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Preface

The main topics of this book are cohomology, sheaves, and sheaf cohomology. Why? Mostly
because for more than thirty years the senior author has been trying to learn algebraic
geometry. To his dismay, he realized that since 1960, under the influence and vision of A.
Grothendieck and his collaborators, in particular Serre, the foundations of algebraic geometry
were built on sheaves and cohomology. But the invasion of these theories was not restricted
to algebraic geometry. Cohomology was already a pillar of algebraic topology but sheaves
and sheaf cohomology sneaked in too.

For a novice the situation seems hopeless. Even before one begins to discuss curves or
surfaces, one has to spend years learning

(1) Some algebraic topology (especially homology and cohomology).

(2) Some basic homological algebra (chain complexes, cochain complexes, exact sequences,
chain maps, etc.). Some commutative algebra (injective and projective modules, injec-
tive and projective resolutions).

(3) Some sheaf theory.

This book represents the result of an unfinished journey in attempting to accomplish
the above. What we discovered on the way is that algebraic topology is a captivating and
beautiful subject. We also believe that it is hard to appreciate sophisticated concepts such as
sheaf cohomology without prior exposure to fundamentals of algebraic topology, simplicial
homology, singular homology, and CW complexes, in particular.

With the above motivation in mind, this book consists of two parts. The first part con-
sisting of the first seven chapters gives a crash-course on the homological and cohomological
aspects of algebraic topology, with a bias in favor of cohomology. Unfortunately homotopy
theory is omitted. Generally we do not provide proofs, with the exception of the homolog-
ical tools needed later in the second part (such as the “zig-zag lemma”). Instead we try to
provide intuitions and motivations, but we still provide rigorous definitions.

We conclude this overview of algebraic topology with a presentation of Poincaré duality,
one of the jewels of algebraic topology. We follow Milnor and Stasheff’s exposition [45]
using the cap product, occasionally supplemented by Massey [41]. Contrary to the previous
chapters we provide almost all proofs.
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Hopefully this approach will not be frustrating to the reader. Our advice is to keep a
copy of Hatcher [31] or Munkres [48] and Massey [41] at hand. Omitted details will be found
in these references. Spanier [59] may also be helpful for some of the more advanced topics.

The second part is devoted to presheaves, sheaves, Čech cohomology, derived functors,
sheaf cohomology, and spectral sequences.

Every book on algebraic geometry that goes beyond the classical material known before
1960 discusses sheaves and cohomology. The classic on the subject is Hartshorne [30]. The
joke in certain circles is that most people are so exhausted after reading Chapters II and III
that they never get to read the subsequent chapters on curves and surfaces.

It appears that after almost seventy five years it is not easy to find thorough expositions of
sheaf cohomology designed for a “general” audience, with the exception of Rotman (second
edition) [52]. Godement was already lamenting about this in the preface of his book [24]
published in 1958. He says that ironically, someone with expertise in functional analysis
(him) was compelled to give a complete exposition, that is, less incomplete than the other
existing expositions of sheaf theory.

Godement writes in French in the Bourbaki style, which means that the exposition is
terse, motivations are missing, and examples are few. This is very unfortunate because
Godement’s book contains some interesting material that is not easily found elsewhere, such
as the spectral sequence of a differential sheaf and the spectral sequence of Čech cohomology.
We discuss these topics in Chapter 15.

Our own experience is that the process of learning sheaves is facilitated by proceeding in
stages. The first stage is to just define presheaves and sheaves and to give several examples.
We do this in Chapter 8.

The second stage is to define the Čech cohomology of sheaves. Čech cohomology is combi-
natorial in nature and quite concrete so one can see how sheaves provide varying coefficients.
This is the approach followed by Bott and Tu [4]. It is even possible without getting too
technical to explain why De Rham cohomology is equivalent to Čech cohomology with coef-
ficients in R by introducing the double complex known as the Čech–de–Rham complex . This
material is discussed in Chapter 9.

The third stage is to explain the sheafification process, making a presheaf into a sheaf,
and the approach to sheaves in terms of stalk spaces due to Lazard and Cartan. One would
like to define the notion of exact sequence of sheaves, but unfortunately the obvious notion of
image of a sheaf is not a sheaf in general, so the sheafification process can’t be avoided. The
right way to define the image of a sheaf is to define the notion of cokernel map of a sheaf and
to define the image as the kernel of the cokernel map. These gymnastics are inspired by the
notion of image of a map in an abelian categories, so we proceed with a basic presentation
of the notions of categories, additive categories, and abelian categories. This way we can
rightly claim that sheaves form an abelian category.

Personally, we find Serre’s explanation of the sheafification process to be one of the
clearest and we borrowed much from his famous paper FAC [55] (actually, his presentation
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of Čech cohomology of sheaves is also very precise and clear). The above material is presented
in Chapter 10.

Having the machinery of sheaves at our disposal, the next step is to introduce sheaf
cohomology. This can be done in two ways:

(1) In terms of resolutions by injectives.

(2) In terms of resolutions by flasque sheaves, a method invented by Godement [24].

In either case it is not possible to escape discussing the concept of resolution. We decided
that we might as well go further and present some notions of homological algebra, namely
projective and injective resolutions, as well as the notion of derived functor. Given a module
A, a resolution is an exact sequence starting with A involving projective and injective mod-
ules. Projective and injective modules are modules satisfying certain extension properties.
Given an additive functor T and an object A, it is possible to define uniquely some homology
groups LnT (A) induced by projective resolutions of A and independent of such resolutions.
It is also possible to define uniquely some cohomology groups RnT (A) induced by injective
resolutions of A and independent of such resolutions; see Chapter 11. As special cases we
obtain the Tor modules (associated with the tensor product) and the Ext modules (associ-
ated with the Hom functor). The modules Tor and Ext play a crucial role in the universal
coefficient theorems; see Chapter 12. Our presentation of the homological algebra given in
Chapters 11 and 12 is heavily inspired by Rotman’s excellent exposition [52]. Although Mac
Lane’s presentation is more concise it is still a very reliable and elegantly written source
which also contains historical sections [37].

Having gone that far, we also discuss Grothendieck’s notion of δ-functors and universal
δ-functors. The significance of this notion is that the machinery of universal δ-functors can
be used to prove that different kinds of cohomology theories yield isomorphic groups . This
technique will be used in Chapter 13 to prove that sheaf cohomology and Čech cohomology
are isomorphic for paracompact spaces.

Grothendieck’s legendary Tohoku paper [27] is written in French in a very terse style
and many proof details are omitted (there are also quite a few typos). We are not aware
of any source that gives detailed proofs of the main results about δ-functors (in particular,
Proposition 2.2.1 on Page 141 of [27]). Lang [35] gives a fairly complete proof but omits the
proof that the construction of the required morphism is unique. We fill in this step using an
argument communicated to us by Steve Shatz; see Chapter 11.

Having the machinery of resolutions and derived functors at our disposal we are in the
position to discuss sheaf cohomology quite thoroughly in Chapter 13. We show that the
definition of sheaf cohomology in terms of derived functors is equivalent to the definition
in terms of resolutions by flasque sheaves (due to Godement). We prove the equivalence of
sheaf cohomology and Čech cohomology for paracompact spaces. We also discuss soft and
fine sheaves, and prove that for a paracompact topological space, singular cohomology, Čech
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cohomology, Alexander–Spanier cohomology, and sheaf cohomology (for a suitable constant
sheaf) are equivalent.

The purpose of Chapter 14 is to present various generalizations of Poincaré duality. These
versions of duality involve taking direct limits of direct mapping families of singular cohomol-
ogy groups which, in general, are not singular cohomology groups. However, such limits are
isomorphic to Alexander–Spanier cohomology groups, and thus to Čech cohomology groups.
These duality results also require relative versions of homology and cohomology.

The last chapter of our book (Chapter 15) is devoted to spectral sequences. A spectral
sequence is a tool of homological algebra whose purpose is to approximate the cohomology
(or homology) H(M) of a module M endowed with a family (F pM)p∈Z of submodules called
a filtration. The module M is also equipped with a linear map d : M →M called differential
such that d ◦ d = 0, so that it makes sense to define

H(M) = Ker d/Im d.

We say that (M,d) is a differential module. To be more precise, the filtration induces
cohomology submodules H(M)p of H(M), the images of H(F pM) in H(M), and a spectral
sequence is a sequence of modules Ep

r (equipped with a differential dpr), for r ≥ 1, such that
Ep
r approximates the “graded piece” H(M)p/H(M)p+1 of H(M).

Actually, to be useful, the machinery of spectral sequences must be generalized to filtered
cochain complexes. Technically this implies dealing with objects Ep,q

r involving three indices,
which makes its quite challenging to follow the exposition.

Many presentations jump immediately to the general case, but it seems pedagogically
advantageous to begin with the simpler case of a single filtered differential module. This is
the approach followed by Serre in his dissertation [56] (Pages 24–104, Annals of Mathematics ,
54 (1951), 425–505), Godement [24], and Cartan and Eilenberg [10].

Spectral sequences were first introduced by Jean Leray in 1945 and 1946. Paraphrazing
Jean Dieudoné [11], Leray’s definitions were cryptic and proofs were incomplete. Koszul
was the first to give a clear definition of spectral sequences in 1947. Independently, in his
dissertation (1946), Lyndon introduced spectral sequences in the context of group extensions.

Detailed expositions of spectral sequences do not seem to have appeared until 1951, in
lecture notes by Henri Cartan and in Serre’s dissertation [56], which we highly recommend for
its clarity (Serre defines homology spectral sequences, but the translation to cohomology is
immediate). A concise but very clear description of spectral sequences appears in Dieudonné
[11] (Chapter 4, Section 7, Parts D, E, F). More extensive presentations appeared in Cartan
and Eilenberg [10] and Godement [24] around 1955.

There are several methods for defining spectral sequences, including the following three:

(1) Koszul’s original approach as described by Serre [56] and Godement [24]. In our opinion
it is the simplest method to understand what is going on.



7

(2) Cartan and Eilenberg’s approach [10]. This is a somewhat faster and slicker method
than the previous method.

(3) Exact couples of Massey (1952). This somewhat faster method for defining spectral
sequences is adopted by Rotman [50, 52] and Bott and Tu [4]. Mac Lane [37], Weibel
[63], and McCleary [44] also present it and show its equivalence with the first approach.
It appears to be favored by algebraic topologists. This approach leads to spectral
sequences in a quicker fashion and is more general because exact couples need not
arise from a filtration, but our feeling is that it is even more mysterious to a novice
than the first two approaches.

We will primarily follow Method (1) and present Method (2) and Method (3) in starred
sections (Method (2) in Section 15.15 and Method (3) in Section 15.14). All three methods
produce isomorphic sequences, and we will show their equivalence. We will also discuss
the spectral sequences induced by double complexes and give as illustrations the spectral
sequence of a differential sheaf and the spectral sequence of Čech cohomology. These spectral
sequences are discussed in Godement [24].

We hope that the reader who read this book, especially the second part, will be well
prepared to tackle Hartshorne [30] or comparable books on algebraic geometry. But we will
be even happier if our readers found the topics of algebraic topology and homological algebra
presented lovable (as Rotman hopes in his preface), and even beautiful.

In the second part of our book, except for a few exceptions we provide complete proofs.
We did so to make this book self-contained, but also because we believe that no deep knowl-
edge of this material can be acquired without working out some proofs. However, our advice
is to skip some of the proofs upon first reading, especially if they are long and intricate.

The chapters or sections marked with the symbol ~ contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.

Acknowledgement : We would like to thank Ching-Li Chai, Ron Donagi, Herman Gluck,
David Harbater, Alexander Kirillov, Julius Shaneson, Jim Stasheff, and Wolfgang Ziller for
their encouragement, advice, and what they taught us. Special thanks to Pascal Adjamagbo
and Steve Shatz for reporting typos. Steve Shatz also provided several proofs.
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1.3 Duality; Poincaré, Alexander, Lefschetz . . . . . . . . . . . . . . . . . . . . 26
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9.1 Čech Cohomology of a Cover . . . . . . . . . . . . . . . . . . . . . . . . . . 298
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Chapter 1

Introduction

One of the main problems, if not “the” problem of topology, is to understand when two
spaces X and Y are similar or dissimilar. A related problem is to understand the connectivity
structure of a space in terms of its holes and “higher-order” holes. Of course, one has to
specify what “similar” means. Intuitively, two topological spaces X and Y are similar if
there is a “good” bijection f : X → Y between them. More precisely, “good” means that
f is a continuous bijection whose inverse f−1 is also continuous; in other words, f is a
homeomorphism. The notion of homeomorphism captures the notion proposed in the mid
1860s that X can be deformed into Y without tearing or overlapping. The problem then
is to describe the equivalence classes of spaces under homeomorphism; it is a classification
problem.

The classification problem for surfaces was investigated as early as the mid 1860s by
Möbius and Jordan. These authors discovered that two (compact) surfaces are equivalent iff
they have the same genus (the number of holes) and orientability type. Their “proof” could
not be rigorous since they did not even have a precise definition of what a 2-manifold is! We
have to wait until 1921 for a complete and rigorous proof of the classification theorem for
compact surfaces; see Gallier and Xu [22] for a historical as well as technical account of this
remarkable result.

What if X and Y do not have the nice structure of a surface or if they have higher-
order dimension? In the words of Dieudonné, the problem is a “hopeless undertaking;” see
Dieudonné’s introduction [11].

The reaction to this fundamental difficulty was the creation of algebraic and differential
topology, whose major goal is to associate “invariant” objects to various types of spaces, so
that homeomorphic spaces have “isomorphic” invariants. If two spaces X and Y happen to
have some distinct invariant objects, then for sure they are not homeomorphic.

Poincaré was one of the major pioneers of this approach. At first these invariant objects
were integers (Betti numbers and torsion numbers), but it was soon realized that much more
information could be extracted from invariant algebraic structures such as groups, ring, and
modules.

13
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Three types of invariants can be assigned to a topological space:

(1) Homotopy groups.

(2) Homology groups.

(3) Cohomology groups.

The above are listed in the chronological order of their discovery. It is interesting that
the first homotopy group π1(X) of the space X, also called fundamental group, was invented
by Poincaré (Analysis Situs, 1895), but homotopy basically did not evolve until the 1930s.
One of the reasons is that the first homotopy group is generally nonabelian, so harder to
study.

On the other hand, homology and cohomology groups (or rings, or modules) are abelian,
so results about commutative algebraic structures can be leveraged. This is true in particular
if the ring R is a PID, where the structure of the finitely generated R-modules is completely
determined.

There are different kinds of homology groups. They usually correspond to some geometric
intuition about decomposing a space into simple shapes such as triangles, tetrahedra, etc.
Cohomology is more abstract because it usually deals with functions on a space. However,
we will see that it yields more information than homology precisely because certain kinds of
operations on functions can be defined (cup and cap products).

As often in mathematics, some machinery that is created to solve a specific problem, here
a problem in topology, unexpectedly finds fruitful applications to other parts of mathematics
and becomes a major component of the arsenal of mathematical tools, in the present case
homological algebra and category theory . In fact, category theory, invented by Mac Lane and
Eilenberg, permeates algebraic topology and is really put to good use, rather than being a
fancy attire that dresses up and obscures some simple theory, as often is the case.

In view of the above discussion, it appears that algebraic topology might involve more
algebra than topology. This is great if one is quite proficient in algebra, but not so good
news for a novice who might be discouraged by the abstract and arcane nature of homological
algebra. After all, what do the zig-zag lemma and the five lemma have to do with topology?

Unfortunately, it is true that a firm grasp of the basic concepts and results of homological
algebra is essential to really understand what are the homology and the cohomology groups
and what are their roles in topology.

One of our goals is to attempt to demystify homological algebra. For those of us fond of
puns, keep this simple analogy in mind and all trepidation will (hopefully) fade. Homology
groups describe what man does in his home; in French, l’homme au logis. Cohomology
groups describe what co-man does in his home; in French, le co-homme au logis, that is, la
femme au logis. Obviously this is not politically correct, so cohomology should be renamed.
The big question is: what is a better name for cohomology?



1.1. EXACT SEQUENCES, CHAIN COMPLEXES, HOMOLOGY, COHOMOLOGY 15

In the following sections we give a brief description of the topics that we are going to
discuss in this book, and we try to provide motivations for the introduction of the concepts
and tools involved. These sections introduce topics in the same order in which they are
presented in the book. All historical references are taken from Dieudonné [11]. This is a
remarkable account of the history of algebraic and differential topology from 1900 to the
1960s which contains a wealth of information.

1.1 Exact Sequences, Chain Complexes, Homology

and Cohomology

There are various kinds of homology groups (simplicial, singular, cellular, etc.), but they all
arise the same way, namely from a (possibly infinite) sequence called a chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

in which the Cp are vector spaces, or more generally abelian groups (typically freely gen-
erated), and the maps dp : Cp → Cp−1 are linear maps (homomorphisms of abelian groups)
satisfying the condition

dp ◦ dp+1 = 0 for all p ≥ 0. (∗1)

The elements of Cp are called p-chains and the maps dp are called boundary operators (or
boundary maps). The intuition behind Condition (∗1) is that elements of the form dp(c) ∈
Cp−1 with c ∈ Cp are boundaries , and “a boundary has no boundary.” For example, in R2,
the points on the boundary of a closed unit disk form the unit circle, and the points on the
unit circle have no boundary.

Since dp ◦ dp+1 = 0, we have Bp(C) = Im dp+1 ⊆ Ker dp = Zp(C) so the quotient
Zp(C)/Bp(C) = Ker dp/Im dp+1 makes sense. The quotient module

Hp(C) = Zp(C)/Bp(C) = Ker dp/Im dp+1

is the p-th homology module of the chain complex C. Elements of Zp are called p-cycles and
elements of Bp are called p-boundaries ; see Figure 1.1.

A condition stronger that Condition (∗1) is that

Im dp+1 = Ker dp for all p ≥ 0. (∗∗1)

A sequence satisfying Condition (∗∗1) is called an exact sequence. Thus, we can view the
homology groups as a measure of the failure of a chain complex to be exact. Surprisingly,
exact sequences show up in various areas of mathematics, especially abstract algebra.

In the case of many homology theories, chain complexes are constructed by “nicely”
mapping simple geometric objects into a given topological space X. For singular homology
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Figure 1.1: Let X be the surface of the torus. Elements of Z1 are geometrically represented
by curves which are homeomorphic to S1. Thus both the red and blue curves are 1-cycles.
The red curve is also a 1-boundary since it is the boundary of a region in X which is
homeomorphic to the closed unit disk.

the Cp’s are the abelian groups Cp = Sp(X;Z) consisting of all (finite) linear combinations
of the form

∑
niσi, where ni ∈ Z and each σi, a singular p-simplex , is a continuous function

σi : ∆p → X from the p-simplex ∆p to the space X. A 0-simplex is a single point, a 1-simplex
is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and a p-simplex is
a higher-order generalization of a tetrahedron; see Figure 1.2.

A p-simplex ∆p has p + 1 faces , and the ith face is a (p − 1)-singular simplex σ ◦
φp−1
i : ∆p−1 → X defined in terms of a certain function φp−1

i : ∆p−1 → ∆p; see Section 4.1.
In the framework of singular homology, the boundary map dp is denoted by ∂p, and for any
singular p-simplex σ, ∂σ is the singular (p− 1)-chain given by

∂σ = σ ◦ φp−1
0 − σ ◦ φp−1

1 + · · ·+ (−1)pσ ◦ φp−1
p .

A simple calculation confirms that ∂p ◦ ∂p+1 = 0. Consequently the free abelian groups
Sp(X;Z) together with the boundary maps ∂p form a chain complex denoted S∗(X;Z) called
the simplicial chain complex of X. Then the quotient module

Hp(X;Z) = Hp(S∗(X;Z)) = Ker ∂p/Im ∂p+1,

also denoted Hp(X), is called the p-th homology group of X. Singular homology is discussed
in Chapter 4, especially in Section 4.1.

Historically, singular homology did not come first. According to Dieudonné [11], sin-
gular homology emerged around 1925 in the work of Veblen, Alexander and Lefschetz (the
“Princeton topologists,” as Dieudonné calls them), and was defined rigorously and in com-
plete generality by Eilenberg (1944). The definition of the homology modules Hp(C) in terms
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0-simplex 1-simplex
2-simplex

3-simplex

X

σ

Figure 1.2: The top row illustrates lower order p-simplicies while the bottom figure illustrates
a singular 2-simplex within the 2-dimensional torus.

of sequences of abelian groups Cp and boundary homomorphisms dp : Cp → Cp−1 satisfying
the condition dp ◦ dp+1 = 0 as quotients Ker dp/Im dp+1 seems to have been suggested to H.
Hopf by Emmy Noether while Hopf was visiting Göttingen in 1925. Hopf used this definition
in 1928, and independently so did Vietoris in 1926, and then Mayer in 1929.

The first occurrence of a chain complex is found in Poincaré’s papers of 1900, although
he did not use the formalism of modules and homomorphisms as we do now, but matrices
instead. Poincaré introduced the homology of simplicial complexes , which are combinatorial
triangulated objects objects made up of simplices; see Figure 1.3.

Given a simplicial complex K, we have free abelian groups Cp(K) consisting of Z-linear
combinations of oriented p-simplices, and the boundary maps ∂p : Cp(K) → Cp−1(K) are
defined by

∂pσ =

p∑

i=0

(−1)i[α0, . . . , α̂i, . . . , αp],

for any oriented p-simplex, σ = [α0, . . . , αp], where [α0, . . . , α̂i, . . . , αp] denotes the oriented
(p − 1)-simplex obtained by deleting vertex αi. Then we have a simplicial chain complex
(Cp(K), ∂p) denoted C∗(K), and the corresponding homology groups Hp(C∗(K)) are denoted
Hp(K) and called the simplicial homology groups of K. Simplicial homology is discussed in
Chapter 5. We discussed singular homology first because it subsumes simplicial homology,
as shown in Section 5.2.

A simplicial complex K is a purely combinatorial object, thus it is not a space, but it has
a geometric realization Kg, which is a (triangulated) topological space. This brings up the
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Figure 1.3: The surface of a cube as a simplicial complex consisting of 12 triangles (2-
simplicies), 18 edges (1-simplicies), and 8 vertices (0-simplices).

following question: if K1 and K2 are two simplicial complexes whose geometric realizations
(K1)g and (K2)g are homeomorphic, are the simplicial homology groups Hp(K1) and Hp(K2)
isomorphic?

Poincaré conjectured that the answer was “yes,” and this conjecture was first proved by
Alexander. The proof is nontrivial, and we present a version of it in Section 5.2.

The above considerations suggest that it would be useful to understand the relationship
between the homology groups of two spaces X and Y related by a continuous map f : X → Y .
For this, we define mappings between chain complexes called chain maps.

Given two chain complexes C and C ′, a chain map f : C → C ′ is a family f = (fp)p≥0 of
homomorphisms fp : Cp → C ′p such that all the squares of the following diagram commute:

0 C0
d0oo

f0

��

C1
d1oo

f1

��

· · ·oo Cp−1

dp−1oo

fp−1

��

Cp
dpoo

fp
��

Cp+1

dp+1oo

fp+1

��

· · ·oo

0 C ′0d′0
oo C ′1d′1

oo · · ·oo C ′p−1d′p−1

oo C ′pd′p
oo C ′p+1d′p+1

oo · · · ,oo

that is, fp ◦ dp+1 = d′p+1 ◦ fp+1, for all p ≥ 0.

A chain map f : C → C ′ induces homomorphisms of homology

Hp(f) : Hp(C)→ Hp(C
′)

for all p ≥ 0. Furthermore, given three chain complexes C,C ′, C ′′ and two chain maps
f : C → C ′ and g : C ′ → C ′′, we have

Hp(g ◦ f) = Hp(g) ◦Hp(f) for all p ≥ 0
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and

Hp(idC) = idHp(C) for all p ≥ 0.

We say that the map C 7→ (Hp(C))p≥0 is functorial (to be more precise, it is a functor
from the category of chain complexes and chain maps to the category of abelian groups and
groups homomorphisms).

For example, in singular homology, a continuous function f : X → Y between two topo-
logical spaces X and Y induces a chain map f] : S∗(X;Z) → S∗(Y ;Z) between the two
simplicial chain complexes S∗(X;Z) and S∗(Y ;Z) associated with X and Y , which in turn
yield homology homomorphisms usually denoted f∗,p : Hp(X;Z)→ Hp(Y ;Z). Thus the map
X 7→ (Hp(X;Z))p≥0 is a functor from the category of topological spaces and continuous
maps to the category of abelian groups and groups homomorphisms. Functoriality implies
that if f : X → Y is a homeomorphism, then the maps f∗,p : Hp(X;Z) → Hp(Y ;Z) are iso-
morphisms . Thus, the singular homology groups are topological invariants. This is one of
the advantages of singular homology; topological invariance is basically obvious.

This is not the case for simplicial homology where it takes a fair amount of work to prove
that if K1 and K2 are two simplicial complexes whose geometric realizations (K1)g and (K2)g
are homeomorphic, then the simplicial homology groups Hp(K1) and Hp(K2) isomorphic.

One might wonder what happens if we reverse the arrows in a chain complex? Abstractly,
this is how cohomology is obtained, although this point of view was not considered until at
least 1935.

A cochain complex is a sequence

0 d−1
// C0 d0

// C1 d1
// · · · // Cp−1 dp−1

// Cp dp // Cp+1 dp+1
// Cp+2 // · · · ,

in which the Cp are abelian groups, and the maps dp : Cp → Cp+1 are homomorphisms of
abelian groups satisfying the condition

dp+1 ◦ dp = 0 for all p ≥ 0 (∗2)

The elements of Cp are called cochains and the maps dp are called coboundary maps . This
time it is not clear how coboundary maps arise naturally. Since dp+1 ◦ dp = 0, we have
Bp = Im dp ⊆ Ker dp+1 = Zp+1, so the quotient Zp/Bp = Ker dp+1/Im dp makes sense and
the quotient module

Hp(C) = Zp/Bp = Ker dp+1/Im dp

is the pth cohomology module of the cochain complex C. Elements of Zp are called p-cocycles
and elements of Bp are called p-coboundaries .

There seems to be an unwritten convention that when dealing with homology we use
subscripts, and when dealing with cohomology we use with superscripts. Also, the “dual” of
any “notion” is the “co-notion.”
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As in the case of a chain complex, a condition stronger that Condition (∗2) is that

Im dp = Ker dp+1 for all p ≥ 0. (∗∗2)

A sequence satisfying Condition (∗∗2) is also called an exact sequence. Thus, we can view
the cohomology groups as a measure of the failure of a cochain complex to be exact.

Given two cochain complexes C and C ′, a (co)chain map f : C → C ′ is a family f =
(fp)p≥0 of homomorphisms fp : Cp → C ′p such that all the squares of the following diagram
commute:

0 d−1
// C0 d0

//

f0

��

C1 d1
//

f1

��

· · · // Cp−1 dp−1
//

fp−1

��

Cp dp //

fp

��

Cp+1 dp+1
//

fp+1

��

· · ·

0
d′−1

// C ′0
d′0
// C ′1

d′1
// · · · // C ′p−1

d′p−1
// C ′p

d′p
// C ′p+1

d′p+1
// · · · ,

that is, fp+1 ◦ dp = d′p ◦ fp for all p ≥ 0. A chain map f : C → C ′ induces homomorphisms
of cohomology

Hp(f) : Hp(C)→ Hp(C ′)

for all p ≥ 0. Furthermore, this assignment is functorial (more precisely, it is a functor from
the category of cochain complexes and chain maps to the category of abelian groups and
their homomorphisms).

At first glance cohomology appears to be very abstract so it is natural to look for explicit
examples. A way to obtain a cochain complex is to apply the operator (functor) HomZ(−, G)
to a chain complex C, where G is any abelian group. Given a fixed abelian group A, for any
abelian group B we denote by HomZ(B,A) the abelian group of all homomorphisms from
B to A. Given any two abelian groups B and C, for any homomorphism f : B → C, the
homomorphism HomZ(f, A) : HomZ(C,A)→ HomZ(B,A) is defined by

HomZ(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ HomZ(C,A);

see the commutative diagram below:

B
f //

HomZ(f,A)(ϕ)   

C

ϕ

��
A.

The map HomZ(f, A) is also denoted by HomZ(f, idA) or even HomZ(f, id). Observe that
the effect of HomZ(f, id) on ϕ is to precompose ϕ with f .

If f : B → C and g : C → D are homomorphisms of abelian groups, a simple computation
shows that

HomR(g ◦ f, id) = HomR(f, id) ◦ HomR(g, id).
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Observe that HomZ(f, id) and HomZ(g, id) are composed in the reverse order of the compo-
sition of f and g. It is also immediately verified that

HomZ(idA, id) = idHomZ(A,G).

We say that HomZ(−, id) is a contravariant functor (from the category of abelian groups
and group homomorphisms to itself). Then given a chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

we can form the cochain complex

0
HomZ(d0,id) // HomZ(C0, G) // · · · // HomZ(Cp, G)

HomZ(dp+1,id)// HomZ(Cp+1, G) // · · ·

obtained by applying HomZ(−, G), and denoted HomZ(C,G). The coboundary map dp is
given by

dp = HomZ(dp+1, id),

which means that for any f ∈ HomZ(Cp, G), we have

dp(f) = f ◦ dp+1.

Thus, for any (p+ 1)-chain c ∈ Cp+1 we have

(dp(f))(c) = f(dp+1(c)).

