Solutions for Midterm Practice Questions

Problem 1 Solution: In the first step, the list is partitioned with element 3 as the pivot element. The result is one list A with 1, 2, 0.5 and another list B with 9.5, 4.5, 6, 21, 3. The two sublists are sorted by recursive calls to quicksort. List A gives sublist C with 0.5 and sublist D with 2, 1. Sublist C contains just one element and it is already sorted. Sublist D gives sublist E with 1 and sublist F with 2, which are sorted. List B gives list G with 3, 4.5, 6 and H with 21, 9.5. Then G breaks into 3 and 4.5, 6. 4.5, 6 breaks into 4.5 and 6. List H breaks into 9.5 and 21. So the final result is 0.5, 1, 2, 3, 4.5, 6, 9.5, 21.

Problem 2 Solution: $n^{\log \log n} = o(n^{\log n})$ is TRUE. Take limits. This implies that also $n^{\log \log n} = O(n^{\log n})$ is TRUE.

Problem 3 Solution: There are $N + 1$ possible answers to this problem. Every decision tree that solves the problem must have at least $N + 1$ leaves. This gives a $\log N$ lower bound. Applying also a binary search on the the input $0, \ldots, N$ (ask if the number is less than $N/2$ and according to YES or NO answer, ask for $N/4$ or $3N/4$ respectively etc.) gives a $\log N$ upper bound.

Problem 4 Solution: The recurrence for the worst case running time $T(n)$ of merge sort under the assumption that merging two sorted arrays takes constant time is:

$$T(n) = 2T(n/2) + c$$

Using Master’s Theorem, we conclude that $T(n)$ is $O(n)$.

Problem 5 Solution: The recurrence of the described procedure is:

$$T(n) = T(n/3) + T(2n/3) + \Theta(n)$$

For simplicity consider:

$$T(n) = T(n/3) + T(2n/3) + n$$
You can solve the recurrence by applying Master’s Theorem. First, use
\[T(n) \leq 2T(2n/3) + n. \] Using master theorem, we get
\[T(n) = n^{\log_{3/2}2}. \]

We also introduce another solving method which gives a better bound
in this case: Recursion trees.

\[T(n) \] can be expanded to an equivalent tree representing the recurrence.
The \(n \) term is put as the root. Its left subtree is \(T(n/3) \) and its right subtree
is \(T(2n/3) \). You can carry on the same process by expanding the subtrees.
So, the left subnode becomes \(n/3 \) and the right subnode becomes \(2n/3 \) in
the second level of recursion. Continue expanding each node in the tree
according to the recurrence.

Adding the values across the levels of the recursion tree, we get a value
of \(n \) for every level. The longest path from the root to the leaf is
\(n \rightarrow (2/3)n \rightarrow (2/3)^2n \rightarrow \ldots \rightarrow 1. \) Since \((2/3)^k n = 1 \) when \(k = \log_{3/2}n \), the
height of the tree is \(\log_{3/2}n \). Adding up all levels of the tree, the solution is
at most \(n \log_{3/2}n = O(n \log n) \).

Problem 6 Solution: Start from the root. If the value of the root is
greater than \(x \) then continue recursively to the left child of the root. If the
root equals \(x \) then print the root element and also its left subtree (following
one of the known traversals). If the root is smaller than \(x \), then do what
you did for the case that root equals \(x \) and also continue recursively to its
right child.

The complexity is \(O(N) \) where \(N \) is the number of nodes in the AVL
tree. In the worst case (all nodes are less than \(x \)), the algorithm has to
traverse every node of the tree.