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Abstract
Current mechanisms for knowledge transfer in deep
networks tend to either share the lower layers be-
tween tasks, or build upon representations trained
on other tasks. However, existing work in non-deep
multi-task and lifelong learning has shown success
with using factorized representations of the model
parameter space for transfer, permitting more flex-
ible construction of task models. Inspired by this
idea, we introduce a novel architecture for sharing
latent factorized representations in convolutional
neural networks (CNNs). The proposed approach,
called a deconvolutional factorized CNN, uses a
combination of deconvolutional factorization and
tensor contraction to perform flexible transfer be-
tween tasks. Experiments on two computer vision
data sets show that the DF-CNN achieves superior
performance in challenging lifelong learning set-
tings, resists catastrophic forgetting, and exhibits
reverse transfer to improve previously learned tasks
from subsequent experience without retraining.

1 Introduction
Much of the success of deep discriminative learning, includ-
ing visual recognition [Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015; He et al., 2016] and image segmen-
tation, stems from the remarkable ability of neural networks
to generalize to unseen data that is drawn from the same un-
derlying data generating process as the training set. Compar-
atively less success has been achieved when deep networks
are deployed in an online multi-task learning (MTL) or life-
long learning fashion [Chen and Liu, 2016]. In these set-
tings, the system faces the more formidable challenge of re-
peatedly generalizing to new data distributions (i.e., tasks),
by leveraging knowledge of previously encountered tasks.
Such a system should improve performance on new tasks
via transfer, without compromising performance (i.e., catas-
trophic forgetting [Kirkpatrick et al., 2017]) on previously
encountered tasks, and additionally permit new knowledge to
benefit previously learned tasks (i.e., reverse transfer [Ruvolo
and Eaton, 2013]). Therefore, in contrast to single-task learn-
ing, lifelong learning systems must exploit the relationships
that exist between the tasks to facilitate transfer.

A natural approach to the lifelong learning problem is to
exploit the compositional nature of neural networks. In gen-
eral, we expect a deep neural net to learn hierarchical features
whose level of abstraction correlates closely with depth in the
network. Many methods for MTL and lifelong learning with
deep nets exploit this property, sharing lower layers of the net-
work between tasks while enforcing separate topmost layer(s)
for each task. Such hard parameter sharing (HPS) methods
typically train the shared lower layers in a multi-task setting,
under the hope that they will acquire universal features suit-
able for multiple related tasks [Baxter, 2000]. These methods
support limited transfer to new tasks by training task-specific
classifiers on top of these pre-trained lower layers.

Rather than imposing rigid task relationships by explicit
weight sharing, it is desirable to learn task relationships or-
ganically from data. Non-deep MTL methods [Kumar and
Daume, 2012; Maurer et al., 2013; Ruvolo and Eaton, 2013]
have shown success with this notion, enabling transfer be-
tween tasks by factorizing the model parameter space via a
shared latent knowledge base. Each task-specific model is
then reconstructed as a linear combination of components
from the shared knowledge base. Although effective in pro-
viding flexible transfer, this approach is currently limited to
learning with shallow models. Deep MTL methods such as
tensor factorization [Yang and Hospedales, 2017], progres-
sive neural networks [Rusu et al., 2016], and dynamic filters
[Jia et al., 2016; Ha et al., 2017] relate multiple deep net-
works and permit transfer, but do not provide sufficiently flex-
ible transfer mechanisms nor support all characteristics (such
as reverse transfer) needed for lifelong learning.

Such a factorized knowledge base used for shallow MTL,
however, could be adapted to connect the weight matrices be-
tween multiple deep networks since a deep network can be
thought of as a stack of shallow models. This factorized form
of the knowledge base would permit flexible transfer between
multiple deep networks, adapting the transfer based on the
similarity of each network’s respective task.

This idea is the focus of this paper, in which we propose
a new shared-knowledge neural architecture that exploits the
structure of convolutional neural networks (CNNs). Inspired
by the success of deconvolutional networks for image seg-
mentation [Noh et al., 2015], we introduce a deconvolutional
approach to share latent knowledge across multiple CNNs.
Our approach, deconvolutional factorization, can be viewed
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Figure 1: The DF-CNN architecture, depicted for two tasks. Each task is modeled
by a CNN (in the gray shaded boxes). The filters of each convolutional layer
are reconstructed from the shared latent knowledge base (blue) via the learned
deconvolutional mapping (orange) and tensor contraction (purple) that facilitate
transfer between the CNNs. The number of layers and the size of each layer’s
output corresponds to the application of our approach to the CIFAR-100 data set.
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Figure 2: Comparison of our approach for soft knowl-
edge sharing to other neural network architectures for
learning multiple tasks (pink, green, and purple de-
note different tasks). This example uses a simplified
three-layer network architecture. Light blue layers are
shared or coupled between task models.

as conceptually analogous to using a sparse factorization of
the linear model parameter space for transfer in shallow MTL
[Kumar and Daume, 2012; Maurer et al., 2013] and lifelong
learning [Ruvolo and Eaton, 2013] methods, but generalized
to deep networks. In our adaptation of factorized transfer to
deep convolutional networks, the model parameters to be fac-
tored are the filters of the convolutions on each layer, and the
sparsity condition follows from the fact that the deconvolu-
tion operator maps from a compact latent representation to a
higher-dimensional feature space. This contrasts with exist-
ing approaches which utilize tensor factorization [Yang and
Hospedales, 2017] with regularization to achieve sparsity.

We evaluate our proposed method on image recognition
in challenging lifelong learning settings, where the system
learns tasks consecutively. Our results showcase the strong
benefits of the flexible transfer process provided by decon-
volutional factorization over HPS, progressive networks, and
other current methods. We also show that our approach
converges rapidly to a high-performance model by utilizing
knowledge transfer, and that it resists catastrophic forgetting.

