Today

- Retiming
 - Cycle time (clock period)
 - Initial states
 - Register minimization

Task

- Move registers to:
 - Preserve semantics
 - Minimize path length between registers
 - Reduce cycle time
 - …while minimizing number of registers required

Example: Same Semantics

- Externally: no observable difference

Problem

- Given: clocked circuit
- Goal: minimize clock period without changing (observable) behavior
- I.e. minimize maximum delay between any pair of registers
- Freedom: move placement of internal registers
Other Goals

• Minimize number of registers in circuit
• Achieve target cycle time
• Minimize number of registers while achieving target cycle time

• ...start talking about minimizing cycle...

Legal Register Moves

• Retiming Lag/Lead

Critical Path Length

Critical Path: Length of longest node path of zero weight edges

Preclass 2 Example

Path Length (L) ?

Can we do better?

Canonical Graph Representation

Separate arc for each path

Weight edges by number of registers
(weight nodes by delay through node)

Retiming Lag/Lead

Retiming: Assign a lag to every vertex

weight(e') = weight(e) + lag(head(e)) - lag(tail(e))
Valid Retiming

- Retiming is valid as long as:
 - \(\forall e \text{ in graph} \):
 - weight(e') = weight(e) + lag(head(e))-lag(tail(e)) \(\geq 0 \)
 - Assuming original circuit was a valid synchronous circuit, this guarantees:
 - non-negative register weights on all edges
 - no travel backward in time :-)
 - all cycles have strictly positive register counts
 - propagation delay on each vertex is non-negative (assumed 1 for today)

Retiming Task

- Move registers = assign lags to nodes
 - lags define all locally legal moves
- Preserving non-negative edge weights
 - (previous slide)
 - guarantees collection of lags remains consistent globally

Retiming Transformation

- Properties invariant to retiming
 1. number of registers around a cycle
 2. delay along a cycle

- Cycle of length \(P \) must have
 - at least \(P/c \) registers on it to be retimeable to cycle \(c \)
 - Can be computed from invariant above

Optimal Retiming

- There is a retiming of
 - graph \(G \)
 - \(w/ \) clock cycle \(c \)
 - iff \(G-1/c \) has no cycles with negative edge weights

- \(G-\alpha = subtract \alpha \) from each edge weight

1/c Intuition

- Want to place a register every \(c \) delay units
- Each register adds one
- Each delay subtracts 1/c
- As long as remains more positives than negatives around all cycles
 - can move registers to accommodate
 - Captures the reg = \(P/c \) constraints
Illustrate with Pipeline Case

\[G-1/c \]

Compute Retiming
- \(\text{Lag}(v) = \text{shortest path to I/O in } G-1/c \)
- Compute shortest paths in \(O(|V||E|) \)
 - Bellman-Ford
 - also use to detect negative weight cycles when \(c \) too small

Bellman Ford
- For \(l \leftarrow 0 \) to \(N \)
 - \(u_i \leftarrow \infty \) (except \(u_i = 0 \) for IO)
- For \(k \leftarrow 0 \) to \(N \)
 - for \(e_{ij} \in E \)
 - \(u_i \leftarrow \min(u_i, u_j + w(e_{ij})) \)
- For \(e_{ij} \in E \), //still update \(\rightarrow \) negative cycle
 - if \(u_i > u_j + w(e_{ij}) \)
 - cycles detected

Apply to Example

Try \(c = 1 \)

Draw \(G-1 \)
Negative cycles?
Try $c=2$

Draw $G-0.5$
Negative cycles?

Apply: Find Lags
Shortest paths?

Apply: Lags

Apply: Lags
• Take ceil

Phase Choice ($C=2$)

Apply: Move Registers
Compute new weights

weight(e') = weight(e) + lag(head(e))-lag(tail(e))
Apply: Retimed Design

Apply: Lags (alternate)

• Take floor

Apply: Move Registers (floor)

weight(e') = weight(e) + lag(head(e)) - lag(tail(e))

Apply: Retimed Design (floor)

Compute new weights

Summary So Far

• Can move registers to minimize cycle time
• Formulate as a lag assignment to every node
• Optimally solve cycle time in O(|V||E|) time
 – Using a shortest path search

Questions?
Pipelining

- We can use this retiming to pipeline
- Assume we have enough (infinite supply) registers at edge of circuit
- Retime them into circuit

\[C > 1 \rightarrow \text{Pipeline} \]

Add Registers

\[n - \text{regs} \]

Draw G

<table>
<thead>
<tr>
<th>Setup (G-1/c)</th>
<th>Minimum (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G)</td>
<td>(G-1/1)</td>
</tr>
</tbody>
</table>

Lags?

\[n = 5 \]

Pipeline Retiming: Lag
Move Registers

Compute new weights (move registers)

Note

- Algorithm/examples shown
 - for special case of unit-delay nodes
- For general delay,
 - a bit more complicated
 - still polynomial

Initial State

What should initial value be?

In general, constraints \(\rightarrow \) satisfiable?
Initial State

- Cannot always get exactly the same initial state behavior on the retimed circuit
 - without additional care in the retiming transformation
 - sometimes have to modify structure of retiming to preserve initial behavior
- Only a problem for startup transient
 - if you're willing to clock to get into initial state, not a limitation

Minimize Registers

- Number of registers: $\sum w(e)$
- After retime: $\sum w(e) + \sum (F_l(v)-F_o(v))\text{lag}(v)$
- delta only in lags
- So want to minimize: $\sum (F_l(v)-F_o(v))\text{lag}(v)$
 - subject to earlier constraints
 - non-negative register weights, delays
 - positive cycle counts
- $F_l(v)-F_o(V)$ is a constant c_v
 - Minimize $\sum (c_v\text{lag}(v))$
 - $w(e_i) + \text{lag(\text{head}(e_i))} - \text{lag(\text{tail}(e_i))} > 0$

Minimize Registers \rightarrow ILP

- So want to minimize: $\sum (F_l(v)-F_o(v))\text{lag}(v)$
 - subject to earlier constraints
 - non-negative register weights, delays
 - positive cycle counts

Minimize Registers: ILP → flow

- Can be formulated as flow problem
- Can add cycle time constraints to flow problem
- Time: $O(|V||E|\log(|V|)\log(|V|^2/|E|))$

Summary

- Can move registers to minimize cycle time
- Formulate as a lag assignment to every node
- Optimally solve cycle time in $O(|V||E|)$ time
- Also
 - Minimize registers
 - Watch out for initial values

Big Ideas

- Exploit freedom
- Formulate transformations (lag assignment)
- Express legality constraints
- Technique:
 - graph algorithms
 - network flow

Admin

- Reading for Wednesday online