
Using Functions on a Model Graph for Inductive Transfer

Eric Eaton ERICEATON@UMBC.EDU

Marie desJardins MARIEDJ@UMBC.EDU

University of Maryland Baltimore County, Department of Computer Science and Electrical Engineering

Terran Lane TERRAN@CS.UNM .EDU

University of New Mexico, Department of Computer Science

Abstract
In this paper, we propose a novel graph-based
method for knowledge transfer. We embed a set
of learned background models in a graph that
captures the transferability between the models.
We then learn a function on this graph that au-
tomatically determines the parameters to transfer
to each learning task. Transfer to a new problem
proceeds by mapping the problem into the graph,
then using the function to determine the param-
eters to transfer in learning the new model. This
method is analogous to inductive transfer along a
manifold that captures the transfer relationships
between the tasks.

1. Introduction

Knowledge transfer from previously learned tasks to a new
task is a fundamental component of human learning. Most
machine learning methods for transfer rely on an explicit
set of sourcetasks to identify a set of model parameters
that can be applied (transferred) to a newtarget task. In
many cases, these source tasks are selected by an expert
in advance. Methods for transfer may combine informa-
tion from all source tasks (Marx et al., 2005; Kienzle &
Chellapilla, 2006) or may use information from only a few
tasks that are selected by an automated process (Thrun &
O’Sullivan, 1996). Our approach to transfer can adapt itself
automatically to use information only from relevant source
tasks when given both relevant and irrelevant source tasks.

Given a set of source tasks and a new target task, our
method attempts to determine the parameter values to
transfer from the background tasks in learning the target
task. Our approach to knowledge transfer embeds the mod-
els learned on the source tasks into a graph, using a no-
tion of transferabilityto determine the edge weights. This

Presented atNorth East Student Colloquium on Artificial Intelli-
gence (NESCAI), 2008. Copyright the authors.

model transfer graph represents a space for models using
transferability as the metric, based on samples given by the
source tasks, and corresponds to a discrete approximation
of a high-dimensional manifold that captures the transfer
relationships between the source tasks.

We then define a function on this manifold that determines
the parameters for all models. This transfer function re-
spects the local geometry of the graph and, therefore, the
transfer relationships among the source tasks. We use the
parameters of the source tasks’ models as samples of the
function at various locations on the manifold. We learn the
transfer function using these sample values and the basis
functions for the graph’s Laplacian (see Section 3).

Given a target task, we interpolate its position on the true
manifold by extending the graph to include the new task.
We construct basis functions on the extended graph using
the graph Laplacian, and then use these basis vectors to es-
timate the transfer function’s value at the target task. This
yields a transferred parameter vector for the target task,
which we then use to learn the new model.

We define ataskas a mapping from an instance spaceX ⊂
Rd to a set of labelsY ∈ N. All tasks map from the same
input space to the same set of labels. The goal for learning a
model for each task is to recover the true mappingX → Y
from the set of labeled training instances.

Our approach to transfer assumes that all models are from
a single class of learning algorithms that supports transfer
from one model to another. This transfer method must rep-
resent the transferable components of thesourcemodel as
a parameter vector inRθ, and learn thetarget model us-
ing this transferred parameter vector. This formulation of
transfer using a parameter vector characterizes many exist-
ing transfer algorithms. In the experiments, we use a form
of logistic regression biased toward a vector of weights.

2. Related Work

Parameter-based transfer has been previously used by
Marx et al. (2005) to learn a logistic regression model us-

ing information from the source tasks. They fit logistic
regression models independently to each source task, and
then estimate the prior distribution for the target model’s
weightsa posteriorifrom the source tasks’ models. Kien-
zle and Chellapilla (2006) use a weight vector for transfer
in SVMs, biasing the regularization term toward the weight
vector, instead of the zero vector as in standard SVM train-
ing. The biased logistic regression method we propose in
Section 6 is based on a combination of biased regulariza-
tion and Marx et al.’s logistic regression transfer.