2 The Deconvolutional Factorized CNN
A lifelong learning system faces a series of consecutive tasks
Z1, . . . ,ZTmax

, and must learn a model (i.e., a classifier) for

each task [Chen and Liu, 2016]. The system has no a priori
information about the task distribution, order, or total num-
ber of tasks Tmax. This paper focuses on the classification
setting, where each task Zt has an associated data feature
space Xt and label space Yt, from which labeled examples
are drawn. Here, each learning task Zt admits an associated
convolutional neural network CNN t : Xt 7→ Yt trained on
labeled data for that task. Each CNN t has d layers and is
trained consecutively, possibly with transfer from any previ-
ously learned tasks Z1, . . . ,Zt−1.

Our architecture, called a deconvolutional factorized CNN
(DF-CNN), seeks to address this lifelong learning problem
using deep convolutional networks with a shared knowledge
base to enable transfer between tasks (Fig. 1). To facilitate
transfer, our architecture maintains a shared latent knowledge
base that connects the various layers across the task-specific
CNNs. Recall that a CNN is composed of multiple layers of
stacked filters, each of which is parameterized. The filters of
the CNNs are generated from the learned latent knowledge
base by the deconvolution operator (transposed convolution),
followed by a tensor contraction. The remainder of this sec-
tion explains this process. Unlike previous methods that in-
volve tensor factorization to achieve sparsity, our proposal is
naturally sparse by virtue of the deconvolution operator.
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2.1 Factorized Transfer
To enable transfer among the different CNN t task models,
we draw inspiration from the use of factorized transfer in
shallow MTL [Kumar and Daume, 2012; Maurer et al., 2013]
and lifelong learning [Ruvolo and Eaton, 2013] methods.
These shallow methods learn a set of T task-specific linear
models parameterized by W = [θ1, . . . ,θT ] ∈ Rd×T and
assume that these model parameters admit a rank-constrained
matrix factorization of the formW = LS, where L ∈ Rd×k

is a basis over the model parameter space, S ∈ Rk×T are
the coefficients over this basis to reconstruct the parameters,
and k is the dimension of the latent space. In effect, these ap-
proaches learn a knowledge base L that represents a shared
subspace for the model parameters, and facilitate transfer to
new tasks by learning models within this subspace.

Since these methods only operate on linear task models, we
cannot adopt them directly for use on deep nets. However, we
show next that we can adapt this notion of a shared knowledge
base in combination with a novel type of factorized transfer
via deconvolution to operate effectively on CNNs.

2.2 Factorized Transfer via Deconvolution
For each convolutional layer l ∈ {1, . . . , d} of each task-
specific CNN t, let W (l)

t ∈ Rh×w×cin×cout denote its corre-
sponding filters where h and w are the filter height and width,
and cin and cout are the numbers of input and output channels.

To enable transfer between the convolutional layers of dif-
ferent CNN t task models, we introduce a task-independent
layer-dependent shared knowledge base L(l) for each layer l,
which is shared across all tasks. Following similar assump-
tions used in factorized transfer for shallow models, we as-
sume that eachW (l)

t is derived from the corresponding shared
latent knowledge base L(l), enabling connections between fil-
ters at the l-th layer of different task models.

Specifically, we utilize a deconvolutional mapping and a
tensor contraction to factorize the filters {W (l)

t }Tt=1 into the
shared knowledge base L(l), which we take to be a 3rd-order
tensor L(l) ∈ Rĥ×ŵ×ĉ. We first deconvolve L(l) into

D
(l)
t = deconv(L(l);V

(l)
t ) , (1)

where D
(l)
t is a 3rd-order tensor of size h× w × c,

V
(l)
t ∈ Rp×p×ĉ×c is the filter of the task-dependent deconvo-

lutional mapping, and p is the spatial size of the deconvolu-
tional filters. The deconvolutional mapping learns to generate
a basis of convolutional filters within L(l). We then apply the
tensor contraction to reconstruct each W (l)

t based on D(l)
t :

W
(l)
t = D

(l)
t • U

(l)
t =

c∑

k=1

D
(l)
t,(·,·,k)U

(l)
t,(k,·,·) , (2)

where U (l)
t is a 3rd-order tensor of size c × cin × cout, and

both subscripts (k, ·, ·) and (·, ·, k) express the elements’ in-
dex in the tensor. Similar to channel-wise convolution, the
tensor contraction expresses the filter as a linear combination
of the basis vectors, transforming D(l)

t to reconstruct the con-
volution filter W (l)

t by changing the size of channels. Note

Algorithm 1 DF-CNN (λ, kbSize , transformSize)

L(1:d) ← randInit(kbSize)
while isAnotherTaskAvailable() do

(Xt, yt, t)← getNextTaskTrainingData()
if isNewTask(t) then(

V
(1:d)
t , U

(1:d)
t

)
← randomInit(transformSize)

end if
while continueBatchTraining() do

// reconstruct NN from shared KB
for l = 1 to d do

D
(l)
t ← deconv(L(l), V

(l)
t )

W
(l)
t ← tensorDot(D

(l)
t , U

(l)
t )

end for
taskNet t ← buildNeuralNet

(
W

(1:d)
t

)

// update shared KB and task-specific transforms
Xb, yb ← drawMiniBatch(Xt, yt)(
L(1:d), V

(1:d)
t , U

(1:d)
t

)

← gradientOptimizer(Xb, yb, taskNet t, λ)
end while

end while

that V (l)
t and U (l)

t are task-specific, and serve to transform
the shared knowledge bases into a model specific to task Zt.

Similar to the work of dynamic filter generation [Jia et al.,
2016; Ha et al., 2017], a single operation can be employed
to expand the knowledge base into a large task-specific filter.
However, in our proposal, deconvolution and tensor contrac-
tion are used instead as a two-staged expansion, distinguish-
ing between the transfer process along the spatial axis of the
images and along the channels of the images. We also explore
two alternate formulations of factorized transfer in the Online
Appendix1 as ablated versions of our approach.

