Topics

- Time-Reversal of Markov Chains
- Reversibility
- Truncating a Reversible Markov Chain
- Burke’s Theorem
- Queues in Tandem
Time-Reversed Markov Chains

- \(\{X_n: n=0,1,\ldots\} \) irreducible aperiodic Markov chain with transition probabilities \(P_{ij} \)
 \[
 \sum_{j=0}^{\infty} P_{ij} = 1, \quad i = 0,1,\ldots
 \]

- Unique stationary distribution (\(\pi_j > 0 \)) if and only if:
 \[
 \pi_j = \sum_{i=0}^{\infty} \pi_i P_{ij}, \quad j = 0,1,\ldots
 \]

- Process in steady state:
 \[
 \Pr\{X_n = j\} = \pi_j = \lim_{n \to \infty} \Pr\{X_n = j \mid X_0 = i\}
 \]
 - Starts at \(n=-\infty \), that is \(\{X_n: n = \ldots,-1,0,1,\ldots\} \)
 - Choose initial state according to the stationary distribution

- How does \(\{X_n\} \) look “reversed” in time?
Time-Reversed Markov Chains

- Define $Y_n = X_{\tau-n}$, for arbitrary $\tau > 0$
- $\{Y_n\}$ is the reversed process.

Proposition 1:
- $\{Y_n\}$ is a Markov chain with transition probabilities:

 $$P^*_ij = \frac{\pi_j \pi_{ji}}{\pi_i}, \quad i, j = 0, 1, ...$$

- $\{Y_n\}$ has the same stationary distribution π_j with the forward chain $\{X_n\}$
Proof of Proposition 1:

\[P_{ij}^* = P\{Y_m = j \mid Y_{m-1} = i, Y_{m-2} = i_2, \ldots, Y_{m-k} = i_k \} \]
\[= P\{X_{\tau-m} = j \mid X_{\tau-m+1} = i, X_{\tau-m+2} = i_2, \ldots, X_{\tau-m+k} = i_k \} \]
\[= P\{X_n = j \mid X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \} \]
\[= \frac{P\{X_n = j, X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \}}{P\{X_{n+1} = i, X_{n+2} = i_2, \ldots, X_{n+k} = i_k \}} \]
\[= \frac{P\{X_{n+2} = i_2, \ldots, X_{n+k} = i_k \mid X_n = j, X_{n+1} = i\}P\{X_n = j, X_{n+1} = i\}}{P\{X_{n+2} = i_2, \ldots, X_{n+k} = i_k \mid X_{n+1} = i\}P\{X_{n+1} = i\}} \]
\[= \frac{P\{X_n = j, X_{n+1} = i\}}{P\{X_{n+1} = i\}} = P\{X_n = j \mid X_{n+1} = i\} = P\{Y_m = j \mid Y_{m-1} = i\} \]
\[= \frac{P\{X_{n+1} = i \mid X_n = j\}P\{X_n = j\}}{P\{X_{n+1} = i\}} = \frac{P_{ji} \pi_j}{\pi_i} \]
\[\sum_{i=0}^{\infty} \pi_i P_{ij}^* = \sum_{i=0}^{\infty} \pi_i \frac{\pi_j P_{ji}}{\pi_i} = \pi_j \sum_{i=0}^{\infty} P_{ji} = \pi_j \]
Reversibility

- Stochastic process \(\{X(t)\} \) is called reversible if
 \((X(t_1), X(t_2), \ldots, X(t_n)) \) and \((X(\tau-t_1), X(\tau-t_2), \ldots, X(\tau-t_n)) \)
 have the same probability distribution, for all \(\tau, t_1, \ldots, t_n \)

- Markov chain \(\{X_n\} \) is reversible if and only if the transition
 probabilities of forward and reversed chains are equal \(P_{ij} = P_{ij}^* \)
 or equivalently, if and only if
 \[
 \pi_i P_{ij} = \pi_j P_{ji}, \quad i, j = 0, 1, \ldots
 \]

 - Detailed Balance Equations \(\leftrightarrow \) Reversibility
Reversibility – Discrete-Time Chains

Theorem 1: If there exists a set of positive numbers \(\{\pi_j\} \), that sum up to 1 and satisfy:

\[
\pi_i P_{ij} = \pi_j P_{ji}, \quad i, j = 0, 1, \ldots
\]

