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Abstract. The moon tilt illusion is the startling discrepancy between the direction
of the light beam illuminating the moon and the direction of the sun. The illusion
arises because the observer erroneously expects a light ray between sun and moon
to appear as a line of constant slope according to the positions of the sun and
the moon in the sky. This expectation does not correspond to the reality that
observation by direct vision or a camera is according to perspective projection, for
which the observed slope of a straight line in three-dimensional object space changes
according to the direction of observation. Comparing the observed and expected
directions of incoming light at the moon, we derive an equation for the magnitude
of the moon tilt illusion that can be applied to all configurations of sun and moon
in the sky.

1. Introduction

Figure 1. Photograph of the moon tilt illusion. Picture taken one
hour after sunset with the moon in the southeast. Camera pointed
upwards 45◦ from the horizon with bottom of camera parallel to the
horizon.

The photograph in Figure 1 provides an example of the moon tilt illusion. The
moon’s illumination is observed to be coming from above, even though the moon is
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high in the sky and the sun had set in the west one hour before this photo was taken.
The moon is 45◦ above the horizon in the southeast, 80% illuminated by light from
the sun striking the moon at an angle of 17◦ above the horizontal, as shown by the
arrow drawn on the photograph. Our intuition (i.e., the incorrect perception that
creates the illusion) is that given the relative positions of the sun and the moon, the
light from the sun should be striking the moon from below. The moon tilt illusion
is the perceived discrepancy between the angle of illumination of the moon that we
observe (and can capture photographically with a camera pointed at the moon) and
the angle that we expect from the position of the sun relative to the moon.

The moon tilt illusion is not described in astronomy textbooks because astronomers
know that straight lines in object space become great circles on the celestial sphere.
Minnaert [5] gives only a passing reference: “...the line connecting the horns of the
moon, between its first quarter and full moon, for instance, does not appear to be
at all perpendicular to the direction from sun to moon; we apparently think of this
direction as being a curved line. Fix this direction by stretching a piece of string taut
in front of your eye; however unlikely it may have seemed to you at first you will now
perceive that the condition of perpendicularity is satisfied”. An article by Schölkopf [8]
documents the illusion in an experiment involving 14 subjects by having them indicate
their expectation of how the moon’s illumination should be oriented with respect to
the position of the (visible) sun. He reports that an average discrepancy of 12◦

is perceived by the subjects between the observable versus expected orientation of
the moon’s bright limb. Schott’s website entitled “ ‘Falsche’ Mondneigung” (‘False’
Moontilt) [9] is devoted to the moon tilt illusion, and features illustrations and useful
links. Schott correctly proposes to quantify the effect by comparing the observed
tilt angle with the angle from horizontal of the line connecting the moon and sun,
but an error in geometry leads to an incorrect expression for the expected tilt. A
paper by Glaeser and Schott [2], approaching the phenomenon via the principles of
photography, show that the magnitude of the illusion could in theory be measured
through comparison of a close-up shot of the moon with a photograph containing
both sun and moon, with the camera directed in a specified direction between them
(although no equations are given). However, as they point out, in practice it is
not feasible since even a wide-angle lens cannot capture both sun and moon in a
photo with azimuth differences for which the illusion can be most clearly observed
(between 90◦ and 180◦). Berry[1] proposed using a star chart, which is a zenith-center
stereoscopic projection of the celestial sphere onto a flat surface, to define the moon
tilt illusion as the angle between the projected great circle and a straight moon-sun
line drawn on the same chart “mimicking how we might see the sky when lying on our
back looking up”. Clearly, there exists a lack of consensus in the literature about the
explanation of the moon tilt illusion and disagreement about the best way to describe
it.

Our aim is to derive an equation for the magnitude of the moon tilt illusion that is
straightforward to apply to all configurations of sun and moon in the sky. The viewer’s
expectation for the direction of incoming light is modeled using vector geometry,
which is appropriate for treating 3-D straight lines such as the sun-moon light ray.
Analyzing an illusion may seem trivial but the explanation of the moon tilt illusion
requires knowledge of the perspective projection basis of human vision, vector algebra,

http://www.perceptionweb.com/abstract.cgi?id=p271229
http://falsche-mondneigung.jimdo.com/
http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=73428
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and geometrical concepts such as orthographic projections, the celestial sphere, and
geodesics.

2. System of Coordinates and Definitions

Our analysis of the moon tilt illusion is based upon the location of the sun and moon
in the sky. Notation and equations for describing these locations and converting them
back and forth between Cartesian and spherical coordinates are covered in this section.
The procedure for calculating the moon tilt angle α from the moon’s illumination is
described.