In contrast to the approaches of Marx et al. and Kien-
zle et al., which combine knowledge from all source tasks
for transfer, Thrun and O’Sullivan’s (1996) Task Cluster-
ing (TC) algorithm groups tasks for more selective trans-
fer. Their method also transfers parameter vectors, sharing
weighted Euclidean distance metrics betweenk-nearest-
neighbor classifiers. Transfer occurs by having onek-
nearest-neighbor model use the distance metric from an-
other model. Upon receiving a new task, the TC algorithm
matches the new task to a cluster, then transfers that clus-
ter’s distance metric to the new task.

Bakker and Heskes (2003) take a Bayesian approach to
clustering tasks, using EM to optimize the task clusters. A
second form of their approach uses a gating network, sim-
ilar to that used in the mixture-of-experts model (Jordan &
Jacobs, 1994), on top of the Bayesian EM framework to
allow the priors to vary depending on the task’s features.

Pratt’s (1993) Discriminability-Based Transfer method
for neural networks selectively transfers weights from a
learned network, modifying them as needed to enable
learning on a target task. Explanation-Based Neural Net-
works (Mitchell & Thrun, 1996) use a more indirect ap-
proach to parameter transfer, using extracted invariances
about a domain to bias the learning of model parameters.

3. Technical Background

This section provides an overview of the spectral graph the-
ory (Chung, 1994) used in this paper. LetG(V,A) be an
undirected connected weighted graph with a set ofn ver-
ticesV and a weightedn×n adjacency matrixA. Au,v 6= 0
implies that there is an edge between verticesu andv. Let
the degree of vertexv be denoted bydv =

∑n
u=1Au,v.

Let T be the diagonal matrix whereTv,v = dv. The com-
binatorial Laplacian matrixL for the graph is given by
L = T −A:

Lu,v =

 dv −Av,v if u = v,
−Au,v if Au,v 6= 0,
0 otherwise.

(1)

We can also define thenormalized LaplacianmatrixL as
L = I−T− 1

2AT−
1
2 , whereI is the identity matrix. While

both forms of the Laplacian are applicable to our work, we

found that the combinatorial Laplacian (hereafter referred
to as just theLaplacian) worked better in our experiments
and so we focus on it for the remainder of this paper.

The LaplacianL is symmetric; therefore, its eigenvalues
are all real and non-negative. The eigendecomposition of
L yieldsL = QΛQT =

∑n
i=1 λiqiq

T
i , whereΛ is the di-

agonal matrix of eigenvalues[λ1 . . . λn] and the columns
ofQ are the eigenvectors[q1 . . . qn]. Q forms an orthonor-
mal basis forL.

Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues ofL con-
tained inΛ, and letqi denote the eigenvector correspond-
ing to λi. Spectral graph theory tells us that the smallest
eigenvalueλ1 is always 0 (with multiplicity 1, sinceG is
connected) andq1 is constant over all vertices.

Spectral graph theory has connections to Riemannian man-
ifolds, which we use to define the surface on which transfer
occurs. A graphG can represent a sample of the mani-
fold M, with the vertices as points on the manifold and
the edges connecting points that are close to each other on
the manifold. Letf be a smooth functionf : M → R

on a Riemannian manifoldM with Riemannian metricψ.
The Laplace-Beltrami operator∆ is defined to be the di-
vergence of the gradient ofM, and can act onf . Hodge
theory (Rosenberg, 1997) implies thatf has a unique spec-
trum based on the eigenfunctions of the Laplace-Beltrami
operator onM.

The graph Laplacian is a discrete form of the continuous
Laplace-Beltrami operator that acts on a functiong : V →
R defined on the graph.

Lg(u) =
1√
du

∑
v:v∼u

(
g(u)√
du

− g(v)√
dv

)
, (2)

wherev ∼ u denotes that verticesv andu are adjacent in
G. Like the continuousf , g can also be characterized by
the eigenfunctions of the Laplacian. The smoothness ofg
on the graphG is given by the Dirichlet sumS(g,G) =∑

u,v Au,v (g(u)− g(v))2.

4. The Model Transfer Graph

Given the set of background learning tasks{t1, . . . , tn},
the first step is to construct the model transfer graph. We
assume that sufficient training examples are given for each
background task to learn models that have a high degree
of performance. Let these learned base models be denoted
{m1, . . . ,mn}, withmi corresponding to taskti.

