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Abstract	  
In	  a	  lifelong	  learning	  framework,	  an	  agent	  acquires	  knowledge	  
incrementally	  over	  consecu8ve	  learning	  tasks,	  con8nually	  building	  upon	  its	  
experience.	  Recent	  lifelong	  learning	  algorithms	  have	  nearly	  iden8cal	  
accuracy	  to	  batch	  mul8-‐task	  learning	  methods	  while	  learning	  tasks	  
sequen8ally	  in	  over	  1,000x	  less	  8me.	  In	  this	  work,	  we	  further	  improve	  the	  
scalability	  of	  lifelong	  learning	  by	  developing	  curriculum	  selec8on	  methods	  
that	  enable	  an	  agent	  to	  ac8vely	  select	  the	  next	  task	  to	  learn	  in	  order	  to	  
maximize	  performance	  on	  future	  learning	  tasks.	  We	  demonstrate	  that	  
ac8ve	  task	  selec8on	  is	  highly	  reliable	  and	  effec8ve,	  allowing	  an	  agent	  to	  
learn	  high	  performance	  models	  using	  up	  to	  50%	  fewer	  tasks	  than	  when	  the	  
agent	  has	  no	  control	  over	  the	  task	  order.	  We	  also	  explore	  a	  variant	  of	  
transfer	  learning	  in	  the	  lifelong	  learning	  seGng	  in	  which	  the	  agent	  can	  
focus	  knowledge	  acquisi8on	  toward	  a	  par8cular	  target	  task.	  

Paul	  Ruvolo1,2	  	  	  	  	  	  	  	  	  	  Eric	  Eaton1,3	  
Ac've	  Task	  Selec'on	  for	  Lifelong	  Machine	  Learning	  

Introduc'on	  
Goal:	  	  Develop	  intelligent	  agents	  that	  
1. Quickly	  learn	  new	  tasks	  
2. Learn	  con8nually	  with	  experience	  
3. Exhibit	  versa8lity	  over	  mul8ple	  tasks	  
4. Direct	  their	  own	  learning	  
Contribu'ons:	  
1. Ac8ve	  task	  selec8on	  methods	  that	  enable	  a	  lifelong	  learner	  to	  choose	  
the	  next	  task	  to	  learn	  in	  order	  to	  maximize	  performance	  on	  future	  tasks	  

2. Targeted	  task	  selec8on	  that	  enables	  the	  lifelong	  learning	  agent	  to	  focus	  
knowledge	  acquisi8on	  toward	  par8cular	  target	  tasks	  
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Lifelong	  learning	  includes	  elements	  of	  
both	  transfer	  and	  mul8-‐task	  learning	  
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✓(t) s(t)LWe	  learn	  a	  parametric	  model	  for	  each	  task	  t 
 

The	  parameter	  vectors	  for	  each	  model	  are	  
linear	  combina8ons	  of	  a	  shared	  latent	  basis	  L 
 

Ac8ve	  task	  selec8on	  enables	  a	  lifelong	  learner	  to	  choose	  the	  next	  task	  to	  learn	  in	  order	  to	  maximize	  performance	  on	  future	  tasks	  
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Overview	  of	  the	  Efficient	  Lifelong	  Learning	  Algorithm	  
Our	  ac8ve	  task	  selec8on	  is	  built	  on	  top	  of	  ELLA	  [Ruvolo	  &	  Eaton,	  ICML’13],	  	  	  	  	  	  	  
an	  efficient	  online	  mul8-‐task	  learner	  with	  the	  following	  proper8es:	  
1. Op8mized	  performance	  over	  all	  tasks	  
2. Efficient	  learning	  of	  each	  new	  consecu8ve	  task	  via	  transfer	  
3. Computa8onal	  complexity	  independent	  of:	  (1)	  the	  number	  of	  tasks	  
learned,	  and	  (2)	  the	  amount	  of	  training	  data	  for	  all	  previous	  tasks	  

4. Close	  connec8ons	  to	  online	  dic8onary	  learning	  for	  sparse	  coding	  
5. Equivalent	  accuracy	  to	  batch	  MTL	  with	  over	  1,000x	  speedup	  

ELLA	  minimizes	  an	  objec8ve	  that	  encourages	  transfer	  between	  models:	  
	  
	  
	  
	  
To	  ensure	  scalability,	  ELLA	  makes	  the	  following	  simplifica8ons:	  
	  

	  
 