2.3 Training DF-CNN Architecture
Our learning approach must update both the shared knowl-
edge bases and task-specific knowledge transformations
while training on each task in a lifelong setting. The knowl-
edge bases {L(l)}dl=1 and task-specific knowledge trans-
formations {(V (l)

t , U
(l)
t )}dl=1 can be trained end-to-end via

gradient-based optimization. The process of training the
DF-CNN is described in Algorithm 1. As hyperparame-
ters, the algorithm requires the learning rate λ of the op-
timizer, the size of the knowledge bases (kbSize ∈ R3d),
and the dimensions of the task-specific tensors V (l)

t and U (l)
t

(transformSize ∈ R(4d+3d)).
The shared knowledge bases {L(l)}dl=1 are randomly ini-

tialized prior to learning the first task. Upon receiving the
labeled training data for each new task Zt, the task-specific
knowledge transformations {(V (l)

t , U
(l)
t )}dl=1 are first initial-

ized randomly, and then these parameters along with the
knowledge bases {L(l)}dl=1 are updated according to the ob-
served training instances (Xt, yt). During training on task

1The online appendix is available on the third author’s website at
http://www.seas.upenn.edu/∼eeaton/papers/Lee2019Learning.pdf
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Zt, the knowledge transformations for all tasks except t are
held unchanged, while the shared knowledge bases are up-
dated. Since the convolutional filters for each CNN t are
generated dynamically from the shared knowledge bases,
changes to {L(l)}dl=1 can affect previously trained networks
CNN 1, . . . ,CNN t−1 without retraining those networks; this
phenomenon is known as reverse transfer [Ruvolo and Eaton,
2013]. Despite the lack of explicit mechanisms to prevent
catastrophic forgetting [Rusu et al., 2016] (i.e., severe neg-
ative reverse transfer) in these previously learned models,
we show empirically that deconvolutional factorization of the
model parameter space resists catastrophic forgetting and in-
deed exhibits positive reverse transfer—these results mirror
similar results on lifelong learning of shallow linear models
via factorized transfer [Ruvolo and Eaton, 2013].

3 Alternative Approaches to Deep Multi-Task
and Lifelong Learning

Now that we have introduced the DF-CNN, we briefly com-
pare it to alternative approaches for sharing inter-task knowl-
edge in deep networks (see Fig. 2).

Explicit weight-sharing. Hard parameter sharing (HPS) is
widely used for MTL and lifelong learning in neural net-
works [Caruana, 1993; Yim et al., 2015; Ranjan et al., 2017;
Huang et al., 2013; Bell and Renals, 2015], sharing lower
network layers for feature extraction with task-specific output
layers. The lowest layers can also be specific to the input do-
main to allow adaptation across different feature spaces. The
explicit sharing of layers forces them to learn universal fea-
tures for multiple tasks, with the task-specific layers mapping
from the universal features to the output appropriate to each
task. One variant of this architecture correlates task-specific
fully-connected layers by a tensor normal distribution to learn
the relations between tasks [Long et al., 2017]. Moreover,
there are deep lifelong learning methods that automatically
modify the architecture and size of the neural network [Lu
et al., 2017; Yoon et al., 2018]. This type of approach can
add hidden units as necessary, split them into disjoint groups
for different feature spaces, and consolidate groups of hidden
units to avoid over-fitting and enforce transfer between tasks.
Although these methods are more flexible than HPS for learn-
ing task relationships, they still explicitly share lower layers
across all or partial sets of tasks. In contrast, our approach
uses a shared knowledge base to flexibly relate layers across
the task CNNs instead of explicitly sharing them.

Pipelined transfer. Instead of learning a monolithic net-
work with explicit weight sharing, another approach to
deep MTL and lifelong learning constructs task-specific sub-
networks that learn each task, but make additional lateral con-
nections to utilize learned representations from other tasks
[Misra et al., 2016; Rusu et al., 2016; Gao et al., 2019;
Pinto and Gupta, 2017; Liu et al., 2017b]. This architec-
ture enables the network to learn and maintain task-dependent
low- and high-level features, so it is more robust to handling
diverse tasks and to avoiding catastrophic forgetting than ex-
plicit weight sharing. However, these approaches need to
train the cross-task connections, so the size of the network

increases at most quadratically with the number of tasks. The
quantity of task-specific parameters in our DF-CNN is lin-
early proportional to the number of tasks Tmax , so the total
network size grows more slowly with Tmax while maintain-
ing the flexibility of sharing representations at any level.
Shared knowledge base. Approaches that transform
shared knowledge to construct task-specific networks have
a clear connection to our architecture. Sharable detectors
for face alignment [Liu et al., 2017a] have used the sparse
representation of a shared basis to express a 2nd-order ten-
sor of regression sub-networks for facial landmarks. As an-
other example, deep MTL via tensor factorization [Yang and
Hospedales, 2017] employed tensor decomposition to de-
fine a sharable basis and task-specific mappings of both 2nd-
order tensors for fully-connected layers and 4th-order tensors
for convolutional layers. Despite similar underlying ideas,
our method exploits a deconvolution operation for mapping
between the knowledge base and the task-specific filter pa-
rameters, thereby enabling the network to extract and share
more abstract knowledge across tasks. The key advantage of
our deconvolutional factorization is that it provides a flexible
mechanism for sharing knowledge between task CNNs, al-
lowing the architecture to flexibly reuse knowledge based on
actual task relationships.
Dynamic filter generation. Our proposed idea is also re-
lated to architectures that employ dynamic filters [Jia et al.,
2016; Ha et al., 2017], which dynamically generate task-
specific CNN filters conditioned upon each task’s input. The
filter-generating network of these dynamic filters can serve
to facilitate transfer across tasks. These works focus pri-
marily upon learning domain-specific transformations (e.g.,
steerable filters) to relate rather similar tasks, whereas our
approach learns shared representations to facilitate flexible
transfer between tasks at multiple levels of abstraction. Ad-
ditionally, the filter-generating networks typically employ a
general-purpose neural network architecture (i.e., a multi-
layer perceptron or a convolutional network), which takes
only the input space and desired output spaces into considera-
tion. Consequently, the filter-generating networks and result-
ing filters may not differentiate between spatial patterns and
patterns across channels—key properties of convolutional fil-
ters [Chen et al., 2017; Hu et al., 2018]—which is distin-
guished in the DF-CNN by separate deconvolution and tensor
contraction steps.