We coulddirectly plot the models inRθ, since each model
has a transferableθ-dimensional parameter vectorv. How-
ever, this embedding ignores the fact that the transferred
knowledge mustimprove performanceon the target task.
Similarity between two parameter vectors does not imply

that models using those vectors will have similar perfor-
mance on a task. Therefore, it is important to measure sim-
ilarity in the transfer space based ontransferability; that is,
the degree of similarity between two models should cor-
relate with the degree to which the transferred knowledge
improves learning performance on a task. (This transfer-
ability may not be symmetric; we discuss this issue in Sec-
tion 4.2.)

4.1. Computing the Transferability between Tasks

We define transferability from taskti to tj as the change in
performance on tasktj between learning with and without
transfer fromti’s model. This definition is similar to the
approach used by Thrun and O’Sullivan in their task clus-
tering framework (1996). While their method simply looks
at the change in performance for a specific number of train-
ing instances, we also examine the change in performance
over the entire learning curve. Although we focus on this
definition of transferability, the transfer graph method is
general enough to use other measures of transferability.

Let m(t, v, q) denote the model learned for taskt usingq
training instances with transfer from parameter vectorv,
which may be null (∅) for learning without transfer. Let
mi = m(ti, ∅, all) be the model learned on taskti with-
out transfer using all available data. Taskti’s base model
mi has an associated parameter vectorvi, which we can
transfer to learn other tasks.

To measure the transferability from taskti to tasktj , given
q training instances, we first determine the baseline per-
formance for tasktj without transfer. We learnmq

j =
m(tj , ∅, q) and evaluate this model on the testing data for
task tj to generate the baseline performancePj(q). We
similarly determine the transfer performance by learning a
modelmq

i→j = m(tj , vi, q) using transfer from taskti, and
evaluating the model on the testing data for tasktj , yielding
transfer performancePi→j(q). Any performance measure
that evaluates to a real number can be used to compute the
transferability (e.g., predictive accuracy, f-measure). In our
experiments, we use predictive accuracy on the held-out
test set to evaluate performance.

In an ideal transfer situation, the transferred information
would immediately increase the performance of the learned
model to the maximum possible performance. Our best es-
timate of the maximum possible performance is simply the
maximum performance we have ever observed on tasktj ,
across all baselines and transfer situations using all possi-
ble amounts of training data, denotedPmax (tj). The ideal
increase due to transfer would therefore be the difference
betweenPmax (tj) andPj(q).

We compute the transfer from taskti to tasktj with q train-
ing instances to be the ratio of the actual amount of transfer

to the ideal amount of transfer:

transfer i→j(q) =
Pi→j(q)− Pj(q)
Pmax (tj)− Pj(q)

. (3)

This ratio forces positive transfer to be in[0, 1]. Neg-
ative transfer—which occurs when transfer decreases the
performance from the baseline—can fall outside the range
[−1, 0]; however, we consider only positive transfer in con-
structing the transfer graph, which eliminates this problem.

This definition of transferability for a given amount of
training data lends itself to a definition of overall transfer-
ability for a given range of training set sizes. In particular,
we can integrate and average Equation 3 over a range of
values forq, yielding a single overall measure of transfer-
ability. By consideringtransfer i→j across the entire learn-
ing curve, we compute the average amount of transfer ex-
pected for an arbitrary amount of training data. This com-
putation assumes a uniform probability distribution over
the amount of training data that will be available for a new
task; it is a simple matter to scale this computation for a
non-uniform probability distribution.

To compute the overall transferability, we generate the
baseline learning curve without transfer,Cj = {Pj(q)},
and the transfer learning curve,Ci→j = {Pi→j(q)}, vary-
ing the value ofq over all available training data. Ide-
ally, the increment between successiveq’s should be very
small; in the experiments, we generate a sampled form of
the learning curve by varyingq from 5% to 100% of the
available training data using5% increments.