	  
1. Replace	  the	  inner	  sum	  with	  the	  2nd-‐order	  Taylor	  expansion	  around	  the	  
op8mal	  task-‐specific	  model:	  
2. Eliminate	  the	  outer	  sum	  by	  op8mizing	  	  	  	  	  	  	  	  	  only	  when	  training	  on	  task	  t 

These	  simplifica8ons	  yield	  the	  following	  updates	  to	  learn	  given	  (X(t),	  y	  
(t)):	  
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Goal:	  Choose	  the	  next	  task	  to	  learn	  from	  the	  candidate	  pool	  to	  best	  learn	  L 
• The	  agent	  can	  access	  a	  small	  set	  of	  labeled	  data	  for	  each	  candidate	  task	  

Informa'on	  Maximiza'on	  Approach	  

Selects	  the	  candidate	  task	  that	  maximizes	  the	  informa8on	  gain	  on	  L 

	  

To	  approximate	  this	  efficiently,	  we	  (1)	  use	  the	  op8mal	  single	  task	  model	  
(	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  ),	  and	  (2)	  use	  a	  Laplace	  approxima8on	  of	  L’s	  density	  as	  a	  
mul8variate	  Gaussian	  for	  the	  differen8al	  entropy	  term	  H	  [	  ],	  yielding:	  	  

	  
	  
Diversity	  Approach	  

Selects	  the	  candidate	  task	  that	  the	  current	  L	  is	  doing	  the	  worst	  job	  solving:	  

	  
We	  also	  explore	  a	  probabilis8c	  version,	  Diversity++,	  that	  chooses	  a	  
candidate	  task	  propor8onally	  to	  its	  inverse	  performance	  
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Targeted	  Knowledge	  Acquisi'on	  with	  InfoMax	  

	  

Idea:	  Instead	  of	  acquiring	  a	  general-‐purpose	  basis	  L,	  focus	  on	  the	  
knowledge	  needed	  for	  a	  specific	  target	  task,	  t	  (target)	  =	  (X(target),	  y	  

(target))	  

The	  targeted	  InfoMax	  objec8ve	  is:	  

	  

which	  can	  be	  approximated	  efficiently	  as:	  
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Results	  

Student	  Exam	  Score	  Predic'on	  
139	  Regression	  Tasks:	  
• 139	  schools	  
• 15,362	  students	  total	  
• 4	  school-‐specific	  features	  
• 3	  student-‐specific	  features	  

Land	  Mine	  Detec'on	  from	  radar	  
29	  Classifica8on	  Tasks:	  
• 29	  regions	  
• 2	  terrain	  types	  
• 14,820	  instances	  total	  

Mines	  

Ac8ve	  task	  selec8on	  requires	  less	  tasks	  than	  random	  selec8on	  

Facial	  Expression	  Recogni'on:	  	  iden8fy	  presence	  of	  facial	  ac8on	  units	  
(#5	  upper	  lid	  raiser,	  #10	  upper	  lip	  raiser,	  #12	  lip	  corner	  pull)	  
	  

	  	  PCA	  
	  	  100	  features	  +	  bias	  

2,880	  Gabor	  Features	  

21	  Classifica8on	  Tasks:	  
• 7	  subjects	  
• 450-‐999	  images	  each	  
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M
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(a) Active Task Selection for General Knowledge Acquisition (b) Targeted Knowledge Acquisition

Figure 2: The results of active task selection for (a) general, and (b) targeted knowledge acquisition. Each plot shows the
accuracy achieved by each method versus the relative efficiency (in number of tasks) as compared to random task selection.

Table 1: The results for (a) general and (b) targeted knowl-
edge acquisition, as measured by the percent less tasks re-
quired by active task selection, averaged across all perfor-
mance levels. The mean and standard deviation are reported.

(a) General Knowledge Acquisition
Data Set InfoMax Diversity Diversity++

Land Mine 5.1±3.7 29.4±4.1 18.1±3.0
Facial Expr. 0.5±2.6 14.6±5.1 9.9±4.0
Syn. Data 10.2±7.9 20.2±6.7 17.0±5.9
London Sch. 29.8±6.8 21.0±3.1 26.2±3.1

(b) Targeted Knowledge Acquisition
Targeted

Data Set InfoMax InfoMax Diversity Diversity++

Land Mine 17.9±2.7 -1.7±3.0 14.9±3.2 8.5±2.5
Facial Expr. 7.8±0.7 2.6±0.8 10.0±2.5 2.7±1.3
Syn. Data 38.4±7.5 11.4±5.6 19.9±4.9 16.6±5.0
London Sch. 26.9±1.8 20.1±2.8 22.3±1.1 16.4±2.7