In astronomy, the locations of stars are given in terms of their right ascension and
declination. Since the moon illusion is based on the position of the observer, we use
topocentric coordinates (instead of right ascension and declination) for the sun and
moon, denoted by azimuth (φ) and altitude (η).1

The altitude η is the angle between the sun (or moon) and the observer’s local
horizon. The altitude angle (η) is the complement of the polar angle (θ) so azimuth
and altitude (φ, η) can be written alternatively as spherical coordinates (φ, θ). These
vary from 0◦ to 360◦ for φ and from 0◦ to 180◦ for θ. Objects with 90◦ < θ < 180◦ are
below the horizon and therefore invisible. The zenith (directly overhead) is located
at θ = 0◦.
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Figure 2. Spherical polar coordinates (r,θ,φ) of point P . θ is polar
angle measured downward from z-axis and φ is azimuthal angle mea-
sured CCW from the x-axis. The x-axis coincides with due north, the
y-axis with due west.

Spherical coordinates for the sun and moon (φ, θ) are converted to Cartesian coor-
dinates for vector manipulations such as dot and cross products. The conversion to
Cartesian coordinates (x, y, z) can be read from Figure 2:

(1) x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

1In physics, the azimuthal angle is defined as positive for counter-clockwise (CCW) rotation from
due north (x-direction), with the Cartesian coordinates satisfying the right-hand rule. In navigation,
azimuth is defined as positive in the clockwise (CW) direction. We will use the CCW notation for
calculations but revert to the more familiar navigational CW direction for the presentation of results
in Section 8.
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For the reverse transformation from Cartesian to spherical coordinates:

(2) r =
√
x2 + y2 + z2, θ = arctan

(√
x2 + y2

z

)
, φ = arctan

(y
x

)
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Figure 3. Definition of moon pointer with α angle. From left to right,
α = 40◦ (75% illumination), α = 0◦ (50% illumination), α = −30◦ (25%
illumination).

The moon pointer is defined as the vector CP in Figure 3, where C is the center of
the moon and the vector CP has the observed slope of the moon-sun line at point C.
The demarcation between illuminated and dark portions of the moon is called the
terminator. Line AB connects the two “horns” of the terminator through the moon’s
center C. The moon pointer CP is the perpendicular bisector of line AB.

The moon tilt α is the signed angle of the moon’s pointer with the horizontal,
positive upward and negative downward. An equation for calculating this angle from
the locations of the sun and moon is derived in Section 5. The angle α may be verified
experimentally by taking a picture of the moon and using the construction described
in Figure 3. The camera is oriented with its lens axis directed at the moon and the
bottom of the camera aligned horizontally with the horizon.

3. How the Observed Slope of a Straight Line Changes

Perspective projection is the basis for human vision. The moon tilt illusion can be
understood and explained by the principles of perspective projection of object space
onto a two-dimensional viewing surface. Before comparing the observed slope of the
moon-sun line with its expected slope, it is necessary to consider how the slope of a
straight line depends upon the viewer’s orientation.

While the slope of any straight line in 3-D space with respect to any plane is
constant, the observed slope of the line changes according to the position of the
observer and his line of sight. Similarly, when taking a photograph of the line, its slope
recorded on the 2-D photographic image will depend upon the specific direction in
which the camera is pointed. Figure 4 records this effect in a set of three photographs
of a straight wall-ceiling line. Although the ceiling is, of course, everywhere the same
height from the floor, the camera records a 2-D perspective projection of the wall-
ceiling line in which straight lines are rendered as straight lines, but the observed
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Figure 4. Effect of camera angle. Photograph of horizontal line
formed by intersection of wall (dark) and ceiling (light). The three
photographs were taken consecutively by turning the camera from left
to right oriented horizontally. In the photos on the left and right, the
slope of the line with respect to the horizontal is 30◦.

slope varies depending on the camera direction. Obviously, perspective projection
preserves straight lines but not their slopes. This same effect is observed by a human
eye scanning the wall-ceiling line, but we have trained our minds to accept and make
appropriate adjustments for the oxymoronic concept of a straight line with changing
slope.
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Figure 5. Straight line AB in three-dimensional space. Point A is at
(−L,L, L), point B is at (L,L, L), and the midpoint C is at (0, L, L).
The observer is located at the origin.

As another example, consider line AB in Figure 5. AB is parallel to the xy plane
and thus has a fixed slope of zero with the horizontal. Imagine, as shown by the sketch
on Figure 6, that three photographs are taken by pointing the camera at points A, B,
and C with the bottom of the camera aligned with the horizontal. The photograph
of the line at point A exhibits a positive slope of 30◦; point C a slope of 0◦; and point
B a slope of −30◦ (calculated by Eq. (9)). More photos along the line AB would
reveal an observed slope that varies continuously from −30◦ to 30◦. Direct visual
observation of this line by an observer at point O would yield the same result: as
the eye/head is moved along the horizontal line from left to right, the viewer would
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‘see’ a continuously varying slope that depends on the line of sight. This effect is
captured by a video [6] which scans a long, straight string of lights at London’s Tower
Bridge along the Thames, all at roughly the same distance from the ground. The
video shows the observed slope of the string of lights varying continuously along the
line: first sloping upwards from the ground on the left, then with zero slope, then
sloping downwards to the right. Although the slope changes, stopping the video on
any frame records the string of lights as a straight line.