4 Evaluation on Lifelong Learning Scenarios
We evaluated our proposed approach against a variety of al-
ternative methods on lifelong learning scenarios using two
visual recognition data sets. For completeness, an empirical
evaluation on MTL scenarios is included in the Appendix1.

4.1 Baseline Approaches
Our experiments compare our proposed approach to single-
task learning and three baselines that are representative of the
different approaches described in Section 3:
Single-task learning. STL trains a separate and isolated
network for each task. STL has a clear disadvantage against
transfer-based methods in the few-data or noisy-data regime.
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Hard parameter sharing. HPS [Caruana, 1993] involves
sharing the lower layers across tasks, with separate task-
specific output layers. A useful heuristic which we fol-
low is that all convolution layers are shared while all fully-
connected layers are task-specific. HPS is expected to per-
form well when tasks share a common set of useful represen-
tations, but may fail when tasks are sufficiently dissimilar.

Progressive neural networks. ProgNN [Rusu et al., 2016]
allows each task model to build upon its predecessors. Note
that their paper applied the architecture to reinforcement
learning, while our evaluation focuses on supervised settings.
For the construction of the ProgNNs, we reduced the dimen-
sion of the previous task models’ features by a factor of two
(for details, see [Rusu et al., 2016, Section 2: Adapters]).

Dynamically expandable network. DEN [Yoon et al.,
2018] grows the size of the neural network according to the
performance on the current task. The DEN adapts to a new
task by a combination of selective retraining, expansion of
the network to improve performance, and splitting to avoid
catastrophic forgetting. We used the DEN implementation
provided by the original authors.

We also evaluated the performance of tensor factorization
[Yang and Hospedales, 2017] on MTL scenarios (see the Ap-
pendix). However, the method showed reasonable perfor-
mance only when it was initialized by trained STL models,
so we omitted the tensor factorization method from the life-
long learning experiments reported here in the main paper.

4.2 Experimental Setup
We evaluated all approaches in a lifelong learning setting, in
which tasks were presented sequentially.

Data sets and tasks. We generated two lifelong learn-
ing problems using the CIFAR-100 [Krizhevsky and Hinton,
2009] and Office-Home [Venkateswara et al., 2017] data sets.
For CIFAR-100, we created a series of 10 image classifica-
tion tasks, where each task consists of ten distinct classes.
For each task, we sampled only 4% of the available CIFAR-
100 data following a lifelong learning assumption of limited
per-task training data [Chen and Liu, 2016], and split it into
training and validation sets in the ratio 5.6:1 (170 training
and 30 validation instances per task). We used all CIFAR-
100 test images for the test set (1,000 instances per task). The
Office-Home dataset is naturally split into multiple domains,
and we focus on two of those domains: Product images and
Real-World images. We created 5 image classification tasks
from each of these two domains, resulting in 10 tasks with
13 image classes per task. There is no pre-specified train-
ing/validation/test split in the original data set, so we ran-
domly split the data into those with a 60%, 10%, and 30%
ratio, respectively. This results in approximately 550 train-
ing, 90 validation, and 250 test instances.

Methodology. All models were trained end-to-end on only
one task at any moment, and the task was switched to the next
one after every 2,000 (CIFAR-100) and 1,000 (Office-Home)
training epochs, regardless of the model’s convergence. The
optimal hyper-parameters for each model were determined by
performance on the validation sets. In addition to the lifelong

learning baseline models, we compared two versions of STL:
one with 3.28M (CIFAR-100) or 26.8M (Office-Home) pa-
rameters total (328k or 2.68M per individual task model) and
the other with 9.35M (CIFAR-100) or 129.3M (Office-Home)
parameters total (935k or 12.9M per task model). Our full
DF-CNN has 7.96M (CIFAR-100) or 201.8M (Office-Home)
parameters total, so we also examined a reduced-size DF-
CNN with 2.8M parameters total in order to better match the
total number of parameters of the baseline approaches in the
CIFAR-100 experiments. Details of training process, archi-
tecture of the networks and hyper-parameters used for each
data set are described in Appendix B. Note that, since the
purpose of the evaluation is to compare the approaches for
knowledge transfer across tasks in a lifelong learning setting,
the experiment design (and consequently individual model
performance) may differ from other single-task-focused pub-
lications on these methods or data sets.
Metrics. We assessed performance of our DF-CNN as well
as aforementioned approaches by measuring accuracy on the
held-out test set for all learned tasks at each timestep. To
aggregate performance across tasks, we also computed the
following metrics:
• Peak Per-Task Accuracy: The best test accuracy of each

task during its training phase. This metric focuses on the
approach’s peak performance on the current task.
• Catastrophic Forgetting Ratio: The ratio of a task’s test

accuracy after training on subsequent tasks to its peak
per-task accuracy. This ratio shows how much the ap-
proach can maintain its performance on older tasks.
• Convergence: We measure the convergence of training

on a task as the number of epochs over the training set
needed for the test accuracy to reach 98% of its peak per-
task accuracy. The number of training epochs till con-
vergence shows the effect of knowledge transfer from
previously learned tasks.

4.3 Results on Lifelong Learning
The performance of all approaches is summarized in Fig-
ures 3 (CIFAR-100) and 5 (Office-Home). For the CIFAR-
100 experiments, we also depict the lifelong learning pro-
cess by visualizing the dynamic test accuracy of each task
model over time, averaged over 5 trials, in Fig. 4. Once a task
has been learned, we repeatedly evaluated its model’s perfor-
mance as the system learns more tasks, exploring the effect
of learning subsequent tasks on previous task models. Sig-
nificant decreases in task performance after training indicate
catastrophic forgetting [Kirkpatrick et al., 2017]; increases
in performance when training on other tasks indicate (posi-
tive) reverse transfer. The counterpart to Fig. 4 for the Office-
Home experiments is in Appendix D.