Then:

1. \(\{\pi_j\} \) is the unique stationary distribution
2. The Markov chain is reversible

Example: Discrete-time birth-death processes are reversible, since they satisfy the DBE
Example: Birth-Death Process

- One-dimensional Markov chain with transitions only between neighboring states: \(P_{ij} = 0 \), if \(|i-j| > 1 \)
- Detailed Balance Equations (DBE)
 \[
 \pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n} \quad n = 0,1,\ldots
 \]

- Proof: GBE with \(S = \{0,1,\ldots,n\} \) give:
 \[
 \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_j P_{ji} = \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} \pi_i P_{ij} \Rightarrow \pi_n P_{n,n+1} = \pi_{n+1} P_{n+1,n}
 \]
Theorem 2: Irreducible Markov chain with transition probabilities P_{ij}. If there exist:

- A set of transition probabilities Q_{ij}, with $\sum_j Q_{ij} = 1$, $i \geq 0$, and
- A set of positive numbers $\{\pi_j\}$, that sum up to 1, such that

$$\pi_i P_{ij} = \pi_j Q_{ji}, \quad i, j = 0, 1, \ldots$$

(1)

Then:

- Q_{ij} are the transition probabilities of the reversed chain, and
- $\{\pi_j\}$ is the stationary distribution of the forward and the reversed chains

Remark: Use to find the stationary distribution, by guessing the transition probabilities of the reversed chain – even if the process is not reversible
Continuous-Time Markov Chains

- \{X(t): -\infty < t < \infty\} irreducible aperiodic Markov chain with transition rates \(q_{ij}, \ i \neq j \)
- Unique stationary distribution \((p_i > 0)\) if and only if:
 \[
p_j \sum_{i \neq j} q_{ji} = \sum_{i \neq j} p_i q_{ij}, \quad j = 0, 1, ...
\]
- Process in steady state – e.g., started at \(t = -\infty \):
 \[
 \Pr\{X(t) = j\} = p_j = \lim_{t \to -\infty} \Pr\{X(t) = j \mid X(0) = i\}
 \]
- If \(\{\pi_j\} \), is the stationary distribution of the embedded discrete-time chain:
 \[
p_j = \frac{\pi_j}{\nu_j}, \quad \nu_j = \sum_{i \neq j} q_{ji}, \quad j = 0, 1, ...
 \]
Reversed Continuous-Time Markov Chains

- Reversed chain \(\{Y(t)\} \), with \(Y(t) = X(\tau - t) \), for arbitrary \(\tau > 0 \)
- Proposition 2:
 1. \(\{Y(t)\} \) is a continuous-time Markov chain with transition rates:
 \[q_{ij}^* = \frac{p_j q_{ji}}{p_i}, \quad i, j = 0, 1, \ldots, i \neq j \]
 2. \(\{Y(t)\} \) has the same stationary distribution \(\{p_j\} \) with the forward chain

Remark: The transition rate out of state \(i \) in the reversed chain is equal to the transition rate out of state \(i \) in the forward chain

\[
\sum_{j \neq i} q_{ij}^* = \frac{\sum_{j \neq i} p_j q_{ji}}{p_i} = \frac{p_i \sum_{j \neq i} q_{ij}}{p_i} = \sum_{j \neq i} q_{ij} = \nu_i, \quad i = 0, 1, \ldots
\]
Markov chain \{X(t)\} is reversible if and only if the transition rates of forward and reversed chains are equal \(q_{ij} = q_{ji}\), or equivalently

\[p_i q_{ij} = p_j q_{ji}, \quad i, j = 0,1,..., i \neq j \]

- Detailed Balance Equations \(\leftrightarrow\) Reversibility

Theorem 3: If there exists a set of positive numbers \(\{p_j\}\), that sum up to 1 and satisfy:

\[p_i q_{ij} = p_j q_{ji}, \quad i, j = 0,1,..., i \neq j \]

Then:
1. \(\{p_j\}\) is the unique stationary distribution
2. The Markov chain is reversible
Example: Birth-Death Process