The conclusion is that the slope of a vector which is straight in 3-D object space
changes continuously with the viewing angle of the camera (or the human eye) as it
is moved along the line. For a particular viewing angle, the slope is constant and
the line is straight. For the series of viewing angles necessary to scan the line from
beginning to end, the slope varies. Although the above examples treat straight lines
that are parallel to the ground, the observed slope of a straight line in 3-D space of
any orientation with respect to the horizontal will change with viewing (or camera)
perspective.

CA B

0
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yz

Figure 6. Photographing the slope of line AB. The lens axis of a
camera located at the origin is pointed consecutively at points {A,C,B}
along lines OA, OC, OB, respectively, with the bottom of the camera
held horizontally. Images of straight line AB are recorded on the 2-D
image plane of the camera. Coordinates of points are shown on Figure 5.

4. Cause of Moon Tilt Illusion

With an understanding of how the observed slope of a straight line varies depending
upon the direction of the observation, we are in a position to explain the moon tilt
illusion. The same principles of perspective that hold for a straight line in 3-D space
apply to the straight sun-moon light ray. When we view the slope of the light ray
at the moon, which is the only place where we can photograph the direction of the
light ray, the slope we observe is exactly what one would expect from the principles
of perspective projection that form the basis of human vision or photography. Why,
then, does the observer experience a sense that this direction is wrong when turning
his head to look at where the light ray originates?

https://www.youtube.com/watch?v=Pt9iY-2XtDI
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The cause of the moon tilt illusion is simply that the observer is not taking into
account that the observed slope of the light ray will change when he turns his head to
observe the moon and sun. This perceptual disconnect occurs because the observer
cannot see the light ray itself, but only its starting position at the sun and the angle
at which it strikes the moon. Lacking any other visual clues (as on earth) to provide
more information, he is perceptually unable to ‘fill in the gap’ and envision how
the slope of a visible line overhead changes with viewing angle due to perspective
projection. Knowing that light travels in straight lines in space but ‘forgetting’ that
slope changes as the head turns along a line, the observer expects that when he scans
his eyes from sun to moon he would see a straight line of constant slope — even
though his head has moved.

Minnaert [5] describes his experience with a searchlight overhead that shows how
the mind tricks the viewer: “This tendency of mine to see the course of light as a
curve is due to the fact that on one side I see it slope downwards towards the left, and
on the other side towards the right. As if the straight lines of an ordinary horizontal
telephone wire did not behave in the same way! However, looking at the beams of
light at night I have no point of reference in surrounding objects to enable me to
estimate distances and nothing is known to me, a priori, of the shape of the beam”.

We calculate the observed tilt at the moon and the expected slope of the moon-
sun line from the known position of the moon and the sun in the sky. The angular
difference between observed slope and expected slope quantifies the moon tilt illusion.

5. Observed Slope of Moon-Sun Vector

Using the principles of perspective projection which apply to human vision, a gen-
eral equation is derived for the locus and the slope of a straight line in 3-D object
space as a function of the direction of observation. The resulting equation is applied
to the specific case of the slope of the moon-sun line where it intersects the moon.
Denoting the location of the observer by O, the moon by M, and the sun by S, let m
be the vector OM and s the vector OS as shown on Figure 7. If the moon-sun vector
is called v, then:

(3) v = s−m

A parametric equation for the locus of v is:

(4) c = (1− λ)m + λs

where c is a vector to an arbitrary point on v and 0 ≤ λ ≤ 1. Let the lens axis of a
camera located at the origin be directed at some point on the moon-sun line indicated
by the vector c. The 2-D image plane is then perpendicular to c. On Figure 7, the
intersection of the image plane with c is placed at the tip of the unit vector ĉ. The
vector cross product (s×m) is perpendicular to the observer-moon-sun plane. The
two planes, the image plane and the observer-moon-sun-plane, are defined by their
perpendicular vectors c and (s × m), respectively. The cross product of these two
vectors (p) is the line of intersection of the two planes:

(5) p = c× (s×m)
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As shown in Figure 7, p lies in both planes. Similarly, the vector product (c× z) is
the intersection of the image plane with the horizontal plane shown as the vector h
in Figures 7 and 8.

Figure 7. Observation of moon-sun line in viewing plane. Planes
intersect along line M′S′. Observer is located at origin. v is the moon-
sun line and p is its image on the viewing plane. Not to scale. The
magnitude of s is almost 400 times the magnitude of m.

horizontal plane

camera plane

z c

h

Figure 8. View of intersection of horizontal plane and camera plane
for both planes perpendicular to the plane of the paper. The horizontal
plane is perpendicular to the vertical Cartesian axis z and the image
plane is perpendicular to the vector c. The vector h = c×z, appearing
as a point in the figure, is the line of intersection of the two planes.