First, we can observe that HPS and DEN suffer from catas-
trophic forgetting as the shared layers were adapted to new
tasks, as shown by the rapid decline in performance once
learning on each task finishes (Fig. 4a as well as Fig. 3b
and Fig. 5b). Additionally, both models could not achieve
a peak per-task accuracy comparable to or better than that
of STL consistently in the the CIFAR-100 experiments, and
even HPS did not converge to peak per-task accuracy faster
than STL. This means that the adaptation of the knowledge
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Model Peak Acc. Time (10k sec)
STL (small) 31.2%±2.2 4.99±0.007
STL (large) 34.3%±1.1 5.46±0.005

HPS 24.7%±0.6 5.14±0.014
ProgNN 31.3%±1.1 9.21±0.019

DEN 30.2%±0.4 1.12±0.028
DF-CNN 37.2%±1.3 6.66±0.013

DF-CNN (2.8M) 36.2%±3.5 5.34±0.008

(a) Peak per-task accuracy and training time
with 95% confidence intervals
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(b) Catastrophic forgetting ratio
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Figure 3: Performance metrics of models on CIFAR-100 lifelong learning tasks, averaged over all independent training trials. Our DF-CNN
framework shows less catastrophic forgetting than HPS while achieving peak per-task accuracy better than others and being trained faster
than others in terms of the speed of convergence.

(a) Hard-Parameter Sharing (2.69M parameters total) (b) Progressive Neural Net (3.51M parameters total)

(c) DF-CNN (7.96M parameters total) (d) DF-CNN (2.80M parameters total)

Figure 4: Mean test accuracy in lifelong learning on CIFAR-100. Each color corresponds to one task by presentation order. Once a task has
been learned (the thicker jagged part of the learning curves), the continuation of the line depicts the task model’s performance as the system
learns future tasks. Any significant decrease corresponds to catastrophic forgetting. The dark and light gray dotted lines show, respectively,
the best test accuracy of a small STL model (3.28M parameters) and a large STL model (9.35M parameters). Note the higher performance of
DF-CNN over all other methods and even the larger STL model, with relatively little forgetting overall. Best viewed in color.

in these explicit weight-sharing models is not guaranteed to
have a positive effect on training, even after the neural net-
work shifts its attention to focus more on current tasks and
forget knowledge of previous tasks.

In contrast to HPS and DEN, ProgNN is able to retain its
performance on previous tasks after learning new tasks, be-
cause it is designed not to update the parameters for previ-

ous tasks. The lateral connections of ProgNN improved test
accuracy in a few tasks (e.g., the 7–9th tasks of the CIFAR-
100 experiment), but the benefit of transfer was marginal in
comparison with the single-task learners. Moreover, ProgNN
requires approximately twice as much training time as others.

DF-CNN showed significant improvement in peak per-task
accuracy over STL, HPS, and ProgNN for the CIFAR-100 ex-
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Model Peak Acc. Time (10k sec)
STL (small) 45.5%±0.5 3.79±0.009
STL (large) 51.9%±0.9 6.09±0.005

HPS 52.0%±0.7 3.79±0.012
ProgNN 46.4%±1.0 11.7±0.003

DEN 31.6%±1.0 4.09±0.010
DF-CNN 49.1%±0.6 4.11±0.004

(a) Peak per-task accuracy and training
time with 95% confidence intervals
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(b) Catastrophic forgetting ratio
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(c) Speed of convergence

Figure 5: Performance metrics on Office-Home lifelong learning tasks, averaged over all independent training trials. DF-CNN shows almost
no catastrophic forgetting and achieves a good level of performance faster than other baselines.

periments, and peak per-task accuracy better than STL for the
Office-Home experiments. Moreover, DF-CNN converges to
98% of peak per-task accuracy more than twice as fast as
other approaches do. The improvement in peak per-task ac-
curacy compared to STL, together with the improved conver-
gence speed relative to STL, demonstrate positive knowledge
transfer from older tasks within the DF-CNN framework.

The performance of previous task models within the DF-
CNN deteriorated slightly as the system observed new tasks
because the shared knowledge base was updated by the new
tasks without consideration to previous tasks (Fig. 3b and
5b). However, the rate of losing performance is much slower
than the degradation of HPS and DEN in both lifelong learn-
ing experiments, and we can even observe performance re-
covering over time (Fig. 4c). Especially, in the CIFAR-
100 experiments (Fig. 4c), the performance of the model on
the earliest tasks appears to have the most degradation, and
it maintains almost constant post-training performance once
the shared knowledge base became mature (e.g., the 4-10th
tasks). Moreover, we can find positive reverse transfer of
knowledge from new tasks to older tasks, starting at the 8th
task of the CIFAR-100 experiments, which had not occurred
during the training of other baseline models.

The reduced-size DF-CNN (∼2.8M trainable parameters)
catastrophically lost its performance on the first task be-
cause of its reduced capacity of the shared knowledge. Even
with the limited capacity of both shared knowledge and
task-specific knowledge transformation, the reduced-size DF-
CNN still showed improvement in accuracy, speed of conver-
gence and robust retention of performance on previous tasks
as compared to the baselines. These results support the ben-
efit of knowledge transfer between tasks through the shared
knowledge and deconvolutional mapping.

In summary, the alternative approaches to lifelong learn-
ing achieved improvement in peak per-task accuracy in com-
parison with STL on one of two data sets, but they slowly
converged to their peak performance and showed other weak-
nesses such as catastrophic forgetting or large training time.
Contrary to this, our DF-CNN achieved good peak per-task
accuracy, fast convergence, knowledge retention and reason-
able training time simultaneously. This result supports that
our DF-CNN is able to extract and transfer knowledge be-
tween tasks more flexibly than competing methods while re-
sisting catastrophic forgetting in the lifelong setting.

5 Conclusion
Deconvolutional factorization provides an effective means of
knowledge transfer between CNNs in lifelong learning set-
tings. Even though our DF-CNN architecture must train
more parameters as compared to other approaches with the
same base model (i.e., the individual task CNNs), it con-
verges faster while providing comparable or better accuracy
than competing approaches. Critically, the use of deconvolu-
tional factorization and tensor contraction provides for flex-
ible transfer between tasks, enabling the DF-CNN to resist
catastrophic forgetting.
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A Alternative Formulations of
Deconvolutional Factorization

The main paper framed deconvolutional factorization using
a combination of deconvolution and a tensor contraction for
transfer. This section describes two alternate formulations of
deconvolutional factorized transfer. These alternative formu-
lations can be thought of as ablated versions of our approach.
Our evaluation of these alternatives in subsequent sections of
the Appendix provides insight into how each aspect of our
approach contributes to the overall transfer performance.

