ESE535: Electronic Design Automation

Day 20: April 1, 2013
FSM Equivalence Checking

1

Penn ESE 535 Spring 2013 -- DeHon

Today

• Sequential Verification
 – FSM equivalence
 – Issues
 • Extracting STG
 • Valid state reduction
 • Incomplete Specification

FSM Reminder

• What's a FSM?
 – Or DFA = Deterministic Finite Automata?

Penn ESE 535 Spring 2013 -- DeHon

Finite-State Machine

• What are examples where need an FSM rather than just combination logic?

Penn ESE 535 Spring 2013 -- DeHon

FSM

• Logic depends on past inputs
• Behaves differently based on state
• Logic selects outputs and next state
 – Based on inputs and current state

Penn ESE 535 Spring 2013 -- DeHon

FSM Examples

Penn ESE 535 Spring 2013 -- DeHon
FSM Examples

- What are examples where need an FSM rather than just combination logic?
 - Parsing
 - Protocols
 - Datapath control
 - Data dependent branching

Motivation

- Write at two levels
 - Java prototype and VHDL implementation
 - VHDL specification and gate-level implementation
- Write at high level and synthesize/optimize
 - Want to verify that synthesis/transforms did not introduce an error

Question

- Given a state machine with N states:
 - How long of an input sequence do I need to visit any of the N states?
 - (i.e. if someone picks a state, how long of an input sequence might you need to select a path to that state?)

Cornerstone Result

- Given two FSM’s, can test their equivalence in finite time
 - N.B.:
 - Can visit all states in a FSM with finite input strings
 - No longer than number of states
 - Any string longer must have visited some state more than once (by pigeon-hole principle)
 - Cannot distinguish any prefix longer than number of states from some shorter prefix which eliminates cycle (pumping lemma)

FSM Equivalence

- Given same sequence of inputs
 - Returns same sequence of outputs
- Observation means can reason about finite sequence prefixes and extend to infinite sequences which FSMs are defined over
Equivalence

- **Brute Force:**
 - Generate all strings of length \(|\text{state}|\)
 - (for larger FSM = the one with the most states)
 - Feed to both FSMs with these strings
 - Observe any differences?
- **How many such strings?**
 - \(|\text{Alphabet}|^{\text{states}}\)

Smarter

- Create composite FSM
 - Start with both FSMs
 - Connect common inputs together (Feed both FSMs)
 - XOR together outputs of two FSMs
 - Xor's will be 1 if they disagree, 0 otherwise
- Ask if the new machine ever generate a 1 on an xor output (signal disagreement)
 - Any 1 is a proof of non-equivalence
 - Never produce a 1 → equivalent

Creating Composite FSM

- Assume know start state for each FSM
- Each state in composite is labeled by the pair \(\{S_1, S_2\}\)
 - How many such states?
 - Compare to number of strings of length \#states?
- Start in \(\{S_1_0, S_2_0\}\)
- For each symbol \(a\), create a new edge:
 - \(T(a, \{S_1_0, S_2_0\}) \rightarrow \{S_1, S_2\}\)
 - If \(T_1(a, S_1_0) \rightarrow S_1\) and \(T_2(a, S_2_0) \rightarrow S_2\)
 - Repeat for each composite state reached

Composite DFA

- **How much work?**
 - At most \(|\text{alphabet}|^{\#\text{State1}}^{\#\text{State2}}\) edges
 - work
 - Can group together original edges
 - i.e. in each state compute intersections of outgoing edges
 - Really at most \(|E_1|^{\#E_2}|\)

Non-Equivalence

- State \(\{S_1, S_2\}\) demonstrates non-equivalence iff
 - \(\{S_1, S_2\}\) reachable
 - On some input, State \(S_1\) and \(S_2\) produce different outputs
- If \(S_1\) and \(S_2\) have the same outputs for all composite states, it is impossible to distinguish the machines
 - They are equivalent
- A **reachable** state with differing outputs
 - Implies the machines are not identical