We then measure the areaAi→j between these two paired
curves, counting areas formed whenCi→j is above the
baselineCj as positive, and areas formed whenCi→j is be-
low Cj as negative. The ideal area of transferAideal is then
the area between the baselineCj and the linePmax (tj).
Finally, we then take the ratio ofAi→j to the ideal amount
of transferAideal to compute the transferability. Figure 1
illustrates this step. This computation has the benefit of
being invariant to the learning curve’sx-axis scale.

4.2. Constructing the Transfer Graph

To ensure that our similarity metric is symmetric, we de-
fine the undirected transfer similarity between tasksti and
tj to be the minimum of the two directed transferabilities:
transfer i,j(q) = min

(
transfer i→j(q), transfer j→i(q)

)
.

The largest potential problem is overestimating the amount
of transfer between two tasks, and using the minimum of
the directed transferabilites ensures that our estimate of the
transfer is as large as possible without being a potential
overestimation. Using other forms of symmetrization, such
as taking the average or maximum, could lead to overesti-
mation. While this construction underestimates the amount
of transfer, we show empirically that it performs well.

Figure 1. Graphical depiction of computing the transfer between
two tasksti andtj from learning curves.

We define the vertices of the model transfer graph to
be the source tasks and their associated modelsV =
{(ti,mi)}n

i=1. We can construct the symmetric adjacency
matrixA for the transfer graph for a given amount of train-
ing dataq as

Ai,j =
{

0 if i = j,
max

(
0, transfer i,j(q)

)
otherwise.

, (4)

providing us with a complete definition of the model trans-
fer graph given a set of source tasks and their associ-
ated learned models. Since we need only model the posi-
tive transfer, this construction eliminates all negative edges
from A. The known portion of the model transfer space
is then given by the weighted graphG = (V,A) with the
edge weights specified inA.

5. Transfer to a Target Task

Once the model transfer graphG = (V,A) has been con-
structed, transfer to a new target tasktn+1 involves extend-
ing G to includetn+1. Each vertex in the model transfer
graph has an associatedθ-dimensional parameter vector.
We estimate the parameter vector fortn+1’s model from
the other models’ parameters. This process is equivalent
to interpolating the position oftn+1 on the manifold that
models the transferability, and then determining the trans-
fer function’s value at that point.

We assume that there is some underlying hidden function
f : V → Rθ that governs the assignment of the parameters
to each vertex. Transfer to a target task involves determin-
ing the target model’s location in the model transfer space,
and then determining the parameters for the target model
based on the parameters of the other models in the space.
In other words, we are attempting to determine the param-
eter values thatf would assign to the target model.

This approach requires thatf be smooth over some sur-
face, so we interpret the models as lying on some high-

dimensional manifold, represented by the model transfer
graph. The smooth functionf acts on this manifold; there-
fore, we can characterizef based on the eigenfunctions of
the model transfer graph’s LaplacianL.

5.1. Extending the Transfer Graph

Given a small sample of the data fromtn+1 (much less data
than was given for any other taskt1 . . . tn), we approxi-
mate the modelmn+1’s location in the graph by computing
its transferability from every other taskti: transfer i→n+1.
This yields a set of weighted edges1 betweenmn+1 and all
other modelsm1 . . .mn, allowing us to localizemn+1 in
the transfer graph. Let these weights beŵ1 . . . ŵn.

The extended transfer graph that includes tasktn+1 can
now be defined bŷG = (V̂ , Â), whereV̂ = V

⋃
{tn+1}

andÂ is the(n+ 1)× (n+ 1) extended adjacency matrix

Â =
[
A ŵT

ŵ 0

]
.

We then form the graph Laplacian̂L of Ĝ, and take the
eigenvectorsQ̂ of the Laplacian as a set of basis vectors
over the extended graph.

For very large transfer graphs, the new eigenvectors could
be computed efficiently using the Nyström method (Baker,
1977; Fowlkes et al., 2004; Drineas & Mahoney, 2005) to
extendL’s eigenvectors to the new tasktn+1, based on the
edge weightŝw. The Nystr̈om extension gives:

qi(tn+1) =
1
λi

n∑
j=1

ŵj qi(tj) , (5)

where qi(tj) is the ith eigenvector applied to modeltj .
However, the transfer graphs used in the experiments were
small enough that we could directly compute the eigende-
composition ofL̂.