The two alternatives are described below:

(a) DF-CNN.direct: Instead of the two-staged expansion
via deconvolution and tensor contraction, the direct al-
ternative only uses the deconvolutional mapping to con-
struct the task-specific convolutional filter, eliminating
the tensor contraction. The resulting 3rd-order tensor
D

(l)
t has h × w × (cin · cout) elements, which can be

reshaped to the appropriate shape of the convolutional
filter (h× w × cin × cout).

(b) DF-CNN.tc2: Tensor contraction in the main paper
used a 3rd-order tensor to expand the output of the
deconvolutional mapping along two channels (cin and
cout) at the same time. Alternatively, it is also pos-
sible to break the tensor contraction into two tensor
contractions using 2nd-order tensors Ũ (l)

t,1 ∈ Rc1×cin and

Ũ
(l)
t,2 ∈ Rc2×cout . This enforces the expansion related to

tensor contraction to be specific to each channel.

We evaluated these two formulations on multi-task learn-
ing scenarios and compared them to the DF-CNN formulation
from the main paper and the other baselines. The evaluation
of each formulation can be found in Appendix C.

B Evaluation Setup
This section provide additional details on the evaluation from
the main paper, as well as the experimental setup used for the
MTL experiments included in this Appendix.

B.1 Training Procedures of Multi-Task and
Lifelong Learning

We evaluated all baseline methods and our DF-CNN method
on both multi-task and lifelong learning scenarios.

Multi-task setting: The MTL model switches its accessi-
ble task at every training epoch, alternating among the tasks
to train them all simultaneously in a round-robin setup. At
each epoch, a data set (Xt, Yt) ⊆ (Xt,Yt) of a single task
is chosen uniformly at random from the set of possible tasks
t ∈ {1, . . . , Tmax}. The learning model is trained on mini-
batches sampled from the data set (Xt, Yt) without repetition.
Whenever the data set becomes exhausted, another task and
its data set are chosen at random and mini-batch training pro-
ceeds on the chosen task.

Lifelong learning setting: For a specific trial, the set
of tasks is first permuted to obtain an ordering; we can
renumber those tasks to respect the permutation ordering as
Z1, . . . ,ZTmax

. Then, for each t ∈ {1, . . . , Tmax} sequen-
tially, the learning model is trained on mini-batches of the

task’s data set (Xt, Yt) ⊆ (Xt,Yt) for the fixed number of
epochs. Once that fixed number of epochs is reached, learn-
ing proceeds to the next task in the sequence.

B.2 Additional Data Sets for the MTL Scenarios
For the MTL scenarios, we created visual recognition tasks
from two well-known image recognition data sets: MNIST
[LeCun et al., 1998] and the more challenging CIFAR-10
[Krizhevsky and Hinton, 2009]. For each data set, we con-
structed task distributions corresponding to distinct one-vs-all
or binary classification tasks, which we refer to as the homo-
geneous and heterogeneous task distributions, respectively, as
Yang and Hospedales [2017] did. Each task in the homo-
geneous distribution involves distinguishing one class from
all remaining classes. In contrast, each task in the hetero-
geneous distribution involves distinguishing images of two
classes, which are disjoint from all other tasks. The heteroge-
neous distribution is more challenging than the homogeneous
one because the heterogeneous tasks share no common data,
unlike the homogeneous tasks.

B.3 Network Architectures and Hyper-parameters
All architectures transfer knowledge between the convolution
layers of the task models, while the fully-connected layers
are task-independent. For fair comparison, the configuration
of the architectures (e.g., the sizes of the convolutional fil-
ters) of all models were set to be the same. Additionally, to
survey the effect of the size of the trainable model on perfor-
mance, some experiments employed larger STL models with
more trainable parameters, or a reduced-size DF-CNN with
fewer parameters. Method-specific settings (e.g., the size of
the knowledge base in our approach, the tensor factorization
method, etc.) were tuned independently using a validation-
based grid search.

Below we describe the parameters used for each combina-
tion of data set and experiment setting.

MNIST MTL: The task networks for all methods have two
layers of convolution and max-pooling followed by two fully-
connected layers. The first convolution layer has 32 filters of
size 5 × 5, and the second convolution layer has 64 filters
of size 5 × 5. All convolution layers use ReLU activation
and are followed by max-pooling layers, whose size is 2 × 2.
After these alternating convolution and max-pooling layers,
we include a dropout layer followed by two fully-connected
layers with 32 and 1 output(s). The activation functions of
these layers are ReLU and softmax, respectively.

The models were trained by minimizing the cross-entropy
loss on sampled mini-batches of size 10. The RMSProp op-
timizer was used with an initial learning rate of 0.001 and
exponential decay of 0.004.

CIFAR-10 MTL: The networks have four layers of convo-
lution and two max-pooling followed by two fully-connected
layers. The first and second convolution layers have 32 filters
of size 3× 3, and other two convolution layers have 64 filters
of size 3 × 3. All convolution layers use ReLU activation.
The second and the fourth convolution layers are followed by
max-pooling layers, and the size of all max-pooling layers is
2× 2. The last max-pooling layer is followed by one dropout



layer, and then two fully-connected layers with 64 and 1 out-
put(s). The activation functions of the fully-connected layers
are ReLU and softmax. A reduced DF-CNN whose number
of parameters is comparable to other baselines has {24, 24,
48, 48} filters in the convolutional layers and 32 hidden units
in the first fully-connected layer.

The models were trained by minimizing the cross-entropy
loss on sampled mini-batches of size 20. The RMSProp op-
timizer was used with an initial learning rate of 0.00025 and
exponential decay of 0.001.

