Additional Problems for Assignment 10

Problem 1: Let X be a discrete random variable following the geometric distribution with parameter p. Then:

$$ p_X(k) = P\{X = k\} = (1 - p)^{k-1}p, \quad k = 1, 2, \ldots $$

Show that the expected value and the variance of X are:

$$ E[X] = \frac{1}{p}, \quad \text{Var}(X) = \frac{1-p}{p^2}. $$

Hint: Note that for any $x \in (-1, 1)$:

$$ \sum_{k=1}^{\infty} k x^{k-1} = \sum_{k=1}^{\infty} \frac{d}{dx}(x^k) = \frac{d}{dx} \left(\sum_{k=0}^{\infty} x^k \right) $$

$$ = \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{1}{(1-x)^2}. $$

The same technique is used to calculate $\sum_{k=1}^{\infty} k^2 x^{k-1}$.

Problem 2: Let X be a discrete random variable following the negative binomial distribution with parameters (r, p):

$$ p_X(k) = P\{X = k\} = \binom{r-1}{k-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \ldots $$

Show that the expected value and variance of X are:

$$ E[X] = \frac{r}{p}, \quad \text{Var}(X) = \frac{r(1-p)}{p^2}. $$

Hint: Consider the interpretation of X as the number of trials until the r^{th} success in a series of independent trials with probability of success p. Let X_1
be the number of trials until the first success, \(X_2 \) the number of additional trials until the second success, and so on. Then:

\[
X = X_1 + X_2 + \cdots + X_r.
\]

Explain that \(X_1, \ldots, X_r \) are independent random variables following the geometric distribution with parameter \(p \).

Problem 3: An urn contains \(r \) red and \(w \) white balls. We draw \(n \) balls at random. Let \(X \) denote the number of red balls in that random sample. \(X \) follows the hypergeometric distribution:

\[
p_X(k) = P\{X = k\} = \frac{\binom{r}{k} \binom{w}{n-k}}{\binom{N}{n}}, \quad k = 0, 1, \ldots, r,
\]

where \(N = r + w \).

1. Show that the following identity holds for any integers \(n, k \):

\[
k \binom{n}{k} = n \binom{n-1}{k-1}.
\]

2. Show that the expected value of \(X \) is:

\[
E[X] = \frac{nr}{N}.
\]

Hint: Use the identity from part (1) to write:

\[
k \binom{r}{k} = r \binom{r-1}{k-1} \quad \text{and} \quad n \binom{N}{n} = N \binom{N-1}{n-1}.
\]

Problem 4: Let \(X \) be a continuous random variable uniformly distributed over interval \((a, b)\). Compute \(E[X] \) and \(\text{Var}(X) \).

Problem 5: Let \(X \) be a continuous random variable following the exponential distribution with parameter \(\lambda \):

\[
f_X(x) = \lambda e^{-\lambda x}, \quad x > 0.
\]

Show that:

\[
E[X] = \frac{1}{\lambda}, \quad \text{Var}(X) = \frac{1}{\lambda^2}.
\]