5.2. Determining the Transferred Parameters

We assumed earlier that there was a functionf : V → Rθ

that governs the assignment of parameter vectors to models
in the transfer graph. To determine the parameter vector for
the new modeltn+1, we extendf to form f̂ : V̂ → Rθ.

The eigenvectorŝQ form an orthonormal basis for the set of
all functions onĜ; therefore,f̂ = Q̂W for some(n+1)×θ
matrixW . Using the known parameter vectorsv1 . . . vn as
samples of the function values on the graph, we fitW using
least-squares. This makeŝf an approximation off at the
known sample points on the grapht1 . . . tn, and a smoothed
interpolant for it attn+1.

1The edges are also directed, although we ignore directional-
ity, since the transfer is one-way only.

Let Q̃ be the rows ofQ̂ corresponding to the sampled ver-
tices (in this case,̃Q = Q̂1...n,∗). We fit each column ofW
separately using regularized least-squares by solving:

W∗,i = argw min
∣∣∣∣∣∣f∗,i − Q̃w

∣∣∣∣∣∣2 +
∣∣∣∣∣∣√Λ̂w

∣∣∣∣∣∣2 , (6)

where
√

Λ̂ serves as the regularization operator in this
Tikhonov regularization problem. The regularization in
this case acts as a weighted penalty on the average second-
derivative of the function, enforcing smoothness by scaling
each eigenvector weight by its corresponding eigenvalue
λi, thereby increasing the regularization on higher-order
eigenvectors to prevent overfitting with the high-frequency
components.

We derive this expression by constraining the smooth-
ness off̂—the L2 norm of the gradient of̂f , given by
〈∇ f̂ ,∇ f̂〉:

〈∇ f̂ ,∇ f̂〉 = 〈f̂ , L̂f̂〉
= (Q̂w)T (L̂Q̂w)

= wT Q̂T (Q̂Λ̂Q̂T Q̂w)

= wT IΛ̂Iw

= wT Λ̂w .

Therefore, we can constrain the smoothness off̂ by pe-
nalizing the least-squares problem withwT Λ̂w, which is

equivalent to the penalty
∣∣∣∣∣∣√Λ̂w

∣∣∣∣∣∣2 in Equation 6. The so-

lution to this least-squares problem is given by

W∗,i =
(
Q̃T Q̃+ Λ̂

)−1

Q̃T f∗,i . (7)

Once we have the least-squares estimate forW , the trans-
ferred parameters are given byvn+1 = Q̂n+1,∗W , which
we then use in learning the model for tasktn+1.

6. Transfer using Biased Logistic Regression

We use a biased form of logistic regression as the base
learning algorithm in the experiments. Biased logistic re-
gression penalizes deviations from a given weight vector,
effectively biasing the learned model toward the transferred
parameters.

The well known logistic regression model gives the proba-
bility of a data instancex having a binary labely as:

P (y = 1|x) =
exp(xβ)

1 + exp(xβ)
, (8)

P (y = 0|x) = 1− P (y = 1|x) , (9)

wherex ∈ Rd andβ ∈ Rd. The parameter vectorβ is
obtained in standard logistic regression by maximizing the

log-likelihood of the labeled training data{(xi, yi)}n
i=1:

l(β) =
n∑

i=1

[yi logP (yi = 1|xi) +

(1− yi) logP (yi = 0|xi)] . (10)

Combining ridge estimation with logistic regres-
sion2 (Duffy & Santner, 1989; Le Cessie & Van
Houwelingen, 1992) adds a penalty on the norm of
β, and involves choosingβ to maximize the penalized
log-likelihood lλ(β) = l(β) − λ‖β‖2, whereλ is the
ridge parameter that controls the shrinkage of the norm

‖β‖ =
√∑

j β
2
j . Inspired by biased regularization of

support vector machines (Kienzle & Chellapilla, 2006;
Scḧolkopf & Smola, 2002) and the logistic regression
transfer method of Marx et al. (2005), we penalize
deviations ofβ from a given vectorβ0:

lλ(β) = l(β)− λ‖β − β0‖2 . (11)

Standard (non-biased) logistic regression corresponds toβ0

as the zero vector. This bias vectorβ0 can be transferred
from the learnedβ of another logistic regression model,
allowing one logistic regression model to be biased toward
the parameters of another model. Note that we do not trans-
fer the constant term, allowing it to be fit individually to
each problem.