We obtain the cohomology groups Hp(HomZ(C,G)) associated with the cochain complex
HomZ(C,G). The cohomology groups Hp(HomZ(C,G)) are also denoted Hp(C;G).

This process was applied to the simplicial chain complex C∗(K) associated with a sim-
plicial complex K by Alexander and Kolmogoroff to obtain the simplicial cochain com-
plex HomZ(C∗(K);G) denoted C∗(K;G) and the simplicial cohomology groups Hp(K;G)
of the simplicial complex K; see Section 5.6. Soon after, this process was applied to
the singular chain complex S∗(X;Z) of a space X to obtain the singular cochain complex
HomZ(S∗(X;Z);G) denoted S∗(X;G) and the singular cohomology groups Hp(X;G) of the
space X; see Section 4.8.

Given a continuous map f : X → Y , there is an induced chain map f ] : S∗(Y ;G) →
S∗(X;G) between the singular cochain complexes S∗(Y ;G) and S∗(X;G), and thus homo-
morphisms of cohomology f ∗ : Hp(Y ;G)→ Hp(X;G). Observe the reversal: f is a map from
X to Y , but f ∗ maps Hp(Y ;G) to Hp(X;G). We say that the map X 7→ (Hp(X;G))p≥0 is
a contravariant functor from the category of topological spaces and continuous maps to the
category of abelian groups and their homomorphisms.

So far our homology groups have coefficients in Z, but the process of forming a cochain
complex HomZ(C,G) from a chain complex C allows the use of coefficients in any abelian
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group G, not just the integers. Actually, it is a trivial step to define chain complexes con-
sisting of R-modules in any commutative ring R with a multiplicative identity element 1,
and such complexes yield homology modules Hp(C;R) with coefficients in R. This process
immediately applies to the singular homology groups Hp(X;R) and to the simplicial ho-
mology groups Hp(K;R). Also, given a chain complex C where the Cp are R-modules, for
any R-module G we can form the cochain complex HomR(C,G) and we obtain cohomology
modules Hp(C;G) with coefficients in any R-module G; see Section 4.8 and Chapter 12.

We can generalize homology with coefficients in a ring R to modules with coefficients in
a R-module G by applying the operation (functor) − ⊗R G to a chain complex C, where
the Cp’s are R-modules, to get the chain complex denoted C ⊗R G. The homology groups
of this complex are denoted Hp(C,G). We will discuss this construction in Section 4.7 and
Chapter 12.

If the ring R is a PID, given a chain complex C where the Cp are R-modules, the homology
groups Hp(C;G) of the complex C⊗RG are determined by the homology groups Hp−1(C;R)
and Hp(C;R) via a formula called the Universal Coefficient Theorem for Homology; see
Theorem 12.1. This formula involves a term TorR1 (Hn−1(C);G) that corresponds to the fact
that the operation − ⊗R G on linear maps generally does not preserve injectivity (− ⊗R G
is not left-exact). These matters are discussed in Chapter 11.

Similarly, if the ring R is a PID, given a chain complex C where the Cp are R-modules, the
cohomology groups Hp(C;G) of the complex HomR(C,G) are determined by the homology
groups Hp−1(C;R) and Hp(C;R) via a formula called the Universal Coefficient Theorem
for Cohomology; see Theorem 12.6. This formula involves a term Ext1

R(Hn−1(C);G) that
corresponds to the fact that if the linear map f is injective, then HomR(f, id) is not necessarily
surjective (HomR(−, G) is not right-exact). These matters are discussed in Chapter 11.

One of the advantages of singular homology (and cohomology) is that it is defined for all
topological spaces, but one of its disadvantages is that in practice it is very hard to compute.
On the other hand, simplicial homology (and cohomology) only applies to triangulable spaces
(geometric realizations of simplicial complexes), but in principle it is computable (for finite
complexes). One of the practical problems is that the triangulations involved may have a
large number of simplices. J.H.C. Whiteahead invented a class of spaces called CW complexes
that are more general than triangulable spaces and for which the computation of the singular
homology groups is often more tractable. Unlike a simplicial complex, a CW complex is
obtained by gluing spherical cells as shown in Figure 1.4. CW complexes are discussed in
Chapter 6.

There are at least four other ways of defining cohomology groups of a space X by di-
rectly forming a cochain complex without first forming a homology chain complex and then
dualizing by applying HomZ(−, G):

(1) If X is a smooth manifold, then there is the de Rham complex which uses the modules
of smooth p-forms Ap(X) and the exterior derivatives dp : Ap(X) → Ap+1(X). The
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0-cell 1-cell

“glued”  1-cell to 0-cell

2-cell

attached 2-cell

Figure 1.4: The spherical hemisphere is a CW complex consisting of a point (0-cell), a line
segment (1-cell), and a closed unit disk (2-cell).

corresponding cohomology groups are the de Rham cohomology groups Hp
dR(X). These

are actually real vector spaces. de Rham cohomology is discussed in Chapter 3.

(2) If X is any space and U = (Ui)i∈I is any open cover of X, we can define the Čech
cohomology groups Ȟp(X,U) in a purely combinatorial fashion. Then we can define
the notion of refinement of a cover and define the Čech cohomology groups Ȟp(X,G)
with values in an abelian group G using a limiting process known as a direct limit (see
Section 8.3, Definition 8.10). Čech cohomology is discussed in Chapter 9.

(3) If X is any space, then there is the Alexander–Spanier cochain complex which yields the
Alexander–Spanier cohomology groups ApA-S(X;G). Alexander–Spanier cohomology is
discussed in Section 13.8 and in Chapter 14.

(4) Sheaf cohomology, based on derived functors and injective resolutions. This is the
most general kind of cohomology of a space X, where cohomology groups Hp(X,F)
with values in a sheaf F on the space X are defined. Intuitively, this means that the
modules F(U) of “coefficients” in which these groups take values may vary with the
open domain U ⊆ X. Sheaf cohomology is discussed in Chapter 13, and the algebraic
machinery of derived functors is discussed in Chapter 11.

We will see that for topological manifolds, all these cohomology theories are equivalent;
see Chapter 13. For paracompact spaces, Čech cohomology, Alexander–Spanier cohomology,
and derived functor cohomology (for constant sheaves) are equivalent (see Chapter 13). In
fact, Čech cohomology and Alexander–Spanier cohomology are equivalent for any space; see
Chapter 14.
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1.2 Relative Homology and Cohomology

In general, computing homology groups is quite difficult so it would be helpful if we had
techniques that made this process easier. Relative homology and excision are two such tools
that we discuss in this section.

Lefschetz (1928) introduced the relative homology groups Hp(K,L;Z), where K is a
simplicial complex and L is a subcomplex of K. The same idea immediately applies to
singular homology and we can define the relative singular homology groups Hp(X,A;R)
where A is a subspace of X. The intuition is that the module of p-chains of a relative chain
complex consists of chains of K modulo chains of L. For example, given a space X and
a subspace A ⊆ X, the singular chain complex S∗(X,A;R) of the pair (X,A) is the chain
complex in which each R-module Sp(X,A;R) is the quotient module

Sp(X,A;R) = Sp(X;R)/Sp(A;R).

It is easy to see that Sp(X,A;R) is actually a free R-module; see Section 4.3.

Although this is not immediately apparent, the motivation is that the groups Hp(A;R)
and Hp(X,A;R) are often “simpler” than the groups Hp(X;R), and there is an exact se-
quence called the long exact sequence of relative homology that can often be used to come
up with an inductive argument that allows the determination of Hp(X;R) from Hp(A;R)
and Hp(X,A;R). Indeed, we have the following exact sequence as shown in Section 4.3 (see
Theorem 4.9):

· · · // Hp+2(X,A;R)
∂∗p+2

// Hp+1(A;R)
i∗ // Hp+1(X;R)

j∗ // Hp+1(X,A;R)
∂∗p+1

// Hp(A;R)
i∗ // Hp(X;R)

j∗ // Hp(X,A;R)
∂∗p

// Hp−1(A;R) // · · ·

ending in

H0(A;R) // H0(X;R) // H0(X,A;R) // 0.

Furthermore, if (X,A) is a “good pair,” then there is an isomorphism

Hp(X,A;R) ∼= Hp(X/A, {pt};R),

where the space X/A, called a quotient space, is obtained from X by identifying A with a
single point, and where pt stands for any point in X.
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The long exact sequence of relative homology is a corollary of one the staples of homology
theory, the “zig-zag lemma.” The zig-zag lemma says that for any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of chain complexes X, Y, Z there is a long exact sequence of cohomology

· · · // Hp−1(Z)
δp−1

// Hp(X)
f∗ // Hp(Y )

g∗ // Hp(Z)
δp

// Hp+1(X)
f∗ // Hp+1(Y )

g∗ // Hp+1(Z)
δp+1

// Hp+2(X) // · · ·

The zig-zag lemma is fully proven in Section 2.7; see Theorem 2.22. There is also a homology
version of this theorem.

Another very important aspect of relative singular homology is that it satisfies the ex-
cision axiom, another useful tool to compute homology groups. This means that removing
a subspace Z ⊆ A ⊆ X which is clearly inside of A, in the sense that Z is contained in
the interior of A, does not change the relative homology group Hp(X,A;R). More precisely,
there is an isomorphism

Hp(X − Z,A− Z;R) ∼= Hp(X,A;R);

see Section 4.5 (Theorem 4.14). A good illustration of the use of excision and of the long
exact sequence of relative homology is the computation of the homology of the sphere Sn;
see Section 4.6. Relative singular homology also satisfies another important property: the
homotopy axiom, which says that if two spaces are homotopy equivalent, then their homology
is isomorphic; see Theorem 4.8.

Following the procedure for obtaining cohomology from homology described in Section
1.1, by applying HomR(−, G) to the chain complex S∗(X,A;R) we obtain the cochain com-
plex S∗(X,A;G) = HomR(S∗(X,A;R), G), and thus the singular relative cohomology groups
Hp(X,A;G); see Section 4.9. In this case we can think of the elements of Sp(X,A;G) as lin-
ear maps (with values in G) on singular p-simplices in X that vanish on singular p-simplices
in A.

Fortunately, since each Sp(X,A;R) is a free R-module, it can be shown that there is a
long exact sequence of relative cohomology (see Theorem 4.36):
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· · · // Hp−1(A;G)
δ∗p−1

// Hp(X,A;G)
(j>)∗ // Hp(X;G)

(i>)∗ // Hp(A;G)
δ∗p

// Hp+1(X,A;G)
(j>)∗ // Hp+1(X;G)

(i>)∗ // Hp+1(A;G)
δ∗p+1

// Hp+2(X,A;G) // · · ·

Relative singular cohomology also satisfies the excision axiom and the homotopy axioms (see
Section 4.9).

1.3 Duality; Poincaré, Alexander, Lefschetz

Roughly speaking, duality is a kind of symmetry between the homology and the cohomology
groups of a space. Historically, duality was formulated only for homology, but it was later
found that more general formulations are obtained if both homology and cohomology are
considered. We will discuss two duality theorems: Poincaré duality, and Alexander–Lefschetz
duality. Original versions of these theorems were stated for homology and applied to special
kinds of spaces. It took at least thirty years to obtain the versions that we will discuss.

The result that Poincaré considered as the climax of his work in algebraic topology
was a duality theorem (even though the notion of duality was not very clear at the time).
Since Poincaré was working with finite simplicial complexes, for him duality was a con-
struction which, given a simplicial complex K of dimension n, produced a “dual” complex
K∗; see Munkres [48] (Chapter 8, Section 64). If done the right way, the matrices of the
boundary maps ∂ : Cp(K)→ Cp−1(K) are transposes of the matrices of the boundary maps
∂∗ : Cn−p+1(K∗)→ Cn−p(K∗). As a consequence, the homology groups Hp(K) and Hn−p(K∗)
are isomorphic. Note that this type of duality relates homology groups, not homology and
cohomology groups as it usually does nowadays, for the good reason that cohomology did
not exist until about 1935.

Around 1930 de Rham gave a version of Poincaré duality for smooth orientable, compact
manifolds. If M is a smooth, oriented, and compact n-manifold, then there are isomorphisms

Hp
dR(M) ∼= (Hn−p

dR (M))∗,

where (Hn−p(M))∗ is the dual of the vector space Hn−p(M). This duality is actually induced
by a nondegenerate pairing

〈−,−〉 : Hp
dR(M)×Hn−p

dR (M)→ R
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given by integration, namely

〈[ω], [η]〉 =

∫

M

ω ∧ η,

where ω is a differential p-form and η is a differential (n− p)-form. For details, see Chapter
3, Theorem 3.8. The proof uses several tools from the arsenal of homological algebra: the
zig-zag lemma (in the form of Mayer–Vietoris sequences), the five lemma, and an induction
on finite “good covers.”

Around 1935, inspired by Pontrjagin’s duality theorem and his introduction of the no-
tion of nondegenerate pairing (see the end of this section), Alexander and Kolmogoroff
independently started developing cohomology, and soon after this it was realized that be-
cause cohomology primarily deals with functions, it is possible to define various products.
Among those, the cup product is particularly important because it induces a multiplication
operation on what is called the cohomology algebra H∗(X;R) of a space X, and the cap
product yields a stronger version of Poincaré duality.

Recall that S∗(X;R) is the R-module
⊕

p≥0 S
p(X;R), where the Sp(X;R) are the sin-

gular cochain modules. For all p, q ≥ 0, it possible to define a function

^ : Sp(X;R)× Sq(X;R)→ Sp+q(X;R),

called cup product . These functions induce a multiplication on S∗(X;R) also called the
cup product, which is bilinear, associative, and has an identity element. The cup product
satisfies the following equation

δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd),

reminiscent of a property of the wedge product. (In the above equation δ is the coboundary
map, i.e. δp : Sp(X;R) → Sp+1(X;R).) This equation can be used to show that the cup
product is a well defined on cohomology classes:

^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R).

These operations induce a multiplication operation on H∗(X;R) =
⊕

p≥0H
p(X;R) which is

bilinear and associative. Together with the cup product, H∗(X;R) is called the cohomology
ring of X. For details, see Section 4.10.

The cup product for simplicial cohomology was invented independently by Alexander
and Kolmogoroff (in addition to simplicial cohomology) and presented at a conference held
in Moscow in 1935. Alexander’s original definition was not quite correct and he modified
his definition following a suggestion of Čech (1936). This modified version was discovered
independently by Whitney (1938), who introduced the notation ^. Eilenberg extended the
definition of the cup product to singular cohomology (1944).

The significance of the cohomology ring is that two spaces X and Y may have isomorphic
cohomology modules but nonisomorphic cohomology rings. Therefore the cohomology ring
is an invariant of a space X that is finer than its cohomology.
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Another product related to the cup product is the cap product. The cap product combines
cohomology and homology classes, it is an operation

_ : Hp(X;R)×Hn(X;R)→ Hn−p(X;R);

see Section 7.2.

The cap product was introduced by Čech (1936) and independently by Whitney (1938),
who introduced the notation _ and the name cap product . Again Eilenberg generalized the
cap product to singular homology and cohomology.

The cup product and the cap product are related by the following equation:

a(b _ σ) = (a ^ b)(σ)

for all a ∈ Sn−p(X;R), all b ∈ Sp(X;R), and all σ ∈ Sn(X;R), or equivalently using the
bracket notation for evaluation as

〈a, b _ σ〉 = 〈a ^ b, σ〉,

which shows that _ is the adjoint of ^ with respect to the evaluation pairing 〈−,−〉.
The reason why the cap product is important is that it can be used to state a sharper

version of Poincaré duality. But first we need to talk about orientability.

If M is a topological manifold of dimension n, it turns out that for every x ∈ M the
relative (singular) homology groups Hp(M,M − {x};Z) are either (0) if p 6= n, or equal to
Z if p = n. An orientation of M is a choice of a generator µx ∈ Hn(M,M − {x};Z) ∼= Z
for each x ∈ M which varies “‘continuously” with x. A manifold that has an orientation is
called orientable.

Technically, this means that for every x ∈M , locally on some small open subset U of M
containing x there is some homology class µU ∈ Hn(M,M − U ;Z) such that all the chosen
µx ∈ Hn(M,M − {x};Z) for all x ∈ U are obtained as images of µU ; see Figure 1.5.

If such a µU can be found when U = M , we call it a fundamental class of M and denote
it by µM ; see Section 7.3. Readers familiar with differential geometry may think of the
fundamental class as a discrete analog to the notion of volume form. The crucial result is
that a compact manifold of dimension n is orientable iff it has a unique fundamental class
µM ; see Theorem 7.7.

The notion of orientability can be generalized to the notion of R-orientability. One of
the advantages of this notion is that every manifold is Z/2Z orientable. We are now in a
position to state the Poincaré duality theorem in terms of the cap product.

If M is compact and orientable, then there is a fundamental class µM . In this case (if
0 ≤ p ≤ n) we have a map

DM : Hp(M ;Z)→ Hn−p(M ;Z)
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U

μU

μxμx

μx μx

Figure 1.5: A schematic representation which shows µx as the image of µU .

given by

DM(ω) = ω _ µM .

Poincaré duality asserts that the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;Z) and Hn−p(M ;Z); see Theorem 7.16.

Poincaré duality can be generalized to compact R-orientable manifolds for any commuta-
tive ring R, and to coefficients in any R-module G. It can also be generalized to noncompact
manifolds if we replace cohomology by cohomology with compact support (the modules
Hp
c (X;R)); see Sections 7.3, 7.4, and 7.5. If R = Z/2Z, Poincaré duality holds for all

manifolds, orientable or not.

Another kind of duality was introduced by Alexander in 1922. Alexander considered a
compact proper subset A of the sphere Sn (n ≥ 2) which is a curvilinear cell complex (A has
some type of generalized triangulation). For the first time he defined the homology groups
of the open subset Sn−A with coefficients in Z/2Z (so that he did not have to bother with
signs), and he proved that for p ≤ n− 2 there are isomorphisms

Hp(A;Z/2Z) ∼= Hn−p−1(Sn − A;Z/2Z);

see Figure 1.6. Since cohomology did not exist yet, the original version of Alexander duality
was stated for homology.

Around 1928 Lefschetz started investigating homology with coefficients in Z,Z/mZ, or
Q, and defined relative homology. In his book published in 1930, using completely different
methods from Alexander, Lefschetz proved a version of Alexander’s duality in the case where
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S2

A

H  (A; Z/2Z)p H        (S   - A; Z/2Z)2
2-p-1

y

Figure 1.6: Let A be the peach spherical triangle in S2. The original version of Alexander
duality compares the homology of the peach spherical triangle with the homology of the
surface consisting of S2 − A.

A is a subcomplex of Sn. Soon after he obtained a homological version of what we call the
Lefschetz duality theorem in Section 14.5 (Theorem 14.9):

Hp(M,L;Z) ∼= Hn−p(M − L;Z),

where M and L are complexes and L is a subcomplex of M ; see Figure 1.7.

Both Alexander and Lefschetz duality can be generalized to the situation where in Alexan-
der duality A is an arbitrary closed subset of Sn, and in Lefschetz duality L is any compact
subset of M and M is orientable, but new kinds of cohomology need to be introduced: Čech
cohomology and Alexander–Spanier cohomology , which turn out to be equivalent. This is a
nontrivial theorem due to Dowker [13]. Then a duality theorem generalizing both Poincaré
duality and Alexander–Lefschetz duality can be proven. These matters are discussed in
Chapter 9, Section 13.8, and Chapter 14.

Proving the general version of Alexander–Lefschetz duality takes a significant amount
of work because it requires defining relative versions of Čech cohomology and Alexander–
Spanier cohomology, and to prove their equivalence as well as their equivalence to another
definition in terms of direct limits of singular cohomology groups (see Definition 14.13 and
Proposition 14.7).

When discussing the notion of duality, we would be remiss if we did not mention the
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M L

H   (M, L, Z)  ¥ H     (M-L; Z) M-Lp
n-p

Figure 1.7: A representation of Lefschetz duality when M is the simplicial complex consisting
of two solid tetrahedra while L is the subcomplex consisting of the front left peach face, the
back right pink face, and the solid red edge.

important contributions of Pontrjagin. In a paper published in 1931 Pontrjagin investigates
the duality between a closed subset A of Rn homeomorphic to a simplicial complex and
Rn − A. Pontrjagin introduces for the first time the notion of a nondegenerate pairing
ϕ : U × V → G between two finitely abelian groups U and V , where G is another abelian
group (he uses G = Z or G = Z/mZ). This is a bilinear map ϕ : U × V → G such that
if ϕ(u, v) = 0 for all v ∈ V , then u = 0, and if ϕ(u, v) = 0 for all u ∈ U , then v = 0.
Pontrjagin proves that U and V are isomorphic for his choice of G, and applies the notion of
nondegenerate pairing to Poincaré duality and to a version of Alexander duality for certain
subsets of Rn. Pontrjagin also introduces the important notion of direct limit (see Section
8.3, Definition 8.10) which, among other things, plays a crucial role in the definition of Čech
cohomology and in the construction of a sheaf from a presheaf (see Chapter 10).

In another paper published in 1934, Pontrjagin states and proves his famous duality
theory between discrete and compact abelian topological groups. In this situation, U is a
discrete group, G = R/Z ∼= S1, and V = Û = Hom(U,R/Z) (with the topology of simple
convergence). Pontrjagin applies his duality theorem to a version of Alexander duality for
compact subsets of Rn and for a version of Čech homology (cohomology had not been defined
yet).

One notion that we still need to address, especially since it has appeared numerous times
in our aforementioned discussions, is Čech cohomology. We will do so in the next section.
It turns out that Čech cohomology accommodates very general types of coefficients, namely
presheaves and sheaves . In Chapters 8, 9 and 10 we introduce these notions that play a major
role in many area of mathematics, especially algebraic geometry and algebraic topology.

One can say that from a historical point of view, all the notions we presented so far are
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discussed in the landmark book by Eilenberg and Steenrod [15] (1952). This is a beautiful
book well worth reading, but it is not for the beginner. The next landmark book is Spanier’s
[59] (1966). It is easier to read than Eilenberg and Steenrod but still quite demanding.

The next era of algebraic topology begins with the introduction of the notion of sheaf by
Jean Leray around 1946.

1.4 Presheaves, Sheaves, and Čech Cohomology

The machinery of sheaves is applicable to problems designated by the vague notion of “pas-
sage from local to global properties.” When some mathematical object attached to a topo-
logical space X can be “restricted” to any open subset U of X, and that restriction is known
for sufficiently small U , what can be said about that “global” object? For example, consider
the continuous functions defined over R2 and their restrictions to open subsets of R2.

Problems of this type had arisen since the 1880s in complex analysis in several variables
and had been studied by Poincaré, Cousin, and later H. Cartan and Oka. Beginning in 1942,
Leray considered a similar problem in cohomology. Given a space X, when the cohomology
H∗(U ;G) =

⊕
p≥0H

p(U ;G) is known for sufficiently small U , what can be said about
H∗(X;G) =

⊕
p≥0H

p(X;G)?

Leray devised some machinery in 1946 that was refined and generalized by H. Cartan,
M. Lazard, A. Borel, Koszul, Serre, Godement, and others to yield the notions of presheaves
and sheaves.

Given a topological space X and a class C of structures (a category), say sets, vector
spaces, R-modules, groups, commutative rings, etc., a presheaf on X with values in C consists
of an assignment of some object F(U) in C to every open subset U of X and of a map
F(i) : F(U) → F(V ) of the class of structures in C to every inclusion i : V → U of open
subsets V ⊆ U ⊆ X, such that

F(i ◦ j) = F(j) ◦ F(i)

F(idU) = idF(U),

for any two inclusions i : V → U and j : W → V , with W ⊆ V ⊆ U ; see Figure 1.8.

Note that the order of composition is switched in F(i ◦ j) = F(j) ◦ F(i).

Intuitively, the map F(i) : F(U) → F(V ) is a restriction map if we think of F(U) and
F(V ) as sets of functions (which is often the case). For this reason, the map F(i) : F(U)→
F(V ) is also denoted by ρUV : F(U) → F(V ), and the first equation of the above definition
is expressed by

ρUW = ρVW ◦ ρUV .

Presheaves, as defined above and in Section 8.1, are typically used to keep track of local
information assigned to a global object (the space X). It is usually desirable to use consistent
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U

U
UV

X = R2

F(U)

F(U)

F(U)F(V)

Figure 1.8: A schematic representation of the presheaf of continuous real valued function on
X = R2. An open set U is a circle in the plane while F(U) is the “balloon” of functions
floating above U .

local information to recover some global information, but this requires a sharper notion, that
of a sheaf.

As stated at the beginning of Section 8.2, the motivation for the extra condition that a
sheaf should satisfy is this. Suppose we consider the presheaf of continuous functions on a
topological space X. If U is any open subset of X and if (Ui)i∈I is an open cover of U , for
any family (fi)i∈I of continuous functions fi : Ui → R, if fi and fj agree on every overlap
Ui ∩ Uj, then the fi patch to a unique continuous function f : U → R whose restriction to
Ui is fi.

Given a topological space X and a class C of structures (a category), say sets, vector
spaces, R-modules, groups, commutative rings, etc., a sheaf on X with values in C is a
presheaf F on X such that for any open subset U of X, for every open cover (Ui)i∈I of U
(that is, U =

⋃
i∈I Ui for some open subsets Ui ⊆ U of X), the following conditions hold:

(G) (Gluing condition) For every family (fi)i∈I with fi ∈ F(Ui), if the fi are consistent,
which means that

ρUiUi∩Uj(fi) = ρ
Uj
Ui∩Uj(fj) for all i, j ∈ I,

then there is some f ∈ F(U) such that ρUUi(f) = fi for all i ∈ I; see Figure 1.9.

(M) (Monopresheaf condition) For any two elements f, g ∈ F(U), if f and g agree on all
the Ui, which means that

ρUUi(f) = ρUUi(g) for all i ∈ I,

then f = g.
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X = R2
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f

i
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f

U

Figure 1.9: Let F be the sheaf of continuous real valued functions on X = R2. Let U =
U1 ∪ U2. The graph of the pink function f1 and the peach function f2 glue together over
U1 ∩ U2 to form the continuous function f : U → R2.

Many (but not all) objects defined on a manifold are sheaves: the smooth functions
C∞(U), the smooth differential p-forms Ap(U), the smooth vector fields X(U), where U is
any open subset of M .

Given any commutative ring R and a fixed R-module G, the constant presheaf GX is
defined such that GX(U) = G for all nonempty open subsets U of X, and GX(∅) = (0). The

constant sheaf G̃X is the sheaf given by G̃X(U) = the set of locally constant functions on
U (the functions f : U → G such that for every x ∈ U there is some open subset V of U

containing x such that f is constant on V ), and G̃X(∅) = (0); see Figure 1.10.

In general a presheaf is not a sheaf. For example, the constant presheaf is not a sheaf.
However, there is a procedure for converting a presheaf to a sheaf. We will return to this
process in Section 1.5.

Čech cohomology with values in a presheaf of R-modules involves open covers of the
topological space X; see Chapter 9.

Apparently, Čech himself did not introduce Čech cohomology, but he did introduce Čech
homology using the notion of open cover (1932). Dowker, Eilenberg, and Steenrod introduced
Čech cohomology in the early 1950s.

Given a topological space X, a family U = (Uj)j∈J is an open cover of X if the Uj are
open subsets of X and if X =

⋃
j∈J Uj. Given any finite sequence I = (i0, . . . , ip) of elements

of some index set J (where p ≥ 0 and the ij are not necessarily distinct), we let

UI = Ui0···ip = Ui0 ∩ · · · ∩ Uip .
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Figure 1.10: Let F be the sheaf of continuous real valued functions over X = R2, and let
U = U1 ∪ U2 ∪ U3, a disjoint union. The function f is locally constant over U since it takes
a constant value over each Ui, where 1 ≤ i ≤ 3.

Note that it may happen that UI = ∅. We denote by Ui0···îj ···ip the intersection

Ui0···îj ···ip = Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uip

of the p subsets obtained by omitting Uij from Ui0···ip = Ui0 ∩ · · · ∩ Uip (the intersection of
the p+ 1 subsets); see Figure 1.11.

Now given a presheaf F of R-modules, the R-module of Čech p-cochains Cp(U ,F) is the
set of all functions f with domain Jp+1 such that f(i0, . . . , ip) ∈ F(Ui0···ip); in other words,

Cp(U ,F) =
∏

(i0,...,ip)∈Jp+1

F(Ui0···ip),

the set of all Jp+1-indexed families (fi0,...,ip)(i0,...,ip)∈Jp+1 with fi0,...,ip ∈ F(Ui0···ip). Observe
that the coefficients (the modules F(Ui0···ip)) can “vary” from open subset to open subset.

We have p+ 1 inclusion maps

δpj : Ui0···ip −→ Ui0···îj ···ip , 0 ≤ j ≤ p.

Each inclusion map δpj : Ui0···ip −→ Ui0···îj ···ip induces a map

F(δpj ) : F(Ui0···îj ···ip) −→ F(Ui0···ip)

which is none other that the restriction map ρ
Ui0···îj ···ip
Ui0···ip

which, for the sake of notational

simplicity, we also denote by ρji0···ip .
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Figure 1.11: An illustration of the notation U123 = U1 ∩ U2 ∩ U3 and the three cases of
Ui0···îj ···ip = Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uip , where i0 = 1 and ip = 3.

