Common Emitter BJT Amplifier Design
Current Mirror Design
Some Random Observations

- Conditions for stabilized voltage source biasing
 - Emitter resistance, R_E, is needed.
 - Base voltage source will have finite resistance, R_B.
 - $(1 + \beta) R_E$ needs to be much larger than R_B.
 - Small R_B - relative to R_S - will attenuate input signal.
 - Larger R_E permits larger R_B, but results in lower gain.
 - Gain = $-R_C/R_E$ for $R_E \gg r_e$.
 - Split R_E with bypassing increases gain.
 - Requires large bypass capacitor.
 - Limiting case - entire R_E bypassed: Gain = $-g_m R_C$.
- Simplified rule-of-thumb biasing is adequate.
Conflicting Bias and Gain Issues

• Biasing
 • If R_B is small relative to $(1 + \beta) R_E$, V_B and R_E determine I_E and, approximately, I_C. Stable bias \Rightarrow R_E large and high gain \Rightarrow R_E small.

• Gain
 • Want gain magnitude R_C/R_E to be “large.” This implies a ”small” R_E.

• Gain-bias interaction
 • Want R_B to be large relative to R_S, while still small relative to $(1 + \beta) R_E$. (i.e. choose $R_B \geq 10 R_S$ and $(1 + \beta) R_E \geq 10 R_B$)
 • Want $V_{CG} = V_{CC} - I_C R_C$ to be roughly at mid-point between the V_{CC} and the emitter bias voltage, or “1/3, 1/3, 1/3” rule. R_C determines bias and gain.
Design Example

Design an amplifier to meet the following specifications:

Electrical specifications:

- $V_{\text{sig}-\text{max}} = 0.1 \text{ V pk}$
- $R_S = 50 \Omega$
- $V_{\text{CC}} = 12 \text{ V}$
- $0 \text{ C} < T < 40 \text{ C}$

Minimize cost:
1. Minimize bypass capacitors
2. Use standard 5% resistors

Requires simulation to verify.

More typical gain spec:

$$|A_V| = \left| \frac{V_{\text{sig}-\text{max}}}{V_{\text{out}-\text{max}}} \right| \approx 10 \quad \text{@ midband}$$

$$9 \leq |A_V| \leq 11$$
Design Step 1 (Choose R_B and R_E)

Choose an $R_B >> 10R_S$:

$$R_B \approx 5000 \, \Omega$$

$(1 + \beta) \frac{R_E}{R_B}$ must be $\geq 10R_B$:

$$R_E \approx \frac{10 \cdot 5000}{100} = 500 \, \Omega$$

Nearest standard size*: $470 \, \Omega$

$$R_E = 470 \, \Omega$$

* RCA Lab: http://www.ese.upenn.edu/rca/components/passive/listcomponents.html#resistors
Design Step 2 (Set R_C)

For a gain of about -10:

$$R_C = 10 \quad R_E = 4.7 \text{ k}\Omega$$

Nearest standard size*:

$$R_C = 4.7 \text{ k}\Omega$$

SPEC: $v_{sig-\text{max}} = 0.1 \text{ V pk}$

For a gain of -10, the collector voltage v_{out} swings 1 V maximum, so the collector resistor bias drop could “in principle” be as little as 1 V.

$\beta = 100 \quad R_B = R_1 \parallel R_2 = 5 \text{ k}\Omega$

$R_E = 470 \text{ }\Omega$
Design Step 3 (Set bias point neglecting I_B)

Recall $v_{sig-max} = 0.1 \, V \, pk$

We have plenty of room - choose the collector drop conservatively to allow for bias point changes with temperature – let's use:

$$V_{Rc} \approx \frac{V_{CC}}{3} = 4.7 \, V$$

Thus:

$$I_C = \frac{4.7}{4700} = 1 \, mA.$$

And (ignoring I_B):

$$V_{BG} = I_C R_E + 0.7 = 0.47 + 0.7 = 1.17 \, V.$$
Design Step 4 (Set R_1 and R_2)

Recall:

\[R_B = R_1 \parallel R_2 = R_1 \frac{R_2}{R_1 + R_2} = 5 \text{k}\Omega \]

And:

\[V_{BG} = \frac{R_2}{R_1 + R_2} \quad V_{CC} = 1.17 \text{ V} \]

Or:

\[\frac{R_2}{R_1 + R_2} = \frac{V_{BG}}{V_{CC}} = \frac{1.17}{12} = 0.098 \approx 0.1 \]
Design Step 4 cont. (Set R_1 and R_2)

Substituting:

$$R_1 \parallel R_2 = R_1 \frac{R_2}{R_1 + R_2} = R_1 \cdot 0.1 = 5 \, k\Omega$$

$$R_1 = 50 \, k\Omega$$

Standard size: $R_1 = 47 \, k\Omega$

Finally:

$$\frac{R_2}{47 \, k + R_2} = 0.1$$

$$0.9 \, R_2 = 0.1 \times (47k) \Rightarrow R_2 = 5222 \, \Omega$$

Standard size: $R_2 = 5.1 \, k\Omega$

Revised R_B:

$$R_B = R_1 \parallel R_2 = \frac{(47k) \times 5.1k}{52.1k} = 4.6 \, k\Omega$$

NOTE: $(1 + \beta) \, R_E \approx 47 \, k\Omega \geq 10 \, R_B = 46 \, k\Omega$
Design Step 5 (set \(C_B \)) - Close to the Finish!