Empty Language

- Now that we have a composite state machine, with this construction
- **Question:** does this composite state machine ever produce a 1?
 - Is there a reachable state that has differing outputs?
Answering Empty Language

- Start at composite start state \{S_1^0, S_2^0\}
- Search for path to a differing state
- Use any search (BFS, DFS)
- End when find differing state
 - Not equivalent
- OR when have explored entire reachable graph w/out finding
 - Are equivalent

Reachability Search

- Worst: explore all edges at most once
 \(O(|E|)=O(|E_1|*|E_2|) \)
- When we know the start states, we can combine composition construction and search
 - \textit{i.e.} only follow edges which fill-in as search
 - (way described)

Creating Composite FSM

- Assume know start state for each FSM
- Each state in composite is labeled by the pair \{S_1, S_2\}
- Start in \{S_1^0, S_2^0\}
- For each symbol \(a \), create a new edge:
 - \(T(a, S_1^0) \rightarrow S_1^i, T(a, S_2^0) \rightarrow S_2^j \)
 - Check that both state machines produce same outputs on input symbol \(a \)
- Repeat for each composite state reached

Issues to Address

- Obtaining State Transition Graph from Logic
- Incompletely specified FSM?
- Know valid (possible) states?
- Know start state?
Getting STG from Logic

- Brute Force
 - For each state
 - For each input minterm
 - Simulate/compute output
 - Add edges
 - Compute set of states will transition to
 - Smarter
 - Exploit cube grouping, search pruning
 - Cover sets of inputs together
 - Coming attraction: PODEM

Incomplete State Specification

- Add edge for unspecified transition to
 - Single, new, terminal state
- Reachability of this state may indicate problem
 - Actually, if both transition to this new state for same cases
 - Might say are equivalent
 - Just need to distinguish one machine in this state and other not

Valid States

- Composite state construction and reachability further show what’s reachable
- So, end up finding set of valid states
 - Not all possible states from state bits

Start State?

- Worst-case:
 - Try verifying for all possible start state pairs
 - Identify start state pairs that lead to equivalence
 - Candidate start pairs
 - More likely have one (specification) where know start state
 - Only need to test with all possible start states for the other FSM

Summary

- Finite state means
 - Can test with finite input strings
- Composition
 - Turn it into a question about a single FSM
- Reachability
 - Allows us to use poly-time search on FSM to prove equivalence
 - Or find differentiating input sequence

Big Ideas

- Equivalence
 - Same observable behavior
 - Internal implementation irrelevant
 - Number/organization of states, encoding of state bits...
- Exploit structure
 - Finite DFA … necessity of reconvergent paths
 - Structured Search – group together cubes
 - Limit to valid/reachable states
- Proving invariants vs. empirical verification
Time Permitting

Try to cleanup some of Wednesday’s lecture…. (FSM Encoding)

Two Issues

• Input Coding
 – Use a single input cube to select an output
 – Capture the union of things that behave similarly on a single cube
• Output Coding
 – Only need to cover the 1’s
 – Share logic producing 1’s between states

Day 19 Preclass

What input cases produce same output?

Day 19 Preclass

Produce same output?

Day 19 Preclass

• If we can code ST1+ST2 and ST2+ST3 as cubes, we can save due to input encodings.

 • How could we make these cubes?
 – 3b state code?
 – 2b state code?
Day 19 Preclass

<table>
<thead>
<tr>
<th>Current State</th>
<th>Input</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1+ST2</td>
<td>0</td>
<td>ST2</td>
</tr>
<tr>
<td>ST1</td>
<td>1</td>
<td>ST3</td>
</tr>
<tr>
<td>ST2+ST3</td>
<td>1</td>
<td>ST1</td>
</tr>
<tr>
<td>ST3</td>
<td>0</td>
<td>ST3</td>
</tr>
</tbody>
</table>

- Assume 2 bit state code
- How many Pterms if ST3=00?
 - (and assume get input groupings on cube)
- How many if ST3=11?
- What’s a good code?

Admin

- Assignment 6 due today
 - Will try to get quick feedback
- Reading for next two lectures on blackboard