Whenλ = 0, the bias term disappears and does not af-
fect the learned weights; asλ → ∞, the logistic regres-
sion learned weights approach the bias weights. In the ex-
periments, we use the Bayesian-optimalλ, making two as-
sumptions about the model (Hastie et al., 2001). First, we
assume that the errors{yi − p(xi)}n

i=1 are normally dis-
tributedN(0, σ2) with varianceσ2. Second, we assume
that the parameters inβ are independent and normally dis-
tributedN(β0, τ

2) with meanβ0 and varianceτ2. Under
these assumptions, the Bayesian-optimal lambda is given
by λ = σ2

τ2 (Hastie et al., 2001). Viewed from the perspec-
tive of transfer, this assumption implies a normal probabil-
ity distribution over the transfer fromβ0 to β.

The logistic regression transfer method proposed by
Marx et al. (2005) uses a similar construction, in which
they penalize the model parameters for deviating from a
given set of normal distributions, considering both means
and variances that were derived from the transferred pa-
rameter vectors. The method we use here (based on ridge
estimation) corresponds to their method using a constant
variance for all parameters, which is absorbed intoλ. The
major problem with using their method in this framework
is that it is dependent on having asetof source tasks from

2We use the Weka machine learning toolkit’s implementation
of this method (Witten & Frank, 2000).

which to estimate the parameter variances and thereby the
regularization parameters; in this application, we have only
one source parameter vector and, therefore, no variance.

7. Evaluation

Our experiments examine transfer in two domains: letter
and newsgroup recognition. The Letters data set (Asuncion
& Newman, 2007) characterizes various fonts of each char-
acter using 16 features. The Newsgroup experiments use
the 20 newsgroups data set (Rennie, 2003), characterized
by a binary vector of the 100 most discriminating words as
determined by Weka’s string-to-wordvector filter (Witten
& Frank, 2000). Both original data sets are very large, so
we randomly selected five percent of each data set to use in
the experiments.

For Letters, we took the first 13 letters (A–M) and gen-
erated 13 binary problems of each of these letters against
the last 13 letters (N–Z). For example, the task of recog-
nizing the letter A used “A”s as positive examples and all
letters N–Z as negative examples. We chose this construc-
tion to yield tasks that would interfere as little as possible
with each other. For example, if instead we had converted
this data set into 26 one-versus-rest classification problems,
there would be interference between the tasks, as one task’s
positive examples would appear as other tasks’ negative ex-
amples, diminishing the possibility of transfer. The News-
groups tasks are constructed similarly, using the first news-
group in each major category as negative examples3 and the
13 remaining newsgroups as positive examples. Addition-
ally, we resampled the data with replacement to ensure that
the class priors were approximately equal, and normalized
the feature values to lie in[0, 1].

We constructed model transfer graphs for both Letters and
Newsgroups over 10 trials of 10-fold cross-validation over
all available data on the source tasks, excluding the target
task from the computations. The held-out fold was used for
performance evaluation to generate the baseline and trans-
fer learning curves. The base parameter vectors for each
task were computed from all available data.

For each target task, we used 20 percent of the data for
training and the remainder for testing. We used the training
data to map the task to the transfer graph (again, comput-
ing the transfer over 10 trials of 10-fold cross-validation
on the training data), computed the transfer function on the
extended transfer graph, and then used that function to es-
timate the parameter vector to transfer to the target task.
Then, the learned classifier was evaluated on the test data.
This procedure was repeated for 50 trials.

3The negative newsgroups are alt.atheism, comp.graphics,
misc.forsale, rec.autos, sci.crypt, soc.religion.christian, and
talk.politics.guns.

Number of Portion of
Target task instances relevant

source tasks
sci.space 360 1 / 12

talk.politics.mideast 365 2 / 12
comp.windows.x 360 6 / 12

sci.med 370 8 / 12
“J” 550 1 / 12
“H” 550 11 / 12

Table 1. Summary of transfer scenarios.