- Transitions only between neighboring states
 \[q_{i,i+1} = \lambda_i, \quad q_{i,i-1} = \mu_i, \quad q_{ij} = 0, \quad |i - j| > 1 \]
- Detailed Balance Equations
 \[\lambda_n p_n = \mu_{n+1} p_{n+1}, \quad n = 0, 1, \ldots \]
- Proof: GBE with \(S = \{0, 1, \ldots, n\} \) give:
 \[\sum_{j=0}^{n} \sum_{i=n+1}^{\infty} p_j q_{ji} = \sum_{j=0}^{n} \sum_{i=n+1}^{\infty} p_i q_{ij} \Rightarrow \lambda_n p_n = \mu_{n+1} p_{n+1} \]

- M/M/1, M/M/c, M/M/∞
Theorem 4: Irreducible continuous-time Markov chain with transition rates q_{ij}. If there exist:
- A set of transition rates φ_{ij}, with $\sum_{j \neq i} \varphi_{ij} = \sum_{j \neq i} q_{ij}$, $i \geq 0$, and
- A set of positive numbers \{p_j\}, that sum up to 1, such that

$$p_i \varphi_{ij} = p_j q_{ji}, \quad i, j = 0, 1, \ldots, i \neq j$$

Then:
- φ_{ij} are the transition rates of the reversed chain, and
- \{p_j\} is the stationary distribution of the forward and the reversed chains.

Remark: Use to find the stationary distribution, by guessing the transition probabilities of the reversed chain – even if the process is not reversible.
Theorem 5:
- For a Markov chain form a graph, where states are the nodes, and for each $q_{ij}>0$, there is a directed arc $i \rightarrow j$
- Irreducible Markov chain, with transition rates that satisfy $q_{ij}>0 \iff q_{ji}>0$
- If graph is a tree – contains no loops – then Markov chain is reversible

Remarks:
- Sufficient condition for reversibility
- Generalization of one-dimensional birth-death process
Kolmogorov’s Criterion (Discrete Chain)

- Detailed balance equations determine whether a Markov chain is reversible or not, based on stationary distribution and transition probabilities.
- Should be able to derive a reversibility criterion based only on the transition probabilities!

Theorem 6: A discrete-time Markov chain is reversible if and only if:

\[
P_{i_1i_2} P_{i_2i_3} \cdots P_{i_{n-1}i_n} P_{i_ni_1} = P_{i_1i_n} P_{i_2i_{n-1}} \cdots P_{i_{n-2}i_2} P_{i_{n-1}i_1}
\]

for any finite sequence of states: \(i_1, i_2, \ldots, i_n \), and any \(n \)

- **Intuition:** Probability of traversing any loop \(i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_n \rightarrow i_1 \) is equal to the probability of traversing the same loop in the reverse direction \(i_1 \rightarrow i_n \rightarrow \ldots \rightarrow i_2 \rightarrow i_1 \)
Kolmogorov’s Criterion (Continuous Chain)

- Detailed balance equations determine whether a Markov chain is reversible or not, based on stationary distribution and transition rates.
 - Should be able to derive a reversibility criterion based only on the transition rates!

- **Theorem 7:** A continuous-time Markov chain is reversible if and only if:

\[
q_{i_1 i_2} q_{i_2 i_3} \cdots q_{i_{n-1} i_n} q_{i_n i_1} = q_{i_1 i_n} q_{i_n i_{n-1}} \cdots q_{i_3 i_2} q_{i_2 i_1}
\]

for any finite sequence of states: \(i_1, i_2, \ldots, i_n\), and any \(n\)

- **Intuition:** Product of transition rates along any loop \(i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_n \rightarrow i_1\) is equal to the product of transition rates along the same loop traversed in the reverse direction \(i_1 \rightarrow i_n \rightarrow \ldots \rightarrow i_2 \rightarrow i_1\)
Kolmogorov’s Criterion (proof)

Proof of Theorem 6:

- **Necessary:** If the chain is reversible the DBE hold

\[
\begin{align*}
\pi_1 P_{i_2} &= \pi_2 P_{i_1} \\
\pi_2 P_{i_3} &= \pi_3 P_{i_2} \\
&\vdots \\
\pi_{n-1} P_{i_{n-1}} &= \pi_n P_{i_{n-1}} \\
\pi_n P_{i_1} &= \pi_1 P_{i_n}
\end{align*}
\]

\[
\Rightarrow P_{i_2} P_{i_3} \cdots P_{i_{n-1}} P_{i_1} = P_{i_1} P_{i_2} \cdots P_{i_{n-1}} P_{i_n}
\]