The angle γ between the vectors p and h in Figure 7 is given by their dot product:

(6) cos γ =
p · h
|p||h|
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or by their cross product:

(7) sin γ =
|p× h|
|p||h|

The normalization step of finding the absolute values of p and h is avoided by calcu-
lating the tangent of the angle between the vectors p and h.

(8) tan γ =
sin γ

cos γ
=
|p× h|
p · h

or written out in full:

(9) tan γ =
| [c× (s×m)] × [c× z] |

[c× (s×m)] · [c× z]

Using Eq. (4) for the camera direction:

(10) tan γ =

∣∣ [(λs + (1− λ)m
)
× (s×m)

]
×
[(
λs + (1− λ)m

)
× z

] ∣∣[(
λs + (1− λ)m) × (s×m)

]
·
[(
λs + (1− λ)m

)
× z

]
Eq. (10) is for the slope angle (γ) of the moon-sun line projected on the image plane
as it is scanned by the eye of the camera (0 ≤ λ ≤ 1). It is apparent from Figure (7)
that in the observer-moon-sun plane, the direction of p is unaffected by the lengths
or absolute values of m and s, for which we henceforth substitute the unit vectors m̂
and ŝ, respectively, for computational convenience.

Eq. (10) is the equation for the slope angle (γ) of the moon-sun line v at any point;
the angle which can be verified by photography is the angle α at the moon, as in
Figure 1. If the camera is pointed at the moon, λ = 0 and Eq. (10) becomes:

(11) tanα =
| [m̂× (̂s×m̂)] × [m̂× ẑ] |
[m̂× (̂s×m̂)] · [m̂× ẑ]

The value of the angle α is the same for the vectors m, s and z or their corresponding
unit vectors, which are used in Eq. (11) to avoid having to know the actual distances
of the moon and the sun from the observer. The moon and sun unit vectors are:

m̂ = mxx̂ +myŷ +mzẑ(12)

ŝ = sxx̂ + syŷ + szẑ(13)

and their dot product is:

(14) d = m̂ · ŝ = mxsx +mysy +mzsz

As shown in Appendix A, substituting Eqs. (12) and (13) into (11) and using Eq. (14)
yields:

(15) tanα =
|sz − dmz|
sxmy − symx

Eq. (31) is explicit for the moon tilt angle α in terms of the components of the m
and s unit vectors. Using Eq. (1):

mx = cos ηm cosφm; my = cos ηm sinφm; mz = sin ηm(16)

sx = cos ηs cosφs; sy = cos ηs sinφs; sz = sin ηs(17)
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As shown in Appendix B, substitution of Eqs. (16) and (17) into (31), followed by
trigonometric manipulation and simplification yields:

(18) tanα =
| cos ηm tan ηs − sin ηm cos ∆φ |

sin ∆φ

where ∆φ = (φm − φs).
The equation for α applies to waxing and waning moons in both hemispheres. The

absolute value in the numerator of Eq. (18) affects the sign but not the value of α.
The nuisance of insuring that the angle is in the right quadrant can be avoided by
discarding the absolute value signs in the numerator and introducing absolute values
of ∆φ so that:

(19) tanα =
cos ηm tan ηs − sin ηm cos(∆φ)

sin(∆φ)

where it is understood that ∆φ = |φm − φs|. The sign convention for α is shown on
Figure 3, positive for above the horizontal and negative for below the horizontal. The
direction of the moon pointer is east or west, depending on the direction of the sun
as shown on Figures 10 – 13.

The relationship of Eq. (19) to the “position angle of the moon’s bright limb”
[4][9][10] is given in Appendix E.

6. Expected Slope of Moon-Sun Vector

The expected slope of the moon-sun vector v is modeled by the equation:

(20) v = ŝ− m̂

Unit vectors are chosen for m and s because we imagine that the sun and moon
are equidistant from us. Eq. (20), which should be compared with Eq. (3), is a
natural consequence of the 2-D perspective-projection basis of human vision. Objects,
especially those of apparent equal size, are judged as equidistant in the absence of
additional visual cues such as neighboring objects. Even if observers took into account
that the sun is much farther away from the earth than the moon, they would still
experience an illusion generated by the perspective basis of vision. For a setting sun,
they would expect the moon (in any position) to be illuminated from the horizontal,
leading to an illusion equal to the observed α tilt.