Given a topological space X, an open cover U = (Uj)j∈J of X, and a presheaf of R-
modules F on X, the coboundary maps δpF : Cp(U ,F)→ Cp+1(U ,F) are given by

δpF =

p+1∑

j=0

(−1)jF(δp+1
j ), p ≥ 0.

More explicitly, for any p-cochain f ∈ Cp(U ,F), for any sequence (i0, . . . , ip+1) ∈ Jp+2, we
have

(δpFf)i0,...,ip+1 =

p+1∑

j=0

(−1)jρji0···ip+1
(fi0,...,îj ,...,ip+1

).

Unravelling the above definition for p = 0 we have

(δ0
Ff)i,j = ρ0

ij(fj)− ρ1
ij(fi),

and for p = 1 we have

(δ1
Ff)i,j,k = ρ0

ijk(fj,k)− ρ1
ijk(fi,k) + ρ2

ijk(fi,j).

It is easy to check that δp+1
F ◦ δpF = 0 for all p ≥ 0, so we have a chain complex of

cohomology

0
δ−1
F // C0(U ,F)

δ0
F // C1(U ,F) // · · ·

δp−1
F // Cp(U ,F)

δpF // Cp+1(U ,F)
δp+1
F // · · ·
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and we can define the Čech cohomology groups as follows.

Given a topological space X, an open cover U = (Uj)j∈J of X, and a presheaf of R-
modules F on X, the Čech cohomology groups Ȟp(U ,F) of the cover U with values in F are
defined by

Ȟp(U ,F) = Ker δpF/Im δp−1
F , p ≥ 0.

The classical Čech cohomology groups Ȟp(U ;G) of the cover U with coefficients in the R-
module G are the groups Ȟp(U , GX), where GX is the constant sheaf on X with values in
G.

The next step is to define Čech cohomology groups that do not depend on the open
cover U . This is achieved by defining a notion of refinement on covers and by taking direct
limits (see Section 8.3, Definition 8.10). Čech had used such a method in defining his Čech
homology groups, by introducing the notion of inverse limit (which, curiously, was missed
by Pontrjagin whose introduced direct limits!).

Without going into details, given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space X,
we say that V is a refinement of U , denoted U ≺ V , if there is a function τ : J → I such that

Vj ⊆ Uτ(j) for all j ∈ J.

Under this notion of refinement, the open covers of X form a directed preorder, and the
family (Ȟp(U ,F))U is what is called a direct mapping family so its direct limit

lim−→U
Ȟp(U ,F)

makes sense. We define the Čech cohomology groups Ȟp(X,F) with values in F by

Ȟp(X,F) = lim−→U
Ȟp(U ,F).

The classical Čech cohomology groups Ȟp(X;G) with coefficients in the R-module G are the
groups Ȟp(X,GX) where GX is the constant presheaf with value G. All this is presented in
Chapter 9.

A natural question to ask is how does the classical Čech cohomology of a space com-
pare with other types of cohomology, in particular singular cohomology. In general Čech
cohomology can differ from singular cohomology, but for manifolds it agrees. Classical Čech
cohomology also agrees with de Rham cohomology of the constant presheaf RX . These
results are hard to prove; see Chapter 13.

1.5 Sheafification and Stalk Spaces

One of the major goals of this book is to introduce sheaf cohomology. This means we need to
develop a deeper understanding of mappings between sheaves. A map (or morphism) ϕ : F →
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G of presheaves (or sheaves) F and G on X consists of a family of maps ϕU : F(U)→ G(U)
of the class of structures in C, for any open subset U of X, such that

ϕV ◦ (ρF)UV = (ρG)
U
V ◦ ϕU

for every pair of open subsets U, V such that V ⊆ U ⊆ X. Equivalently, the following
diagrams commute for every pair of open subsets U, V such that V ⊆ U ⊆ X

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V ).

The notion of kernel Kerϕ and image Imϕ of a presheaf or sheaf map ϕ : F → G is easily
defined. The presheaf Kerϕ is defined by (Kerϕ)(U) = KerϕU , and the presheaf Im ϕ is
defined by (Im ϕ)(U) = Im ϕU . In the case of presheaves, they are also presheaves, but in
the case of sheaves, the kernel Kerϕ is indeed a sheaf, but the image Im ϕ is not a sheaf in
general.

This failure of the image of a sheaf map to be a sheaf is a problem that causes significant
technical complications. In particular, it is not clear what it means for a sheaf map to be
surjective, and a “good” definition of the notion of an exact sequence of sheaves is also
unclear.

Fortunately, there is a procedure for converting a presheaf F into a sheaf F̃ which is
reasonably well-behaved. This procedure is called sheafification. There is a sheaf map
η : F → F̃ which is generally not injective.

The sheafification process is universal in the sense that given any presheaf F and any
sheaf G, for any presheaf map ϕ : F → G, there is a unique sheaf map ϕ̂ : F̃ → G such that

ϕ = ϕ̂ ◦ ηF

as illustrated by the following commutative diagram

F ηF //

ϕ
��

F̃
ϕ̂

��
G;

see Theorem 10.12.

The sheafification process involves constructing a topological space SF from the presheaf
F that we call the stalk space of F ; see Figure 1.12. Godement calls it the espace étalé.
The stalk space is the disjoint union of sets (modules) Fx called stalks . Each stalk Fx is
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X = RU
x

F
x

F(U)

X = R
x

F
x

y z

Fy Fz

SF

Figure 1.12: Let X = R and F be the sheaf of real valued continuous functions. An element
F(U) is represented by the floating balloon. By “collapsing” the balloon (via the direct
limiting process), we form the stalk Fx, which is represented as a vertical line.

the direct limit lim−→(F(U))U3x of the family of modules F(U) for all “small” open sets U
containing x (see Definition 10.1).

There is a surjective map p : SF → X which, under the topology given to SF , is a local
homeomorphism, which means that for every y ∈ SF , there is some open subset V of SF
containing y such that the restriction of p to V is a homeomorphism. The sheaf F̃ consists
of the continuous sections of p, that is, the continuous functions s : U → SF such that
p ◦ s = idU , for any open subset U of X. This construction is presented in detail in Sections
10.1, 10.2, and 10.4.

The construction of the pair (SF , p) from a presheaf F suggests another definition of a
sheaf as a pair (E, p), where E is a topological space and p : E → X is a surjective local
homeomorphism onto another space X. Such a pair (E, p) is often called a sheaf space,
but we prefer to call it a stalk space. This is the definition that was given by H. Cartan
and M. Lazard around 1950. The sheaf ΓE associated with the stalk space (E, p) is defined
as follows: for any open subset U or X, the sections of ΓE are the continuous sections
s : U → E, that is, the continuous functions such that p ◦ s = id; see Figure 1.13. We can
also define a notion of map between two stalk spaces. Stalk spaces are discussed in Section
10.3.

As this stage, given a topological space X we have three categories (classes of objects):

(1) The category Psh(X) of presheaves and their morphisms.

(2) The category Sh(X) of sheaves and their morphisms.
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Figure 1.13: A schematic representation of a stalk space (E, p). We drew four sections over
U , where each section is a colored curve such that p ◦ s = id.

(3) The category StalkS(X) of stalk spaces and their morphisms.

There is also a functor
S : PSh(X)→ StalkS(X)

from the category PSh(X) to the category StalkS(X) given by the construction of a stalk
space SF from a presheaf F , (S(F) = SF), and a functor

Γ: StalkS(X)→ Sh(X)

from the category StalkS(X) to the category Sh(X), given by the sheaf ΓE of continuous
sections of E. Here we are using the term functor in an informal way. A more precise
definition is given in Sections 1.7 and 10.10.

Note that every sheaf F is also a presheaf, and that every map ϕ : F → G of sheaves is
also a map of presheaves. Therefore, we have an inclusion map

i : Sh(X)→ PSh(X),

which is a functor. As a consequence, S restricts to an operation (functor)

S : Sh(X)→ StalkS(X).

There is also a map η which maps a presheaf F to the sheaf ΓS(F) = F̃ . This map η is
a natural isomorphism between the functors id (the identity functor) and ΓS from Sh(X)
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to itself. In other words, if we take F , form the stalk space SF , then turn this stalk space
into the sheaf of continuous sections ΓSF , this new sheaf is isomorphic to F .

We can also define a map ε which takes a stalk space (E, p) and makes the stalk space
SΓE. The map ε is a natural isomorphism between the functors id (the identity functor)
and SΓ from StalkS(X) to itself. In other words, if we take the stalk space (E, p), form the
sheaf of continuous sections ΓE, then form the stalk space of ΓE, namely SΓE, this new
stalk space is isomorphic to (E, p).

Then we see that the two operations (functors)

S : Sh(X)→ StalkS(X) and Γ: StalkS(X)→ Sh(X)

are almost mutual inverses, in the sense that there is a natural isomorphism η between ΓS
and id and a natural isomorphism ε between SΓ and id. In such a situation, we say that the
classes (categories) Sh(X) and StalkS(X) are equivalent . The upshot is that it is basically
a matter of taste (or convenience) whether we decide to work with sheaves or stalk spaces.
In fact, for the aspects of sheaf cohomology that deal with soft and fine sheaves (Sections
13.5 and 13.6), it is best to use the stalk space construction of a sheaf.

We also have the operator (functor)

ΓS : PSh(X)→ Sh(X)

which “sheafifies” a presheaf F into the sheaf F̃ . Theorem 10.12 can be restated as saying
that there is an isomorphism

HomPSh(X)(F , i(G)) ∼= HomSh(X)(F̃ ,G),

between the set (category) of maps between the presheaves F and i(G) and the set (category)

of maps between the sheaves F̃ and G. In fact, such an isomorphism is natural, so in
categorical terms, i and ˜= ΓS are adjoint functors .

All this is explained in Sections 10.3 and 10.4.

1.6 Cokernels and Images of Sheaf Maps

We still need to define the image of a sheaf map in such a way that the notion of exact
sequence of sheaves makes sense. Recall that if f : A → B is a homomorphism of modules,
the cokernel Coker f of f is defined by B/Im f . It is a measure of the surjectivity of f . We
also have the projection map coker(f) : B → Coker f , and observe that

Im f = Ker coker(f).

The above suggests defining notions of cokernels of presheaf maps and sheaf maps. For a
presheaf map ϕ : F → G this is easy, and we can define the presheaf cokernel PCoker(ϕ). It
comes with a presheaf map pcoker(ϕ) : G → PCoker(ϕ).
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If F and G are sheaves, we define the sheaf cokernel SCoker(ϕ) as the sheafification of
PCoker(ϕ). It also comes with a presheaf map scoker(ϕ) : G → SCoker(ϕ).

Then it can be shown that if ϕ : F → G is a sheaf map, SCoker(ϕ) = (0) iff the stalk
maps ϕx : Fx → Gx are surjective for all x ∈ X; see Proposition 10.19.

It follows that the “correct” definition for the image SIm ϕ of a sheaf map ϕ : F → G is

SIm ϕ = Ker scoker(ϕ).

With this definition, a sequence of sheaves

F ϕ // G ψ //H

is said to be exact if SIm ϕ = Kerψ. Then it can be shown that

F ϕ // G ψ //H

is an exact sequence of sheaves iff the sequence

Fx
ϕx // Gx

ψx //Hx

is an exact sequence of R-modules (or rings) for all x ∈ X; see Proposition 10.24. This
second characterization of exactness (for sheaves) is usually much more convenient than the
first condition.

The definitions of cokernels and images of presheaves and sheaves as well as the notion
of exact sequences of presheaves and sheaves are discussed in Sections 10.6, 10.7, 10.8, 10.9,
and 10.10.

1.7 Injective and Projective Resolutions;

Derived Functors

In order to define, even informally, the concept of derived functor, we need to describe what
are functors and exact functors.

Suppose we have two types of structures (categories) C and D (for concreteness, think
of C as the class of R-modules over some commutative ring R with an identity element 1
and of D as the class of abelian groups), and we have a transformation T (a functor) which
works as follows:

(i) Each object A of C is mapped to some object T (A) of D.

(ii) Each map A
f // B between two objects A and B in C (for example, an R-linear

map) is mapped to some map T (A)
T (f) // T (B) between the objects T (A) and T (B) in

D (for example, a homomorphism of abelian groups) in such a way that the following
properties hold:
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(a) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (A)
T (f) // T (B)

T (g) // T (C) makes sense in D, and

T (g ◦ f) = T (g) ◦ T (f).

(b) If A
idA // A is the identity map of the object A in C, then T (A)

T (idA)// T (A) is the

identity map of T (A) in D; that is,

T (idA) = idT (A).

Whenever a transformation T : C→ D satisfies the Properties (i), (ii), (a), (b), we call it a
(covariant) functor from C to D.

If T : C → D satisfies Properties (i), (b), and if Properties (ii) and (a) are replaced by
the Properties (ii’) and (a’) below

(ii’) Each map A
f // B between two objects A and B in C is mapped to some map

T (B)
T (f) // T (A) between the objects T (B) and T (A) in D in such a way that the

following properties hold:

(a’) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (C)
T (g) // T (B)

T (f) // T (A) makes sense in D, and

T (g ◦ f) = T (f) ◦ T (g),

then T is called a contravariant functor from C to D.

An example of a (covariant) functor is the functor Hom(A,−) (for a fixed R-module A)
from R-modules to R-modules which maps a module B to the module Hom(A,B) and a mod-
ule homomorphism f : B → C to the module homomorphism Hom(A, f) from Hom(A,B)
to Hom(A,C) given by

Hom(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ Hom(A,B).

Another example is the functor T from R-modules to R-modules such that T (A) = A⊗RM
for any R-module A, and T (f) = f ⊗R idM for any R-linear map f : A→ B.

An example of a contravariant functor is the functor Hom(−, A) (for a fixed R-module A)
from R-modules to R-modules which maps a module B to the module Hom(B,A) and a mod-
ule homomorphism f : B → C to the module homomorphism Hom(f, A) from Hom(C,A) to
Hom(B,A) given by

Hom(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(C,A).
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Categories and functors were introduced by Eilenberg and Mac Lane, first in a paper
published in 1942, and then in a more complete paper published in 1945.

Given a type of structures (category) C, let us denote the set of all maps from an object
A to an object B by HomC(A,B). For all the types of structures C that we will dealing
with, each set HomC(A,B) has some additional structure; namely it is an abelian group.

Intuitively speaking an abelian category is a category in which the notion of kernel and
cokernel of a map makes sense. Then we can define the notion of image of a map f as the
kernel of the cokernel of f , so the notion of exact sequence makes sense, as we did in Section
1.6. The categories of R-modules and the categories of sheaves (or presheaves) are abelian
categories. For more details, see Sections 10.10 and 10.11.

A sequence of R-modules and R-linear maps (more generally objects and maps between
objects in an abelian category)

0 // A
f // B

g // C // 0 (∗)

is a short exact sequence if

(1) f is injective.

(2) Im f = Ker g.

(3) g is surjective.

According to Dieudonné [11], the notion of exact sequence first appeared in a paper of
Hurewicz (1941), and then in a paper of Eilenberg and Steenrod and a paper of H. Cartan,
both published in 1945. In 1947, Kelly and Pitcher generalized the notion of exact sequence
to chain complexes, and apparently introduced the terminology exact sequence. In their 1952
treatise [15], Eilenberg and Steenrod took the final step of allowing a chain complex to be
indexed by Z (as we do in Section 2.5).

Given two types of structures (categories) C and D in each of which the concept of
exactness is defined (abelian categories), given an additive functor T : C→ D, by applying
T to the short exact sequence (∗) we obtain the sequence

0 // T (A)
T (f) // T (B)

T (g) // T (C) // 0, (∗∗)

which is a chain complex (since T (g) ◦ T (f) = 0). Then the following question arises:

Is the sequence (∗∗) also exact?

In general, the answer is no, but weaker forms of preservation of exactness suggest
themselves.

A functor T : C→ D, is said to be exact if whenever the sequence

0 // A // B // C // 0
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is exact in C, then the sequence

0 // T (A) // T (B) // T (C) // 0

is exact in D; left exact if whenever the sequence

0 // A // B // C

is exact in C, then the sequence

0 // T (A) // T (B) // T (C)

is exact; and right exact if whenever the sequence

A // B // C // 0

is exact in C, then the sequence

T (A) // T (B) // T (C) // 0

is exact.

If T : C → D is a contravariant functor, then T is said to be exact if whenever the
sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A) // 0

is exact in D; left exact if whenever the sequence

A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A)

is exact; and right exact if whenever the sequence

0 // A // B // C

is exact in C, then the sequence

T (C) // T (B) // T (A) // 0

is exact.
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For example, the functor Hom(−, A) is (contravariant) left-exact but not exact in general
(see Section 2.1). Similarly, the functor Hom(A,−) is left-exact but not exact in general (see
Section 2.4).

Modules for which the functor Hom(A,−) is exact play an important role. They are
called projective modules . Similarly, modules for which the functor Hom(−, A) is exact are
called injective modules .

The functor − ⊗R M is right-exact but not exact in general (see Section 2.4). Modules
M for which the functor −⊗RM is exact are called flat .

A good deal of homological algebra has to do with understanding how much a module
fails to be projective or injective (or flat).

Injective and projective modules are also characterized by extension properties. As we
will see later, these extension characterizations can be used to define injective and projective
objects in an abelian category.

(1) A module P is projective iff for any surjective linear map h : A → B and any linear

map f : P → B, there is some linear map f̂ : P → A lifting f : P → B in the sense
that f = h ◦ f̂ , as in the following commutative diagram:

P

f

��

f̂

��
A

h
// B // 0.

(2) A module I is injective iff for any injective linear map h : A→ B and any linear map

f : A → I, there is some linear map f̂ : B → I extending f : A → I in the sense that
f = f̂ ◦ h, as in the following commutative diagram:

0 // A

f

��

h // B

f̂~~
I.

See Section 11.1.

Injective modules were introduced by Baer in 1940 and projective modules by Cartan
and Eilenberg in the early 1950s. Every free module is projective. Injective modules are
more elusive. If the ring R is a PID, an R-module M is injective iff it is divisible (which
means that for every nonzero λ ∈ R, the map given by u 7→ λu for u ∈M is surjective).

One of the most useful properties of projective modules is that every module M is the
image of some projective (even free) module P , which means that there is a surjective
homomorphism ρ : P → M . Similarly, every module M can be embedded in an injective
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module I, which means that there is an injective homomorphism i : M → I. This second
fact is harder to prove (see Baer’s embedding theorem, Theorem 11.6).

The above properties can be used to construct inductively projective and injective resolu-
tions of a module M , a process that turns out to be remarkably useful. Intuitively, projective
resolutions measure how much a module deviates from being projective, and injective reso-
lutions measure how much a module deviates from being injective.

Hopf introduced free resolutions in 1945. A few years later Cartan and Eilenberg defined
projective and injective resolutions.

Given any R-module A, a projective resolution of A is any exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 // A // 0 (∗1)

in which every Pn is a projective module. The exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

obtained by truncating the projective resolution of A after P0 is denoted by PA, and the
projective resolution (∗1) is denoted by

PA p0 // A // 0.

Given any R-module A, an injective resolution of A is any exact sequence

0 // A
i0 // I0 d0

// I1 d1
// · · · // In

dn // In+1 // · · · (∗∗1)

in which every In is an injective module. The exact sequence

I0 d0
// I1 d1

// · · · // In dn // In+1 // · · ·

obtained by truncating the injective resolution of A before I0 is denoted by IA, and the
injective resolution (∗∗1) is denoted by

0 // A
i0 // IA.

Now suppose that we have a functor T : C→ D, where C is the category of R-modules
and D is the category of abelian groups. If we apply T to PA we obtain the chain complex

0 T (P0)oo T (P1)
T (d1)oo · · ·T (d2)oo T (Pn−1)oo T (Pn)

T (dn)oo · · · ,oo (Lp)

denoted T (PA). The above is no longer exact in general but it defines homology groups
Hp(T (PA)).
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Similarly If we apply T to IA we obtain the cochain complex

0 // T (I0)
T (d0) // T (I1)

T (d1) // · · · // T (In)
T (dn) // T (In+1) // · · · , (Ri)

denoted T (IA). The above is no longer exact in general but it defines cohomology groups
Hp(T (IA)).

The reason why projective resolutions are so special is that even though the homology
groups Hp(T (PA)) appear to depend on the projective resolution PA, in fact they don’t; the
groups Hp(T (PA)) only depend on A and T . This is proven in Theorem 11.28.

Similarly, the reason why injective resolutions are so special is that even though the
cohomology groups Hp(T (IA)) appear to depend on the injective resolution IA, in fact they
don’t; the groups Hp(T (IA)) only depend on A and T . This is proven in Theorem 11.27.

Proving the above facts takes some work; we make use of the comparison theorems ; see
Section 11.2, Theorem 11.17 and Theorem 11.21. In view of the above results, given a functor
T as above, Cartan and Eilenberg were led to define the left derived functors LnT of T by

LnT (A) = Hn(T (PA)),

for any projective resolution PA of A, and the right derived functors RnT of T by

RnT (A) = Hn(T (IA)),

for any injective resolution IA of A. The functors LnT and RnT can also be defined on maps.
If T is right-exact, then L0T is isomorphic to T (as a functor), and if T is left-exact, then
R0T is isomorphic to T (as a functor).

For example, the left derived functors of the right-exact functor TB(A) = A ⊗ B (with
B fixed) are the “Tor” functors. We have TorR0 (A,B) ∼= A⊗B, and the functor TorR1 (−, G)
plays an important role in comparing the homology of a chain complex C and the homology
of the complex C ⊗R G; see Chapter 12. Čech introduced the functor TorR1 (−, G) in 1935
in terms of generators and relations. It is only after Whitney defined tensor products of
arbitrary Z-modules in 1938 that the definition of Tor was expressed in the intrinsic form
that we are now familar with.

There are also versions of left and right derived functors for contravariant functors.
For example, the right derived functors of the contravariant left-exact functor TB(A) =
HomR(A,B) (with B fixed) are the “Ext” functors. We have Ext0

R(A,B) ∼= HomR(A,B),
and the functor Ext1

R(−, G) plays an important role in comparing the homology of a chain
complex C and the cohomology of the complex HomR(C,G); see Chapter 12. The Ext
functors were introduced in the context of algebraic topology by Eilenberg and Mac Lane
(1942).

Everything we discussed so far is presented in Cartan and Eilenberg’s groundbreaking
book, Cartan–Eilenberg [10], published in 1956. It is in this book that the name homological
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algebra is introduced. MacLane [37] (1975) and Rotman [50, 52] give more “gentle” pre-
sentations (see also Weibel [63] and Eisenbud [16]). A more sophisticated presentation of
homological algebra is found in Gelfand and Manin [23].

Derived functors can be defined for functors T : C→ D, where C or D is a more general
category than the category of R-modules or the category of abelian groups. For example, in
sheaf cohomology, the category C is the category of sheaves of rings. In general, it suffices
that C and D are abelian categories.

We say that C has enough projectives if every object in C is the image of some projec-
tive object in C, and that C has enough injectives if every object in C can be embedded
(injectively) into some injective object in C.

There are situations (for example, when dealing with sheaves) where it is useful to know
that right derived functors can be computed by resolutions involving objects that are not
necessarily injective, but T -acyclic, as defined below.

Given a left-exact functor T : C→ D, an object J ∈ C is T -acyclic if RnT (J) = (0) for
all n ≥ 1.

The following proposition shows that right derived functors can be computed using T -
acyclic resolutions.

Proposition Given an additive left-exact functor T : C→ D, for any A ∈ C suppose there
is an exact sequence

0 // A ε // J0 d0
// J1 d1

// J2 d2
// · · · (†)

in which every Jn is T -acyclic (a right T -acyclic resolution JA formed by truncating (†)
before J0). Then for every n ≥ 0 we have an isomorphism between RnT (A) and Hn(T (JA)).

The above proposition is used several times in Chapter 13.

1.8 Universal δ-Functors

The most important property of derived functors is that short exact sequences yield long
exact sequences of homology or cohomology. This property was proven by Cartan and
Eilenberg, but Grothendieck realized how crucial it was and this led him to the fundamental
concept of universal δ-functor . Since we will be using right derived functors much more than
left derived functors we state the existence of the long exact sequences of cohomology for
right derived functors.

Theorem Assume the abelian category C has enough injectives, let 0 −→ A′ −→ A −→
A′′ −→ 0 be an exact sequence in C, and let T : C→ D be a left-exact (additive) functor.

(1) Then for every n ≥ 0, there is a map

(RnT )(A′′)
δn−→ (Rn+1T )(A′),
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and the sequence

0 // T (A′) // T (A) // T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (RnT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · ·

is exact. This property is similar to the property of the zig-zag lemma from Section 1.2.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T (A′)

��

// T (A)

��

// T (A′′)

��

δ0
A //

0 // T (B′) // T (B) // T (B′′)
δ0
B

//

and continuing with

· · · // RnT (A′)

��

// RnT (A)

��

// RnT (A′′)

��

δnA // (Rn+1T )(A′)

��

// · · ·

· · · // RnT (B′) // RnT (B) // RnT (B′′)
δnB

// (Rn+1T )(B′) // · · ·

is also commutative.

The proof of this result (Theorem 11.31) is fairly involved and makes use of the horseshoe
lemma (Theorem 11.25).

The previous theorem suggests the definition of families of functors originally proposed by
Cartan and Eilenberg [10] and then investigated by Grothendieck in his legendary “Tohoku”
paper [27] (1957).
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A δ-functors consists of a countable family T = (T n)n≥0 of functors T n : C → D that
satisfy the two conditions of the previous theorem. There is a notion of map, also called
morphism, between δ-functors.

Given two δ-functors S = (Sn)n≥0 and T = (T n)n≥0, a morphism η : S → T between S
and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → T n such that a certain
diagram commutes; see Definition 11.21.

Grothendieck also introduced the key notion of universal δ-functor; see Grothendieck [27]
(Chapter II, Section 2.2).

A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn)n≥0 and every natural
transformation ϕ : T 0 → S0, there is a unique morphism η : T → S such that η0 = ϕ; we say
that η lifts ϕ.

The reason why universal δ-functors are important is the following kind of uniqueness
property that shows that a universal δ-functor is completely determined by the component
T 0; see Proposition 11.38.

Proposition Suppose S = (Sn)n≥0 and T = (T n)n≥0 are both universal δ-functors and
there is an isomorphism ϕ : S0 → T 0 (a natural transformation ϕ which is an isomorphism).
Then there is a unique isomorphism η : S → T lifting ϕ.

One might wonder whether (universal) δ-functors exist. Indeed there are plenty of them;
see Theorem 11.39.

Theorem Assume the abelian category C has enough injectives. For every additive left-
exact functor T : C→ D, the family (RnT )n≥0 of right derived functors of T is a δ-functor.
Furthermore T is isomorphic to R0T .

In fact, the δ-functors (RnT )n≥0 are universal.

Grothendieck came up with an ingenious sufficient condition for a δ-functor to be univer-
sal: the notion of an erasable functor. Since Grothendieck’s paper is written in French, this
notion defined in Section 2.2 (Page 141) of [27] is called effaçable, and many books and paper
use it. Since the English translation of “effaçable” is “erasable,” as advocated by Lang, we
will use the the English word.

A functor T : C → D is erasable (or effaçable) if for every object A ∈ C there is some
object MA and an injection u : A → MA such that T (u) = 0. In particular this will be the
case if T (MA) is the zero object of D. If the category C has enough injectives, it can be
shown that T is erasable iff T (I) = (0) for all injectives I.

Our favorite functors, namely the right derived functors RnT , are erasable by injectives
for all n ≥ 1. The following result due to Grothendieck is crucial:

Theorem Assume the abelian category C has enough injectives. Let T = (T n)n≥0 be a
δ-functor between two abelian categories C and D. If T n(I) = (0) for every injective I, for
all n ≥ 1, then T is a universal δ-functor.
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Finally, by combining the previous results, we obtain the most important theorem about
universal δ-functors:

Theorem Assume the abelian category C has enough injectives. For every left-exact func-
tor T : C→ D, the right derived functors (RnT )n≥0 form a universal δ-functor such that T
is isomorphic to R0T . Conversely, every universal δ-functor T = (T n)n≥0 is isomorphic to
the right derived δ-functor (RnT 0)n≥0.

After all, the mysterious universal δ-functors are just the right derived functors of left-
exact functors. As an example, the functors ExtnR(A,−) constitute a universal δ-functor (for
any fixed R-module A).

The machinery of universal δ-functors can be used to prove that different kinds of co-
homology theories yield isomorphic groups. If two cohomology theories (Hn

S (−))n≥0 and
(Hn

T (−))n≥0 defined for objects in a category C (say, topological spaces) are given by univer-
sal δ-functors S and T in the sense that the cohomology groups Hn

S (A) and Hn
T (A) are given

by Hn
S (A) = Sn(A) and Hn

T (A) = T n(A) for all objects A ∈ C, and if H0
S(A) and H0

T (A)
are isomorphic, then Hn

S (A) and Hn
T (A) are isomorphic for all n ≥ 0. This technique will

be used in Chapter 13 to prove that sheaf cohomology and Čech cohomology are isomorphic
for paracompact spaces.

In Section 1.10 we will further see how the machinery of right derived functors can be
used to define sheaf cohomology (where the category C is the category of sheaves of R-
modules, the category D is the category of abelian groups, and T is the left exact “global
section functor”).