- **Sufficient:** Fixing two states \(i_1 = i\), and \(i_n = j\) and summing over all states \(i_2, \ldots, i_{n-1}\) we have

\[
P_{i_2} P_{i_3} \cdots P_{i_{n-1}} P_{ji} = P_{ij} P_{ji} \cdots P_{i_2} P_{i_1,j} \Rightarrow P_{ij} P_{ji} = P_{ij} P_{ji}
\]

Taking the limit \(n \to \infty\)

\[
\lim_{n \to \infty} P_{ij} P_{ji} = P_{ij} \cdot \lim_{n \to \infty} P_{ji} \Rightarrow \pi_j P_{ji} = P_{ij} \pi_i
\]
Example: M/M/2 Queue with Heterogeneous Servers

- M/M/2 queue. Servers A and B with service rates μ_A and μ_B respectively. When the system empty, arrivals go to A with probability α and to B with probability $1-\alpha$. Otherwise, the head of the queue takes the first free server.

- Need to keep track of which server is busy when there is 1 customer in the system. Denote the two possible states by: 1A and 1B.

- Reversibility: we only need to check the loop $0\rightarrow 1A\rightarrow 2\rightarrow 1B\rightarrow 0$:
 \[q_{0,1A}q_{1A,2}q_{2,1B}q_{1B,0} = \alpha \lambda \cdot \lambda \cdot \mu_A \cdot \mu_B \quad q_{0,1B}q_{1B,2}q_{2,1A}q_{1A,0} = (1-\alpha) \lambda \cdot \lambda \cdot \mu_B \cdot \mu_A \]

- Reversible if and only if $\alpha=1/2$.

 - What happens when $\mu_A=\mu_B$, and $\alpha\neq1/2$?
Example: M/M/2 Queue with Heterogeneous Servers

\[p_n = p_2 \left(\frac{\lambda}{\mu_A + \mu_B} \right)^{n-2}, \quad n = 2, 3, \ldots \]

\[
\begin{align*}
\lambda p_0 &= \mu_A p_{1A} + \mu_B p_{1B} \\
(\mu_A + \mu_B) p_2 &= \lambda (p_{1A} + p_{1B}) \\
(\mu_A + \lambda) p_{1A} &= \alpha \lambda p_0 + \mu_B p_2
\end{align*}
\]

\[
\begin{align*}
p_{1A} &= p_0 \frac{\lambda}{\mu_A} \frac{\lambda + \alpha (\mu_A + \mu_B)}{2 \lambda + \mu_A + \mu_B} \\
p_{1B} &= p_0 \frac{\lambda}{\mu_B} \frac{\lambda + (1 - \alpha) (\mu_A + \mu_B)}{2 \lambda + \mu_A + \mu_B} \\
p_2 &= p_0 \frac{\lambda^2}{\mu_A \mu_B} \frac{\lambda + (1 - \alpha) \mu_A + \alpha \mu_B}{2 \lambda + \mu_A + \mu_B}
\end{align*}
\]

\[p_0 + p_{1A} + p_{1B} + \sum_{n=2}^{\infty} p_n = 1 \implies p_0 = \left[1 + \frac{\lambda}{\mu_A + \mu_B - \lambda} \frac{\lambda^2}{\mu_A \mu_B} \frac{\lambda + (1 - \alpha) \mu_A + \alpha \mu_B}{2 \lambda + \mu_A + \mu_B} \right]^{-1} \]
Multidimensional Markov Chains

Theorem 8:
- \{X_1(t)\}, \{X_2(t)\}: independent Markov chains
- \{X_i(t)\}: reversible
- \{X(t)\}, with \(X(t)=(X_1(t), X_2(t))\): vector-valued stochastic process
 - \{X(t)\} is a Markov chain
 - \{X(t)\} is reversible

Multidimensional Chains:
- Queueing system with two classes of customers, each having its own stochastic properties – track the number of customers from each class
- Study the “joint” evolution of two queueing systems – track the number of customers in each system
Example: Two Independent M/M/1 Queues

