Data Structures and Algorithms (EE 220):
Homework 2 Solutions

Contact TA for any Queries about the Solutions

Posted 02/14/2003

Problem 1: (5 pts) We show that

1. \(\log(\log n) = O(\log^2 n) \)
2. \(\log^2 n = O(e^{\log n}) \)
3. \(e^{\log n} = O(\log(n!)) \)
4. \(\log(n!) = O((\log n)^{\log n}) \)

Part 1:

\[
\lim_{n \to \infty} \frac{\log(\log n)}{\log^2 n} = \lim_{n \to \infty} \frac{\frac{1}{\log n} \frac{1}{n}}{2 \log n \frac{1}{n}} \\
= \lim_{n \to \infty} \frac{1}{2 \log n} = 0.
\]

This shows that \(\log(\log n) = O(\log^2 n) \).

Part 2:

\[
\lim_{n \to \infty} \frac{\log^2 n}{e^{\log n}} = \lim_{n \to \infty} \frac{\log^2 n}{n} \\
= \lim_{n \to \infty} 2 \log n \frac{1}{n} \\
= \lim_{n \to \infty} \frac{2}{n} \\
= 0.
\]

This shows that \(\log^2 n = O(n) \).

Part 3: To prove this part we use the bound \(n! \geq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \geq \left(\frac{n}{e}\right)^n \). Since \log is a monotone function, this bound implies that \(\log(n!) \geq n \log \left(\frac{n}{e}\right) \). Now,

\[
\lim_{n \to \infty} \frac{n}{\log(n!)} \leq \lim_{n \to \infty} \frac{n}{n \log \left(\frac{n}{e}\right)} = \lim_{n \to \infty} \frac{1}{\log \left(\frac{n}{e}\right)} = 0.
\]
This shows that \(n = O(\log(n!)) \).

Part 4: In this part we use yet another important inequality \(n! \leq n^n \). This inequality implies that \(\log(n!) \leq n \log n \).
Hence
\[
\lim_{n \to \infty} \frac{\log(n!)}{(\log(n))^n} \leq \lim_{n \to \infty} \frac{n \log n}{(\log(n))^n} = \lim_{n \to \infty} \frac{n}{(\log n)^{n-1}} \leq \lim_{n \to \infty} \frac{e^{\log n}}{n} = e < \infty.
\]
This shows that \(\log(n!) = O((\log n)^{\log n}) \).

Problem 2: (5 pts)

Part 1: Proof by Counter Example.
Let \(f(n) = n \) and \(g(n) = n^2 \). Hence \(\min\{f(n), g(n)\} = f(n) = n \). Now observe that \(f(n) + g(n) = \Theta(n^2) \neq \Theta(n) \). This shows that the claim is false in general.

Part 2(a): It is given that \(f(n) = O(g(n)) \). Hence from the definition of “O” notation it implies that \(\exists c > 0 \) and an index \(n_0 \) such that \(\forall n \geq n_0 \)
\[
0 \leq f(n) \leq cg(n).
\]
Since \(\log \) is a monotone function and \(f(n) \geq 1 \), the above equation implies that
\[
0 \leq \log(f(n)) \leq \log c + \log(g(n)). \tag{1}
\]
Note that \(\log c + \log(g(n)) = O(\log(g(n))) \). This implies that \(\exists c' > 0 \) and \(n'_0 \)
such that \(\forall n \geq n'_0 \)
\[
0 \leq \log(g(n)) + \log c \leq c' \log(g(n)). \tag{2}
\]
Now choose \(\hat{n}_0 = \max\{n_0, n'_0\} \) and observe from (1) and (2) that
\[
0 \leq \log(f(n)) \leq c' \log(g(n)) \quad \forall n \geq \hat{n}_0.
\]
This shows that by definition \(\log(f(n)) = O(\log(g(n)) \).

Part 2(b): Proof by Counter Example.
Let \(f(n) = 2^n \). Then, \(f(\frac{n}{2}) = 2^{\frac{n}{2}} \). Now, observe that
\[
\lim_{n \to \infty} \frac{f(n)}{f(\frac{n}{2})} = \lim_{n \to \infty} \frac{2^n}{2^{\frac{n}{2}}} = \lim_{n \to \infty} 2^{\frac{n}{2}} = \infty.
\]
This shows that \(2^n \neq \Theta(\frac{n}{2}) \). Hence the claim is not true in general.
Problem 3: (5 pts) Consider the given recursion

\[T(n) = T(n - a) + T(a) + n \quad \text{iteration } i = 1 \]
\[= T(n - 2a) + 2T(a) + 2n - a \quad \text{iteration } i = 2 \]
\[= T(n - 3a) + 3T(a) + 3n - 3a \quad \text{iteration } i = 3 \]
\[= T(n - ia) + iT(a) + in - \sum_{j=1}^{i-1} ja \quad \text{for general iteration } i \]

Verify the expression for general \(i \) using Induction. Observe that we need to iterate till \(\frac{n}{i} > a \), i.e. for \(i < \frac{n}{a} \). Hence,

\[
T(n) \leq T(a) + \frac{n}{a} T(a) + \frac{n^2}{a} - a \sum_{j=1}^{\frac{n}{a}-1} j
\]
\[
= \left(\frac{n}{a} + 1 \right) \Theta(1) + \frac{n}{2} + \frac{n^2}{2a}
\]
\[
= O(n^2).
\]

Observe that since \(a \) is a fixed constant \(T(a) = \Theta(1) \).

Problem 3: (10 pts) Since the arrays were sorted our task of obtaining maximum subsequence sum is much simplified. We only need to obtain \(\max\{\sigma_1, \sigma_2, \sigma_3\} \), where \(\sigma_1 \) is the sum of all positive numbers of \(LIST_1 \), \(\sigma_2 \) is the sum of all the positive elements of \(LIST_2 \) and \(\sigma_3 \) is the sum of the positive elements of \(LIST_1 \) and all the elements of \(LIST_2 \). We can simply obtain these sums using following algorithm. Let \(A[] \) be the combined array.

Initialize: \(\sigma_1 = \sigma_2 = \sigma_3 = 0 \)
For \((i = 0 \text{ to } m) \)
 If \((A[m + n - i] > 0) \)
 \(\sigma_2 = \sigma_2 + A[m + n - i] \)
 else
 \(\sigma_3 = \sigma_3 + A[m + n - i] \)
End For Loop
For \((i = 0 \text{ to } n) \)
 If \((A[n - i] > 0) \)
 \(\sigma_1 = \sigma_1 + A[n - i] \)
 else
 EXIT For Loop
End For Loop
\(\sigma_3 = \sigma_3 + \sigma_1 + \sigma_2 \)
\(\text{Max Subseq Sum} = \max\{\sigma_1, \sigma_2, \sigma_3\} \).

Note that the complexity of algorithm is \(O(m + \sqrt{n}) \). In the case when \(m \) is much smaller than \(n \), it becomes \(O(\sqrt{n}) \).

Caution: It is given that the number of positive elements in the Lists are \(O(\sqrt{n}) \) and \(O(sqrtn) \), respectively. This does not mean that the lists have exactly \(\sqrt{n} \) or
exactly \sqrt{m} elements. The number of elements can be any function $f(n)$ such that $f(n) = O(\sqrt{n})$.