1.9 Universal Coefficient Theorems

Suppose we have a homology chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

where the Ci are R-modules over some commutative ring R with a multiplicative identity
element (recall that di ◦ di+1 = 0 for all i ≥ 0). Given another R-module G we can form the
homology complex

0 C0 ⊗R G
d0⊗idoo C1 ⊗R G

d1⊗idoo · · ·oo Cp ⊗R G
dp⊗idoo · · · ,oo

obtained by tensoring with G, denoted C ⊗R G, and the cohomology complex

0
HomR(d0,G) // HomR(C0, G) // · · · // HomR(Cp, G)

HomR(dp+1,G)// HomR(Cp+1, G) // · · ·

obtained by applying HomR(−, G), and denoted HomR(C,G).



1.10. SHEAF COHOMOLOGY 53

The question is: what is the relationship between the homology groups Hp(C ⊗RG) and
the original homology groups Hp(C) in the first case, and what is the relationship between
the cohomology groups Hp(HomR(C,G)) and the original homology groups Hp(C) in the
second case?

The ideal situation would be that

Hp(C ⊗R G) ∼= Hp(C)⊗R G and Hp(HomR(C,G)) ∼= HomR(Hp(C), G),

but this is generally not the case. If the ring R is nice enough and if the modules Cp are nice
enough, then Hp(C ⊗RG) can be expressed in terms of Hp(C)⊗RG and TorR1 (Hp−1(C), G),
where TorR1 (−, G) is a one of the left-derived functors of −⊗R G, and Hp(HomR(C,G)) can
be expressed in terms of HomR(Hp(C), G)) and Ext1

R(Hp−1(C), G), where Ext1
R(−, G) is one

of the right-derived functors of HomR(−, G); both derived functors are defined in Section
11.2 and further discussed in Example 11.1. These formulae known as universal coefficient
theorems are discussed in Chapter 12.

1.10 Sheaf Cohomology

Given a topological space X, we define the global section functor Γ(X,−) such that for every
sheaf of R-modules F ,

Γ(X,F) = F(X).

This is a functor from the category Sh(X) of sheaves of R-modules over X to the category
of abelian groups.

A sheaf I is injective if for any injective sheaf map h : F → G and any sheaf map
f : F → I, there is some sheaf map f̂ : G → I extending f : F → I in the sense that
f = f̂ ◦ h, as in the following commutative diagram:

0 // F
f

��

h // G

f̂��
I.

This is the same diagram that we used to define injective modules in Section 1.7, but here,
the category involved is the category of sheaves.

A nice feature of the category of sheaves of R-modules is that its has enough injectives.

Proposition For any sheaf F of R-modules, there is an injective sheaf I and an injective
sheaf homomorphism ϕ : F → I.

As in the case of modules, the fact that the category of sheaves has enough injectives
implies that any sheaf has an injective resolution.

On the other hand, the category of sheaves does not have enough projectives. This is the
reason why projective resolutions of sheaves are of little interest.
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Another good property is that the global section functor is left-exact. Then as in the
case of modules in Section 1.7, the cohomology groups induced by the right derived functors
RpΓ(X,−) are well defined.

The cohomology groups of the sheaf F (or the cohomology groups of X with values in F),
denoted by Hp(X,F), are the groups RpΓ(X,−)(F) induced by the right derived functor
RpΓ(X,−) (with p ≥ 0).

To compute the sheaf cohomology groups Hp(X,F), pick any resolution of F

0 // F // I0 d0
// I1 d1

// I2 d2
// · · ·

by injective sheaves In, apply the global section functor Γ(X,−) to obtain the complex of
R-modules

0 δ−1
// I0(X) δ0

// I1(X) δ1
// I2(X) δ2

// · · · ,
and then

Hp(X,F) = Ker δp/Im δp−1.

By Theorem 11.47 (stated in the previous section) the right derived functors RpΓ(X,−)
constitute a universal δ-functor, so all the properties of δ-functors apply.

In principle, computing the cohomology groups Hp(X,F) requires finding injective reso-
lutions of sheaves. However injective sheaves are very big and hard to deal with. Fortunately,
there is a class of sheaves known as flasque sheaves (due to Godement) which are Γ(X,−)-
acyclic, and every sheaf has a resolution by flasque sheaves. Therefore, by Proposition 11.34
(stated in the previous section), the cohomology groups Hp(X,F) can be computed using
flasque resolutions.

Then we compare sheaf cohomology (defined by derived functors) to the other kinds of

cohomology defined so far: de Rham, singular, Čech (for the constant sheaf G̃X).

If the space X is paracompact, then it turns out that for any sheaf F , the Čech cohomol-
ogy groups Ȟp(X,F) are isomorphic to the cohomology groups Hp(X,F). Furthermore, if

F is a presheaf, then the Čech cohomology groups Ȟp(X,F) and Ȟp(X, F̃) are isomorphic,

where F̃ is the sheafification of F . Several other results (due to Leray and Henri Cartan)
about the relationship between Čech cohomology and sheaf cohomology will be stated.

When X is a topological manifold (thus paracompact), for every R-module G, we will
show that the singular cohomology groups Hp(X;G) are isomorphic to the cohomology

groups Hp(X, G̃X) of the constant sheaf G̃X . Technically, we will need to define soft and
fine sheaves.

We will also define Alexander–Spanier cohomology and prove that it is equivalent to sheaf
cohomology (and Čech cohomology) for paracompact spaces and for the constant sheaf G̃X .

In summary, for manifolds, singular cohomology, Čech cohomology, Alexander–Spanier
cohomology, and sheaf cohomology all agree (for the constant sheaf G̃X). For smooth mani-
folds, we can add de Rham cohomology to the above list of equivalent cohomology theories,
for the constant sheaf R̃X . All these results are presented in Chapter 13.
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1.11 Alexander and Alexander–Lefschetz Duality

The goal of Chapter 14 is to present various generalizations of Poincaré duality. These ver-
sions of duality involve taking direct limits of direct mapping families of singular cohomology
groups which, in general, are not singular cohomology groups. However, such limits are iso-
morphic to Alexander–Spanier cohomology groups, and thus to Čech cohomology groups.
These duality results also require relative versions of homology and cohomology.

1.12 Spectral Sequences

A spectral sequence is a tool of homological algebra whose purpose is to approximate the
cohomology (or homology) H(M) of a module M endowed with a family (F pM)p∈Z of sub-
modules such that F p+1M ⊆ F pM for all p and

M =
⋃

p∈Z
F pM,

called a filtration. The module M is also equipped with a linear map d : M → M called
differential such that d ◦ d = 0, so that it makes sense to define

H(M) = Ker d/Im d.

We say that (M,d) is a differential module. To be more precise, the filtration induces
cohomology submodules H(M)p of H(M), the images of H(F pM) in H(M), and a spectral
sequence is a sequence of modules Ep

r (equipped with a differential dpr), for r ≥ 1, such that
Ep
r approximates the “graded piece” H(M)p/H(M)p+1 of H(M).

Actually, to be useful, the machinery of spectral sequences must be generalized to filtered
cochain complexes. Technically this implies dealing with objects Ep,q

r involving three indices,
which makes its quite challenging to follow the exposition.

Many presentations jump immediately to the general case, but it seems pedagogically
advantageous to begin with the simpler case of a single filtered differential module. This the
approach followed by Serre in his dissertation [56] (Pages 24–104, Annals of Mathematics ,
54 (1951), 425–505), Godement [24], and Cartan and Eilenberg [10]. Spectral sequences are
discussed in great detail in Chapter 15.

There are several methods for defining spectral sequences, including the following three:

(1) Koszul’s original approach as described by Serre [56] and Godement [24]. In our opinion
it is the simplest method to understand what is going on.

(2) Cartan and Eilenberg’s approach [10]. This is a somewhat faster and slicker method
than the previous method.



56 CHAPTER 1. INTRODUCTION

(3) Exact couples of Massey (1952). This somewhat faster method for defining spectral
sequences is adopted by Rotman [50, 52] and Bott and Tu [4]. Mac Lane [37], Weibel
[63], and McCleary [44] also present it and show its equivalence with the first approach.
It appears to be favored by algebraic topologists. This approach leads to spectral
sequences in a quicker fashion and is more general because exact couples need not
arise from a filtration, but our feeling is that it is even more mysterious to a novice
than the first two approaches.

We will primarily follow Method (1) and present Method (2) and Method (3) in starred
sections (Method (2) in Section 15.15 and Method (3) in Section 15.14). All three methods
produce isomorphic sequences, and we will show their equivalence.

1.13 Suggestions On How to Use This Book

This book basically consists of two parts. The first part covers fairly basic material presented
in the first seven chapters. The second part deals with more sophisticated material including
sheaves, derived functors, sheaf cohomology, and spectral sequences.

Chapter 3 on de Rham cohomology, Chapter 5 on simplicial homology and cohomology,
and Chapter 6 on CW-complexes, are written in such a way that they are pretty much
independent of each other and of the rest of book, and thus can be safely skipped. Readers
who have never heard about differential forms can skip Chapter 3, although of course they
will miss a nice facet of the global picture. Chapter 5 on simplicial homology and cohomology
was included mostly for historical sake, and because they have a strong combinatorial and
computational flavor. Chapter 6 on CW-complexes was included to show that there are
tools for computing homology goups and to compensate for the lack of computational flavor
of singular homology. However, CW-complexes can’t really be understood without a good
knowledge of singular homology.

Our feeling is that singular homology is simpler to define than the other homology the-
ories, and since it is also more general, we decided to choose it as our first presentation of
homology.

Our main goal is really to discuss cohomology, but except for de Rham cohomology, we
feel that a two step process where we first present singular homology, and then singular
cohomology as the result of applying the functor Hom(−, G), is less abrupt than discussing
Čech cohomology (or Alexander–Spanier cohomology) first. If the reader prefers, he/she
may to go directly to Chapter 9.

In any case, we highly recommend first reading the first four sections of Chapter 2.
Sections 2.7 and 2.2 can be skipped upon first reading. Next, either proceed with Chapter
3, or skip it, but read Chapter 4 entirely.

After this, we recommend reading Chapter 7 on Poincaré duality, since this is one of the
jewels of algebraic topology.
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Knowledge about manifolds is not necessary to read this book but definitely useful since
manifolds form a large class of spaces for which all the main cohomology theories are equiva-
lent. Among the many books that cover manifolds, we suggest (in alphabetic order) Lee [36],
Morita [46], Tu [61], and Warner [62]. A detailed presentation, first at a basic level and then
at a more advanced level is also provided in Gallier and Quaintance [20]. Chapter 3 requires
knowledge of differential forms on smooth manifolds. Differential forms are discussed in Tu
[61], Morita [46], Madsen and Tornehave [39], and Bott and Tu [4]. A detailed exposition,
including an extensive review of tensor algebra, is also provided in Gallier and Quaintance
[21]. A firm grasp of linear algebra and of some commutative algebra, at the level discussed
in texts such as Artin [2] and Dummit and Foote [14], is required.

The second part, starting with presheaves and sheaves in Chapter 8, relies on more
algebra, especially Chapter 11 on derived functors and Chapter 15 on spectral sequences.
However, this is some of the most beautiful material, so do not be discouraged if the going
is tough. Skip proofs upon first reading and try to plow through as much as possible. Stop
to take a break, and go back!

One of our goals is to fully prepare the reader to read books like Hartshorne [30] (Chapter
III). Others have expressed the same goal, and we hope to be more successful.

We have borrowed some proofs of Steve Shatz from Shatz and Gallier [58], and many
proofs in Chapter 11 are borrowed from Rotman [50, 52]. Generally, we relied heavily on
Bott and Tu [4], Bredon [7], Godement [24], Hatcher [31], Milnor and Stasheff [45], Munkres
[48], Serre [55], Spanier [59], Tennison [60], and Warner [62]. These are wonderful books,
and we hope that reading our book will prepare the reader to study them. We express our
gratitude to these authors, and to all the others that have inspired us (including, of course,
Dieudonné).

Since we made the decision not to include all proofs (this would have doubled if not
tripled the size of the book!), we tried very hard to provide precise pointers to all omitted
proofs. This may be irritating to the expert, but we believe that a reader with less knowledge
will appreciate this. The reason for including a proof is that we feel that it presents a type
of argument that the reader should be exposed to, but this often subjective and a reflection
of our personal taste. When we omitted a proof, we tried to give an idea of what it would
be, except when it was a really difficult proof. This should be an incentive for the reader to
dig into these references.
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Chapter 2

Homology and Cohomology

This chapter is an introduction to the crucial concepts and results of homological algebra
needed to understand homology and cohomology in some depth. The two most fundamental
concepts of homological algebra are:

(1) exact sequences.

(2) chain complexes.

Exact sequences are special kinds of chain complexes satisfying additional properties and the
purpose of cohomology (and homology) is to “measure” the extent to which a chain complex
fails to be an exact sequence. Remarkably, when this machinery is applied to topological
spaces or manifolds, it yields some valuable topological information about these spaces.

In their simplest form chain complexes and exact sequences are built from vector spaces
but a more powerful theory is obtained (at the cost of minor complications) if the vector
spaces are replaced by R-modules, where R is a commutative ring with a multiplicative
identity element 1 6= 0. In particular, if R = Z, then each space is just an abelian group. By
a linear map we mean an R-linear map.

In Section 2.1 we introduce exact sequences and prove some of their most basic properties.
In this chapter we prove two of their most important properties, namely the “five lemma”
and the “zig-zag lemma” for cohomology, or long exact sequence of cohomology.

2.1 Exact Sequences and Short Exact Sequences

We begin with the notion of exact sequence.

Definition 2.1. A Z-indexed sequence of R-modules and R-linear maps between them

· · · // Ap−1

fp−1 // Ap
fp // Ap+1

fp+1 // Ap+2
// · · ·

59



60 CHAPTER 2. HOMOLOGY AND COHOMOLOGY

is exact if Im fp = Ker fp+1
1 for all p ∈ Z. A sequence of R-modules

0 −→ A
f−→ B

g−→ C −→ 0

is a short exact sequence if it is exact at A,B,C, which means that

1. Im f = Ker g.

2. f is injective.

3. g is surjective.

Observe that being exact at Ap+1, that is Im fp = Ker fp+1, implies that fp+1 ◦ fp = 0.

Given a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,

since g is surjective, f is injective, and Im f = Ker g, by the first isomorphism theorem we
have

C ∼= B/Ker g = B/Im f ∼= B/A.

Thus a short exact sequence amounts to a module B, a submodule A of B, and the quotient
module C ∼= B/A.

The quotient module B/Im f associated with the R-linear map f : A → B is a kind of
“dual” of the submodule Ker f which often comes up when dealing with exact sequences.

Definition 2.2. Given any R-linear map f : A→ B, the quotient module B/Im f is called
the cokernel of f and is denoted by Coker f .

Observe that Coker f = B/Im f ∼= C = Im g. Then given an exact sequence

· · · // Ap−2

fp−2 // Ap−1

fp−1 // Ap
fp // Ap+1

fp+1 // Ap+2
// · · · ,

we obtain short exact sequences as follows: if we focus on Ap, then there is a surjection
Ap −→ Im fp, and since Im fp = Ker fp+1 this is a surjection Ap −→ Ker fp+1, and by the
first isomorphism theorem and since Im fp−1 = Ker fp, we have an isomorphism

Ap/Im fp−1 = Ap/Ker fp ∼= Im fp = Ker fp+1.

This means that we have the short exact sequence

0 // Im fp−1
// Ap // Ker fp+1

// 0. (∗Im)

1A good mnemonic for this equation is ikea; i is the first letter in Im, and k is the first letter in Ker .
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By a previous remark Coker fp−2
∼= Im fp−1, so we obtain the short exact sequence

0 // Coker fp−2
// Ap // Ker fp+1

// 0. (∗cok)

Short exact sequences of this kind often come up in proofs (for example, the universal
coefficient theorems).

If we are dealing with vector spaces (that is, if R is a field), then a standard result of
linear algebra asserts that the isomorphism Ap/Ker fp ∼= Im fp yields the direct sum

Ap ∼= Ker fp ⊕ Im fp = Im fp−1 ⊕ Im fp.

As a consequence, if Ap−1 and Ap+1 are finite-dimensional, then so is Ap.

Some of the fundamental and heavily used results about exact sequences include the “zig-
zag lemma” and the “five lemma.” We will encounter these lemmas later on. The following
(apparently unnamed) result is also used a lot.

Proposition 2.1. Consider any diagram of R-modules

A
f //

α

��

B
g //

β

��

C

γ

��
A′

f ′
// B′

g′
// C

in which the left and right squares commute and α, β, γ are isomorphisms. If the top row is
exact, then the bottom row is also exact.

Proof. The commutativity of the left and right squares implies that

γ ◦ g ◦ f = g′ ◦ f ′ ◦ α.

Since the top row is exact, g ◦ f = 0, so g′ ◦ f ′ ◦ α = 0, and since α is an isomorphism,
g′ ◦ f ′ = 0. It follows that Im f ′ ⊆ Ker g′.

Conversely assume that b′ ∈ Ker g′. Since β is an isomorphism there is some b ∈ B such
that β(b) = b′, and since g′(b′) = 0 we have

(g′ ◦ β)(b) = 0.

Since the right square commutes, g′ ◦ β = γ ◦ g, so

(γ ◦ g)(b) = 0.

Since γ is an isomorphism, g(b) = 0. Since the top row is exact, Im f = Ker g, so there is
some a ∈ A such that f(a) = b, which implies that

(β ◦ f)(a) = β(b) = b′.
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Since the left square commutes β ◦ f = f ′ ◦ α, and we deduce that

f ′(α(a)) = b′,

which proves that Ker g′ ⊆ Im f ′. Therefore, Im f ′ ⊆ Ker g′, as claimed.

When the R-module C is free, a short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

has some special properties that play a crucial role when we dualize such a sequence.

Definition 2.3. A short exact sequence of R-modules

0 −→ A
f−→ B

g−→ C −→ 0

is said to split (or to be a short split exact sequence) if the submodule f(A) is a direct
summand in B, which means that B is a direct sum B = f(A)⊕D for some submodule D
of B.

If a short exact sequence as in Definition 2.3 splits, since Im f = Ker g, f is injective and
g is surjective, then the restriction of g to D is a bijection onto C so there is an isomorphism
θ : B → A⊕C defined so that the restriction of θ to f(A) is equal to f−1 and the restriction
of θ to C is equal to g.

Proposition 2.2. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of R-modules. The following properties are equivalent.

(1) The sequence splits.

(2) There is a linear map p : B → A such that p ◦ f = idA.

(3) There is a linear map j : C → B such that g ◦ j = idC.

Symbolically, we have the following diagram of linear maps:

0 // A
f //

B
p
oo

g //
C

j
oo // 0.

Proof. It is easy to prove that (1) implies (2) and (3). Since B = f(A) ⊕ D for some
submodule D of B, if π1 : A ⊕ D → A is the first projection and f−1 ⊕ idD : f(A) ⊕ D →
A ⊕ D be the isomorphism induced by f−1, then let p = π1 ◦ (f−1 ⊕ idD). It is clear that
p ◦ f = π1 ◦ (f−1 ⊕ idD) ◦ f = idA. Define j : C → D as the inverse of the restriction of g to
D (which is bijective, as we said earlier). Obviously g ◦ j = idC .
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If (2) holds, let us prove that

B = f(A)⊕Ker p.

For any b ∈ B, we can write b = f(p(b)) + (b − f(p(b))). Obviously f(p(b)) ∈ f(A), and
since p ◦ f = idA we have

p(b− f(p(b))) = p(b)− p(f(p(b))) = p(b)− (p ◦ f)(p(b)) = p(b)− p(b) = 0,

so (b − f(p(b))) ∈ Ker p, which shows that B = f(A) + Ker p. If b ∈ f(A) ∩ Ker p, then
b = f(a) for some a ∈ A, so 0 = p(b) = p(f(a)) = a, and thus b = f(0) = 0. We conclude
that B = f(A)⊕Ker p, as claimed.

If (3) holds, let us prove that

B = f(A)⊕ Im j.

Since Im f = Ker g, this is equivalent to

B = Ker g ⊕ Im j.

For any b ∈ B, we can write b = (b − j(g(b))) + j(g(b)). Clearly j(g(b)) ∈ Im j, and since
g ◦ j = idC we have

g(b− j(g(b)) = g(b)− g(j(g(b))) = g(b)− (g ◦ j)(g(b)) = g(b)− g(b) = 0,

so (b − j(g(b))) ∈ Ker g. If b ∈ Ker g ∩ Im j, then b = j(c) for some c ∈ C, and so
0 = g(b) = g(j(c)) = c, thus b = j(c) = j(0) = 0. We conclude that B = Ker g ⊕ Im j.

Corollary 2.3. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of R-modules. If C is free, then the exact sequence splits.

Proof. Pick a basis (ei)i∈I in C. Define the linear map j : C → B by choosing any vector
bi ∈ B such that g(bi) = ei (since g is surjective, this is possible) and setting j(ei) = bi.
Then

(g ◦ j)(ei) = g(bi) = ei.

so g ◦ j = idC , and by Proposition 2.3 the sequence splits since (3) implies (1).

The following example is an exact sequence of abelian groups (Z-modules) that does not
split

0 //mZ i // Z π // Z/mZ // 0,

where i is the inclusion map and π is the projection map such that π(n) = n mod m, the
residue of n modulo m (with m ≥ 1). Indeed, any surjective homomorphism p from Z to
mZ would have to map 1 to m, but then p ◦ i 6= id.

Any decent introduction to homological algebra must dicsuss the “five lemma” (due to
Steenrod). Together with the zig-zag lemma discussed in Section 2.7, this one of its most
useful results.
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2.2 The Five Lemma

As a warm up, let us consider the “short five lemma,” from Mac Lane [37] (Chapter I, Section
3, Lemma 3.1).

Proposition 2.4. (Short Five Lemma) Consider the following diagram (of R-modules) in
which the rows are exact and all the squares commute.

0 // A
f //

α

��

B

β

��

g // C

γ

��

// 0

0 // A′
f ′
// B′

g′
// C ′ //// 0

If α and γ are isomorphisms, then β is also an isomorphism.

Proof. First we prove that β is injective. Assume that β(b) = 0 for some b ∈ B. Then
g′(β(b)) = 0, and since the right square commutes, 0 = g′(β(b)) = γ(g(b)). Since γ is
injective (it is an isomorphism), γ(g(b)) = 0 implies that

g(b) = 0.

Since the top row is exact and b ∈ Ker g = Im f , there is some a ∈ A such that

f(a) = b. (∗1)

Here is a summary of the situation so far.

0 // a ∈ A f //

α

��

b ∈ B

β

��

g // C

γ

��

// 0

0 // α(a) ∈ A′
f ′

// B′
g′

// C ′ //// 0

Since the left square commutes, using (∗1) we have

f ′(α(a)) = β(f(a)) = β(b) = 0.

Since the bottom row is exact, f ′ is injective so α(a) = 0, and since α is injective (it is
an isomorphism), a = 0. But then by (∗1) we have b = f(a) = 0, which shows that β is
injective.

We now prove that β is surjective. Pick any b′ ∈ B′. Since γ is surjective (it is an
isomorphism), there is some c ∈ C such that

γ(c) = g′(b′). (∗2)
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Since the top row is exact, g is surjective so there is some b ∈ B such that

g(b) = c. (∗3)

Since the right square commutes, by (∗2) and (∗3) we have

g′(β(b)) = γ(g(b)) = γ(c) = g′(b′),

which implies g′(β(b)− b′) = 0. Since the bottom row is exact and β(b)− b′ ∈ Ker g′ = Im f ′

there is some a ∈ A′ such that

f ′(a′) = β(b)− b′. (∗4)

Since α is surjective (it is an isomorphism), there is some a ∈ A such that

α(a) = a′. (∗5)

Here is a summary of the situation so far.

0 // a ∈ A f //

α

��

b ∈ B

β

��

g // c ∈ C
γ

��

// 0

0 // a′ ∈ A′
f ′
// β(b)− b′ ∈ B′

g′
// g′(b′) ∈ C ′ //// 0

Since the left square commutes, using (∗4) and (∗5) we obtain

β(f(a)) = f ′(α(a)) = f ′(a′) = β(b)− b′,

which implies that b′ = β(b− f(a)), showing that β is surjective.

Observe that the proof shows that if α and γ are injective, then β is injective, and if α
and γ are surjective, then β is surjective.

Proposition 2.5. (Five Lemma) Consider the following diagram (of R-modules) in which
the rows are exact and all the squares commute.

// A
f1 //

α1

��

B
f2 //

α2

��

C
f3 //

α3

��

D
f4 //

α4

��

E //

α5

��
// A′

f ′1
// B′

f ′2
// C ′

f ′3
// D′

f ′4
// E ′ //

If α1, α2, α4, α5 are isomorphisms, then α3 is also an isomorphism.
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Proof. The proof of Proposition 2.5 can be found in any book on homological algebra, for
example Mac Lane [37], Cartan–Eilenberg [10], and Rotman [51, 52], but the reader may be
put off by the fact that half of the proof is left to the reader (at least, Rotman proves the
surjectivity part, which is slightly harder, and Mac Lane gives a complete proof of the short
five lemma). The five lemma is fully proven in Spanier [59] and Hatcher [31]. Because it is
a “fun” proof by diagram-chasing we present the proof in Spanier [59] (Chapter 4, Section
5, Lemma 11).

First we prove that α3 is injective. Assume that α3(c) = 0 for some c ∈ C. Then
f ′3 ◦α3(c) = 0, and by commutativity of the third square, α4 ◦ f3(c) = 0. Since α4 is injective
(it is an isomorphism),

f3(c) = 0.

Since the top row is exact and c ∈ Ker f3 = Im f2, there is some b ∈ B such that

f2(b) = c.

Since the second square commutes,

f ′2 ◦ α2(b) = α3 ◦ f2(b) = α3(c) = 0,

and since the bottom is exact and α2(b) ∈ Ker f ′2 = Im f ′1, there is some a′ ∈ A′ such that

f ′1(a′) = α2(b). (∗1)

Since α1 is surjective (it is an isomorphism) there is some a ∈ A such that

α1(a) = a′.

Here is a summary of the situation so far.

// a ∈ A f1 //

α1

��

b ∈ B f2 //

α2

��

c ∈ C f3 //

α3

��

D
f4 //

α4

��

E //

α5

��
// a′ ∈ A′

f ′1
// α2(b) ∈ B′

f ′2
// C ′

f ′3
// D′

f ′4
// E ′ //

By the commutativity of the first square and (∗1),

α2 ◦ f1(a) = f ′1 ◦ α1(a) = f ′1(a′) = α2(b),

and since α2 is injective (it is an isomorphism), b = f1(a). Since the top row is exact
f2 ◦ f1 = 0, so

c = f2(b) = f2 ◦ f1(a) = 0,

proving that α3 is injective.
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Next we prove that α3 is surjective. Pick c′ ∈ C ′. Since α4 is surjective (it is an
isomorphism) there is some d ∈ D such that

α4(d) = f ′3(c′). (∗2)

Since the bottom row is exact f ′4 ◦ f ′3 = 0 and since the fourth square commutes we have

0 = f ′4 ◦ f ′3(c′) = f ′4 ◦ α4(d) = α5 ◦ f4(d).

Since α5 is injective (it is an isomorphism),

f4(d) = 0,

and since the top row is exact and d ∈ Ker f4 = Im f3, there is some c ∈ C such that

f3(c) = d. (∗3)

Since the third square commutes, using (∗3) and (∗2) we have

f ′3 ◦ α3(c) = α4 ◦ f3(c) = α4(d) = f ′3(c′),

so f ′3(α3(c)− c′) = 0. Since the bottom row is exact and α3(c)− c′ ∈ Ker f ′3 = Im f ′2, there
is some b′ ∈ B′ such that

f ′2(b′) = α3(c)− c′. (∗4)

Since α2 is surjective (it is an isomorphism) there is some b ∈ B such that

α2(b) = b′. (∗5)

Here is a summary of the situation so far.

// A
f1 //

α1

��

b ∈ B f2 //

α2

��

c ∈ C f3 //

α3

��

d ∈ D f4 //

α4

��

E //

α5

��
// A′

f ′1
// b′ ∈ B′

f ′2
// α3(c)− c′ ∈ C ′

f ′3
// f ′3(c′) ∈ D′

f ′4
// E ′ //

Then using (∗4) and (∗5) and the fact that the second square commutes we have

α3(f2(b)) = f ′2(α2(b)) = f ′2(b′) = α3(c)− c′,

which implies that c′ = α3(c− f2(b)), showing that α3 is surjective.

Remark: The hypotheses of the five lemma can be weakened. One can check that the proof
goes through if α2 and α4 are isomorphisms, α1 is surjective, and α5 is injective.
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2.3 Duality and Exactness

A common way to define cohomology is to apply duality to homology so we review duality
in R-modules to make sure that we are on firm grounds.

Definition 2.4. Given an R-module A, the R-module Hom(A,R) of all R-linear maps from
A to R (also called R-linear forms) is called the dual of A. Given any two R-modules A
and B, for any R-linear map f : A → B, the R-linear map f> : Hom(B,R) → Hom(A,R)
defined by

f>(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(B,R)

is called the dual linear map of f ; see the commutative diagram below:

A
f //

f>(ϕ)   

B

ϕ

��
R.

The dual linear map f> is also denoted by Hom(f,R) (or Hom(f, idR)).

If f : A→ B and g : B → C are linear maps of R-modules, a simple computation shows
that

(g ◦ f)> = f> ◦ g>.