Recall that Diversity++ is a stochastic version of Diver-
sity, and therefore does not always select the task with the
worst performance to learn next. The results show that Di-
versity++ was dominated in three of the four data sets by Di-
versity, affirming the benefits of selecting the task with the
worst performance to learn next. However, both Diversity++
and InfoMax perform better than Diversity on the London
Schools data set. Further investigation is needed to deter-
mine whether particular characteristics of the data set, such
as the degree of sparsity of its input features, are important
for determining when each method should be used.

Table 1b shows our results on targeted knowledge acqui-
sition, with Figure 2b depicting extended results for selected
data sets. These results show that targeted task selection is
highly effective, revealing that Targeted InfoMax is the most
efficient method for three out of the four datasets. There-
fore, it appears that incorporating knowledge of the target
task into InfoMax can lead to large gains in performance,
not only over general InfoMax but also over Diversity, the
best general task selection method.

Conclusion

We have considered the setting of active curriculum selec-
tion in which a lifelong learner can select which task to learn
next for either general and targeted knowledge acquisition.
Our proposed Diversity heuristic is efficient and effective
for general knowledge acquisition, achieving significant re-
ductions in the number of tasks required to obtained a par-
ticular performance level as compared to random selection.
Although InfoMax did not work as well as Diversity for gen-
eral knowledge acquisition, it achieved the best performance
on targeted knowledge acquisition for modeling a specific
target task. In future work, we intend to connect active task
selection to higher level learning goals and incorporate ex-
ternal guidance from a teacher.
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Figure 2: The results of active task selection for (a) general, and (b) targeted knowledge acquisition. Each plot shows the
accuracy achieved by each method versus the relative efficiency (in number of tasks) as compared to random task selection.

Table 1: The results for (a) general and (b) targeted knowl-
edge acquisition, as measured by the percent less tasks re-
quired by active task selection, averaged across all perfor-
mance levels. The mean and standard deviation are reported.

(a) General Knowledge Acquisition
Data Set InfoMax Diversity Diversity++

Land Mine 5.1±3.7 29.4±4.1 18.1±3.0
Facial Expr. 0.5±2.6 14.6±5.1 9.9±4.0
Syn. Data 10.2±7.9 20.2±6.7 17.0±5.9
London Sch. 29.8±6.8 21.0±3.1 26.2±3.1

(b) Targeted Knowledge Acquisition
Targeted

Data Set InfoMax InfoMax Diversity Diversity++

Land Mine 17.9±2.7 -1.7±3.0 14.9±3.2 8.5±2.5
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Syn. Data 38.4±7.5 11.4±5.6 19.9±4.9 16.6±5.0
London Sch. 26.9±1.8 20.1±2.8 22.3±1.1 16.4±2.7

Recall that Diversity++ is a stochastic version of Diver-
sity, and therefore does not always select the task with the
worst performance to learn next. The results show that Di-
versity++ was dominated in three of the four data sets by Di-
versity, affirming the benefits of selecting the task with the
worst performance to learn next. However, both Diversity++
and InfoMax perform better than Diversity on the London
Schools data set. Further investigation is needed to deter-
mine whether particular characteristics of the data set, such
as the degree of sparsity of its input features, are important
for determining when each method should be used.

Table 1b shows our results on targeted knowledge acqui-
sition, with Figure 2b depicting extended results for selected
data sets. These results show that targeted task selection is
highly effective, revealing that Targeted InfoMax is the most
efficient method for three out of the four datasets. There-
fore, it appears that incorporating knowledge of the target
task into InfoMax can lead to large gains in performance,
not only over general InfoMax but also over Diversity, the
best general task selection method.

Conclusion

We have considered the setting of active curriculum selec-
tion in which a lifelong learner can select which task to learn
next for either general and targeted knowledge acquisition.
Our proposed Diversity heuristic is efficient and effective
for general knowledge acquisition, achieving significant re-
ductions in the number of tasks required to obtained a par-
ticular performance level as compared to random selection.
Although InfoMax did not work as well as Diversity for gen-
eral knowledge acquisition, it achieved the best performance
on targeted knowledge acquisition for modeling a specific
target task. In future work, we intend to connect active task
selection to higher level learning goals and incorporate ex-
ternal guidance from a teacher.
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