- Two independent M/M/1 queues. The arrival and service rates at queue i are λ_i and μ_i respectively. Assume $\rho_i = \lambda_i/\mu_i < 1$.
- $\{(N_1(t), N_2(t))\}$ is a Markov chain.
- Probability of n_1 customers at queue 1, and n_2 at queue 2, at steady-state
 \[p(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1} \cdot (1 - \rho_2)\rho_2^{n_2} = p_1(n_1) \cdot p_2(n_2) \]
- “Product-form” distribution
- Generalizes for any number K of independent queues, M/M/1, M/M/c, or M/M/∞. If $p_i(n_i)$ is the stationary distribution of queue i:
 \[p(n_1, n_2, \ldots, n_K) = p_1(n_1)p_2(n_2)\ldots p_K(n_K) \]
Example: Two Independent M/M/1 Queues

- Stationary distribution:
 \[p(n_1, n_2) = \left(1 - \frac{\lambda_1}{\mu_1}\right) \left(1 - \frac{\lambda_2}{\mu_2}\right) p_0 \]

- Detailed Balance Equations:
 \[\mu_1 p(n_1 + 1, n_2) = \lambda_1 p(n_1, n_2) \]
 \[\mu_2 p(n_1, n_2 + 1) = \lambda_2 p(n_1, n_2) \]

- Verify that the Markov chain is reversible – Kolmogorov criterion
Truncation of a Reversible Markov Chain

- **Theorem 9**: \{X(t)\} reversible Markov process with state space \(S\), and stationary distribution \(\{p_j: j \in S\}\). Truncated to a set \(E \subset S\), such that the resulting chain \(\{Y(t)\}\) is irreducible. Then, \(\{Y(t)\}\) is reversible and has stationary distribution:

\[
\tilde{p}_j = \frac{p_j}{\sum_{k \in E} p_k}, \quad j \in E
\]

- **Remark**: This is the conditional probability that, in steady-state, the original process is at state \(j\), given that it is somewhere in \(E\)

- **Proof**: Verify that:

\[
\tilde{p}_j q_{ji} = \tilde{p}_i q_{ij} \iff \frac{p_j}{\sum_{k \in E} p_k} q_{ji} = \frac{p_i}{\sum_{k \in E} p_k} q_{ij} \iff p_j q_{ji} = p_i q_{ij}, \quad i, j \in S; i \neq j
\]

\[
\sum_{j \in E} \tilde{p}_j = \sum_{j \in E} \frac{p_j}{\sum_{k \in E} p_k} = 1
\]
Example: Two Queues with Joint Buffer

- The two independent M/M/1 queues of the previous example share a common buffer of size B — arrival that finds B customers *waiting* is blocked
- State space restricted to $E = \{(n_1, n_2): (n_1 - 1)^+ + (n_2 - 1)^+ \leq B\}$
- Distribution of truncated chain: $p(n_1, n_2) = p(0,0) \cdot \rho_1^{n_1} \rho_2^{n_2}$, $(n_1, n_2) \in E$
- Normalizing:
 $$p(0,0) = \left[\sum_{(n_1, n_2) \in E} \rho_1^{n_1} \rho_2^{n_2} \right]^{-1}$$

- Theorem specifies joint distribution up to the normalization constant
- Calculation of normalization constant is often tedious

State diagram for $B = 2$
Burke’s Theorem

- \{X(t)\} birth-death process with stationary distribution \{p_j\}
- Arrival epochs: points of increase for \{X(t)\}
 Departure epoch: points of increase for \{X(t)\}
- \{X(t)\} completely determines the corresponding arrival and departure processes

Diagram:
- Arrows indicating arrivals and departures over time.
Burke’s Theorem

- Poisson arrival process: $\lambda_j = \lambda$, for all j
 - Birth-death process called a (λ, μ_j)-process
 - Examples: M/M/1, M/M/c, M/M/∞ queues
- Poisson arrivals \rightarrow LAA:
 For any time t, future arrivals are independent of $\{X(s): s \leq t\}$
- (λ, μ_j)-process at steady state is reversible: forward and reversed chains are stochastically identical
 - Arrival processes of the forward and reversed chains are stochastically identical
- Arrival process of the reversed chain is Poisson with rate λ
- The arrival epochs of the reversed chain are the departure epochs of the forward chain
 - Departure process of the forward chain is Poisson with rate λ
Burke’s Theorem