\[R_B \text{ in parallel with } r_{bg} \Rightarrow R_B \text{ dominates.} \]

Estimate \(R_{\text{in}} \) as \(4.2 \, k\Omega \). Coupling capacitor, then, should be about \(420 \Omega \) at 20 Hz.

\[\frac{1}{\omega C_B} < 420 \]

\[\frac{1}{2 \pi f_{\text{min}} R_B} \geq \frac{10}{2 \pi \cdot 20} = \frac{1.19 \times 10^{-4}}{2 \pi} \approx 19 \, \mu F \]

Using the RCA Lab Component List \(C_B = \frac{47 \mu F}{47 \mu F} \)

\[C_B = 23.5 \, \mu F \text{ or } 47 \, \mu F \]
Final Design

\[\text{Cc} = 23.5 \, \mu\text{F} \]
\[\text{Rs} = 50 \, \text{Ohm} \]
\[\text{R1} = 47 \, \text{kOhm} \]
\[\text{R2} = 5.1 \, \text{kOhm} \]
\[\text{Rc} = 4.7 \, \text{kOhm} \]
\[\text{Re} = 470 \, \text{Ohm} \]
\[\text{Vcc} = 12 \, \text{V} \]

\[\text{vout} \]
Multisim Simulation

20 Hz Gain

Actual $|A_p| = 9.3$

1 KHz Gain
Multisim Oscilloscope Plots
Discussion

1. We neglected r_e. Including the internal emitter resistance, the simulated gain becomes:

$$A_V = -\frac{R_C}{R_E + r_e} = -\frac{4700}{470 + 25} = -9.5$$

2. There is some attenuation of the signal voltage at the base. A more accurate calculation of the input attenuation:

$$R_{in} = R_B \parallel r_{bg} = 4.2 \text{k}\Omega \Rightarrow v_{bg} \approx \frac{R_{in}}{R_{in} + R_S} = \frac{4200}{4250} \Rightarrow v_{sig} = 0.988 v_{sig}$$

Multiplying the two quantities: $G = -9.5 \cdot 0.988 = -9.4$ Close to 9.3!

This fine-tuning of the estimate may be all that not helpful – since we will be using 5% components to build the circuit!
Common Emitter Amplifier - Current Source Biasing

1. The current mirror sets $I_E (I_C)$.

2. R_b serves no purpose except to provide a path for the base current. $I_B = I_E / (\beta + 1)$.

3. v_{sig} is the signal source.
Bias Setting

1. Since R_B does not interfere with the bias, the signal source can be connected to the base without need for a blocking capacitor.

2. Choose R_b “large” compared to R_S to avoid attenuating v_{sig}.

3. Choose R_{ref} to set I_C.
Bias Setting - Continued

Choose:

\[I_C \approx I_E \approx I_{ref} = 1 \text{ mA} \]
Bias Setting - Completed

With the base “grounded” and \(V_{BE(Qamp)} = 0.7 \, V \) (\(I_B \approx 0 \) through \(R_B \)):

\[
V_{CC} = V_{RC} + V_{CB(Qamp)} - I_B R_B \approx V_{RC} + V_{CB}
\]

This implies that there is about a 12 \(V \) drop to split across \(R_C \) and \(V_{CB} \). Choose 6 \(V \) each.

\[
R_C = \frac{V_{RC}}{I_C} = \frac{6}{10^{-3}} = 6 \, k\Omega
\]

Choose standard size:

(RCA Lab Comp List)

\[
R_C = 5.6 \, k\Omega
\]
Gain Setting

1. Connect the source to the base.

2. Provide a path for the small signal emitter current.

3. Choose R_E for the desired gain ($G = -R_C/R_E$).

4. C_E is nearly a short circuit for $f \geq f_{\text{min}}$

 Calculate C_E to have negligible reactance at the lowest frequency of interest f_{min}.

$R_S \ll R_B$
Gain Setting - Continued

Design for $|A_V| = 20$:

Choose the nearest standard size resistors for R_C and R_E.

$$R_E = \frac{R_C}{20} = \frac{5600}{20} \approx 270 \Omega$$

Gain check:

$$i_b = \frac{v_{sig}}{R_S + (\beta + 1)(r_e + R_E)}$$

$$v_{out} = -R_C i_c = -R_C \beta i_b$$

$$\frac{v_{out}}{v_{sig}} \approx -\beta \frac{R_C}{\beta + 1} \frac{r_e + R_E}{295} \approx -5600 \frac{295}{295} = -19$$

Typical $18 \leq |A_V| \geq 22$
R_E and C_E

overall circuit with bias

ac circuit
Design Completed

The emitter circuit impedance:

\[
\frac{V_{eg}}{i_e} = \left(r_e + R_E + \frac{1}{j \omega C_E} \right)
\]

Choose \(C_E \) to set the break frequency (-3dB), \(f_{\text{min}} \), to \(\leq 20 \) Hz:

\[
\frac{1}{2 \pi f_{\text{min}} C_E} = r_e + R_E = 295 \Omega
\]

\[
C_E \geq \frac{1}{295 \cdot 2 \pi f_{\text{min}}} = \frac{1}{295 \cdot 2 \pi \cdot 20} = \frac{1}{37071} = 27 \mu F.
\]

If we choose standard size (RCA Lab Comp List):

\[
C_E = 47 \mu F \implies f_{\text{min}} = 11.5 \text{ Hz}
\]
Multisim Bode Plots

20 Hz. Gain

1 kHz. Gain