For every possible transfer scenario, we determined the
number of relevant source tasks by generating the complete
model transfer graph for all tasks in that domain (includ-
ing the target tasks), and examining the (positive) incom-
ing edges to each target task. We then chose the specific
transfer scenarios for these experiments based on the ratio
of relevant to irrelevant source tasks. Table 1 summarizes
each transfer scenario used in the experiments.

Figure 2 compares the performance of the graph transfer
function against an “average” transfer method, and against
the baseline of learning without transfer. The average trans-
fer method simply averages the parameter vectors from all
source tasks (including irrelevant tasks) and transfers that
average parameter vector to the target task.

Figures 2(a)–2(c) depict transfer scenarios with a mix of
relevant and irrelevant source tasks. In these scenarios, the
graph transfer method shows statistically significant (with
at least 95% confidence) performance improvement over
average parameter transfer, demonstrating our method’s
ability to focus on information from relevant source tasks.
These results support the use of localized estimates for the
transfer parameters for some problems, unlike the work of
Marx et al. (2005) and Kienzle et al. (2006), which use es-
timates based on all the source problems (corresponding to
the average transfer method).

The transfer scenarios of Figures 2(d) and 2(f) have few
irrelevant source tasks, and in these cases, we see that
transferring the average parameter vector works quite well.
However, these results could easily be skewed by providing
more irrelevant source tasks. In such a case, we hypothe-
size that the performance of the average parameter transfer
would decrease, but that the graph transfer method would
isolate the irrelevant tasks and perform equally well. Sev-
eral data points in these figures show the average parameter
vector outperforming the graph transfer method. This indi-
cates that in situations where there is a majority of relevant
source tasks, it may be better to transfer the average param-
eter vector. However, in situations where the relevance of
source tasks is questionable or unknown, the graph transfer
method might be a better choice, since it will automatically
exclude the irrelevant source tasks.

0.62

0.66

0.70

0.74

0.78

0.82

0.86

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(a) Newsgroups to sci.space

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(b) Newsgroups to talk.politics.mideast

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(c) Newsgroups to comp.windows.x

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(d) Newsgroups to sci.med

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(e) Letters to “J”

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

Transfer Fn
Avg Transfer
No Transfer

0.9
1.0

0 20 40 60 80 100
Percent of Training Set

C
on

f.

(f) Letters to “H”

Figure 2. Results on the Newsgroups and Letters transfer tasks. The top portion of each graph compares the learning curves of the graph
transfer function, transfer using the average parameter vector from all source tasks, and learning without transfer. The bottom portion of
each graph depicts the confidence level by which the transfer function’s performance is statistically different from each of the other two
methods as measured by a pairwise t-test. Typically, a difference with a confidence of 0.95 or above is considered statistically significant.

Figure 2(e) shows one scenario where we were unable to
obtain improvement over the average parameter vector, de-
spite the large number of irrelevant tasks. When we ex-
amined the model transfer graph for Letters, there were no
tasks that were highly transferable to “J,” unlike in the other
transfer scenarios. The one task relevant to “J” had very
low positive transfer. The lack of improvement from trans-
fer is most likely due to this lack of relevant source tasks.

In two of the transfer scenarios—Figures 2(b) and 2(e)—
learning without transfer outperforms learning with trans-

fer when given very little training data. The biased logistic
regression algorithm we used in these experiments relies on
the training data to determine the amount of transfer from
the given parameter vector. When given very little train-
ing data, the learning algorithm’s estimation of the ideal
amount of transfer may be inaccurate, and so it is outper-
formed by learning without transfer. It may also be the case
that the graph transfer method is unable to accurately lo-
calize the target task in the model transfer graph given such
little data. In any case, these hindrances disappear with the
addition of slightly more training data.

8. Conclusion and Future Work

This paper describes a novel method for inductive transfer
using a function on the transfer graph. As shown by our re-
sults, using localized estimates of the transfer values results
in superior performance on some problems. The shortcut
of always using the average parameter vector works well
when all of the source tasks are relevant for transfer to
the target task, but this involves expensive hand-selection
of the source tasks. Additionally, hand-selection relies on
qualitative (and sometimes incorrect) judgments that the
selected tasks will transfer well to the target task.