CIFAR-100 lifelong learning: All models follow the same
architectural settings of the CIFAR-10 MTL experiments. We
compared lifelong learning models against two versions of
STL: one that used 3.28M trainable parameters total (328K
per individual CNN), and one with 9.35M parameters total
(935K per CNN)—many more total parameters than in our
DF-CNN. The larger STL model had convolutional layers of
{48, 48, 96, 96} filters and a first fully-connected layer of
128 hidden units. A smaller DF-CNN whose number of pa-
rameters (2.8M) is comparable to the baselines used convo-
lutional layers of only {24, 24, 48, 48} channels and a first
fully-connected layer of 32 hidden units.

The models were trained to minimize the cross-entropy
loss by RMSProp optimizer on sampled mini-batches of size
10. The initial learning rate is 0.0001 with an exponential
decay of 0.00025.

Office-Home lifelong learning: The architecture of all
models is the same as published code of the original work
[Venkateswara et al., 2017] (https://github.com/hemanthdv/
da-hash). Because of memory saturation within the GPU, we
removed the last convolutional layer from the architecture in
the original work and used three fully-connected layers with
256, 64, and 13 outputs. The larger STL model had convo-
lutional filters of {128, 256, 512, 512} channels and fully-
connected layers with 1024 and 128 hidden units (there were
no changes in the fully-connected layers for outputs).

The models were trained to minimize the cross-entropy
loss by RMSProp optimizer on sampled mini-batches of size
16. The initial learning rate is 0.000005 with an exponential
decay of 0.001.

C Evaluation on Multi-Task Scenarios
In addition to the lifelong learning experiments given in the
main paper, we also evaluated the DF-CNN and baseline ap-
proaches in MTL experiments on the MNIST and CIFAR-10
data sets.

Additional baseline model for the MTL experiments:
Tensor factorization (TF) [Yang and Hospedales, 2017] for
parameter sharing has been shown to perform as good or bet-
ter than the best MTL model of previous work on the MNIST,
AdienceFaces, and Omniglot data sets. Our experiments used
their released code for sharing the parameters of the convolu-
tion layers, and we added task-specific fully-connected layers
on top of the convolution layers.

Methodology: We evaluated the two data sets at five dif-
ferent fractions of the available training data to form training
and validation sets: 3%, 5%, 7%, 10%, and 30% for MNIST
and 4%, 10%, 30%, 50%, and 70% for CIFAR-10. For each

randomly selected fraction, the instances were split into train-
ing and validation sets in the ratio 5:1. For MNIST, the sizes
of the test sets are 2,000 and 1,800 instances per task for the
homogeneous and heterogeneous distributions, respectively.
For CIFAR-10, the test data is 2,000 instances per each task,
which corresponds to all of the testing portion of the data set.

MTL Results: Tables 1 and 2 show the mean accuracy
of the methods for MTL on the homogeneous and heteroge-
neous task distributions, averaged over 10 trials. On MNIST,
HPS outperformed all other baselines in the homogeneous
setting. Hand-written digits share similar features between
different digit classes, so explicit layer sharing in HPS gave it
an advantage, which disappeared on the heterogeneous tasks.
Other MTL models also transfer knowledge between tasks,
but their performance was comparable to or worse than STL,
except for DF-CNN.direct, which was better.

In the heterogeneous MNIST tasks, STL is unable to per-
form well, and HPS loses its competitive edge compared to
the soft parameter sharing of TF and DF-CNN. In this more
difficult task distribution, TF and DF-CNN are able to exploit
their additional degrees of freedom to flexibly fit the diverse
tasks. Despite extensive work and correspondence with the
authors, on the homogeneous tasks we were unable to repro-
duce the TF results by Yang and Hospedales [2017], although
TF does outperform HPS for the heterogeneous case.

The evaluation on CIFAR-10 exhibited several aspects
which qualitatively differentiate it from MNIST. First and
foremost, STL exhibited better relative accuracy, especially in
the limited-data regime, compared to MNIST. Interestingly,
however, HPS was unable to outperform STL even using 90%
of the training data, which highlights the weakness of HPS in
learning shared features for disparate tasks. We hypothesize
that the CIFAR-10 classes have less common features than
MNIST, perhaps explaining this negative transfer in HPS.
In contrast to the simpler MNIST data set, DF-CNN.direct
and DF-CNN outperformed all other baselines on CIFAR-10,
even when it has a comparable number of parameters to HPS.
This showcases the advantage of DF-CNN’s flexible transfer
when tasks are increasingly complex and differentiated.

TF showed weak performance on the CIFAR-10 MTL ex-
periments, so we also trained TF by initializing its parame-
ters to those optimized for STL (as in [Yang and Hospedales,
2017]). Using TF with such good initialization (“TF (Distilla-
tion)” in Table 2) shows improvement from STL when given
a sufficient amount of training data, but the overall amount
of training time (STL for initialization and TF) is more than
twice as much as other methods.

DF-CNN.direct outperformed DF-CNN and DF-CNN.tc2
in most of the MTL experiments by virtue of its large num-
ber of trainable parameters. However, the performance ben-
efit from such excessive trainable parameters is offset by the
larger data and computational time requirements for training.
On the other hand, DF-CNN.tc2 has the advantage over the
other two DF-CNN models of having fewer parameters to
learn. Its limitation, however, is that it is difficult to achieve
accuracy comparable to DF-CNN in the MTL experiments.

https://github.com/hemanthdv/da-hash
https://github.com/hemanthdv/da-hash


MTL Type Model Model
Size

Training Data Fraction
3% 5% 7% 10% 30%

MNIST
Homogeneous

STL 1.5M 3.23% 2.16% 1.95% 1.50% 0.88%
HPS 1.1M 2.77% 1.83% 1.60% 1.28% 0.81%
TF 1.5M 3.49% 2.43% 2.24% 1.65% 0.93%

DF-CNN.direct 12.9M 2.77% 2.02% 1.82% 1.36% 0.75%
DF-CNN 2.6M 3.25% 2.24% 1.98% 1.55% 0.92%

DF-CNN.tc2 1.5M 3.29% 2.32% 1.91% 1.58% 0.92%

MNIST
Heterogeneous

STL 0.8M 0.99% 0.83% 0.72% 0.39% 0.15%
HPS 0.6M 0.95% 0.67% 0.61% 0.40% 0.16%
TF 0.8M 0.95% 0.72% 0.52% 0.40% 0.17%

DF-CNN.direct 5.0M 0.82% 0.57% 0.45% 0.34% 0.14%
DF-CNN 1.1M 0.78% 0.59% 0.46% 0.35% 0.17%

DF-CNN.tc2 0.8M 0.92% 0.61% 0.57% 0.40% 0.16%

Table 1: Summary of error rates in the MNIST MTL tasks. Hard parameter sharing performed the best on homogeneous distributions.
However, on heterogeneous MTL, models using soft constraints on parameter sharing achieved better accuracy.