At the moon, the observed angle α is already known and we seek to compare it with
the angle β between the horizontal and the expected light ray from the sun. If the
moon and sun are at the same altitude, β = 0 because the expected moon-sun line is
horizontal, parallel to the horizon. If the moon is located directly above the sun (a
view reserved for tropical zones), β = −90 degrees because the expected moon-sun
line is vertical. Both angles for β were obtained by orthogonal projections of v onto
a vertical plane perpendicular to the azimuth of the moon. For angles between 0 and
90 degrees, the expected angle β is found the same way, by an orthogonal projection
of the moon-sun vector v.

The orthographic projection of v onto a vertical plane perpendicular to the azimuth
of the moon is shown on Figure 9. The vector n normal to this plane is:

(21) n = mx x̂ +my ŷ
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Figure 9. Orthogonal projection vp of moon-sun vector v onto verti-
cal plane with normal vector n.

where mx and my are the x and y components of the m̂ vector. The absolute value
of the n vector is:

(22) |n| =
√
m2

x +m2
y

and the unit normal vector is:

(23) n̂ =
n

|n|
=

n√
m2

x +m2
y

The vector vn in Figure 9 is given by:

(24) vn = (v · n̂)n̂

so the projection vp on the vertical plane is:

(25) vp = v − vn = v − (v · n̂)n̂

The horizontal unit vector lying in the vertical plane is ĥ = n̂×ẑ. The desired angle
between vp and ĥ in given by the ratio of their cross and dot products as in Eq. (8):

(26) tan β =
|vp × (n̂×ẑ)|
vp · (n̂×ẑ)

As shown in Appendix C, substitution of Eqs. (12) and (13) into (26) and using
Eqs. (23) – (25) gives:

(27) tan β =
|sz −mz|

√
m2

x +m2
y

sxmy − symx

As shown in Appendix D, conversion of the Cartesian components of the moon and
sun vectors to angles yields:

(28) tan β = −| sin ηm − sin ηs|
cos ηs sin(∆φ)
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where ∆φ = (φm − φs). This equation for β applies to waxing and waning moons in
both hemispheres. The nuisance of insuring that the angle is in the right quadrant is
avoided by writing Eq. (28) in the form:

(29) tan β = −(sin ηm − sin ηs)

cos ηs sin(∆φ)

where it is understood that ∆φ = |φm− φs|. The sign convention for the β pointer is
the same as for the α pointer: a positive value for β corresponds to a direction upward
from the horizontal and a negative value corresponds to a direction downward from
the horizontal, pointing east or west depending on the location of the sun. Usually
the altitude of the moon is higher than that of the sun and β is negative.

7. Magnitude of Moon Tilt Illusion

The moon tilt illusion is defined as the difference (δ) between the slope angle of
the observed moon-sun line (α) and slope angle of the expected moon-sun line (β):

(30) δ = α− β
For example, consider the configuration for Figure 1. The locations of the sun

and moon are the altitudes ηm = 45◦, ηs = −15◦, and an azimuth difference ∆φ =
128◦. The illumination of the moon in the photograph is 80%, which agrees with
the calculated value [10]. From Eq. (19), α = 17◦, as confirmed by the photograph.
Eq. (29) gives β = −52◦ and from Eq. (30), δ = 17−(−52) = 69◦, consistent with the
viewer’s expectation that the incoming light should be strongly angled from below
the horizontal.

8. Charts of moon tilt illusion at sunrise and sunset

Conditions for viewing the moon tilt illusion are most favorable when the sun and
moon are visible in the sky at the same time. Figures 10 – 13 are charts for the
sun at sunrise and sunset in the northern and southern hemispheres. Whether or
not a particular configuration is visible depends upon the latitude of the observer.
For example, in Figure 10 for a waxing moon, the horizontal “boat” moon at high
altitude in the west is observed near the equator but not in temperate zones.

The fraction of the moon illuminated is a geometric function of the locations of the
sun and moon [10].

The magnitude of the moon tilt illusion is defined by δ, the angular difference
between the observed (red) arrow and the expected (blue) arrow. The limits of δ are
0◦ for a new moon and 180◦ for a full moon. For the crescent phase, the δ angle is
almost too small to be apparent with the naked eye. For the gibbous phase, the δ
angle is large but difficult to discern as the illumination approaches 90 percent, in
which case the direction of the (red) moon pointer becomes uncertain. The most
impressive illusion occurs at sunset when the gibbous moon is at high altitude in the
southwest or at sunrise when the gibbous moon is at high altitude in the southeast
(both cases for the northern hemisphere).

The charts are for the sun setting due west or rising due east, which occurs at all
latitudes during the spring and fall equinoxes. The difference in azimuths of sun and
moon, not the specific azimuth of the sun, determines the magnitude of the illusion;
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therefore corrections can be made for the sun rising or setting at azimuths other than
due east or west by translating the entire set of images horizontally to the right or
left.
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Figure 10. Moon tilt illusion for waxing phases in northern hemi-
sphere. Sun is setting due west. Red line is observed slope and blue
line is expected slope of moon-sun line. Azimuth measured CW from
north.
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Figure 11. Moon tilt illusion for waning phases in northern hemi-
sphere. Sun is rising due east. Red line is observed slope and blue line
is expected slope of moon-sun line. Azimuth measured CW from north.