- Reversed chain: arrivals after time t are independent of the chain history up to time t (LAA)
- Forward chain: departures prior to time t and future of the chain $\{X(s): s \geq t\}$ are independent
Burke’s Theorem

Theorem 10: Consider an M/M/1, M/M/c, or M/M/∞ system with arrival rate \(\lambda \). Suppose that the system starts at steady-state. Then:

1. The departure process is Poisson with rate \(\lambda \)
2. At each time \(t \), the number of customers in the system is independent of the departure times prior to \(t \)

Fundamental result for study of networks of M/M/* queues, where output process from one queue is the input process of another
Customers arrive at queue 1 according to Poisson process with rate λ.

- Service times exponential with mean $1/\mu_i$. Assume service times of a customer in the two queues are independent.
- Assume $\rho_i = \lambda/\mu_i < 1$

What is the joint \textit{stationary} distribution of N_1 and N_2 – number of customers in each queue?

- Result: in \textit{steady state} the queues are independent and

$$p(n_1, n_2) = (1 - \rho_1)\rho_1^{n_1} \cdot (1 - \rho_2)\rho_2^{n_2} = p_1(n_1) \cdot p_2(n_2)$$
Single-Server Queues in Tandem

- Q1 is a M/M/1 queue. At steady state its departure process is Poisson with rate λ. Thus Q2 is also M/M/1.

- Marginal stationary distributions:

 \[
 p_1(n_1) = (1 - \rho_1) \rho_1^{n_1}, \quad n_1 = 0, 1, \ldots
 \]

 \[
 p_2(n_2) = (1 - \rho_2) \rho_2^{n_2}, \quad n_2 = 0, 1, \ldots
 \]

- To complete the proof: establish independence at steady state

- Q1 at steady state: at time t, $N_1(t)$ is independent of departures prior to t, which are arrivals at Q2 up to t. Thus $N_1(t)$ and $N_2(t)$ independent:

 \[
 P\{N_1(t) = n_1, N_2(t) = n_2\} = P\{N_1(t) = n_1\} P\{N_2(t) = n_2\} = p_1(n_1) \cdot P\{N_2(t) = n_2\}
 \]

- Letting $t \to \infty$, the joint stationary distribution

 \[
 p(n_1, n_2) = p_1(n_1) \cdot p_2(n_2) = (1 - \rho_1) \rho_1^{n_1} \cdot (1 - \rho_2) \rho_2^{n_2}
 \]
Queues in Tandem

- **Theorem 11**: Network consisting of K single-server queues in tandem. Service times at queue i exponential with rate μ_i, independent of service times at any queue $j \neq i$. Arrivals at the first queue are Poisson with rate λ. The stationary distribution of the network is:

$$p(n_1, \ldots, n_K) = \prod_{i=1}^{K} (1 - \rho_i) \rho_i^{n_i}, \quad n_i = 0, 1, \ldots; i = 1, \ldots, K$$

- At steady state the queues are independent; the distribution of queue i is that of an isolated M/M/1 queue with arrival and service rates λ and μ_i

$$p_i(n_i) = (1 - \rho_i) \rho_i^{n_i}, \quad n_i = 0, 1, \ldots$$

- Are the queues independent if not in steady state? Are stochastic processes $\{N_1(t)\}$ and $\{N_2(t)\}$ independent?
Theorem 12: Network consisting of K queues in tandem. Service times at queue i exponential with rate $\mu_i(n_i)$ when there are n_i customers in the queue – independent of service times at any queue $j\neq i$. Arrivals at the first queue are Poisson with rate λ. The stationary distribution of the network is:

$$p(n_1,\ldots,n_K) = \prod_{i=1}^{K} p_i(n_i), \quad n_i = 0,1,\ldots; i = 1,\ldots,K$$

where \(\{p_i(n_i)\}\) is the stationary distribution of queue i in isolation with Poisson arrivals with rate λ.

Examples: \(/\text{M}/c\) and \(/\text{M}/\infty\) queues

- If queue i is \(/\text{M}/\infty\), then:

$$p_i(n_i) = \frac{(\lambda / \mu_i)^n_i}{n_i!} e^{-\lambda / \mu_i}, \quad n_i = 0,1,...$$