We are exploring several extensions to our method. In this
paper, we required transferability to be symmetric between
two models. However, it has been our experience that of-
ten transfer i→j 6= transfer j→i, showing that transfer is
not always symmetrical in practice. We plan to extend
our method to support directed edges in the transfer graph.
Techniques for spectral analysis of directed graphs have
only been recently developed (Chung, 2005) and using
them in this framework presents significant technical chal-
lenges that we leave to future work. Additionally, we are
conducting a more extensive evaluation of this method, in-
cluding applying it to other domains, such as image recog-
nition.

Acknowledgments

This work was supported in part by NSF ITR #0325329.
We thank Adam Anthony, Blazej Bulka, and Tim Oates for
feedback on this work, and Josh Neil, Eduardo Corona, and
Curtis Storlie for discussions on regularization.

References

Asuncion, A., & Newman, D. (2007). UCI machine learn-
ing repository.

Baker, C. T. H. (1977).The numerical treatment of integral
equations. Oxford: Clarendon Press.

Bakker, B., & Heskes, T. (2003). Task clustering and gat-
ing for Bayesian multitask learning.Machine Learning
Research, 4, 83–99.

Chung, F. (2005). Laplacians and the Cheeger inequality
for directed graphs.Annals of Combinatorics, 9, 1–19.

Chung, F. R. K. (1994).Spectral graph theory. No. 92
in CBMS Regional Conference Series in Mathematics.
Providence, RI: American Mathematical Society.

Drineas, P., & Mahoney, M. W. (2005). On the Nyström
method for approximating a Gram matrix for improved
kernel-based learning.Journal of Machine Learning Re-
search, 6, 2153–2175.

Duffy, D. E., & Santner, T. J. (1989). On the small sample
properties of norm-restricted maximum likelihood esti-
mators for logistic regression models.Communications
in Statistics: Theory and Methods, 18, 959–980.

Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004).
Spectral grouping using the Nyström method. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 26.

Hastie, T., Tibshirani, R., & Friedman, J. (2001).The el-
ements of statistical learning: Data mining, inference,
and prediction. New York: Springer.

Jordan, M., & Jacobs, R. (1994). Hierarchical mixtures of
experts and the EM algorithm.Neural Computation, 6,
181–214.

Kienzle, W., & Chellapilla, K. (2006). Personalized hand-
writing recognition via biased regularization.Proceed-
ings of the Twenty-Third International Conference on
Machine Learning. Pittsburgh, PA.

Le Cessie, S., & Van Houwelingen, J. C. (1992). Ridge
estimators in logistic regression.Applied Statistics, 41,
191–201.

Marx, Z., Rosenstein, M. T., Kaelbling, L. P., & Dietterich,
T. G. (2005). Transfer learning with an ensemble of
background tasks.NIPS 2005 Workshop on Transfer
Learning. Whistler, BC, Canada.

Mitchell, T. M., & Thrun, S. B. (1996). Learning analyti-
cally and inductively. InMind matters: A tribute to Allen
Newell, 85–110. Lawrence Erlbaum Associates.

Pratt, L. Y. (1993).Transferring previously learned back-
propagation neural networks to new learning tasks. Doc-
toral dissertation, Rutgers University.

Rennie, J. (2003). 20 Newsgroups data set, sorted
by date. Available online at http://www.ai.mit.edu/
∼jrennie/20Newsgroups/.

Rosenberg, S. (1997).The Laplacian on a Riemannian
manifold. Cambridge University Press.

Scḧolkopf, B., & Smola, A. J. (2002).Learning with ker-
nels. MIT Press.

Thrun, S., & O’Sullivan, J. (1996). Discovering structure in
multiple learning tasks: the TC algorithm.Proceedings
of the Thirteenth International Conference on Machine
Learning(pp. 489–497). Morgan Kaufmann.

Witten, I. H., & Frank, E. (2000).Data mining: Practical
machine learning tools with Java implementations. San
Francisco, CA: Morgan Kaufmann.

