

\[V_{CC} = 12 \quad R_C = 1 \text{k} \Omega \quad I_C = 5 \text{mA} \quad R_E = 100 \text{\Omega} \]

Make current through the string of bias resistors \(I_1 = 0.1 \) \(I_C = 0.5 \text{ mA} \).

\[R_1 + R_2 + R_3 = \frac{V_{CC}}{I_1} = \frac{12}{5 \cdot 10^{-4}} = 24 \text{k} \Omega \]

Calculate the bias voltages (base side of Q1, Q2):

\[V_{R1} = V_{CC} - I_C R_E - 1.7 V = 12 V - 0.5 V - 1.7 V = 9.8 V \]

\[V_{R2} = V_{B1} - V_{B2} = 1 V \]

\[V_{R3} = V_{B2} = I_C R_E + 0.7 = 5 \cdot 10^{-3} \cdot 100 + 0.7 = 1.2 V \]
Cascode Bias Example cont.

\[V_{B2} = 5 \cdot 10^{-4} \quad R_3 = 1.2 \, V \]

\[R_3 = 2.4 \, k\Omega \]

\[V_{B1} - V_{B2} = 5 \cdot 10^{-4} \quad R_2 = 1.0 \, V \]

\[R_2 = 2 \, k\Omega \]

Recall: \(R_1 + R_2 + R_3 = 24 \, k\Omega \)

\[R_1 = 24000 - 2.400 - 2000 = 19.6 \, k\Omega \]

\[V_{CC} = 12 \, V, \quad R_C = 1 \, k\Omega, \quad V_{B2} = 1.2 \, V, \]

\[I_C = 5 \, mA, \quad R_E = 100 \, \Omega, \quad V_{B1} - V_{B2} = 1.0 \, V \]
\[\beta = 100 \]

\[r_e = 5 \Omega \implies I_C = 5 \text{mA} \]

\[V_{C1} = 7 \text{V} \]

\[|A_v| = \frac{R_C}{R_E} = 10 \]

\[R_1 = 19.6 \text{k}\Omega \]

\[R_2 = 2 \text{k}\Omega \]

\[R_3 = 2.4 \text{k}\Omega \]

\[R_C = 1 \text{k}\Omega \]

\[R_E = 100 \Omega \]

\[R_B = R_2 \parallel R_3 = 1.09 \text{k}\Omega \ll \beta R_E = 10 \text{k}\Omega \]

\[f_H = \frac{1}{2\pi C_{tot} R_S'} \]

\[C_{tot} = C_\pi + (1 + \frac{r_e}{R_E})C_\mu \]

\[= C_\pi + 1.05 C_\mu \]

If \(C_\pi = 12 \text{pF} \)

\[C_\mu = 2 \text{pF} \]

\[C_{tot} = 14.1 \text{pF} \]

\[f_{H\text{cascode}} = 225.8 \text{MHz} \]

\[f_{HCE} = 94 \text{MHz} \]