16 ANDREA K. MYERS-BEAGHTON AND ALAN L. MYERS

0

15

30

45

60

75

azimuth, deg.

al
ti

tu
d
e,

 d
eg

.

260 280 300 320 340 0 20 40 60 80 100

W NW N NE E

Figure 12. Moon tilt illusion for waxing phases in southern hemi-
sphere. Sun is setting due west. Red line is observed slope and blue
line is expected slope of moon-sun line. Azimuth measured CW from
north.
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Figure 13. Moon tilt illusion for waning phases in southern hemi-
sphere. Sun is rising due east. Red line is observed slope and blue line
is expected slope of moon-sun line. Azimuth measured CW from north.
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Figure 14. Magnitude of moon tilt illusion (δ) for rising or setting
sun as function of azimuth difference (∆φ) between sun and moon.
Parameters of curves are altitude of moon (ηm) in degrees.

Figure 14 summarizes the dependence of the moon tilt illusion upon the altitude
of the moon and the azimuth difference between sun and moon, for the case of rising
or setting sun. For a crescent moon with an azimuth difference less than 20 degrees,
the illusion is imperceptible to the naked eye.

The maximum altitude at which an illusion can be observed when the sun is rising
or setting depends upon its illumination as shown in Figure 15. For example, a cres-
cent moon 10 percent illuminated is observed only at altitudes below 36.9 degrees; a
gibbous moon 80 percent illuminated is observed only at altitudes below 53.1 degrees.

Up to this point attention has been focused upon the moon tilt illusion at the
moment of sunrise and sunset for obvious reasons: the moon is usually invisible
during the day and during the night the sun is invisible. Only when the moon and
the sun are visible in the sky at the same time is it possible to imagine a straight
line connecting them, which also occurs just after sunrise and just before sunset. The
illusion is striking when the moon and sun have the same altitude so that the expected
illumination is horizontal. Figure 16 shows a gibbous moon for the case when moon
and sun have the same altitude of 15 degrees. In this configuration, the difference in
azimuths is 135.6 degrees, corresponding to the sun about an hour before sunset and
the moon 80 percent illuminated. The blue arrow is the expected direction of the sun
and the red line is the actual moon pointer which is 32.4 degrees above horizontal.
Since β = 0, the magnitude of the moon tilt illusion is δ = α = 32.4 degrees.
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Figure 15. Maximum altitude of moon as a function of its illumina-
tion for rising and setting sun.

Figure 16. Moon pointer (red) for case when moon and sun both have
altitudes of 15 degrees. Illumination is 80 percent and the azimuth
difference of moon and sun is 135.6 degrees. Blue line is expected
direction of sun.

9. Mapping on the celestial sphere: the great-circle geodesic

Astronomers rely upon the celestial sphere model for maps of the sky because loca-
tions of stars and constellations depend only on their right ascension and declination.
For the topocentric model used for the sun and the moon, location is specified by
azimuth and altitude. All objects in the sky are assumed to be located at the same
distance from the observer, as if pasted upon the surface of an imaginery sphere sur-
rounding the observer. Astronomers, for whom the celestial sphere model is a basic
tool for mapping the stars, are not surprised by the apparently curved path of light
from the sun to the moon because they know that straight lines in 3-D object space
are transformed to great-circle arcs on the imaginary celestial sphere. Straight lines in
space are not actually transformed into great circle arcs on a visible celestial sphere.
Great circle arcs cannot be captured on photographs and visible straight lines are not
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perceived as arcs when scanned by human vision. However, the loci of these arcs can
be plotted on maps.

180
0

Azimuth

A
lt

it
u
d
e

10

20

30

40

50

60

70
moon pointer

SE S SW W

sun

moon

α

70.1
o

140 160 200 220 240 260

Figure 17. Map of moon-sun line. Azimuth of moon is southeast and
azimuth of sun is west. Altitude of moon is 60◦ and altitude of sun is
0◦. Moon tilt angle α = 40.9◦. Azimuth measured CW from north.

Consider specifically the great-circle arc for the configuration of moon and sun
shown on Figure 17. The solid line is the moon-sun vector v obtained from parametric
Eqn. (4) and plotted on a Mercator map after conversion to spherical coordinates.
This locus is a geodesic for the shortest distance between the moon and the sun on the
surface of the imaginary celestial sphere. The great-circle nomenclature is familiar
to pilots navigating the shortest distance between two points on the surface of the
earth. The Mercator projection of the locus has the advantage of being conformal in
the sense that an angle (e.g., α) between two intersecting lines in 3-D object space is
preserved on the map.

