ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Day 26: October 31, 2014
Synchronous Circuits

Today

• Managing Timing
• Reusing Circuits
• Latches
• Registers, clocking

Preclass 1, 2

• Worst-case delay to output?
• Shortest delay to output?

Preclass 3

• New set of inputs every 20T_
 – How does it behave?

Preclass 3

• When does Carry In reach bit 17 of final adder?
• After insertion of new input at 20T_
 how early can A or B input to final adder change?

Challenge

• Logic paths have different delays
 – E.g. different output bits in an adder
• Delay of signal data dependent
 – E.g. length of carry
• Delay is chip dependent
 – E.g. Threshold Variation
• Delay is environment dependent
 – E.g. Temperature
Challenge
- Logic paths have different delays
- Delay of signal data dependent
- Delay is chip dependent
- Delay is environment dependent
- Proper behavior depends on inputs being coordinated
 - Match the inputs that should interact

Logic Reuse
- How do we fix this?
 - Make it possible to input a new value every $20T_{\text{lat}}$?

Discipline
- Add circuit elements to
 - hold values
 - and change at coordinated point
 - Control when changes seen by circuit
- Only have to make sure to **wait long enough** for all results
- Decouple
 - timing of signal change
 - from timing of signal usage

Latch
- $\phi=1 \Rightarrow \text{Out}=/\text{In}$
- $\phi=0 \Rightarrow \text{Out}=$Out
- ϕ transitions $0\rightarrow1$ Out holds value
- How would a latch help us here?

Synchronous Discipline
- Add state elements (registers, latches)
- Compute
 - From state elements
 - Through combinational logic
 - To new values for state elements

Midterm 2 Topics
- Sizing
- Tau-model
 - Estimation and optimization
- Elmore-delay
 - Estimation and optimization
- Energy and power
 - Estimation and optimization
 - Dynamic and static
- Logic
 - CMOS
 - Ratioed
 - Pass transistor
- Regions of operation
- Scaling
- Noise Margins and restoration
- **No clocking**
 - Except to motivate delay targets and power calculations
Latch

- \(\phi = 1 \rightarrow \text{Out} = \neg \text{In} \)
- \(\phi = 0 \rightarrow \text{Out} = \text{Out} \)
- \(\phi \) transitions 1\(\rightarrow \)0 Out holds value

- How build latch from CMOS logic?

Latch from Combinational Logic

- \(\phi = 1 \rightarrow \text{Out} = \neg \text{In} \)
- \(\phi = 0 \rightarrow \text{Out} = \text{Out} \)
- \(\phi \) transitions 1\(\rightarrow \)0

What is the difference?

- How build latch from pass transistors?
 - (short hold)

MuxL Level Restorer ("Staticizer")

Without level restorer
With level restorer

Level Restore

• What issue arises here?

Latch with Level Restore

Latch

• \(\phi = 1 \Rightarrow \) Out=/In
• \(\phi = 0 \Rightarrow \) Out=Out
• \(\phi \) transitions 1\(\rightarrow \)0 Out holds value

• How build latch from pass transistors?
 – (long hold)

Static Latch

Typical Static Latch

Advantages:
• Static
• Full Rail
• Fast

Isolation inverters:
• Input Cap
• Input/Output Noise
• State Node Noise
Latch Timing Issues

- What timing constraints do latches impose?
 - When can ϕ change?
 - How long must ϕ be high?
 - Delay when ϕ is high?

Shift Register

- How do you make a shift register out of latches?

Two Phase Non-Overlapping Clocks

- What happens when ϕ_0 is high?
- What happens when ϕ_1 is high?

Two Phase Non-Overlapping Clocks

- When does the action happen?

Two Phase Non-Overlapping Clocks

- What could go wrong if the overlap?
Two Phase Non-Overlapping Clocks

- What timing constraints do we have?

Clocking Discipline

- Follow discipline of combinational logic broken by registers
- Compute
 - From state elements
 - Through combinational logic
 - To new values for state elements
- As long as clock cycle long enough,
 - Will get correct behavior

Ideas

- Synchronize circuits
 - to external events
 - disciplined reuse of circuitry
- Leads to clocked circuit discipline
 - Uses state holding element
 - Prevents
 - Combinational loops
 - Timing assumptions
 - (More) complex reasoning about all possible timings

Admin

- Exam Monday
 - No class at noon – office hour
 - Exam 7—9pm in Towne 309
- Daylight savings time ends Sunday 2am
 - Get an extra hour to study for exam!
 • (or catchup on sleep)
- Review Sunday Ketterer
 - (make sure you account for time change!)