Note the reversal in the order of composition of f> and g>. It is also immediately verified
that

id>A = idHom(A,R).

Here are some basic properties of the behavior of duality applied to exact sequences.

Proposition 2.6. Let g : B → C be a linear map between R-modules.

(a) If g is an isomorphism, then so is g>.

(b) If g is the zero map, then so is g>.

(c) If the sequence

B
g−→ C −→ 0

is exact, then the sequence

0 −→ Hom(C,R)
g>−→ Hom(B,R)

is also exact.
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Proof. Properties (a) and (b) are immediate and left as an exercise.

Asume that the sequence B
g−→ C −→ 0 is exact which means that g is surjective. Let

ψ ∈ Hom(C,R) and assume that g>(ψ) = 0, which means that ψ◦g = 0, that is, ψ(g(b)) = 0
for all b ∈ B. Since g is surjective, we have ψ(c) = 0 for all c ∈ C, that is, ψ = 0 and g> is
injective.

Proposition 2.7. If the following sequence of R-modules

A
f−→ B

g−→ C −→ 0

is exact, then the sequence

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R)

is also exact. Furthermore, if

0 −→ A
f−→ B

g−→ C −→ 0

is a split short exact sequence, then

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R) −→ 0

is also a split short exact sequence.

Proof. Since g is surjective, by Proposition 2.6(c), g> is injective. Since Im f = Ker g, we
have g ◦ f = 0, so f> ◦ g> = 0, which shows that Im g> ⊆ Ker f>. Conversely, we prove that
if f>(ψ) = 0 for some ψ ∈ Hom(B,R), then ψ = g>(ϕ) for some ϕ ∈ Hom(C,R).

Since f>(ψ) = ψ◦f , if f>(ψ) = 0, then ψ vanishes on f(A). Thus ψ induces a linear map
ψ′ : B/f(A) → R such that ψ = ψ′ ◦ π where π : B → B/f(A) is the canonical projection.
The exactness of the sequence implies that g induces an isomorphism g′ : B/f(A)→ C, and
we have the following commutative diagram:

R B
ψoo

π

��

g // C

B/f(A).

ψ′

dd

g′

::

If we let ϕ = ψ′ ◦ (g′)−1, then we have a linear form ϕ ∈ Hom(C,R), and

g>(ϕ) = ϕ ◦ g = ψ′ ◦ (g′)−1 ◦ g = ψ,

as desired. Therefore, the dual sequence is exact at Hom(B,R).

If our short exact sequence is split, then by Proposition 2.2 there is a map p : B → A
such that p ◦ f = idA, so we get f> ◦ p> = idHom(A,R), which shows that f> is surjective, and
p> : Hom(A,R)→ Hom(B,R) splits the dual sequence.
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� If f : A→ B is injective, then f> : Hom(B,R)→ Hom(A,R) is not necessarily surjective.
For example, we have the following short exact sequence

0 −→ Z ×2−→ Z π−→ Z/2Z −→ 0,

where ×2(n) = 2n, but the map (×2)> is not surjective. This is because for any ϕ ∈
Hom(Z,Z) we have (×2)>(ϕ) = ϕ ◦ ×2 and this function maps Z into 2Z. Thus the image
of (×2)> is not all of Hom(Z,Z).

Combining Corollary 2.3 and Proposition 2.7 we get the following result.

Proposition 2.8. If

0 −→ A
f−→ B

g−→ C −→ 0

is a short exact sequence and if C is a free R-module, then

0 −→ Hom(C,R)
g>−→ Hom(B,R)

f>−→ Hom(A,R) −→ 0

is a split short exact sequence.

The proposition below will be needed in the proof of the universal coefficient theorem for
cohomology (Theorem 12.6).

Let M and G be R-modules, and let B ⊆ Z ⊆M be some submodules of M . Define B0

and Z0 by

B0 = {ϕ ∈ Hom(M,G) | ϕ(a) = 0 for all b ∈ B}
Z0 = {ϕ ∈ Hom(M,G) | ϕ(z) = 0 for all z ∈ Z}.

Proposition 2.9. For any R-modules M,G, and B ⊆ Z ⊆ M , if M = Z ⊕ Z ′ for some
submodule Z ′ of M , then we have an isomorphism

Hom(Z/B,G) ∼= B0/Z0.

Proof. Define a map η : B0 → Hom(Z/B,G) as follows: for any ϕ ∈ B0, that is any ϕ ∈
Hom(M,G) such that ϕ vanishes on B, let η(ϕ) ∈ Hom(Z/B,G) be the linear map defined
such that

η(ϕ)(α) = ϕ(z) for any z ∈ α ∈ Z/B.
For any other z′ ∈ α we have z′ = z + b for some b ∈ B, and then

ϕ(z + b) = ϕ(z) + ϕ(b) = ϕ(z)

since ϕ vanishes on B. Therefore any map ϕ ∈ B0 is constant on the each equivalence class
in Z/B, and η(ϕ) is well defined. The map η is surjective because if f is any linear map in
Hom(Z/B,G), we can define the linear map ϕ0 : Z → G by

ϕ0(z) = f([z]) for all z ∈ Z.
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Since f ∈ Hom(Z/B,G), we have ϕ0(b) = f([b]) = 0 for all b ∈ B. Since M = Z ⊕ Z ′, we
can extend ϕ0 to a linear map ϕ : M → G, for example by setting ϕ ≡ 0 on Z ′, and then ϕ
is a map in Hom(M,G) vanishing on B, and by definition η(ϕ) = f , since

η(ϕ)([z]) = ϕ(z) = ϕ0(z) = f([z]) for all [z] ∈ Z/B.

Finally, for any ϕ ∈ B0, since ϕ is constant on any equivalence class in Z/B, we have
η(ϕ) = 0 iff η(ϕ)([z]) = 0 for all [z] ∈ Z/B iff ϕ(z) = 0 for all z ∈ Z, iff ϕ ∈ Z0. Therefore
Ker η = Z0, and consequently by the first isomorphism theorem,

B0/Z0 ∼= Hom(Z/B,G),

as claimed.

We will also need the next proposition. Let M and G be R-modules, and let B be a
submodule of M . As above, let

B0 = {f ∈ Hom(M,G) | f |B ≡ 0},

the set of R-linear maps f : M → G that vanish on B.

Proposition 2.10. Let M and G be R-modules, and let B be a submodule of M . There is
an isomorphism

κ : B0 → Hom(M/B,G)

defined by
(κ(f))([u]) = f(u) for all [u] ∈M/B.

Proof. We need to check that the definition of κ(f) does not depend on the representative
u ∈M chosen in the equivalence class [u] ∈M/B. Indeed, if v = u+ b some b ∈ B, we have

f(v) = f(u+ b) = f(u) + f(b) = f(u),

since f(b) = 0 for all b ∈ B. The formula κ(f)([u]) = f(u) makes it obvious that κ(f) is
linear since f is linear. The mapping κ is injective. This is because if κ(f1) = κ(f2), then

κ(f1)([u]) = κ(f2)([u])

for all u ∈ M , and because κ(f1)([u]) = f1(u) and κ(f2)([u]) = f2(u), we get f1(u) = f2(u)
for all u ∈ M , that is, f1 = f2. The mapping κ is surjective because given any linear map
ϕ ∈ Hom(M/B,G), if we define f by

f(u) = ϕ([u])

for all u ∈M , then f is linear, vanishes on B, and clearly, κ(f) = ϕ. Therefore, we have the
isomorphism κ : B0 → Hom(M/B,G), as claimed.
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Remark: Proposition 2.10 is actually the special case of Proposition 2.9 where Z = M ,
since in this case Z0 = M and Z ′ = (0). We feel that it is still instructive to give a direct
proof of Proposition 2.10.

If we look carefully at the proofs of Propositions 2.6 through 2.8, we see that they go
through with the ring R replaced by any fixed R-module A. This suggests looking at more
general versions of Hom.

2.4 The Functors Hom(−, A), Hom(A,−), and −⊗ A
In this section we consider several operators T on R-modules that map a module A to
another module T (A), and a module homomorphism f : A→ B to a module homomorphism
T (f) : T (A) → T (B), or to a homomorphism T (f) : T (B) → T (A) (note the reversal).
Given any two module homomorphism f : A→ B and g : B → C, if T does not reverse the
direction of maps then T (g ◦ f) = T (g) ◦ T (f), else T (g ◦ f) = T (f) ◦ T (g). We also have
T (idA) = idT (A) for all A. Such operators are called functors (covariant in the first case,
contravariant if it reverses the direction of maps). The reader may want to review Section
1.7 for the notion of a functor.

We begin with the HomR(−, A)-functor, which reverses the direction of the maps.

Definition 2.5. Given a fixed R-module A, for any R-module B we denote by HomR(B,A)
the R-module of all R-linear maps from B to A. Given any two R-modules B and C, for
any R-linear map f : B → C, the R-linear map HomR(f, A) : HomR(C,A) → HomR(B,A)
is defined by

HomR(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ HomR(C,A);

see the commutative diagram below:

B
f //

HomR(f,A)(ϕ)   

C

ϕ

��
A.

Observe that HomR(f, A)(ϕ) is ϕ composed with f , that is its result is to pull back along
f any map ϕ from C to A to a map from B to A.2 The map HomR(f, A) is also denoted by
HomR(f, idA), or for short HomR(f, id). Some authors denote HomR(f, A) by f ∗.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

HomR(g ◦ f, A) = HomR(f, A) ◦ HomR(g, A).

2A trick to remember that HomR(f,A) composes ϕ on the left of f is that f is the leftmost argument in
HomR(f,A).
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Observe that HomR(f, A) and HomR(g, A) are composed in the reverse order of the compo-
sition of f and g. It is also immediately verified that

HomR(idA, A) = idHomR(A,A).

Thus, HomR(−, A) is a (contravariant) functor. To simplify notation, we usually omit the
subscript R in HomR(−, A) unless confusion arises.

Proposition 2.11. Let A be any fixed R-module and let g : B → C be a linear map between
R-modules.

(a) If g is an isomorphism, then so is Hom(g, A).

(b) If g is the zero map, then so is Hom(g, A).

(c) If the sequence

B
g // C // 0

is exact, then the sequence

0 // Hom(C,A)
Hom(g,A) // Hom(B,A)

is also exact.

The proof of Proposition 2.11 is identical to the proof of Proposition 2.6.

Proposition 2.12. Let M be any fixed R-module. If the following sequence of R-modules

A
f // B

g // C // 0

is exact, then the sequence

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M)

is also exact. Furthermore, if

0 // A
f // B

g // C // 0

is a split short exact sequence, then

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M) // 0

is also a split short exact sequence.
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The proof of Proposition 2.12 is identical to the proof of Proposition 2.7. We say that
Hom(−,M) is a left-exact functor.

Remark: It can be shown that the sequence

A
f // B

g // C // 0

is exact iff the sequence

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M)

is exact for all R-modules M ; see Dummit and Foote [14] (Chapter 10, Theorem 33).

Proposition 2.13. Let M be any fixed R-module. If

0 // A
f // B

g // C // 0

is a short exact sequence and if C is a free R-module, then

0 // Hom(C,M)
Hom(g,M) // Hom(B,M)

Hom(f,M) // Hom(A,M) // 0

is a split short exact sequence.

There is also a version of the Hom-functor, HomR(A,−), in which the first slot is held
fixed.

Definition 2.6. Given a fixed R-module A, for any R-module B we denote by HomR(A,B)
the R-module of all R-linear maps from A to B. Given any two R-modules B and C, for
any R-linear map f : B → C, the R-linear map HomR(A, f) : HomR(A,B) → HomR(A,C)
is defined by

HomR(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ HomR(A,B);

see the commutative diagram below:

A

ϕ

��

HomR(A,f)(ϕ)

  
B

f
// C.

Observe that HomR(A, f)(ϕ) is f composed with ϕ, that is its result is to push forward
along f any map ϕ from A to B to a map from A to C.3 The map HomR(A, f) is also

3A trick to remember that HomR(A, f) composes ϕ on the right of f is that f is the rightmost argument
in HomR(A, f).
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denoted by HomR(idA, f), or for short HomR(id, f). Some authors denote HomR(A, f) by
f∗.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

HomR(A, g ◦ f) = HomR(A, g) ◦ HomR(A, f).

It is also immediately verified that

HomR(idA, A) = idHomR(A,A).

Thus, HomR(A,−) is a (covariant) functor.

The HomR(A,−)-functor has properties analogous to those of the HomR(−, A)-functor,
except that sequences are not reversed. Again, to simplify notation, we usually omit the
subscript R in HomR(A,−) unless confusion arises.

Proposition 2.14. Let M be any fixed R-module. If the following sequence of R-modules

0 // A
f // B

g // C

is exact, then the sequence

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C)

is also exact. Furthermore, if

0 // A
f // B

g // C // 0

is a split short exact sequence, then

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C) // 0

is also a split short exact sequence.

The proof of Proposition 2.14 is left as an exercise. We say that Hom(M,−) is a left-exact
functor.

� If f : A→ B is surjective, then Hom(C, f) : Hom(C,A)→ Hom(C,B) is not necessarily
surjective. For example, we have the following short exact sequence

0 −→ Z ×2−→ Z π−→ Z/2Z −→ 0,

where ×2(n) = 2n, but if C = Z/2Z, the map

Hom(Z/2Z, π) : Hom(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)

is not surjective. This is because any map ϕ : Z/2Z→ Z must map 1 to 0. In Z/2Z we have
1 + 1 = 0, so ϕ(1 + 1) = ϕ(0) = 0, but if ϕ(1) 6= 0, then ϕ(1 + 1) = ϕ(1) +ϕ(1) = 2ϕ(1) 6= 0
in Z, a contradiction. Therefore, Hom(Z/2Z,Z) = (0), and yet Hom(Z/2Z,Z/2Z) contains
the identity map.
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Remark: It can be shown that the sequence

0 // A
f // B

g // C

is exact iff the sequence

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C)

is exact for all R-modules M . See Dummit and Foote [14] (Chapter 10, Theorem 28).

Proposition 2.15. Let M be any fixed R-module. If

0 // A
f // B

g // C // 0

is a short exact sequence and if C is a free R-module, then

0 // Hom(M,A)
Hom(M,f) // Hom(M,B)

Hom(M,g) // Hom(M,C) // 0

is a split short exact sequence.

A more complete discussion of the functor Hom(−, A) is found in Munkres [48] (Chapter
5, §41), and a thorough presentation in Mac Lane [37], Cartan–Eilenberg [10], Rotman
[50, 52], and Weibel [63].

Another operation on modules that plays a crucial role is the tensor product. Let M be a
fixed R-module. For any R-module A, we have the R-module A⊗RM , and for any R-linear
map f : B → C we have the R-linear map f ⊗R idM : B ⊗R M → C ⊗R M . To simplify
notation, unless confusion arises, we will drop the subscript R on ⊗R.

If f : B → C and g : C → D are linear maps of R-modules, a simple computation shows
that

(g ⊗ idM) ◦ (f ⊗ idM) = (g ◦ f)⊗ idM .

It is also immediately verified that

idM ⊗ idM = idM⊗M .

Definition 2.7. For any fixed R-module M , we define − ⊗M as the (covariant) functor
that takes any R-module A and produces the R-module A⊗M .

Similarly we have the functor M⊗− obtained by holding the first slot fixed. This functor
has the same properties as −⊗M so we will not consider it any further.

We would like to understand the behavior of the functor − ⊗M with respect to exact
sequences.
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A crucial fact is that if f : B → C is injective, then f ⊗ idM may not be injective. For
example, if we let R = Z, then the inclusion map i : Z → Q is injective, but if M = Z/2Z,
then

Q⊗Z Z/2Z = (0),

since we can write
a⊗ b = (a/2)⊗ (2b) = (a/2)⊗ 0 = 0.

Thus, i⊗ idM : Z⊗ Z/2Z→ Q⊗ Z/2Z = i⊗ idM : Z⊗ Z/2Z→ (0), which is not injective.
Thus, −⊗M is not left-exact. However, it is right-exact, as we now show.

Proposition 2.16. Let f : A → B and f ′ : A′ → B′ be two R-linear maps. If f and f ′ are
surjective, then

f ⊗ f ′ : A⊗ A′ → B ⊗B′

is surjective, and its kernel Ker (f ⊗f ′) is spanned by all tensors of the form a⊗a′ for which
either a ∈ Ker f or a′ ∈ Ker f ′.

Proof. Let H be the submodule of A⊗A′ spanned by all tensors of the form a⊗a′ for which
either a ∈ Ker f or a′ ∈ Ker f ′. Obviously, f ⊗ f ′ vanishes on H, so it factors through a
R-linear map

Φ: (A⊗ A′)/H → B ⊗B′

as illustrated in the following diagram:

A⊗ A′

f⊗f ′ ''

π // (A⊗ A′)/H
Φ
��

B ⊗B′.

We prove that Φ is an isomorphism by defining an inverse Ψ for Φ. We begin by defining a
function

ψ : B ×B′ → (A⊗ A′)/H

by setting
ψ(b, b′) = a1 ⊗ a′1

for all b ∈ B and all b′ ∈ B′, where a1 ∈ A is any element such that f(a1) = b and a′1 ∈ A′
is any element such that f ′(a′1) = b′, which exist since f and f ′ are surjective. We need to
check that ψ does not depend on the choice of a1 ∈ f−1(b) and a′1 ∈ (f ′)−1(b′). If f(a2) = b
and f ′(a′2) = b′, with a2 ∈ A and a′2 ∈ A′, since we can write

a1 ⊗ a′1 − a2 ⊗ a′2 = (a1 − a2)⊗ a′1 + a2 ⊗ (a′1 − a′2),

and since f(a1−a2) = f(a1)−f(a2) = b−b = 0, and f ′(a′1−a′2) = f ′(a′1)−f ′(a′2) = b′−b′ = 0,
we see that a1 ⊗ a′1 − a2 ⊗ a′2 ∈ H, thus

a1 ⊗ a′1 = a2 ⊗ a′2
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an ψ is well defined. We check immediately that ψ is R-bilinear, so ψ induces a R-linear
map

Ψ: B ⊗B′ → (A⊗ A′)/H.

It remains to check that Φ ◦ Ψ and Ψ ◦ Φ are identity maps, which is easily verified on
generators.

We can now show that −⊗M is right-exact.

Proposition 2.17. Suppose the sequence

A
f // B

g // C // 0

is exact. Then the sequence

A⊗M f⊗idM // B ⊗M g⊗idM // C ⊗M // 0

is exact. If f is injective and the first sequence splits, then f⊗ idM is injective and the second
sequence splits.

Proof. Since the first sequence is exact, g is surjective and Proposition 2.16 implies that
g ⊗ idM is surjective, and that its kernel H is the submodule of B ⊗ M spanned by all
elements of the form b ⊗ z with b ∈ Ker g and z ∈ M . On the other hand the image D of
f ⊗ idM is the submodule spanned by all elements of the form f(a) ⊗ z, with a ∈ A and
z ∈M . Since Im f = Ker g, we have H = D; that is, Im (f ⊗ idM) = Ker (g ⊗ idM).

Suppose that f is injective and the first sequence splits. By Proposition 2.2, let p : B → A
be a R-linear map such that p ◦ f = idA. Then

(p⊗ idM) ◦ (f ⊗ idM) = (p ◦ f)⊗ (idM ◦ idM) = idA ⊗ idM = idA⊗M ,

so f ⊗ idM is injective and p⊗ idM splits the second sequence.

Proposition 2.17 says that the functor −⊗M is right-exact . A more complete discussion
of the functor −⊗M is found in Munkres [48] (Chapter 6, §50), and a thorough presentation
in Mac Lane [37], Cartan–Eilenberg [10], Rotman [50, 52], and Weibel [63].

2.5 Abstract Cochain Complexes and

Their Cohomology

The notion of a cochain complex is obtained from the notion of an exact sequence by relaxing
the requirement Im fp = Ker fp+1 to fp+1 ◦ fp = 0.
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Definition 2.8. A (differential) complex (or cochain complex ) is a Z-graded R-module

C =
⊕

p∈Z
Cp,

together with a R-linear map
d : C → C

such that dCp ⊆ Cp+1 and d◦d = 0. We denote the restriction of d to Cp by dp : Cp → Cp+1.
A cochain complex is denoted as a diagram with increasing superscripts and arrows going
from left to right as shown below:

· · · // Cp−1 dp−1
// Cp dp // Cp+1 dp+1

// Cp+2 // · · ·

A cochain complex is positive if Cp = (0) for all p < 0, negative if Cp = (0) for all p > 0.

Given a complex (C, d), we define the Z-graded R-modules

B∗(C) = Im d, Z∗(C) = Ker d.

Since d ◦ d = 0, we have
B∗(C) ⊆ Z∗(C) ⊆ C

so the quotient spaces Zp(C)/Bp(C) make sense and we can define cohomology.

Definition 2.9. Given a differential complex (C, d) of R-modules, we define the cohomology
space H∗(C) by

H∗(C) =
⊕

p∈Z
Hp(C),

where the pth cohomology group (R-module) Hp(C) is the quotient space

Hp(C) = (Ker d ∩ Cp)/(Im d ∩ Cp) = Ker dp/ Im dp−1 = Zp(C)/Bp(C).

Elements of Cp are called p-cochains or cochains , elements of Zp(C) are called p-cocycles or
cocycles , and elements of Bp(C) are called p-coboundaries or coboundaries . Given a cocycle
a ∈ Zp(C), its cohomology class a + Im dp−1 is denoted by [a]. A complex C is said to be
acyclic if its cohomology is trivial, that is Hp(C) = (0) for all p, which means that C is an
exact sequence.

We often drop the complex C when writing Zp(C), Bp(C) of Hp(C).

Typically, when dealing with cohomology we consider positive cochain complexes (Cp =
(0) for all p < 0):

0 d−1
// C0 d0

// C1 d1
// · · · // Cp−1 dp−1

// Cp dp // Cp+1 dp+1
// Cp+2 // · · ·



80 CHAPTER 2. HOMOLOGY AND COHOMOLOGY

We can deal with homology by assuming that we have a negative cochain complex (Cp = (0)
for all p > 0). In this case, we have a cochain complex of the form

· · · // C−(p+1) d
−(p+1)

// C−p d−p // C−(p−1) d
−(p−1)

// · · · // C−1 d−1
// C0 d0

// 0.

It is customary to use positive indices and to convert the above diagram to the diagram
shown below called a chain complex in which every negative upper index −p is replaced by
the positive lower index p

· · · // Cp+1

dp+1 // Cp
dp // Cp−1

dp−1 // · · · // C1
d1 // C0

d0 // 0.

An equivalent diagram is obtained by also reversing the direction of the arrows:

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · .oo

Which diagram is preferred is a matter of taste.4

Definition 2.10. A chain complex is a Z-graded R-module

C =
⊕

p∈Z
Cp,

together with a R-linear map
d : C → C

such that dCp+1 ⊆ Cp and d ◦ d = 0. We denote the restriction of d to Cp by dp : Cp → Cp−1.
A chain complex is denoted as a diagram with increasing subscripts and arrows going from
right to left as shown below:

· · · Cp−1
oo Cp

dpoo Cp+1

dp+1oo Cp+2

dp+2oo · · · .oo

A chain complex is positive if Cp = (0) for all p < 0, negative if Cp = (0) for all p > 0.

A cochain complex can be converted to a chain complex, and conversely, by changing Cp

to C−p and dp to d−p and changing the direction of the arrows. The cochain complex

· · · // Cp−1 dp−1
// Cp dp // Cp+1 dp+1

// Cp+2 // · · ·

becomes the chain complex

· · · C−(p+2)
oo C−(p+1)

d−(p+1)oo C−p
d−poo C−(p−1)

d−(p−1)oo · · · .oo

4Notice that applying Hom(−, R) to the second diagram reverses all the arrows so that a complex of
cohomology is obtained. For this reason, we have a slight preference for the second diagram.
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Conversely we get a chain complex from a cochain complex by changing Cp to C−p and dp
to d−p and changing the direction of the arrows.

When it is clear from the context, we simply use the term complex, omitting the prefix
chain or cochain.

Remark: Given a Z-graded R-module

C =
⊕

p∈Z
Cp,

a R-linear map
d : C → C

such that dCp ⊆ Cp+r for all p ∈ Z for some fixed r ∈ Z is said to have degree r. The
map d is called a differential if d ◦ d = 0. Thus we see that that a chain complex is a
Z-graded R-module with a differential d of degree −1, and a cochain complex is a Z-graded
R-module with a differential d of degree +1. Differentials of degree r 6= −1, 1 occur in
spectral sequences.

Definition 2.11. Given a chain complex (Cp) and the corresponding cochain complex (C−p),
we denote the space H−p(C) by Hp(C) and call it the pth homology space. More explicitly

Hp(C) = Ker dp/Im dp+1,

and if we write Zp(C) = Ker dp and Bp(C) = Im dp+1, we also have

Hp(C) = Zp(C)/Bp(C),

elements of Cp are called chains, elements of Zp(C) are called cycles , and elements of Bp(C)
are called boundaries .

Singular homology defined in Section 4.8 is such an example.

Remark: When dealing with cohomology, it is customary to use superscripts for denoting
the cochains groups Cp, the cohomology groups Hp(C), the coboundary maps dp, etc., and
to write complexes with the arrows going from left to right so that the superscripts increase.
However, when dealing with homology, it is customary to use subscripts for denoting the
chains groups Cp, the homology groups Hp(C), the boundary maps dp, etc., and to write
homology complexes with increasing indices and arrows going from right to left (or decreasing
indices and arrows going from left to right). In homology the boundary maps dp : Cp → Cp−1

are usually denoted by ∂p, and in cohomology the coboundary maps dp : Cp → Cp+1 are
usually denoted by δp.

Given two cochain complexes (X, dX) and (Y, dY ), the complex X ⊕ Y consists of the
modules Xp ⊕ Y p and of the maps

Xp ⊕ Y p
dpX⊕ d

p
Y // Xp+1 ⊕ Y p+1
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defined such that (dpX ⊕ d
p
Y )(x + y) = dpX(x) + dpY (y), for all x ∈ Xp and all y ∈ Y p. It is

immediately verified that (dp+1
X ⊕ dp+1

Y ) ◦ (dPX ⊕ d
p
Y ) = 0. The following proposition is easy

to prove.

Proposition 2.18. gFor any two cochain complexes (X, dX) and (Y, dY ), we have isomor-
phisms

Hp(X ⊕ Y ) ∼= Hp(X)⊕Hp(Y )

for all p.

Sketch of proof. It is easy to check that

Ker dpX⊕Y
∼= Ker dpX ⊕Ker dpY

Im dpX⊕Y
∼= Im dpX ⊕ Im dpY ,

from which the results follows.

2.6 Chain Maps and Chain Homotopies

We know that homomorphisms between R-modules play a very important role in the theory
of R-modules. There are two notions of maps between chain complexes that also play an
important role in homology and cohomology theory.

Definition 2.12. Given two cochain complexes (C, dC) and (D, dD), a chain map5 f : C →
D is a family f = (fp) of R-linear maps fp : Cp → Dp such that

dD ◦ fp = fp+1 ◦ dC for all p ∈ Z,

equivalently all the squares in the following diagram commute.

· · · dC // Cp−1 dC //

fp−1

��

Cp dC //

fp

��

Cp+1 dC //

fp+1

��

Cp+2 dC //

fp+2

��

· · ·

· · ·
dD

// Dp−1
dD

// Dp
dD

// Dp+1
dD

// Dp+2
dD

// · · ·

A chain map of cochain complexes f : C → D induces a map f ∗ : H∗(C) → H∗(D)
between the cohomology spacesH∗(C) andH∗(D), which means that each map fp : Cp → Dp

induces a homomorphism (fp)∗ : Hp(C)→ Hp(D).

5It would be more logical to call a map between cochain complexes a cochain map. Spanier uses the term
cochain map but this does not appear to be the usual practice.
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Proposition 2.19. Given a chain map of cochain complexes f : C → D, for every p ∈ Z,
the function (fp)∗ : Hp(C)→ Hp(D) defined such that

(fp)∗([a]) = [fp(a)] for all a ∈ Zp(C)

is a homomorphism. Therefore, f : C → D induces a homomorphism f ∗ : H∗(C)→ H∗(D).

Proof. First we show that if [a] is a cohomology class in Hp(C) with a ∈ Zp(C) (a is
a cocycle), then fp(a) ∈ Zp(D); that is, fp(a) is a cocycle. Since a ∈ Zp(C) we have
dC(a) = 0, and since by the commutativity of the squares of the diagram of Definition 2.12

dD ◦ fp = fp+1 ◦ dC ,

we get
dD ◦ fp(a) = fp+1 ◦ dC(a) = 0,

which shows that fp(a) ∈ Zp(D), that is fp(a) is a cocycle.

Next we show that [fp(a)] does not depend on the choice of a in the equivalence class
[a]. If [b] = [a] with a, b ∈ Zp(C), then a− b ∈ Bp(C), which means that a− b = dC(x) for
some x ∈ Cp−1. We have

dD ◦ fp−1 = fp ◦ dC ,
which implies that

fp(a− b) = fp ◦ dC(x) = dD ◦ fp−1(x),

and since fp is linear we get fp(a) − fp(b) = dD ◦ fp−1(x), that is, fp(a) − fp(b) ∈ Im dD,
which means that [fp(a)] = [fp(b)]. Thus, (fp)∗([a]) = [fp(a)] is well defined.