The temptation to draw the straight (dashed) line between the moon and the sun
on Figure 17 and define the angle between the straight line and the moon pointer
(70.1 degrees) as the magnitude of the moon tilt illusion is irresistible. This would be
misleading and erroneous unless the objective is to define the illusion on a map instead
of looking at the sky. Any straight line drawn on the map would be a loxodrome on
the surface of the celestial sphere. Moreover, the Mercator projection becomes more
distorted with increasing altitude and is not even defined for the zenith.
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Figure 18. Star chart of moon-sun line. Azimuth of moon is southeast
and azimuth of sun is west. Altitude of moon is 60◦ and altitude of sun
is 0◦. Moon tilt angle α = 40.9◦.

The same great circle arc is drawn on the star chart of Figure 18. The star chart,
like the Mercator map, is conformal for angles formed by intersecting lines. The great
circle arc between the sun and the moon is identical on both maps, passing through
an altitude of 60◦ at the SW azimuth. The angle α of the moon pointer with the
horizontal is 40.9◦ on both maps. However, the straight (dashed) lines on these two
maps are different. On the Mercator map, the dashed line at the azimuth pointing
south has an altitude of 44◦ but on the star chart its altitude at the same azimuth
is 72◦. Not only are these dashed lines different but they are not even straight lines
in 3-D object space. The difference between the moon pointer and the dashed line
is 70.1◦ on the Mercator map and −13.2◦ on the star chart. The signs are different
because the dashed line on the Mercator map points downward from the horizontal
and the dashed line on the star chart points upward from the horizontal, even higher
than the moon pointer. Neither map is useful for explaining the moon tilt illusion
because the expected straight line drawn on these maps does not exist in 3-D object
space.

10. Photographing the moon tilt illusion

Photography of the moon tilt illusion has been dismissed as a “deceitful venture”
[2]. Deceitful or not, it is highly problematic. An idealized pinhole camera is based on
the principles of perspective projection of 3-D object space onto a 2-D image plane.
A photograph taken by pointing a pinhole camera at the midpoint of the moon-sun
vector distorts the circular moon into an ellipse with its moon pointer directed exactly
at the sun [2]. Thus, in a photograph taken by a properly aimed pinhole camera, the
moon tilt illusion vanishes.

Modern cameras use lenses whose properties are designed to deliver a rectilinear
or curvilinear image. Rectilinear lenses reduce barrel or pincushion distortion from
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the image but such lenses are difficult to manufacture for the wide angles (90◦ and
above) needed to record both the sun and the moon on a single photograph. A
photograph [3] of the moon and sun at an azimuth difference of 80◦ containing a
leaning tower and unnaturally leaning trees illustrates the difficulty of eliminating
distortion in a wide-angle photograph.
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Notation

c camera vector, perpendicular to camera plane
m moon vector OM
n normal vector to vertical plane
p projection of vector v on camera plane
r radius vector
s sun vector OS

x,y,z Cartesian coordinate vectors
v moon-sun vector MS

vn projection of v on n
vp projection of v on vertical plane
α observed angle of moon pointer with horizontal
β expected angle of moon pointer with horizontal
δ difference of observed and expected angles of moon pointer with horizontal
η altitude of moon or sun
θ angle of moon or sun measured from zenith
λ parameter for specifying points on moon-sun vector
φ azimuth of moon or sun
χ position angle of moon’s bright limb
ˆ “hat” symbol for unit vector
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Appendix A. α from vector components

Reduce Eq. (11):

tanα =
| [m̂× (̂s×m̂)] × [m̂× ẑ] |

[m̂× (̂s×m̂)] · [m̂× ẑ]
to component form.

Expansion of the vector triple product p gives:

p = m̂× (̂s× m̂) = (m̂ · m̂)̂s− (m̂ · ŝ)m̂ = ŝ− dm̂
where d is the dot product (m̂ · ŝ). The expanded numerator of Eq. (11) is:

|p× (m̂× ẑ)| = |(p · ẑ)m̂− (p · m̂)ẑ|
But

p · m̂ = (̂s− dm̂) · m̂ = d− d = 0

so
|p× (m̂× ẑ)| = |p · ẑ| = |(̂s− dm̂) · ẑ| = |sz − dmz|

The denominator of Eq. (11) is:

p · (m̂× ẑ) = (̂s− dm̂) · (m̂× ẑ) = ŝ · (m̂× ẑ)

because (m̂ · m̂ × ẑ) = (m̂ × m̂ · ẑ) = 0. From (m̂ × ẑ) = (my,−mx,0) and s =
(sx,sy,sz):

p · (m̂× ẑ) = sxmy − symx

Therefore Eq. (11) in component form is:

tanα =
|sz − dmz|
sxmy − symx

Appendix B. α from altitude and azimuth angles

Convert Eq. (31):

