Problem 1: (5 pts) There are two basic functionalities associated with Queue data structure, lets call them In and Out. $\text{In}(x)$ causes element x to enter the queue and $\text{Out}()$ takes out an element that was entered first among all existing elements.

Our algorithm for queue implementation using two stacks is simple. Name the stacks as IN_stack and OUT_stack. As names suggest, whenever an element enters the queue it is pushed onto IN_stack and the elements leaving the queue are popped from OUT_stack. If OUT_stack is empty, then all the elements from IN_stack are transferred to OUT_stack by successive POP and PUSH operations.

Complete algorithm is as follows.

\[
\text{In}(x) \\
\{
 \text{PUSH}(x, \text{IN_stack})
\}
\]

\[
\text{Out}() \\
\{
 \text{IF (OUT_stack not empty)}\\
 \text{THEN}\\
 \text{POP(OUT_stack)}\\
 \text{ELSE}\\
 \text{WHILE (IN_stack not empty)}\\
 \text{PUSH(POP(IN_stack),OUT_stack)}\\
 \text{POP(OUT_stack)}
\}
\]

Observe that $\text{in}(x)$ is $\Theta(1)$, while $\text{out}()$ is $\Theta(n)$ in the worst case, where n is the stack size. It is worthwhile to note that even though $\text{out}()$ is expensive in the worst case, it is just $\Theta(1)$ in the amortized sense. To clarify the point, lets consider a case when $\text{out}()$ operation corresponds to transferring m elements from IN_stack to OUT_stack. Observe that the next m operations are just $\Theta(1)$. Hence the total cost of these m successive Out operations is $2m$. Thus on an average Out operation is $\Theta(1)$.
Problem 2: (5 pts) Observe that if we have some data structure in which an element can be inserted in the front or at the back, then the sorting of a given sequence can be done using the following algorithm

FOR($i = 1$ to n)

\{
IF ($a_i \leq a$)
 Insert_front(a_i)
ELSE
 Insert_back(a_i)
\}

The data structure that allows the required functionality is circular linked lists (discussed in the class). In this data structure each insert operation is $\Theta(1)$ and we need n inserts. Hence the complexity of the complete sorting algorithm is $\Theta(n)$.

Problem 3: (5 pts) A simple and yet an efficient algorithm for palindrome verification is as follows. Let the given word be stored in $Llist_1$.

STEP 1: Invert list $Llist_1$ and store the inverted list in $Llist_2$ (this operation is discussed in the class). Let $h1$ and $h2$ be the head pointers for the $Llist_1$ and $Llist_2$, respectively.

STEP 2:
WHILE ($h1 \neq$ NULL)

\{
IF ($h1$.$letter = h2$.$letter$)
 $h1 = h1$.$next$
 $h2 = h2$.$next$
ELSE
 return(Word is NOT palindrome)
\}

return(Word is palindrome)

Observe that the STEP 1 is $\Theta(n)$ and traversing the lists in STEP 2 is also $\Theta(n)$. Hence the palindrome verification algorithm is $\Theta(n)$.

Problem 4: (10 pts) Let $f(x)$ and $g(x)$ be two polynomials of degree n. Without loss of generality, let n be the poser of 2.

Now, let

\[
 f(x) = a_{n-1}x^{n-1} + \ldots + a_1x + a_0
\]

\[
 g(x) = b_{n-1}x^{n-1} + \ldots + b_1x + b_0.
\]

We define,

\[
 f_H(x) = a_{n-1}x^{\frac{n}{2}-1} + a_{n-2}x^{\frac{n}{2}-2} + \ldots + a_{\frac{n}{2}+1}x + a_{\frac{n}{2}}
\]
\[f_L(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0 \]
\[f(x) = x^\frac{n}{2}f_H(x) + f_L(x). \]

Similarly,
\[g(x) = x^\frac{n}{2}g_H(x) + g_L(x). \]

With this construction observe that
\[f(x)g(x) = x^n f_H(x)g_H(x) + x^\frac{n}{2}[f_H(x)g_L(x) + f_L(x)g_H(x)] + f_L(x)g_L(x). \]

Observe that we have converted a polynomial multiplication problem having polynomials of degree \(n \) into four polynomial multiplication problems involving polynomials of degree \(\frac{n}{2} \).

Observe that dividing polynomials is \(O(n) \) and then we need to combine the terms with equal powers in polynomial products \(f_H(x)g_L(x) \) and \(f_L(x)g_H(x) \), which is also \(O(n) \). Thus, if \(T(n) \) denotes the time required to solve the problem, then we have the following recursion.

\[T(n) = 4T\left(\frac{n}{2}\right) + O(n) \]
\[= O(n^2) \quad \text{By Master’s Thm.} \]

Hence the above divide and conquer algorithm obtains the polynomial product is \(O(n^2) \) time.