The fact that (fp)∗ is a homomorphism is standard and follows immediately from the
definition of (fp)∗.

There are situations, for instance when defining Čech cohomology groups, where we have
different maps f : C → D and g : C → D between two (cochain) complexes C and D and
yet we would like the induced maps f ∗ : H∗(C) → H∗(D) and g∗ : H∗(C) → H∗(D) to be
identical, that is, f ∗ = g∗. A sufficient condition is the existence of a certain kind of map
between C and D called a chain homotopy.

Definition 2.13. Given two chain maps f : C → D and g : C → D, a chain homotopy
between f and g is a family s = (sp)p∈Z of R-linear maps sp : Cp → Dp−1 such that

dD ◦ sp + sp+1 ◦ dC = fp − gp for all p ∈ Z.

As a diagram, a chain homotopy is given by a family of slanted arrows as below, where we
write h = f − g:

· · · dC // Cp−1 dC //

hp−1

��

Cp dC //

hp

��
sp

||

Cp+1 dC //

hp+1

��
sp+1

||

· · ·

· · ·
dD

// Dp−1
dD

// Dp
dD

// Dp+1
dD

// · · ·
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The following proposition clarifies this somewhat mysterious definition.

Proposition 2.20. Given two chain maps f : C → D and g : C → D between two cochain
complexes C and D, if s is a chain homotopy between f and g, then f ∗ = g∗.

Proof. If [a] is a cohomology class in Hp(C), where a is a cocycle in Zp(C), that is a ∈ Cp

and dC(a) = 0, we have

((fp)∗ − (gp)∗)([a]) = [fp(a)− gp(a)] = [dD ◦ sp(a) + sp+1 ◦ dC(a)],

and since a is a cocycle dC(a) = 0 so

((fp)∗ − (gp)∗)([a]) = [dD ◦ sp(a)] = 0,

since dD ◦ sp(a) is a coboundary in Bp(D).

2.7 The Long Exact Sequence of Cohomology or

Zig-Zag Lemma

The following result is the first part of one of the most important results of (co)homology
theory.

Proposition 2.21. Any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of cochain complexes X, Y, Z yields a cohomology sequence

Hp(X)
f∗−→ Hp(Y )

g∗−→ Hp(Z)

which is exact for every p, which means that Im f ∗ = Ker g∗ for all p.

Proof. Consider the following diagram where the rows are exact:

0 // Xp−1 fp−1
//

dX

��

Y p−1 gp−1
//

dY

��

Zp−1 //

dZ

��

0

0 // Xp fp //

dX

��

Y p gp //

dY

��

Zp //

dZ

��

0

0 // Xp+1 fp+1
// Y p+1 gp+1

// Zp+1 // 0.

Since we have a short exact sequence, fp is injective, gp is surjective, and Im fp = Ker gp for
all p. Consequently gp ◦ fp = 0, and for every cohomology class [a] ∈ Hp(X), we have

g∗ ◦ f ∗([a]) = g∗([fp(a)]) = [gp(fp(a))] = 0,



2.7. THE LONG EXACT SEQUENCE OF COHOMOLOGY OR ZIG-ZAG LEMMA 85

which implies that Im f ∗ ⊆ Ker g∗. To prove the inclusion in the opposite direction, we need
to prove that for every [b] ∈ Hp(Y ) such that g∗([b]) = 0 (where b ∈ Y p is a cocycle) there
is some [a] ∈ Hp(X) such that f ∗([a]) = [b].

If g∗([b]) = [gp(b)] = 0 then gp(b) must be a coboundary, which means that gp(b) = dZ(c)
for some c ∈ Zp−1. Since gp−1 is surjective, there is some b1 ∈ Y p−1 such that c = gp−1(b1).
Now g being a chain map the top right square commutes, that is

dZ ◦ gp−1 = gp ◦ dY ,

so
gp(b) = dZ(c) = dZ(gp−1(b1)) = gp(dY (b1)),

which implies that
gp(b− dY (b1)) = 0.

By exactness of the short exact sequence, Im fp = Ker gp for all p, and there is some a ∈ Xp

such that
fp(a) = b− dY (b1).

If we can show that a is a cocycle, then

f ∗([a]) = [fp(a)] = [b− dY (b1)] = [b],

proving that f ∗([a]) = [b], as desired.

Thus, we need to prove that dX(a) = 0. Since fp+1 is injective, it suffices to show that
fp+1(dX(a)) = 0. But f is a chain map so the left lower square commutes, that is

dY ◦ fp = fp+1 ◦ dX ,

and we have

fp+1(dX(a)) = dY (fp(a)) = dY (b− dY (b1)) = dY (b)− dY ◦ dY (b) = 0

since b is a cocycle, so dY (b) = 0 and dY ◦ dY = 0 since Y is a differential complex.

In general, a short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of cochain complexes does not yield an exact sequence

0 −→ Hp(X)
f∗−→ Hp(Y )

g∗−→ Hp(Z) −→ 0

for all (or any) p. However, one of the most important results in homological algebra is
that a short exact sequence of cochain complexes yields a so-called long exact sequence of
cohomology groups.

This result is often called the “zig-zag lemma” for cohomology; see Munkres [48] (Chapter
3, Section 24). The proof involves a lot of “diagram chasing.” It is not particularly hard,
but a bit tedious and not particularly illuminating. Still, this is a very important result so
we provide a complete and detailed proof.
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Theorem 2.22. (Long exact sequence of cohomology or zig-zag lemma for cohomology) For
any short exact sequence

0 −→ X
f−→ Y

g−→ Z −→ 0

of cochain complexes X, Y, Z, there are homomorphisms δp : Hp(Z) → Hp+1(X) such that
we obtain a long exact sequence of cohomology of the following form:

· · · // Hp−1(Z)
δp−1

// Hp(X)
f∗ // Hp(Y )

g∗ // Hp(Z)
δp

// Hp+1(X)
f∗ // Hp+1(Y )

g∗ // Hp+1(Z)
δp+1

// Hp+2(X) // · · ·

(for all p).

Proof. The main step is the construction of the homomorphisms δp : Hp(Z) → Hp+1(X).
We suggest that upon first reading the reader looks at the construction of δp and then skips
the proofs of the various facts that need to be established.

Consider the following diagram where the rows are exact.

�� �� ��
0 // Xp−1 fp−1

//

dX
��

Y p−1 gp−1
//

dY
��

Zp−1 //

dZ
��

0

0 // Xp fp //

dX
��

Y p gp //

dY
��

Zp //

dZ
��

0

0 // Xp+1 fp+1
//

dX
��

Y p+1 gp+1
//

dY
��

Zp+1 //

dZ
��

0

0 // Xp+2 fp+2
//

��

Y p+2 gp+2
//

��

Zp+2 //

��

0

To define δp([c]) where [c] ∈ Hp(Z) is a cohomology class (c ∈ Zp is a cocycle, that is dZ(c) =
0), pick any b ∈ Y p such that gp(b) = c, push b down to Y p+1 by applying dY obtaining dY (b),
and then pull dY (b) back to Xp+1 by applying (fp+1)−1, obtaining a = (fp+1)−1(dY (b)). Then
set

δp([c]) = [a].



2.7. THE LONG EXACT SEQUENCE OF COHOMOLOGY OR ZIG-ZAG LEMMA 87

Schematically, starting with an element c ∈ Zp, we follow the path from right to left in the
diagram below.

Y p gp //

dY

��

Zp

b_

��

c = gp(b)�oo

dZ

��

Xp+1 fp+1
// Y p+1

a dY (b)�oo gp+1
// 0

In order to ensure that δp is well defined, we must check five facts:

(a) For any c ∈ Zp such that dZ(c) = 0 and any b ∈ Y p, if gp(b) = c, then dY (b) ∈ Im fp+1.
This guarantees that a = (fp+1)−1(dY (b)) is well-defined since fp+1 is injective.

(b) The element a ∈ Xp+1 is a cocycle; more precisely, if fp+1(a) = dY (b) for some b ∈ Y p,
then dX(a) = 0.

(c) The cohomology class [a] does not depend on the choice of b in (gp)−1(c); that is,
for all b1, b2 ∈ Y p and all a1, a2 ∈ Xp+1, if gp(b1) = gp(b2) = c and fp+1(a1) =
dY (b1), fp+1(a2) = dY (b2), then [a1] = [a2].

(d) The map δp is a linear map.

(e) The cohomology class [a] does not depend on the choice of the cocycle c in the coho-
mology class [c]. Since δp is linear, it suffices to show that if c is a coboundary in Zp,
then for any b such that gp(b) = c and any a ∈ Xp+1 such that fp+1(a) = dY (b), then
[a] = 0.

Recall that since f and g are chain maps, the top, middle, and bottom left and right squares
commute.

(a) Since Im fp+1 = Ker gp+1, it suffices to show that gp+1(dY (b)) = 0. However, since
the middle right square commutes and dZ(c) = 0 (c is a cocycle),

gp+1(dY (b)) = dZ(gp(b)) = dZ(c) = 0,

as desired.

(b) Since fp+2 is injective, dX(a) = 0 iff fp+2 ◦ dX(a) = 0, and since the lower left square
commutes

fp+2 ◦ dX(a) = dY ◦ fp+1(a) = dY ◦ dY (b) = 0,

so dX(a) = 0, as claimed.
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(c) Assume that gp(b1) = gp(b2) = c. Then gp(b1 − b2) = 0, and since Im fp = Ker gp,
there is some ã ∈ Xp such that b1 − b2 = fp(ã). Using the fact that the middle left square
commutes we have

fp+1(a1 − a2) = fp+1(a1)− fp+1(a2)

= dY (b1)− dY (b2) = dY (b1 − b2)

= dY (fp(ã)) = fp+1(dX(ã)),

and the injectivity of fp+1 yields a1 − a2 = dX(ã), which implies that [a1] = [a2].

(d) The fact that δp is linear is an immediate consequence of the fact that all the maps
involved in its definition are linear.

(e) Let c ∈ Zp be a coboundary, which means that c = dZ(c̃) for some c̃ ∈ Zp−1. Since
gp−1 is surjective, there is some b1 ∈ Y p−1 such that gp−1(b1) = c̃, and since the top right
square commutes dZ ◦ gp−1 = gp ◦ dY , and we get

c = dZ(c̃) = dZ(gp−1(b1)) = gp(dY (b1)).

By (c), to compute the cohomology class [a] such that δp([c]) = [a] we can pick any b ∈ Y p

such that gp(b) = c, and since c = gp(dY (b1)) we can pick b = dY (b1) and then we obtain

dY (b) = dY ◦ dY (b1) = 0.

Since fp+1 is injective, if a ∈ Xp+1 is the unique element such that fp+1(a) = dY (b) = 0,
then a = 0, and thus [a] = 0.

It remains to prove that

Im (gp)∗ = Ker δp and Im δp = Ker (fp+1)∗.

For any cohomology class [b] ∈ Hp(Y ) for some b ∈ Y p such that dY (b) = 0 (b is a
cocycle), since (gp)∗([b]) = [gp(b)], if we write c = gp(b) then c is a cocycle in Zp, and by
definition of δp we have

δp((gp)∗([b])) = δp([c]) = [(fp+1)−1(dY (b))] = [(fp+1)−1(0)] = 0.

Thus, Im (gp)∗ ⊆ Ker δp.

Conversely, assume that δp([c]) = 0, for some c ∈ Zp such that dZ(c) = 0. By definition
of δp, we have δp([c]) = [a] where a ∈ Xp+1 is given by fp+1(a) = dY (b) for any b ∈ Y p such
that gp(b) = c, and since [a] = 0 the element a must be a coboundary, which means that
a = dX(a1) for some a1 ∈ Xp. Then by commutativity of the left middle square we have

dY (b) = fp+1(a) = fp+1(dX(a1)) = dY (fp(a1)),
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so dY (b − fp(a1)) = 0, that is b − fp(a1) is a cycle in Y p. Since Im fp = Ker gp we have
gp ◦ fp = 0, which implies that

c = gp(b) = gp(b− fp(a)).

It follows that (gp)∗([b− fp(a)]) = [c], proving that Ker δp ⊆ Im (gp)∗.

For any [c] ∈ Hp(Z), since δp([c]) = [a] where fp+1(a) = dY (b) for any b ∈ Y p such that
gp(b) = c, as dY (b) is a coboundary we have

(fp+1)∗(δp([c])) = (fp+1)∗([a]) = [fp+1(a)] = [dY (b)] = 0,

and thus Im δp ⊆ Ker (fp+1)∗.

Conversely, assume that (fp+1)∗([a]) = 0, for some a ∈ Xp+1 with dX(a) = 0, which
means that fp+1(a) = dY (b) for some b ∈ Y p. Since Im fp+1 = Ker gp+1 we have gp+1◦fp+1 =
0, so by commutativity of the middle right square

dZ(gp(b)) = gp+1(dY (b)) = gp+1(fp+1(a)) = 0,

which means that gp(b) is a cocycle in Zp, and since fp+1(a) = dY (b) by definition of δp

δp([gp(b)]) = [a],

showing that Ker (fp+1)∗ ⊆ Im δp.

The maps δp : Hp(Z) → Hp+1(X) are called connecting homomorphisms . The kind of
argument used to prove Theorem 2.22 is known as diagram chasing .

Remark: The construction of the connecting homomorphisms δp : Hp(Z) → Hp+1(X) is
often obtained as a corollary of the snake lemma. This is the approach followed in the
classical texts by Mac Lane [37] and Cartan–Eilenberg [10]. These books assume that the
reader already has a fair amount of background in algebraic topology and the proofs are often
rather terse or left to reader as “easy exercises” in diagram chasing. Bott and Tu [4] refer to
Mac Lane for help but as we just said Mac Lane leaves many details as exercises to the reader.
More recent texts such as Munkres [48], Rotman [51, 52], Madsen and Tornehave [39], Tu
[61] and Hatcher [31] show more compassion for the reader and provide much more details.
Still, except for Hatcher and Munkres who give all the steps of the proof (for homology, and
sometimes quickly) certain steps are left as “trivial” exercises (for example, step (e)). At
the risk of annoying readers who have some familiarity with homological algebra we decided
to provide all gory details of the proof so that readers who are novice in this area have a
place to fall back if they get stuck, even if these proofs are not particularly illuminating (and
rather tedious).

The assignment of a long exact sequence of cohomology to a short exact sequences of
complexes is “natural” in the sense that it also applies to morphisms of short exact sequences
of complexes.
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Definition 2.14. Given two short exact sequences of cochain complexes

0 // X
f // Y

g // Z // 0 and 0 // X ′
f ′ // Y ′

g′ // Z ′ // 0,

a morphism between these two exact sequences is a commutative diagram

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0,

where α, β, γ are chain maps.

The following proposition gives a precise meaning to the naturality of the assignment of
a long exact sequence of cohomology to a short exact sequences of complexes.

Proposition 2.23. For any morphism of exact sequences of cochain complexes

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0,

the following diagram of cohomology commutes.

// Hp(X)
f∗ //

α∗

��

Hp(Y )
g∗ //

β∗

��

Hp(Z)

γ∗

��

δp // Hp+1(X) //

α∗

��
// Hp(X ′)

(f ′)∗
// Hp(Y ′)

(g′)∗
// Hp(Z ′)

(δ′)p
// Hp+1(X ′) //

Proof. A proof of Proposition 2.23 for homology can be found in Munkres [48] (Chapter 3,
Section 24, Theorem 24.2) and Hatcher [31] (Chapter 2, Section 2.1). The proof is a “diagram
chasing” argument which can be modified to apply to cohomology as we now show. The first
two squares commute because they already commute at the cochain level by definition of a
morphism so we only have to prove that the third square commutes.

Recall how δp(ξ) is defined where ξ = [c] ∈ Hp(Z) is represented by a cocycle c ∈ Zp:
pick any b ∈ Y p such that gp(b) = c, push b down to Y p+1 by applying dY obtaining dY (b),
and then pull dY (b) back to Xp+1 by applying (fp+1)−1, obtaining a = (fp+1)−1(dY (b)); set
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δp([c]) = [a]. Schematically,

Y p gp //

dY

��

Zp

b_

��

c = gp(b)�oo

dZ

��

Xp+1 fp+1
// Y p+1

a dY (b)�oo gp+1
// 0

Since a ∈ Xp+1 is a cocycle and α is a chain map α(a) ∈ X
′p+1 is a cocycle. Similarly

γ(c) ∈ Z ′p+1 is a cocycle, and by definition γ∗([c]) = [γ(c)]. We claim that

(δ′)p([γ(c)]) = [α(a)].

Since c = gp(b) we have γ(c) = γ ◦ gp(b) and since the diagram

0 // X
f //

α

��

Y
g //

β

��

Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0

(∗)

commutes, we have γ(c) = γ ◦ gp(b) = g
′p ◦ β(b). Consider the following diagram:

Y
′p g

′p
//

dY ′

��

Z
′p

β(b)
_

��

γ(c) = g
′p(β(b))�oo

dZ′

��

X
′p+1 f

′p+1
// Y
′p+1

α(a) dY ′(β(b))�oo g
′p+1

// 0.

By commutativity of the diagram (∗), the fact that β is a chain map, and since fp+1(a) =
dY (b), we have

f
′p+1(α(a)) = β(fp+1(a)) = β(dY (b)) = dY ′(β(b)),

which shows that (δ′)p([γ(c)]) = [α(a)]. This part of the proof is illustrated in Figure 2.1.
But δp([c]) = [a], so we get

(δ′)p(γ∗([c])) = (δ′)p([γ(c)]) = [α(a)] = α∗([a]) = α∗(δp([c])),

namely
(δ′)p ◦ γ∗ = α∗ ◦ δp,

as claimed.
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Figure 2.1: Illustration for the proof of Proposition 2.23.

In the next chapter we discuss an example of a long exact sequence of cohomology arising
from two open subsets U1, U2 of a manifold M that involves the cohomology space Hp(U1∪U2)
and the cohomology spaces Hp−1(U1 ∩ U2), Hp(U1) and Hp(U2). This long exact sequence
is known as the Mayer–Vietoris sequence. If U is covered by a finite family (Ui)

r
i=1 of

open sets and if this family is a “good cover,” then by an inductive argument involving
the Mayer–Vietoris sequence it is possible to prove that the cohomology spaces Hp(U) are
finite-dimensional.

2.8 Problems

Problem 2.1. Prove Proposition 2.13.

Problem 2.2. Prove Proposition 2.14.

Problem 2.3. Prove Proposition 2.15.

Problem 2.4. Provide the details of Proposition 2.18.

Problem 2.5. (The snake lemma) Consider the commutative diagram shown below:

A //

α

��

B
σ //

β
��

C //

γ

��

0

0 // A′
κ′
// B′

σ′
// C ′.
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(1) Prove that if the rows are exact, then there is a map D∗ : Ker γ → Cokerα such that
the sequence

Kerα // Ker β // Ker γ
D∗ // Cokerα // Coker β // Coker γ

is exact.

(2) Consider a short exact sequence

0 // X ′ // X // X ′′ // 0

of chain complexes X ′, X,X ′′. Prove that the commutative diagram

X ′n/Im d′n+1
//

∆′
��

Xn/Im dn+1
//

∆
��

X ′′n/Im d′′n+1
//

∆′′
��

0

0 // Zn−1(X ′) // Zn−1(X) // Zn−1(X ′′)

has exact rows, where the middle vertical map is defined such that ∆([x]) = dnx, for any
x ∈ Xn/Im dn+1, and similarly for the other two maps.

Use (1) to prove the existence of the long exact sequence of homology , namely that there
is an exact sequence

Hn(X ′) // Hn(X) // Hn(X ′′)
∂n // Hn−1(X ′) // Hn−1(X) // Hn−1(X ′′)

for all n.

Problem 2.6. Consider the following commutative diagram

0

��

0

��

0

��
0 // A1

α1 //

λ
��

A2
α2 //

µ

��

A3
//

ν

��

0

0 // B1
β1 //

λ′
��

B2
β2 //

µ′

��

B3
//

ν′
��

0

0 // C1
γ1 //

��

C2
γ2 //

��

C3
//

��

0

0 0 0

and suppose that all three columns and the first two rows are short exact. Prove that the
third row is also short exact.
Hint . Use Problem 2.5.
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Chapter 3

de Rham Cohomology

Differential forms offer a quick and rather easy approach to the cohomology groups (with
real coefficients) of smooth manifolds. This approach was pioneered by Georges de Rham in
the early 1930s. If M is a smooth manifold, then there is the de Rham complex

A0(M)
d0

−→ A1(M)
d1

−→ A2(M)
d2

−→ · · · d
p−1

−→ Ap(M)
dp−→ Ap+1(M)

dp+1

−→ · · ·

which uses the modules of smooth p-forms Ap(M) and the exterior derivatives dp : Ap(M)→
Ap+1(M). The corresponding cohomology groups are the de Rham cohomology groups
Hp

dR(M). These are actually real vector spaces. This chapter offers a brief presentation
of de Rham cohomology.

This chapter assumes a certain background in differential geometry, in particular, dif-
ferential forms. However, although it gives a nice preview of some of the main themes of
cohomology, such as Poincaré duality, it can be safely omitted. Readers who wish to review
differential forms are referred to the excellent presentations in Tu [61], Morita [46], Madsen
and Tornehave [39], and Bott and Tu [4]. A detailed exposition, including an extensive
review of tensor algebra, is also provided in Gallier and Quaintance [21].

In Section 3.1 we introduce the de Rham cohomology groups Hp
dR(M) and the de Rham

cohomology groups with compact support Hp
dR,c(M). We state the Poincaré lemma which

describes the de Rham cohomology of Rn (and the de Rham cohomology with compact
support of Rn).

In Section 3.2 we introduce an important tool, the Mayer–Vietoris argument. Let M be
a smooth manifold and assume that M = U1∪U2 for two open subsets U1 and U2 of M . The
Mayer–Vietoris argument makes use of an exact sequence which relates the cohomology of
M = U1 ∪ U2 to the cohomology of U1, U2 and U1 ∩ U2. This method does not work of all
covers, but it works for special covers called good covers . Every smooth manifold has a good
cover, and a compact manifold has a finite good cover. We prove that if a manifold M has
a finite good cover, then its cohomology groups are finite-dimensional vector spaces.

In Section 3.3 we discuss Poincaré duality for smooth orientable manifolds without bound-
ary. Poincaré duality is a deep result which shows that the cohomology of a compact ori-

95
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entable manifold exhibits a fundamental symmetry. Technically, Poincaré duality states that
if M is a smooth oriented manifold with a finite good cover, then we have isomorphisms

Hp(M) ∼= (Hn−p
c (M))∗

for all p with 0 ≤ p ≤ n, where (Hn−p
c (M))∗ is the algebraic dual of the vector space

Hn−p
c (M), the space of R-linear forms on Hn−p

c (M)). In particular, if M is compact, then

Hp(M) ∼= (Hn−p(M))∗

for all p with 0 ≤ p ≤ n.

3.1 Review of de Rham Cohomology

Let M be a smooth manifold. The de Rham cohomology is based on differential forms. If
Ap(M) denotes the real vector space of smooth p-forms on M , then we know that there is a
mapping dp : Ap(M) → Ap+1(M) called exterior differentiation, and dp satisfies the crucial
property

dp+1 ◦ dp = 0 for all p ≥ 0.

Recall that A0(M) = C∞(M), the space of all smooth (real-valued) functions on M .

Definition 3.1. The sequence of vector spaces and linear maps between them satisfying
dp+1 ◦ dp = 0 given by

A0(M)
d0

−→ A1(M)
d1

−→ A2(M)
d2

−→ · · · d
p−1

−→ Ap(M)
dp−→ Ap+1(M)

dp+1

−→ · · ·

is called a differential complex .

We can package together the vector spaces Ap(M) as the direct sum A∗(M) given by

A∗(M) =
⊕

p≥0

Ap(M)

called the de Rham complex of M , and the family of maps (dp) as the map

d : A∗(M)→ A∗(M),

where d on the pth summand Ap(M) is equal to dp, so that

d ◦ d = 0.

The direct sum A∗(M) is an example of the general concept of a graded vector space defined
below.
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Definition 3.2. A gradation of a vector space V is family (Vp) of subspaces Vp ⊆ V such
that

V =
⊕

p≥0

Vp.

In this case, we say that V is a graded vector space.

The map d is an anti-derivation, which means that

d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ, ω ∈ Ap(M), τ ∈ Aq(M).

For example, if M = R3, then
d0 : A0(M)→ A1(M)

correspond to grad,
d1 : A1(M)→ A2(M)

corresponds to curl, and
d2 : A2(M)→ A3(M)

corresponds to div.

In fact, A∗(U) is defined for every open subset U of M , and A∗ is a sheaf of differential
complexes.

Definition 3.3. A form ω ∈ Ap(M) is closed if

dω = 0,

exact if
ω = dτ for some τ ∈ Ap−1(M).

Let Zp(M) denote the subspace of Ap(M) consisting of closed p-forms, Bp(M) denote
the subspace of Ap(M) consisting of exact p-forms, with B0(M) = (0) (the trivial vector
space), and let

Z∗(M) =
⊕

p≥0

Zp(M), B∗(M) =
⊕

p≥0

Bp(M).

Since d◦d = 0, we have Bp(M) ⊆ Zp(M) for all p ≥ 0 but the converse is generally false.

Definition 3.4. The de Rham cohomology of a smooth manifold M is the real vector space
H∗dR(M) given by the direct sum

H∗dR(M) =
⊕

p≥0

Hp
dR(M),

where the cohomology group (actually, real vector space) Hp
dR(M) is the quotient vector

space
Hp

dR(M) = Zp(M)/Bp(M).
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Thus, the cohomology group (vector space) H∗dR(M) gives some measure of the failure of
closed forms to be exact.

Note that by definition H∗dR(M) is a graded vector space. Furthermore, exterior multi-
plication in A∗(M) induces a ring structure on the vector space H∗dR(M). First it is clear by
definition that

B∗(M) ⊆ Z∗(M) ⊆ A∗(M).

Proposition 3.1. The vector space Z∗(M) is a subring of A∗(M) and B∗(M) is an ideal
in Z∗(M).

Proof. Assume that dω = 0 and dτ = 0 for some ω ∈ Zp(M) and some τ ∈ Zq(M). Then
since d is an anti-derivation, we have

d(ω ∧ τ) = dω ∧ τ + (−1)pω ∧ dτ = 0 ∧ τ + (−1)pω ∧ 0 = 0,

which shows that ω ∧ τ ∈ Z∗(M). Therefore, Z∗(M) is a subring of A∗(M).

Next assume that ω ∈ Zp(M) and τ ∈ Bq(M), so that dω = 0 and τ = dα for some
α ∈ Aq−1(M). Then, we have

d(ω ∧ (−1)pα) = dω ∧ (−1)pα + (−1)pω ∧ (−1)pdα = 0 ∧ (−1)pα + ω ∧ τ = ω ∧ τ,

which shows that ω ∧ τ ∈ B∗(M), so B∗(M) is an ideal in Z∗(M).

Since B∗(M) is an ideal in Z∗(M), the quotient ring Z∗(M)/B∗(M) is well-defined, and
H∗dR(M) = Z∗(M)/B∗(M) is a ring under the multiplication induced by ∧. Therefore,
H∗dR(M) is an R-algebra.

A variant of de Rham cohomology is de Rham cohomology with compact support .

Definition 3.5. The de Rham cohomology with compact support is obtained by considering
the vector space A∗c(M) of differential forms with compact support. As before, we have the
subspaces B∗c (M) ⊆ Z∗c (M), and we let

H∗dR,c(M) = Z∗c (M)/B∗c (M).

The Poincaré’s Lemmas are the following results:

Proposition 3.2. The following facts hold:

Hp
dR(Rn) =

{
0 if p 6= 0

R if p = 0,

and

Hp
dR,c(R

n) =

{
0 if p 6= n

R if p = n.

These facts also hold if Rn is replaced by any nonempty convex subset of Rn (or even a
star-shaped subset of Rn).

For a proof of Proposition 3.2, see Bott and Tu [4], Chapter 1.
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3.2 The Mayer–Vietoris Argument

Let M be a smooth manifold and assume that M = U1 ∪ U2 for two open subsets U1 and
U2 of M . The Mayer–Vietoris argument makes use of an exact sequence which relates the
cohomology of M = U1 ∪ U2 to the cohomology of U1, U2 and U1 ∩ U2. We obtain a method
of proof which proceeds by induction on the size of the number of open subsets in an open
cover. This method does not work of all covers, but it works for special covers called good
covers . Fortunately, every smooth manifold has a good cover, and every compact (smooth)
manifold has a finite good cover. The Mayer–Vietoris argument can be used to prove that the
cohomology groups Hp

dR(M) of a manifold M with a finite good cover are finite-dimensional.
It can also be used to prove that the cohomology groups Hp

dR,c(M) with compact support of
a smooth manifold M with a finite good cover are finite-dimensional. The Mayer–Vietoris
argument can also be used to prove a version of Poincaré duality.

The inclusion maps ik : Uk →M and jk : U1∩U2 → Uk for k = 1, 2 induce a pullback map
f : A∗(M)→ A∗(U1)⊕A∗(U2) given by f = (i∗1, i

∗
2) and a pullback map g : A∗(U1)⊕A∗(U2)→

A∗(U1 ∩ U2) given by g = j∗1 − j∗2 . We have the following short exact sequence.

Proposition 3.3. For any smooth manifold M , if M = U1 ∪ U2 for any two open subsets
U1 and U2, then we have the short exact sequence

0 // A∗(M)
f // A∗(U1)⊕A∗(U2)

g // A∗(U1 ∩ U2) // 0.