(31) tanα =
|sz − dmz|
sxmy − symx

to altitude and azimuth angles of sun and moon.
The azimuth and altitude angles are given by Eqs. (16) and (17). The dot product

is:

d = m̂ · ŝ = cos ηm cos ηs cosφm cosφs + cos ηm cos ηs sinφm sinφs + sin ηm sin ηs

= (sinφm sinφs + cosφs cosφm)(cos ηs cos ηm) + sin ηm sin ηs

= cos(∆φ) cos ηs cos ηm + sin ηm sin ηs

where ∆φ = (φm − φs).

sz − dmz = sin ηs − sin ηm[cos(∆φ) cos ηs cos ηm + sin ηm sin ηs]

= sin ηs(1− sin2 ηm)− sin ηm cos ηm cos ηs cos(∆φ)

= sin ηs cos2 ηm − sin ηm cos ηm cos ηs cos(∆φ)

http://astro.ukho.gov.uk/data/tn/naotn74.pdf
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sxmy − symx = cos ηs cosφs cos ηm sinφm − cos ηs sinφs cos ηm cosφm

= cos ηs cos ηm(sinφm cosφs − cosφm sinφs)

= cos ηs cos ηm sin(∆φ)

From Eq. (31):

tanα =
| sin ηs cos2 ηm − sin ηm cos ηm cos ηs cos(∆φ)|

cos ηs cos ηm sin(∆φ)

Division yields:

tanα =
| cos ηm tan ηs − sin ηm cos(∆φ)|

sin(∆φ)

Appendix C. β from vector components

Reduce the vector equation:

tan β =
|vp × (n̂×ẑ)|
vp · (n̂×ẑ)

to component form.

vp = v − (v · n̂)n̂

vp × (n̂×ẑ) = (vp · ẑ)n̂− (vp · n̂)ẑ

But vp is perpendicular to n̂ so:

vp × (n̂×ẑ) = (vp · ẑ)n̂

= (v· ẑ)n̂− (v · n̂)(n̂ · ẑ)n̂

= (v· ẑ)n̂

because n̂ is perpendicular to ẑ.

v = ŝ− m̂ = (sx −mx)x̂ + (sy −my)ŷ + (sz −mz)ẑ

|vp × (n̂×ẑ)| = |v· ẑ| = |vz| = |sz −mz|
The denominator is the scalar triple product:

vp · (n̂×ẑ) = v · (n̂×ẑ)− (v̂ · n̂)[n̂ · (n̂×ẑ)]

= v · (n̂×ẑ)

because n̂ · (n̂×ẑ) = (n̂× n̂)·ẑ = 0.

n× ẑ = (mx,my, 0) × (0, 0, 1) = (my,−mx, 0)

v · (n×ẑ) = [(sx −mx), (sy −my), (sz −mz)] · (my,−mx, 0)

= sxmy − symx

In terms of the normalized vector n̂:

v · (n̂×ẑ) =
sxmy − symx√

m2
x +m2

y

Substituting results for the numerator and denominator of tan β:

tan β =
|sz −mz|

√
m2

x +m2
y

sxmy − symx
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Appendix D. β from altitude and azimuth angles

Convert:

tan β =
|sz −mz|

√
m2

x +m2
y

sxmy − symx

to altitude and azimuth angles of sun and moon. Azimuth and altitude angles are
given by Eqs. (16) and (17).

m2
x +m2

y = cos2 ηm cos2 φm + cos2 ηm sin2 φm = cos2 ηm√
m2

x +m2
y = cos ηm

(sz −mz) = sin ηs − sin ηm
See Appendix B for the derivation of:

sxmy − symx = cos ηs cos ηm sin(∆φ)

where ∆φ = (φm − φs).

tan β = −
|mz − sz|

√
m2

x +m2
y

sxmy − symx

= −cos ηm | sin ηm − sin ηs|
cos ηs cos ηm sin(∆φ)

= −| sin ηm − sin ηs|
cos ηs sin(∆φ)

Appendix E. Position angle of midpoint of moon’s bright limb

The angle of the moon’s tilt from the horizontal is given by Eq. (19):

tanα =
cos ηm tan ηs − sin ηm cos ∆φ

sin ∆φ
where ∆φ = (φm − φs). Let χ be the complement of α:

χ = 90− α
so that χ is the angle of the moon pointer with the vertical unit vector ẑ. It follows
that:

tanχ =
sin ∆φ

cos ηm tan ηs − sin ηm cos ∆φ
which may be written:

tanχ =
cos ηs sin ∆φ

cos ηm sin ηs − cos ηs sin ηm cos ∆φ

χ in this equation is called the position angle of the midpoint of the moon’s bright
limb [4][10], measured from the north point of the disk, with 0 ≤ χ ≤ 360◦. Altitudes
(η) and azimuths (φ) are replaced by declinations and right ascensions, respectively.
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