MTL Type Model Model
Size

Training Data Fraction
4% 10% 30% 50% 70%

CIFAR-10
Homogeneous

STL 3.3M 26.0% 21.8% 17.2% 15.3% 14.3%
HPS 2.7M 31.5% 29.2% 20.5% 15.9% 14.5%
TF 3.3M 38.8% 33.8% 27.9% 24.0% 20.8%

DF-CNN 8.0M 26.5% 23.0% 17.3% 14.5% 12.7%
DF-CNN 2.3M 27.9% 23.2% 17.9% 15.6% 13.8%

DF-CNN.tc2 3.3M 29.0% 24.9% 19.4% 16.8% 15.1%
TF (Distillation) 3.3M 28.1% 22.4% 16.5% 14.2% 12.9%

CIFAR-10
Heterogeneous

STL 1.6M 19.6% 15.3% 10.6% 9.2% 8.2%
HPS 1.4M 22.1% 19.7% 12.4% 9.6% 8.3%
TF 1.7M 32.7% 29.9% 20.5% 15.1% 11.9%

DF-CNN.direct 22.8M 19.8% 15.4% 9.8% 7.7% 6.7%
DF-CNN 4.0M 20.6% 16.5% 10.5% 8.1% 6.9%
DF-CNN 1.2M 21.6% 16.6% 11.2% 8.8% 7.4%

DF-CNN.tc2 1.6M 23.4% 18.2% 11.9% 10.1% 8.6%
TF (Distillation) 1.7M 20.2% 14.5% 9.5% 7.7% 6.9%

Table 2: Summary of error rates in the CIFAR-10 MTL tasks. Because of the complexity of the sub-tasks of MTL, single-task learning
outperformed the multi-task baselines. Our DF-CNN.direct, DF-CNN, and even a reduced-size DF-CNN with comparable numbers of
trainable parameters met or exceeded the accuracy of single-task learning once given sufficient training data.

D Additional Results on Lifelong Learning

This section provides additional results from the lifelong
learning experiments that were omitted from the main paper
due to space limitations. Fig. 6 visualizes the average test ac-
curacy of STL and the DF-CNN.tc2 model on the CIFAR-100
experiments; these plots augment Fig. 4 in the main paper.
Fig. 7 visualizes the lifelong learning process on the Office-
Home experiments, depicting the averaged test accuracy of
STL, HPS, ProgNN, and DF-CNN. These plots complement
the results in Fig. 5.

We now describe additional analysis of these results. Note
that the test accuracy of STL (on both experiments) increases
slowly and reaches the peak accuracy at the end of training on
the task. When it is compared with the test accuracy of DF-
CNN and DF-CNN.tc2, which reach their peak accuracy with
relatively few epochs, this slow convergence of STL shows

the benefit of transfer in learning a new task.
For the Office-Home experiments, HPS achieved improve-

ments in peak per-task accuracy and convergence speed on
the latest tasks (tasks 5 to 10). This positive transfer is pos-
sible within the Office-Home experiments because the earli-
est five tasks and the latest five tasks are image classification
tasks with the same image classes, except for the background
of the images. Therefore, explicit sharing of parameters is
able to encourage positive knowledge transfer from previous
to new tasks. Despite the benefit of explicit weight sharing,
HPS still suffers from catastrophic forgetting.

ProgNN shows almost the same behavior as STL on Office-
Home. ProgNN introduces more parameters through the lat-
eral connections and requires more training time than STL
and the other baseline methods, However, transfer via these
lateral connections in ProgNN provides little benefit over
STL, and no discernible benefits over DF-CNN.



(a) Single-Task Learning (3.28M parameters total) (b) DF-CNN.tc2 (3.00M parameters total)

Figure 6: Mean test accuracy of STL and DF-CNN.tc2 in a lifelong learning setting on CIFAR-100. These plots augment Figure 4 in the
main paper. Best viewed in color.
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(a) Single-Task Learning (26.8M parameters total)
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(b) Hard-Parameter Sharing (12.3M parameters total)
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(c) Progressive Neural Net (32.7M parameters total)
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(d) DF-CNN (201.8M parameters total)

Figure 7: Mean test accuracy of a STL, HPS, ProgNN, and DF-CNN in a lifelong learning setting on Office-Home. Interestingly, the DF-CNN
showed negligible catastrophic forgetting while learning on new tasks. Best viewed in color.

DF-CNN required a few tasks to mature the shared knowl-
edge base before maintaining the accuracy of previously
learned tasks on the CIFAR-100 experiments, but it is able
to maintain the accuracy of even the first task on the Office-
Home experiments. Despite the lack of forgetting on the ear-
liest tasks, the peak per-task accuracy of the earliest tasks is
sub-optimal compared to STL. It is not until the later tasks,
once the knowledge base is sufficiently mature, that the DF-
CNN is able to match or exceed the performance of STL. At
this time, we can see the positive effect of knowledge trans-

fer (fast convergence and good peak per-task accuracy) on the
later tasks in the DF-CNN.

Interestingly, DF-CNN.tc2 on the CIFAR-100 experiments
shows qualitatively similar behavior to DF-CNN on Office-
Home. Training a new task model using DF-CNN.tc2 does
not negatively affect previously learned task models, but its
peak performance on the earliest tasks are not optimal in com-
parison with STL (grey dotted line in Fig. 6b). Again, once
the knowledge base matures sufficiently, for later tasks we see
similar improvements due to transfer.
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