Proof. The proof is not really difficult. It involves the use of a partition of unity. For details,
see Bott and Tu [4] (Chapter 1, Proposition 2.3) or Madsen and Tornehave [39] (Chapter 5,
Theorem 5.1).

The short exact sequence given by Proposition 3.3 is called the Mayer–Vietoris sequence.

If we apply Theorem 2.22 to the Mayer–Vietoris sequence we obtain the long Mayer–
Vietoris cohomology sequence shown below:

· · · // Hp−1
dR (U1 ∩ U2)

δp−1

// Hp
dR(M)

f∗ // Hp
dR(U1)⊕Hp

dR(U2)
g∗ // Hp

dR(U1 ∩ U2)
δp

// Hp+1
dR (M)

f∗ // Hp+1
dR (U1)⊕Hp+1

dR (U2)
g∗ // Hp+1

dR (U1 ∩ U2)
δp+1

// Hp+2
dR (M) // · · ·

(for all p).
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This long exact sequence implies that

Hp
dR(M) ∼= Im δp−1 ⊕ Im f ∗;

see the paragraph in Section 2.1 just after Equation (∗cok). It follows that if the spaces
Hp−1

dR (U1 ∩ U2), HP
dR(U1) and HP

dR(U2) are finite-dimensional, then so is Hp
dR(M). This

suggests an inductive argument on the number of open subsets in a finite cover of M . For
this argument to succeed, such covers must have some special properties about intersections
of these open subsets; Bott and Tu call them good covers .

Definition 3.6. Given a smooth manifold M of dimension n, an open cover U = (Uα)α∈I of
M is called a good cover if all finite nonempty intersections Uα1 ∩ · · ·∩Uαp are diffeomorphic
to Rn. A manifold which has a finite good cover is said to be of finite type. See Figure 3.1.

=~

(i.)

(ii.)

U

U

UU

U

U

U 3

1

1

1

2

2

2g

g

g

h

U U1 2h

Figure 3.1: The manifold M is an open unit square of R2. Figure (i.) is a good cover of M
while Figure (ii.) is not a good cover of M since U1 ∩ U2 is isomorphic to the disjoint union
of two open disks.

Fortunately, every smooth manifold has a good cover.

Theorem 3.4. Every smooth manifold M has a good cover. If M is a compact manifold,
then M has a finite good cover.

Proof Sketch. A detailed proof can be found in Bott and Tu [4], Chapter 1. The proof of
Theorem 3.4 makes use of some differential geometry. First, using a partitition of unity
argument we can prove that every manifold has a Riemannian metric.
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The second step uses the fact that in a Riemannian manifold, every point p has a geodesi-
cally convex neighborhood U , which means that any two points p1, p2 ∈ U can be joined by
a geodesic that stays inside U . Now any intersection of geodesically convex neighborhoods
is still geodesically convex, and a geodesically convex neighborhood is diffeomorphic to Rn,
so any open cover consisting of geodesically convex open subsets is a good cover.

The above argument can be easily adapted to prove that every open cover of a manifold
can be refined to a good open cover.

We can now prove that the de Rham cohomoloy spaces of a manifold endowed with a
finite good cover are finite-dimensional. To simply notation, we write Hp instead of Hp

dR.

Theorem 3.5. If a manifold M has a finite good cover, then the cohomology vector spaces
Hp(M) are finite-dimensional for all p ≥ 0.

Proof. We proceed by induction on the number of open sets in a good cover (V1, . . . , Vp). If
p = 1, then V1 itself is diffeomorphic to Rn, and by the Poincaré lemma (Proposition 3.2)
the cohomology spaces are either (0) or Rn. Thus, the base case holds.

For the induction step, assume that the cohomology of a manifold having a good cover
with at most p open sets is finite-dimensional, and let U = (V1, . . . , Vp+1) be a good cover
with p + 1 open subsets. The open subset (V1 ∪ · · · ∪ Vp) ∩ Vp+1 has a good cover with p
open subsets, namely (V1 ∩ Vp+1, . . . , Vp ∩ Vp+1). See Figures 3.2 and 3.3. By the induction
hypothesis, the vector spaces Hp(V1 ∪ · · · ∪ Vp), Hp(Vp+1) and Hp((V1 ∪ · · · ∪ Vp)∩ Vp+1) are
finite-dimensional for all p, so by the consequence of the long Mayer–Vietoris cohomology
sequence stated just before Definition 3.6, with M = V1 ∪ · · · ∪ Vp+1, U1 = V1 ∪ · · · ∪ Vp, and
U2 = Vp+1, we conclude that the vector spaces Hp(V1 ∪ · · · ∪ Vp+1) are finite-dimensional for
all p, which concludes the induction step.

As a special case of Theorem 3.5, we see that the cohomology of any compact manifold
is finite-dimensional.

A similar result holds de Rham cohomology with compact support, but we have to be a
little careful because in general, the pullback of a form with compact support by a smooth
map may not have compact support. Fortunately, the Mayer–Vietoris sequence only needs
inclusion maps between open sets.

Given any two open subsets U, V of M , if U ⊆ V and i : U → V is the inclusion map,
there is an induced map i∗ : Apc(U)→ Apc(V ) defined such that

(i∗(ω))(p) = ω(p) if p ∈ U
(i∗(ω))(p) = 0 if p ∈ V − suppω.

We say that ω has been extended to V by zero. Notice that unlike the definition of the
pullback f ∗ω of a form ω ∈ Ap(V ) by a smooth map f : U → V where f ∗ω ∈ Ap(U),
the map i∗ pushes a form ω ∈ Apc(U) forward to a form i∗ω ∈ Apc(V ). If i : U → V and
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1 2

3

4

V V

V

V

1V 2V 3Vgg g 4V

Figure 3.2: A good cover of S2 consisting of four open sets. Note V1 ∩ V2 = V3 ∩ V4 = ∅.

j : V → W are two inclusions, then (j ◦ i)∗ = j∗ ◦ i∗, with no reversal of the order of i∗ and
j∗.

Let M be a smooth manifold and assume that M = U1 ∪ U2 for two open subsets U1

and U2 of M . The inclusion maps ik : Uk → M and jk : U1 ∩ U2 → Uk for k = 1, 2 induce
a map s : A∗c(U1) ⊕ A∗c(U2) → A∗c(M) given by s(ω1, ω2) = (i1)∗(ω1) + (i2)∗(ω2) and a
map j : A∗c(U1 ∩ U2) → A∗c(U1) ⊕ A∗c(U2) given by j(ω) = ((j1)∗(ω),−(j2)∗(ω)). We have
the following short exact sequence called the Mayer–Vietoris sequence for cohomology with
compact support .

Proposition 3.6. For any smooth manifold M , if M = U1 ∪ U2 for any two open subsets
U1 and U2, then we have the short exact sequence

0 // A∗c(U1 ∩ U2)
j // A∗c(U1)⊕A∗c(U2) s // A∗c(M) // 0.

For a proof of Proposition 3.6, see Bott and Tu [4] (Chapter 1, Proposition 2.7). Observe
that compared to the Mayer–Vietoris sequence of Proposition 3.3, the direction of the arrows
is reversed.

If we apply Theorem 2.22 to the Mayer–Vietoris sequence of Proposition 3.6 we obtain
the long Mayer–Vietoris sequence for cohomology with compact support shown below:
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Figure 3.3: The inductive good cover construction applied to V1 ∪ V2 ∪ V3 ∪ V4, a good cover
of S2.

· · · // Hp−1
dR,c(M)

δp−1
c

// Hp
dR,c(U1 ∩ U2)

j∗ // Hp
dR,c(U1)⊕Hp

dR,c(U2) s∗ // Hp
dR,c(M)

δpc

// Hp+1
dR,c(U1 ∩ U2)

j∗ // Hp+1
dR,c(U1)⊕Hp+1

dR,c(U2) s∗ // Hp+1
dR,c(M)

δp+1
c

// Hp+2
dR,c(U1 ∩ U2) // · · ·

(for all p). Then using the above sequence, the Poincaré lemma, and basically the same
proof as in Theorem 3.5, we obtain the following result.

Theorem 3.7. If a manifold M has a finite good cover, then the vector spaces Hp
dR,c(M) of

cohomology with compact support are finite-dimensional for all p ≥ 0.

The long exact sequences of cohomology induced by Proposition 3.3 and Proposition 3.6
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can be combined to prove a version of Poincaré duality. Following Bott and Tu [4] we give
a brief presentation of this result.

3.3 Poincaré Duality on an Orientable Manifold

Let M be a smooth orientable manifold without boundary of dimension n. In this section,
to simplify notation we write Hp(M) for HdR(M) and Hp

c (M) for HdR,c(M). For any form
ω ∈ Ap(M) and any form with compact support η ∈ An−pc (M), the support of the n-form
ω ∧ η is contained in both supports of ω and η, so ω ∧ η also has compact support and∫
M
ω∧η makes sense. Since B∗(M) is an ideal in Z∗(M) and by Stokes’ theorem

∫
M
dω = 0,

we have a well-defined map

〈−,−〉 : Hp(M)×Hn−p
c (M) −→ R

defined by

〈[ω], [η]〉 =

∫

M

ω ∧ η,

for any closed form ω ∈ Ap(M) and any closed form with compact support η ∈ An−pc (M).
The above map is clearly bilinear so it is a pairing. Recall that if the vector spaces Hp(M)
and Hn−p

c (M) are finite-dimensional (which is the case if M has a finite good cover) and if
the pairing is nondegenerate, then it induces a natural isomorphism between Hp(M) and
the dual space (Hn−p

c (M))∗ of Hn−p
c (M).

Theorem 3.8. (Poincaré duality) Let M be a smooth oriented n-dimensional manifold. If
M has a finite good cover, then the map

〈−,−〉 : Hp(M)×Hn−p
c (M) −→ R

is a nondegenerate pairing. This implies that we have isomorphisms

Hp(M) ∼= (Hn−p
c (M))∗

for all p with 0 ≤ p ≤ n. In particular, if M is compact then

Hp(M) ∼= (Hn−p(M))∗

for all p with 0 ≤ p ≤ n.

The proof of Theorem 3.8 uses induction on the size of a finite good cover for M . For
the induction step, the long exact sequences of cohomology induced by Proposition 3.3 and
Proposition 3.6 are combined in a clever way, and the five lemma (Proposition 2.5) is used.
Proofs of Theorem 3.8 are given in Bott and Tu [4] (Chapter 1, Pages 44–46), and in more
details in Madsen and Tornehave [39] (Chapter 13).

The first step of the proof is to dualize the second long exact sequence of cohomology. It
turns out that this yields an exact sequence, and for this we need the following proposition.
This is actually a special case of Proposition 2.8, but it does not hurt to give a direct proof.
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Proposition 3.9. Let A,B,C be three vector spaces and let ϕ : A → B and ψ : B → C be
two linear maps such that the sequence

A
ϕ // B

ψ // C

is exact at B. Then the sequence

C∗
ψ> // B∗

ϕ> // A∗

is exact at B∗.

Proof. Recall that ϕ> : B∗ → A∗ is the linear map defined such that ϕ>(f) = f ◦ϕ for every
linear form f ∈ B∗ and similarly ψ> : C∗ → B∗ is given by ψ>(g) = g ◦ ψ for every linear
form g ∈ C∗. The fact that the first sequence is exact at B means that Imϕ = Kerψ, which
implies ψ ◦ ϕ = 0, thus ϕ> ◦ ψ> = 0, so Imψ> ⊆ Kerϕ>. Conversely, we need to prove that
Kerϕ> ⊆ Imψ>.

Pick any f ∈ Kerϕ>, which means that ϕ>(f) = 0, that is f ◦ ϕ = 0. Consequently
Imϕ ⊆ Ker f , and since Imϕ = Kerψ we have

Kerψ ⊆ Ker f.

We are going to construct a linear form g ∈ C∗ such that f = g ◦ ψ = ψ>(g). Observe that
it suffices to construct such a linear form defined on Imψ, because such a linear form can
then be extended to the whole of C.

Pick any basis (vi)i∈I in Imψ, and let (ui)i∈I be any family of vectors in B such that
ψ(ui) = vi for all i ∈ I. Then by a familiar argument (ui)i∈I is linearly independent and it
spans a subspace D of B such that

B = Kerψ ⊕D.

Define g : C → K such that

g(vi) = f(ui), i ∈ I.

We claim that f = g ◦ ψ.

Indeed, f(ui) = g(vi) = (g ◦ ψ)(ui) for all i ∈ I, and if w ∈ Kerψ, since Kerψ ⊆ Ker f ,
we have

f(w) = 0 = (g ◦ ψ)(w) = 0.

Therefore, f = g ◦ ψ = ψ>(g), which shows that f ∈ Imψ>, as desired.

By applying Proposition 3.9 to the second long exact sequence of cohomology (of compact
support), we obtain the following long exact sequence:
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· · · // Hp+2
c (U1 ∩ U2)∗

(δp+1
c )>

// Hp+1
c (M)∗

(s∗)> // Hp+1
c (U1)∗ ⊕Hp+1

c (U2)∗
(j∗)> // Hp+1

c (U1 ∩ U2)∗

(δpc )>

// Hp
c (M)∗

(s∗)> // Hp
c (U1)∗ ⊕Hp

c (U2)∗
(j∗)> // Hp

c (U1 ∩ U2)∗

(δp−1
c )>

// Hp−1
c (M)∗ // · · ·

(for all p).

Let us denote by θpM : Hp(M) → (Hn−p
c (M))∗ the isomorphism given by Theorem 3.8.

The following propositions are shown in Bott and Tu [4] (Chapter 1, Lemma 5.6), and in
Madsen and Tornehave [39] (Chapter 13, Lemma 13.6 and Lemma 13.7).

Proposition 3.10. For any two open subsets U and V of a manifold M , if U ⊆ V and
i : U → V is the inclusion map, then the following diagrams commute for all p:

Hp(V ) i∗ //

θpV
��

Hp(U)

θpU
��

Hn−p
c (V )∗

i>∗

// Hn−p
c (U)∗.

Proposition 3.11. For any two open subsets U1 and U2 of a manifold M , if U = U1 ∪ U2

then the following diagrams commute for all p:

Hp(U1 ∩ U2) δp //

θpU1∩U2

��

Hp+1(U)

θp+1
U

��
Hn−p
c (U1 ∩ U2)∗

(−1)p+1(δn−p−1
c )>

// Hn−p−1
c (U)∗.

Using Proposition 3.10 and Proposition 3.11, we obtain a diagram in which the top and
bottom rows are exact and every square commutes. Here is a fragment of this diagram in
which we have omitted the labels of the horizontal arrows to unclutter this diagram. Due to
space constraints we had to split the diagram into two parallel diagrams.

// Hp−1(U1)⊕Hp−1(U2) //

θp−1
U1
⊕ θp−1

U2
��

Hp−1(U1 ∩ U2)

θp−1
U1∩U2
��

//

// Hn−p+1
c (U1)∗ ⊕Hn−p+1

c (U2)∗ // Hn−p+1
c (U1 ∩ U2)∗ //
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// Hp(U) //

θpU
��

Hp(U1)⊕Hp(U2) //

θpU1
⊕ θpU2

��

Hp(U1 ∩ U2)

θpU1∩U2
��

//

// Hn−p
c (U)∗ // Hn−p

c (U1)∗ ⊕Hn−p
c (U2)∗ // Hn−p

c (U1 ∩ U2)∗ //

Now here is the crucial step of the proof of Theorem 3.8. Suppose we can prove that the
maps θpU1

, θpU2
and θpU1∩U2

are isomorphisms for all p. Then by the five lemma (Proposition
2.5), we can conclude that the maps θpU are also isomorphisms.

We can now give the main part of the proof of Theorem 3.8 using induction on the size
of a finite good cover.

Proof sketch of Theorem 3.8. Let U = (V1, . . . , Vp) be a good cover for the orientable mani-
fold M . We proceed by induction on p. If p = 1, then M = V1 is diffeomorphic to Rn and
by the Poincaré lemma (Proposition 3.2) we have

Hp
dR(Rn) =

{
0 if p 6= 0

R if p = 0,

and

Hp
dR,c(R

n) =

{
0 if p 6= n

R if p = n,

so we have the desired isomorphisms.

Assume inductively that Poincaré duality holds for any orientable manifold having a
good cover with at most p open subsets, and let (V1, . . . , Vp+1) be a cover with p + 1 open
subsets. Observe that (V1 ∪ · · · ∪ Vp) ∩ Vp+1 has a good cover with p open subsets, namely
(V1∩Vp+1, . . . , Vp∩Vp+1). By the induction hypothesis applied to U1 = V1∪· · ·∪Vp, U2 = Vp+1,
and U = M = V1 ∪ · · · ∪ Vp+1, the maps θpU1

, θpU2
and θpU1∩U2

in the diagram shown just after
Proposition 3.11 are isomorphisms for all p, so by the five lemma (Proposition 2.5) we can
conclude that the maps θpU are also isomorphisms, establishing the induction step.

Remark: The technique involving two Mayer–Vietoris sequences running in opposite direc-
tion (up on the top row, and down on the bottom row) is a preview of a similar technique
used in the proof of the more general version of Poincaré duality stated in Theorem 7.16.

As a corollary of Poincaré duality, if M is an orientable and connected manifold, then
H0(M) ∼= R, and so Hn

c (M) ∼= R. In particular, if M is compact then Hn(M) ∼= R.

Remark: As explained in Bott and Tu [4], the assumption that the good cover is finite is
not necessary. Then the statement of Poincaré duality is that if M is any orientable manifold
of dimension n, then there are isomorphisms

Hp(M) ∼= (Hn−p
c (M))∗
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for all p with 0 ≤ p ≤ n, even if Hp(M) is infinite dimensional. However, the statement
obtained by taking duals, namely

Hp
c (M) ∼= (Hn−p(M))∗,

is generally false.

In Chapter 1 of their book, Bott and Tu derive more consequences of the Mayer–Vietoris
method. The interested reader is referred to Bott and Tu [4].

The de Rham cohomology is a very effective tool to deal with manifolds but one of the
drawbacks of using real coefficients is that torsion phenomena are overlooked. There are
other cohomology theories of finer grain that use coefficients in rings such as Z. One of the
simplest uses singular chains, and we discuss it in the next chapter.

3.4 Problems

Problem 3.1. Let M be a connected n-dimensional compact smooth manifold. Let ω ∈
Ak(M) and η ∈ An−k(M) be two closed forms on M . Prove that if ω ∧ η is not zero for any
point of M , then the class [ω] ∈ Hk

dR(M) represented by ω is nonzero.

Hint . Recall that if an n-dimensional smooth manifold has an n-form that it nowhere van-
ishing, then it is orientable, and that under any orientation,

∫
M
ω ∧ η 6= 0.

Problem 3.2. Let M = R2 − {0}. Prove that

Hk
dR(M) ∼= Hk

dR(S1 × R).

Check that

ω =
xdy − ydx
x2 + y2

is a closed 1-form on M .

Problem 3.3. Consider the 2-form

ω = x1dx2 ∧ dx3 − x2dx1 ∧ dx3 + x3dx1 ∧ dx2

on R3. Prove that ∫

S2

ω = 4π.



Chapter 4

Singular Homology and Cohomology

Historically, singular homology and cohomology were developed in the 1940’s, starting with
a seminal paper of Eilenberg published in 1944 (building up on work by Alexander and
Lefschetz among others). It was not the first homology theory. Indeed, simplicial homology
emerged in the early 1920’s.

One of the main differences between singular homology and simplicial homology is that
singular homology groups can be assigned to any topological space X, but simplicial homol-
ogy groups are only defined for certain combinatorial objects called simplicial complexes . In
this respect, singular homology is superior to simplicial homology. It is also easier to prove
that homeomorphic spaces, in fact, homotopy equivalent spaces, have isomorphic singular
homology. The price to pay is that the singular homology groups have a more abstract def-
inition than the simplicial homology groups, and their definition does not suggest methods
to compute them.

Simplicial homology and singular homology agree, but it takes a lot of work to prove
this fact (see Chapter 5). We feel that singular homology is less contrived than simplicial
homology because it is defined directly for spaces, as opposed to simplicial homology which
is defined for combinatorial objects that can be viewed as triangulations of spaces. Thus we
will first define singular homology (and cohomology). Simplicial homology will be discussed
in the next chapter (Chapter 5).

Roughly speaking, the singular homology groups are defined by chain complexes in which
the modules in the chain complexes are built up from continuous maps from some simple
geometric objects called simplices, which generalize line segments, triangles, tetrahedra, etc.

We begin by defining singular simplices and the chain complex S∗(X;R) (consisting of a
chain complex with modules Sp(X;R) of singular p-chains) that gives rise to simplicial ho-
mology. For this we need to define the boundary ∂σ of a singular simplex σ. Having assigned
simplicial homology groups Hp(X,R) to a topological space X (where R is a commutative
ring with an identity element and p ≥ 0), we show how a continuous map f : X → Y between
two topological spaces X and Y induces homomorphisms Hp(f) : Hp(X,R)→ Hp(Y,R) be-
tween homology groups.

109
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Our next goal is to develop tools that will help us compute the singular homology groups
of a space X. The first result is that homotopy equivalent spaces have isomorphic homology
groups. This is called the homotopy axiom.

To compute singular homology groups it turns out that it is useful to define the singular
homology groups Hp(X,A;R) of a pair of spaces (X,A), where A is a subspace of X. The
groups Hp(X,A;R) are called the relative singular homology groups . The homotopy axiom
also applies to relative singular homology. Using the zig-zag lemma (Theorem 2.22) we
obtain the long exact sequence of relative homology , which plays a crucial role.

When (X,A) is a pair of spaces where A is a nonempty closed subspace that is a defor-
mation retract of some neighborhood in X, the homology groups Hp(X,A;R) are isomorphic
to the groups Hp(X/A; {pt};R), where X/A is the result of collapsing A to a single point.
When the above condition holds for a pair (X,A), we say that (X,A) is a good pair. The
groups Hp(X/A; {pt};R) may be easier to compute that the groups Hp(X,A;R) because
X/A may be simpler than X. Technically, the groups Hp(X/A; {pt};R) are isomorphic to

some groups H̃p(X;R), called reduced homology groups . The groups H̃p(X;R) agree with

the groups Hp(X;R) for all p ≥ 1, and H0(X;R) = H̃0(X;R)⊕R. Sometimes, the reduced
homology groups are technically advantageous. When (X,A) is a good pair, there is a long

exact sequence which involves the groups H̃p(A;R), H̃p(X;R) and H̃p(X/A;R) which may

be very helpful for computing H̃p(X;R) in terms of the homology of the simpler spaces A
and X/A.

The next tool for computing singular homology is the excision axiom. This axiom says
that given a pair (X,A), if Z ⊆ A ⊆ X is a subspace whose closure is contained in the interior
of A, then we can carve out (excise) Z from both A and X and still have isomorphisms

Hp(X − Z,A− Z;R) ∼= Hp(X,A;R), p ≥ 0.

The spaces X − Z and A − Z may be a lot simpler than the spaces X and A so it may
be easier to compute the groups Hp(X − Z,A− Z;R). There is also a very important long
exact sequence, the Mayer–Vietoris sequence, which is useful for computing the homology
Hp(X;R) of a space X in terms of the homology of the simpler spaces A ∩ B, A and B,
where A and B are subspaces of X such that X is the union of the interiors of A and B.
We also discuss the technical notion of a compact pair.

Next we apply the previous tools (homotopy equivalence, excision, long exact sequence of
homology, long exact sequence of a good pair, Mayer–Vietoris sequence) to the computation
of the homology groups of some classical spaces. We begin with the computation of the
homology groups of the spheres Sn and of the discs Dn. Although very simple, these spaces
occur frequently as building blocks for more complicated spaces. We also give (without proof)
the homology groups of the real projective spaces, RPn, the complex projective spaces, CPn,
and the n-tori T n. We also indicate how homology can used to prove generalized versions of
the Jordan curve theorem. We finish the section with a technical result about the homology
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groups Hp(M,M − {x};R), where M is a topological manifold and x is a point in M . This
result will be needed later to define the notion of orientation.

Next we show how to generalize the homology groups of a space X so that they take
values in an R-module G. These groups are denoted by Hp(X;G). The process is algebraic
and consists in tensoring the chain complex S∗(X;R) with G. All previous results generalize
to this situation. This section is quite technical and can be skipped upon first reading.

We then turn to singular cohomology. This is an algebraic process which consists in
building a cochain complex basically by dualizing. The cochain group Sp(X;R) is the space
of R-linear maps from Sp(X;R) to R (the dual of Sp(X;R)), and the coboundary map δp is
the dual of ∂p+1, namely

δpf = f ◦ ∂p+1, f ∈ Sp(X;R).

The only small issue is the sign assigned in front of the right-hand side in the above formula.
We follow Bott and Tu and assign the sign +. We obtain the singular cohomology groups
Hp(X;R).

We explain how to define the singular cohomology groups Hp(X;G) taking values in an
R-module G. This is done by applying the dualization functor HomR(−, G). We state the
Mayer–Vietoris long exact sequence in cohomology.

We show how to define relative singular cohomology groups Hp(X,A,R) and Hp(X,A;G)
(where G is an R-module). We state the cohomology versions of the standard results that
hold for homology:

1. Homotopy axiom.

2. Long exact sequence of relative cohomology.

3. Excision axiom.

One of the technical advantages of cohomology over homology is that it is fairly easy to
define multiplication operations on cohomology classes. This way the (graded) cohomology
module H∗(X;R) can be made into a ring, the cohomology ring . We define the cup product
and states some of its basic properties.

4.1 Singular Homology

In this section we only assume that our space X is a Hausdorff topological space, and we
consider continuous maps between such spaces. Singular homology (and cohomology) arises
from chain complexes built from singular chains (and cochains). Singular chains are defined
in terms of certain convex figures generalizing line segments, triangles, and tetrahedra called
standard n-simplices. We adopt the definition from Milnor and Stasheff [45].
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Definition 4.1. For any integer n ≥ 0, the standard n-simplex ∆n is the convex subset of
Rn+1 consisting of the set of points

∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.

The n + 1 points corresponding to the canonical basis vectors en+1
i = (0, . . . , 0, 1, 0, . . . , 0)

(1 ≤ i ≤ n+ 1) are called the vertices of the simplex ∆n.

The simplex ∆n is the convex hull of the n+ 1 points (en+1
1 , . . . , en+1

n+1) since we can write

∆n = {t0en+1
1 + t1e

n+1
2 + · · ·+ tne

n+1
n+1 | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.

Thus, ∆n is a subset of Rn+1. In particular, when n = 0, the 0-simplex ∆0 consists of the
single points t0 = 1 on R. Some simplices are illustrated in Figure 4.1.

01

∆0

∆
1 t t0 1+ =: 1

(0, 1)

(1, 0)

∆2
0t t1+: t2+ = 1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 4.1: The simplices ∆0,∆1,∆2.

Remark: Other authors such as Bott and Tu [4] and Warner [62] define the n-simplex ∆n

as a convex subset of Rn. In their definition, if we denote the point corresponding to the
origin of Rn as en0 , then

∆n = {t0en0 + t1e
n
1 + · · ·+ tne

n
n | t0 + t1 + · · ·+ tn = 1, ti ≥ 0}.

= {(t1, . . . , tn) ∈ Rn | t1 + · · ·+ tn ≤ 1, ti ≥ 0}.

Some of these simplices are illustrated in Figure 4.2.
These points of view are equivalent but one should be careful that the notion of face of

a singular simplex (see below) is defined slightly differently.
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1

∆
0

1

0

∆
0 t1% %0 1:

∆ t t1 +: 1
(0, 1)

(1, 0)

2

(0, 0)

%2%0

∆ t t1 +: t2 + 1

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(0, 0, 0)

3 %%03

Figure 4.2: Some simplices according to the second definition.

Definition 4.2. Given a topological space X, a singular p-simplex is any continuous map
σ : ∆p → X (with p ≥ 0). If p ≥ 1, the ith face (map) of the singular p-simplex σ is the
(p− 1)-singular simplex

σ ◦ φp−1
i : ∆p−1 → X, 0 ≤ i ≤ p,

where φp−1
i : ∆p−1 → ∆p is the map given by

φp−1
0 (t1, . . . , tp) = (0, t1, . . . , tp)

φp−1
i (t0, . . . , ti−1, ti+1, . . . , tp) = (t0, . . . , ti−1, 0, ti+1, . . . , tp), 1 ≤ i ≤ p− 1

φp−1
p (t0, . . . , tp−1) = (t0, . . . , tp−1, 0).

Some singular 1-simplices and singular 2-simplices are illustrated in Figure 4.3.
Note that a singular p-simplex σ has p + 1 faces. The ith face σ ◦ φp−1

i is sometimes
denoted by σi. For example, if p = 1, since there is only one variable on R1 and ∆0 = {1},
the maps φ0

0, φ
0
1 : ∆0 → ∆1 are given by

φ0
0(1) = (0, 1), φ0

1(1) = (1, 0).

For p = 2, the maps φ1
0, φ

1
1, φ

1
2 : ∆1 → ∆2 are given by

φ1
0(t1, t2) = (0, t1, t2), φ1

1(t0, t2) = (t0, 0, t2), φ1
2(t0, t1) = (t0, t1, 0).

There does not seem to be any standard notation for the set of all singular p-simplices
on X. We propose the notation S∆p(X).

