Today

- 5T/6T SRAM
 - Writing
 - Charge sharing
 - Precharge
- DRAM

Memory Core: Part 1

- 5T SRAM
 - Writing
 - Charge sharing
 - Precharge

Write (preclass 1)

- Assuming properly select only one WL, what does write circuit look like?
 - What transistors are ON when writing a 0 over a cell that holds a 1?
 - Drive with inverter at BL
 - Width W_{write}
 - Voltage written?

Write (preclass 1)

- Assuming properly select only one WL, what does write circuit look like?
 - Voltage written?

\[
\frac{R_{\text{access}} + R_{\text{write}}}{R_{\text{access}} + R_{\text{write}} + R_{\text{buf}}} = \frac{1}{W_{\text{access}}} + \frac{1}{W_{\text{write}}} + \frac{1}{W_{\text{buf}}}
\]
Write Conclude?

- Writing into cell is a ratioed operation.

\[
\frac{1}{W_{\text{access}}} + \frac{1}{W_{\text{write}}} = \frac{1}{W_{\text{buffer}}} \]

Write (preclass 2)

- Assuming properly select only one WL, what does write circuit look like?
 - How different when writing a 1 over a cell holding a 0?

6T Cell

- How does 6T make it easier to perform writes?

Preclass 3

- Initially
 - A @ 1V
 - B @ 0V
- Close switch
- Voltage at A?

Consider (preclass 4)

- Read: What happens to voltage at A when WL turns from 0→1?
 - Assume \(W_{\text{access}} \) large
 - \(W_{\text{access}} >> W_{\text{pu}} = 1 \)
 - BL initially 0
 - A initially 1
Voltage After enable Word Line

- $Q_{BL} = 0$
- $Q_A = (1V)(\gamma(2+W_{access})C_0)$
- $C_{BL} >> C_A = (\gamma(2+W_{access})C_0)$
- After enable W_{access} (W_{access} large)
 - Total charge $Q_{BL} + Q_A$ roughly unchanged
 - Distributed over larger capacitance $\sim C_{BL}$
 - $V_A = V_{BL} \sim C_A/C_{BL}$

Larger Resistance?

- What happens if W_{access} small?
 - $W_{access} < W_{pu}$
- Takes time to move charge from A to BL
- Moves more slowly than replenished by pu

Simulation: $W_{access} = 100$

Charge Sharing

- **Conclude**: charge sharing can pull down voltage
Consider

• What happens to voltage at A when WL turns from 0→1?
 – Assume \(W_{\text{access}} \) large

Simulation \(W_{\text{access}} = 20 \)

Charge Sharing

• Conclude: charge sharing can lead to read upset
 – Charge redistribution adequate to flip state

How might we avoid?

• Charge bitlines to \(V_{dd}/2 \) before begin read operation
 • Now charge sharing doesn’t swing to opposite side of midpoint
Pre-Charge

- Use one phase of clock to charge a node to some initial value before operation

Precharge Transistor Can be large

Compare

- Both $W_{access} = 20$; vary precharge

Simulation $W_{access} = 20$
(precharge Vdd/2, reading 0)

Simulation $W_{access} = 20$
(with precharge Vdd/2)

Pre-Charge

- Use one phase of clock to charge a node to some initial value before operation

Precharge Transistor Can be large
5T/6T SRAM Questions?

Idea

- Memory can be compact
- Demands careful sizing

Admin

- HW7 due tomorrow
- Project 2 out
 - Due 2 weeks from tomorrow
 - Tuesday before Thanksgiving