Remark: In Definition 4.2 we may replace X by any open subset U of X, in which case a
continuous map σ : ∆p → U is called a singular p-simplex in U . If X is a smooth manifold,
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∆
1(0, 1)

(1, 0)

σσ 0

σ1

∆2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

σ 0
σ1

σ 2

σ

Figure 4.3: Some singular simplices.

following Warner [62], we define a differentiable singular p-simplex in U to be a singular
p-simplex σ which can be extended to a smooth map of some open subset of Rn+1 containing
∆p into U .

We now come to the crucial definition of singular p-chains. In the framework of singular
homology (and cohomology) we have the extra degree of freedom of choosing the coefficients.
The set of coefficients will be a commutative ring with unit denoted by R. Better results are
obtained if we assume that R is a PID. In most cases, we may assume that R = Z.

Definition 4.3. Given a topological space X and a commutative ring R, a singular p-chain
with coefficients in R is any formal linear combination α =

∑m
i=1 λiσi of singular p-simplices

σi with coefficients λi ∈ R. The singular chain group Sp(X;R) is the freeR-module consisting
of all singular p-chains; it is generated by the set S∆p(X) of singular p-simplices. We set
Sp(X;R) = (0) for p < 0. If p ≥ 1, given any singular p-simplex σ, its boundary ∂σ is the
singular (p− 1)-chain given by

∂σ = σ ◦ φp−1
0 − σ ◦ φp−1

1 + · · ·+ (−1)pσ ◦ φp−1
p .

Extending the map ∂ to Sp(X;R) by linearity, we obtain the boundary homomorphism

∂ : Sp(X;R)→ Sp−1(X;R).
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When we want to be very precise, we write ∂p : Sp(X;R) → Sp−1(X;R). We define
S∗(X;R) as the direct sum

S∗(X;R) =
⊕

p≥0

Sp(X;R).

Then the boundary maps ∂p yield the boundary map ∂ : S∗(X;R)→ S∗(X;R). For example,
the boundary of a singular 1-simplex σ is σ(0, 1) − σ(1, 0). The boundary of a singular 2-
simplex σ is

σ0 − σ1 + σ2,

where σ0, σ1, σ2 are the faces of σ, in this case, three curves in X. For example, σ0 is the
curve given by the map

(t1, t2) 7→ σ(0, t1, t2)

from ∆1 to X, where t1 + t2 = 1 and t1, t2 ≥ 0.

The following result is easy to check.

Proposition 4.1. Given a topological space X and a commutative ring R, the boundary
map ∂ : S∗(X;R)→ S∗(X;R) satisfies the equation

∂ ◦ ∂ = 0.

We can put together the maps ∂p : Sp(X;R)→ Sp−1(X;R) to obtain the following chain
complex of homology

0 S0(X;R)
∂0oo S1(X;R)

∂1oo · · ·oo Sp−1(X;R)
∂p−1oo Sp(X;R)

∂poo · · ·
∂p+1oo

in which the direction of the arrows is from right to left. Note that if we replace every
nonnegative index p by −p in ∂p, Sp(X;R) etc., then we obtain a chain complex as defined
in Section 2.5 and we now have all the ingredients to define homology groups. We have
the familiar spaces Zp(X;R) = Ker ∂p of singular p-cycles , and Bp(X;R) = Im ∂p+1 of
singular p-boundaries . By Proposition 4.1, Bp(X;R) is a submodule of Zp(X;R) so we
obtain homology spaces.

Definition 4.4. Given a topological space X and a commutative ring R, for any p ≥ 0, the
module Zp(X;R) = Ker ∂p is the module of singular p-cycles , and the module Bp(X;R) =
Im ∂p+1 is the module of singular p-boundaries . The singular homology module Hp(X;R) is
defined by

Hp(X;R) = ker ∂p/Im ∂p+1 = Zp(X;R)/Bp(X;R).

We set Hp(X;R) = (0) for p < 0 and define H∗(X;R) as the direct sum

H∗(X;R) =
⊕

p≥0

Hp(X;R)

and call it the singular homology of X with coefficients in R.
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The spaces Hp(X;R) are R-modules but following common practice we often refer to
them as groups.

A singular 0-chain is a linear combination
∑m

i=1 λiPi of points Pi ∈ X. Because the
boundary of a singular 1-simplex is the difference of two points, if X is path-connected, it
is easy to see that a singular 0-chain is the boundary of a singular 1-chain iff

∑m
i=1 λi = 0.

Thus, X is path connected iff
H0(X;R) = R.

More generally, we have the following proposition.

Proposition 4.2. Given any topological space X, for any commutative ring R with an iden-
tity element, H0(X;R) is a free R-module. If (Xα)α∈I is the collection of path components
of X and if σα is a singular 0-simplex whose image is in Xα, then the homology classes [σα]
form a basis of H0(X;R).

Proposition 4.2 is proven in Munkres [48] (Chapter 4, Section 29, Theorem 29.2). In
particular, if X has m path-connected components, then H0(X;R) ∼= R⊕ · · · ⊕R︸ ︷︷ ︸

m

.

We leave it as an exercise (or look at Bott and Tu [4], Chapter III, §15) to show the
following fact.

Proposition 4.3. The homology groups of Rn are given by

Hp(Rn;R) =

{
(0) if p ≥ 1

R if p = 0.

The same result holds if Rn is replaced by any nonempty convex subset of Rn, or a space
consisting of a single point.

The homology groups (with coefficients in Z) of the compact surfaces can be completely
determined. Some of them, such as the projective plane RP2, have Z/2Z as a homology
group.

If X and Y are two topological spaces and if f : X → Y is a continuous function between
them, then we have induced homomorphisms Hp(f) : Hp(X;R) → Hp(Y ;R) between the
homology groups of X and the homology groups of Y . We say that homology is functorial.

Proposition 4.4. If X and Y are two topological spaces and if f : X → Y is a continuous
function between them, then there are homomorphisms Hp(f) : Hp(X;R)→ Hp(Y ;R) for all
p ≥ 0.

Proof. To prove the proposition we show that there is a chain map between the chain com-
plexes associated with X and Y and apply Proposition 2.19. Given any singular p-simplex
σ : ∆p → X we obtain a singular p-simplex fσ : ∆p → Y obtained by composing with f ,



4.2. HOMOTOPY EQUIVALENCE AND HOMOLOGY 117

namely fσ = f ◦ σ. Since Sp(X;R) is freely generated by S∆p(X;R), the map σ 7→ fσ from
S∆p(X;R) to Sp(Y ;R) extends uniquely to a homomorphism Sp(f) : Sp(X;R) → Sp(Y ;R).
It is immediately verified that the following diagrams are commutative

Sp+1(X;R)

Sp+1(f)

��

∂Xp+1 // Sp(X;R)

Sp(f)

��
Sp+1(Y ;R)

∂Yp+1

// Sp(Y ;R),

which means that the maps Sp(f) : Sp(X;R) → Sp(Y ;R) form a chain map S(f). By
Proposition 2.19, we obtain homomorphisms Sp(f)∗ : Hp(X;R)→ Hp(Y ;R) for all p, which
we denote by Hp(f).

Following the convention that in homology subscripts are used to denote objects, the
map Sp(f) : Sp(X;R) → Sp(Y ;R) is also denoted f],p : Sp(X;R) → Sp(Y ;R), and the
map Hp(f) : Hp(X;R) → Hp(Y ;R) is also denoted f∗p : Hp(X;R) → Hp(Y ;R) (or simply
f∗ : Hp(X;R)→ Hp(Y ;R)).

Proposition 4.4 implies that if two spaces X and Y are homeomorphic, then X and Y
have isomorphic homology. This gives us a way of showing that some spaces are not home-
omorphic: if for some p the homology groups Hp(X;R) and Hp(Y ;R) are not isomorphic,
then X and Y are not homeomorphic.

4.2 Homotopy Equivalence and Homology

Actually, it turns out that the homology groups of two homotopy equivalent spaces are
isomorphic. Intuitively, two continuous maps f, g : X → Y are homotopic is f can be
continuously deformed into g, which means that there is a one-parameter family F (−, t) of
continuous maps F (−, t) : X → Y varying continuously in t ∈ [0, 1] such that F (x, 0) = f(x)
and F (x, 1) = g(x) for all x ∈ X. Here is the formal definition.

Definition 4.5. Two continuous maps f, g : X → Y (where X and Y are topological spaces)
are homotopic if there is a continuous function F : X × [0, 1] → Y (called a homotopy with
fixed ends) such that

F (x, 0) = f(x), F (x, 1) = g(x) for all x ∈ X.

We write f ' g. See Figure 4.4.

Definition 4.6. A space X is said to be contractible if the identity map idX : X → X is
homotopic to a constant function with domain X. For example, any convex subset of Rn is
contractible.
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X x I

(x,0)

Y

(x,1)

f

g

Figure 4.4: The homotopy F between f and g, where X = [0, 1] and Y is the torus.

Intuitively, a contractible space can be continuously deformed to a single point, so it is
topologically trivial. In particular, it cannot contain holes. An example of a contractible set
is shown in Figure 4.5.

Figure 4.5: A contractible set.

Definition 4.7. A deformation retraction of a space X onto a subspace A is a homotopy
F : X × [0, 1] → X such that F (x, 0) = x for all x ∈ X, F (x, t) = x for all x ∈ A and all
t ∈ (0, 1], and F (X, 1) = A. In this case, A is called a deformation retract of X.
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An example of deformation retract is shown in Figure 4.6.

X

A

Figure 4.6: A deformation retract of the cylinder X onto its median circle A.

Topologically, homeomorphic spaces should be considered equivalent. From the point of
view of homotopy, experience has shown that the more liberal notion of homotopy equivalence
is the right notion of equivalence.

Definition 4.8. Two topological spaces X and Y are homotopy equivalent if there are
continuous functions f : X → Y and g : Y → X such that

g ◦ f ' idX , f ◦ g ' idY .

We write X ' Y . See Figure 4.7.

A great deal of homotopy theory has to do with developing tools to decide when two
spaces are homotopy equivalent. It turns out that homotopy equivalent spaces have isomor-
phic homology. In this sense homology theory is cruder than homotopy theory. However,
homotopy groups are generally more complicated and harder to compute than homology
groups. For one thing, homotopy groups are generally nonabelian, whereas homology groups
are abelian.

Proposition 4.5. Given any two continuous maps f, g : X → Y (where X and Y are
topological spaces), if f and g are homotopic, then the chain maps S(f), S(g) : S∗(X;R) →
S∗(Y ;R) are chain homotopic (see Definition 2.13).

Proofs of Proposition 4.5 can be found in Mac Lane [37] (Chapter II, Theorem 8.2)
and Hatcher [31] (Chapter 2, Theorem 2.10). The idea is to reduce the proof to the case
where the space Y is the cylinder X × [0, 1]. In this case we have the two continuous maps
b, t : X → X × [0, 1] given by b(x) = (x, 0) and t(x) = (x, 1), which are clearly homotopic.
Then one shows that a chain homotopy can be constructed between the chain maps S(t)
and S(b).

As a corollary of Proposition 4.5, we obtain the following important result.
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Figure 4.7: The punctured torus is homotopically equivalent to the figure eight.

Proposition 4.6. (Homotopy Axiom) Given any two continuous maps f, g : X → Y (where
X and Y are topological spaces), if f and g are homotopic and Hp(f), Hp(g) : Hp(X;R) →
Hp(Y ;R) are the induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a con-
sequence, if X and Y are homotopy equivalent, then the homology groups Hp(X;R) and
Hp(Y ;R) are isomorphic for all p ≥ 0,

Proof. By Proposition 4.5 there is a chain homotopy between S(f) : S∗(X;R) → S∗(Y ;R)
and S(g) : S∗(X;R)→ S∗(Y ;R), and by Proposition 2.20 the induced homomorphisms
Hp(f), Hp(g) : Hp(X;R) → Hp(Y ;R) are identical. If f : X → Y and g : Y → X are two
maps making X and Y chain homotopic, we have g ◦ f ' idX and f ◦ g ' idY , so by the
first part of the proposition

Hp(g ◦ f) = Hp(g) ◦Hp(f) = Hp(idX) = idHp(X;R)

and
Hp(f ◦ g) = Hp(f) ◦Hp(g) = Hp(idY ) = idHp(Y ;R),

which shows that the maps Hp(f) : Hp(X;R) → Hp(Y ;R) are isomorphisms with inverses
Hp(g).

4.3 Relative Singular Homology Groups

A more flexible theory is obtained if we consider homology groups Hp(X,A) associated with
pairs of spaces (X,A), where A is a subspace of X.
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Since A is a subspace of X, each singular simplex σ : ∆p → A yields a singular simplex
σ : ∆p → X by composing σ with the the inclusion map from A to X, so the singular complex
S∗(A;R) is a subcomplex of the singular complex S∗(X;R).

Definition 4.9. Let Sp(X,A;R) be the quotient module

Sp(X,A;R) = Sp(X;R)/Sp(A;R)

and let S∗(X,A;R) be the corresponding graded module (the direct sum of the Sp(X,A;R)).

The boundary map ∂X,p : Sp(X;R) → Sp−1(X;R) of the original complex S∗(X;R) re-
stricts to the boundary map ∂A,p : Sp(A;R) → Sp−1(A;R) of the complex S∗(A;R) so the
quotient map ∂p : Sp(X,A;R)→ Sp−1(X,A;R) induced by ∂X,p and given by

∂p(σ + Sp(A;R)) = ∂X,p(σ) + Sp−1(A;R)

for every singular p-simplex σ is a boundary map for the chain complex S∗(X,A;R).

Definition 4.10. The chain complex S∗(X,A;R)

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

is called the singular chain complex of the pair (X,A).

We now have all the ingredients to define the singular relative homology groups.

Definition 4.11. Given a pair (X,A) where A is a subspace of X, the singular relative
homology groups Hp(X,A;R) of (X,A) are defined by

Hp(X,A;R) = Hp(S∗(X;R)/S∗(A;R)),

the singular homology groups of the chain complex S∗(X,A;R). For short, we often drop
the word “singular” in singular relative homology group.

Observe that the quotient module Sp(X,A;R) = Sp(X;R)/Sp(A;R) is a free module.
Indeed, the family of cosets of the form σ + Sp(A;R) where the image of the singular p-
simplex σ does not lie in A forms a basis of Sp(X,A;R).

There is a useful alternative definition of the relative homology groups in terms of relative
p-cycles and relative p-boundaries.

Definition 4.12. Given a pair of spaces (X,A), the group Zp(X,A;R) of relative p-cycles,
consists of those chains c ∈ Sp(X;R) such that ∂pc ∈ Sp−1(A;R), and the group Bp(X,A;R)
of relative p-boundaries consists of those chains c ∈ Sp(X;R) such that c = ∂p+1β + γ with
β ∈ Sp+1(X;R) and γ ∈ Sp(A;R).
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Then the relative homology group Hp(X,A;R) is also expressed as the quotient

Hp(X,A;R) = Zp(X,A;R)/Bp(X,A;R).

An illustration of the notion of relative cycle is shown in Figure 4.8 and of a relative
boundary in Figure 4.9.

A single space X may be regarded as the pair (X, ∅), and so Hp(X, ∅;R) = Hp(X;R).

Definition 4.13. Given two pairs (X,A) and (Y,B) with A ⊆ X and B ⊆ Y , a map
f : (X,A) → (Y,B) is a continuous function f : X → Y such that f(A) ⊆ B. A homotopy
F between two maps f, g : (X,A) → (Y,B) is a homotopy between f and g such that
F (A× [0, 1]) ⊆ B; we write f ' g. Two pairs (X,A) and (Y,B) are homotopy equivalent if
there exist maps f : (X,A) → (Y,B) and g : (Y,B) → (X,A) such that g ◦ f ' (idX , idA)
and f ◦ g ' (idY , idB).

Figure 4.8: Let X be the closed unit disk and A its circular boundary. Let p = 1. The red
curve is a relative cycle since its boundary is in A. We show the effect of collapsing A to a
point, namely transforming X into a unit sphere.

Proposition 4.4 is easily generalized to pairs of spaces.

Proposition 4.7. If (X,A) and (Y,A) are pairs of spaces and if f : (X,A) → (Y,B) is
a continuous map between them, then there are homomorphisms Hp(f) : Hp(X,A;R) →
Hp(Y,B;R) for all p ≥ 0.
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Figure 4.9: Let X be the closed unit disk and A its circular boundary. Let p = 1. The burnt
orange triangle and the blue arc form a relative boundary.

Proof sketch. Given any singular p-simplex σ : ∆p → X by composition with f we obtain
the singular p-simplex fσ : ∆p → Y , and since Sp(X;R) is freely generated by S∆p(X;R)
we get a homomorphism Sp(f) : Sp(X;R)→ Sp(Y ;R). Consider the composite map
ϕ : Sp(X;R)→ Sp(Y ;R)/Sp(B;R) given by

Sp(X;R)
Sp(f) // Sp(Y ;R)

πY,B // Sp(Y ;R)/Sp(B;R).

Since f(A) ⊆ B, the restriction of Sp(f) to simplices in A yields a map Sp(f) : Sp(A;R) →
Sp(B;R), so Sp(f)(Sp(A;R)) ⊆ Sp(B;R), which implies that ϕ vanishes on Sp(A;R). Thus
Sp(A;R) ⊆ Kerϕ, which means that there is a unique homomorphism

f],p : Sp(X;R)/Sp(A;R)→ Sp(Y ;R)/Sp(B;R)

making the following diagram commute:

Sp(X;R)
πX,A //

ϕ
((

Sp(X;R)/Sp(A;R)

f],p

��
Sp(Y ;R)/Sp(B;R).

One will verify that the maps f],p : Sp(X;R)/Sp(A;R) → Sp(Y ;R)/Sp(B;R) define a chain
map f] from S∗(X,A;R) = S∗(X;R)/S∗(A;R) to S∗(Y,B;R) = S∗(Y ;R)/S∗(B;R), and this
chain map induces a homomorphism Hp(f) : Hp(X,A;R)→ Hp(Y,B;R).



124 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

The homomorphism Hp(f) : Hp(X,A;R)→ Hp(Y,B;R) is also denoted by
f∗p : Hp(X,A;R)→ Hp(Y,B;R).

Proposition 4.6 is generalized to maps between pairs as follows.

Proposition 4.8. (Homotopy Axiom) Given any two continuous maps f, g : (X,A)→ (Y,B)
if f and g are homotopic and Hp(f), Hp(g) : Hp(X,A;R) → Hp(Y,B;R) are the induced
homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A) and
(Y,B) are homotopy equivalent, then the homology groups Hp(X,A;R) and Hp(Y,A;R) are
isomorphic for all p ≥ 0,

Each pair (X,A) yields a short exact sequence of complexes

0 // S∗(A;R) i // S∗(X;R)
j // S∗(X;R)/S∗(A;R) // 0,

where the second map is the inclusion map and the third map is the quotient map. Therefore,
we can apply the zig-zag lemma (Theorem 2.22) to this short exact sequence. If we go back
to the proof of this theorem and consider only spaces of index p ≤ 0, then by changing each
negative index p to −p we obtain a diagram where the direction of the arrows is reversed
and where each cohomology group Hp correspond to the homology group H−p we obtain the
“zig-zag lemma” for homology. Thus we obtain the following important result.

Theorem 4.9. (Long Exact Sequence of Relative Homology) For every pair (X,A) of spaces,
we have the following long exact sequence of homology groups

· · · // Hp+2(X,A;R)
∂∗p+2

// Hp+1(A;R)
i∗ // Hp+1(X;R)

j∗ // Hp+1(X,A;R)
∂∗p+1

// Hp(A;R)
i∗ // Hp(X;R)

j∗ // Hp(X,A;R)
∂∗p

// Hp−1(A;R) // · · ·

ending in

H0(A;R) // H0(X;R) // H0(X,A;R) // 0.

It is actually possible to describe the boundary maps ∂∗p explicitly: for every relative
cycle c, we have

∂∗p([c]) = [∂p(c)].
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4.4 Good Pairs and Reduced Homology

Pairs of spaces (X,A) where A is a nonempty closed subspace that is a deformation retract
of some neighborhood in X occur naturally (for example if X is a cell complex and A is a
nonempty subcomplex). Such pairs are called good pairs . In such a situation, it turns out
that there are isomorphims

Hp(X,A;R) ∼= Hp(X/A, {pt};R), for all p ≥ 0,

where the space X/A, called a quotient space, is obtained from X by identifying A with a
single point, and where pt stands for any point in X (see Hatcher [31], Proposition 2.22).

It can also be shown that the homology groups Hp(X, {pt};R) are equal to some groups

denoted by H̃p(X), or more precisely by H̃p(X;R), called reduced homology groups of X

(see Hatcher [31], Proposition 2.22). The reduced homology groups H̃p(X;R) agree with the

homology groupsHp(X;R) for all p ≥ 1, and for p = 0, we haveH0(X;R) = H̃0(X;R)⊕R. In

particular, if X is path-connected, then H̃0(X;R) = (0) (since H0(X;R) = R). Technically,
this is sometimes more convenient.

Definition 4.14. Given a nonempty space X, the reduced homology groups

H̃0(X;R) = Ker ε/Im ∂1

H̃p(X;R) = Ker ∂p/Im ∂p+1, p > 0

are defined by the augmented chain complex

0 Roo S0(X;R)εoo S1(X;R)
∂1oo · · ·oo Sp−1(X;R)

∂p−1oo Sp(X;R)
∂poo · · · ,

∂p+1oo

where ε : S0(X;R) → R is the unique R-linear map such that ε(σ) = 1 for every singular
0-simplex σ : ∆0 → X in S∆0(X), given by

ε
(∑

i

λiσi

)
=
∑

i

λi.

It is immediate to see that ε ◦ ∂1 = 0, so Im ∂1 ⊆ Ker ε. By definition H0(X;R) =
S0(X;R)/Im ∂1. The module S0(X;R) is a free R-module isomorphic to the direct sum⊕

σ∈S∆0 (X) R with one copy of R for every σ ∈ S∆0(X), so by choosing one of the copies of

R we can define an injective R-linear map s : R → S0(X;R) such that ε ◦ s = id, and we
obtain the following short split exact sequence:

0 // Ker ε // S0(X;R)
ε //

R
s

oo // 0.

Thus
S0(X;R) ∼= Ker ε⊕R,



126 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

and since Im ∂1 ⊆ Ker ε, we get

S0(X;R)/Im ∂1
∼= (Ker ε/Im ∂1)⊕R,

which yields

H0(X;R) = H̃0(X;R)⊕R
Hp(X;R) = H̃p(X;R), p > 0.

In the special case where R = Z,

H0(X) = H̃0(X)⊕ Z
Hp(X) = H̃p(X), p > 0.

Since it is often used, we record the homology of a one-point space in the following
proposition (see Proposition 4.3).

Proposition 4.10. We have

H0({pt};R) = R

H̃0({pt};R) = (0)

Hp({pt};R) = H̃p({pt};R) = (0), if p > 0.

One of the reasons for introducing the reduced homology groups is that

H̃p({pt};R) = (0), for all p ≥ 0.

To define the reduced singular relative homology groups H̃p(X,A;R) when A 6= ∅, we
augment the singular chain complex

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

of the pair (X,A) by adding one more 0 to the sequence:

0 0oo S0(X,A;R)εoo S1(X,A;R)
∂1oo · · ·oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

Consequently, if A 6= ∅, we have

H̃p(X,A;R) = Hp(X,A;R) for all p ≥ 0.

In addition to the short exact sequence

0 // Sp(A;R) // Sp(X;R) // Sp(X;R)/Sp(A;R) // 0

that holds for all p ≥ 0, we add the following exact sequence

0 // R
id // R // 0 // 0

in dimension −1 and then we obtain a version of Theorem 4.9 for reduced homology.
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Theorem 4.11. (Long Exact Sequence of Reduced Relative Homology) For every pair (X,A)
of spaces, we have the following long exact sequence of reduced homology groups

· · · // H̃p+2(X,A;R)
∂∗p+2

// H̃p+1(A;R)
i∗ // H̃p+1(X;R)

j∗ // H̃p+1(X,A;R)
∂∗p+1

// H̃p(A;R)
i∗ // H̃p(X;R)

j∗ // H̃p(X,A;R)
∂∗p

// H̃p−1(A;R) // · · ·

ending in

H̃0(A;R) // H̃0(X;R) // H̃0(X,A;R) // 0.

If we apply Theorem 4.11 to the pair (X, {pt}) where pt ∈ X, since H̃p({pt};R) = (0)
for all p ≥ 0, we obtain the following isomorphisms as a corollary:

Hp(X, {pt};R) ∼= H̃p(X;R), for all p ≥ 0.

The following result is proven in Hatcher [31] (Proposition 2.22).

Proposition 4.12. If (X,A) is a good pair, which means that A is a nonempty closed
subspace that is a deformation retract of some neighborhood in X, then

Hp(X,A;R) ∼= Hp(X/A, {pt};R) ∼= H̃p(X/A;R), for all p ≥ 0.

Using Proposition 4.12 we obtain the following theorem which can be used to compute
the homology of a quotient space X/A from the homology of X and the homology of its
subspace A (see Hatcher [31], Theorem 2.13).

Theorem 4.13. For every pair of spaces (X,A), if (X,A) is a good pair, then we have the
following long exact sequence of reduced homology groups

· · · // H̃p+2(X/A;R)
∂∗p+2

// H̃p+1(A;R)
i∗ // H̃p+1(X;R)

j∗ // H̃p+1(X/A;R)
∂∗p+1

// H̃p(A;R)
i∗ // H̃p(X;R)

j∗ // H̃p(X/A;R)
∂∗p

// H̃p−1(A;R) // · · ·
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ending in

H̃0(A;R) // H̃0(X;R) // H̃0(X/A;R) // 0.

4.5 Excision and the Mayer–Vietoris Sequence

One of the main reasons why the relative homology groups are important is that they satisfy
a property known as excision.

Theorem 4.14. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of
Z is contained in the interior of A, then the inclusion (X − Z,A − Z) −→ (X,A) induces
isomorphisms of singular homology

Hp(X − Z,A− Z;R) ∼= Hp(X,A;R), for all p ≥ 0.

See Figure 4.10. Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the
inclusion map (B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;R) ∼= Hp(X,A;R), for all p ≥ 0.

See Figure 4.11.

X

X

A

Z

Z-

Figure 4.10: Let X be the torus. This figure demonstrates the excision of the plum disk Z
from X.

The translation between the two versions is obtained by setting B = X − Z and Z =
X − B, in which case A ∩ B = A − Z. The proof of Theorem 4.14 is rather technical and
uses a technique known as barycentric subdivision. The reader is referred to Hatcher [31]
(Chapter 2, Section 2.1) and Munkres [48] (Chapter 4, Section 31).

Proposition 4.8, Theorem 4.9, and Theorem 4.14, state three of the properties that were
singled out as characterizing homology theories by Eilenberg and Steenrod [15]. These
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A

B
B

BAh

Figure 4.11: Let X be the torus. This figure demonstrates the relationships between A, B
and A ∩B.

properties hold for most of the known homology theories, and thus can be taken as axioms
for homology theory; see Sato [54], Mac Lane [37], Munkres [48], or Hatcher [31].

The proof of Theorem 4.14 also relies on a technical lemma about the relationship between
the chain complex S∗(X;R) and the chain complex SU∗ (X;R) induced by a family U = (Ui)i∈I
of subsets of X whose interiors form an open cover of X.

Definition 4.15. Given a topological space X, for any family U = (Ui)i∈I of subsets of X
whose interiors form an open cover of X, we say that a singular p-simplex σ : ∆p → X is
U-small if its image is contained in one of the Ui. The submodule SUp (X;R) of Sp(X;R)
consists of all singular p-chains

∑
λkσk such that each p-simplex σk is U -small. See Figure

4.12.

It is immediate that the boundary map ∂p : Sp(X;R) → Sp−1(X;R) takes SUp (X;R)
into SUp−1(X;R), so SU∗ (X;R) is a chain complex. The homology modules of the complex
SU∗ (X;R) are denoted by HUp (X;R).

Proposition 4.15. Given a topological space X, for any family U = (Ui)i∈I of subsets of X
whose interiors form an open cover of X, the inclusions ιp : SUp (X;R) → Sp(X;R) induce
a chain homotopy equivalence; that is, there is a family of chain maps ρp : Sp(X;R) →
SUp (X;R) such that ρ ◦ ι is chain homotopic to the identity map of SU∗ (X;R) and ι ◦ ρ is
chain homotopic to the identity map of S∗(X;R). As a consequence, we have isomorphisms
HUp (X;R) ∼= Hp(X;R) for all p ≥ 0.

The proof of Proposition 4.15 is quite involved. It uses barycentric subdivision; see
Hatcher [31] (Chapter 2, Proposition 2.21) and Munkres [48] (Chapter 4, Section 31, Theorem
31.5).
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∆2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

σ 0
σ1

σ 2

simplex is U- small

simplex is not U-small

Figure 4.12: Let X be the unit disk in R2. The colored patches represent the cover U . In
the top figure the 2-simplex is not U -small since it not contained within any one Ui, while
in the bottom figure, the 2-simplex is U -small since it is contained within the “central” blue
Ui.

Besides playing a crucial role in proving the excision axiom, Proposition 4.15 yields a
simple proof of the Mayer–Vietoris sequence in singular homology. For arbitrary topological
spaces, partitions of unity are not available but the set-up of Proposition 4.15 yields an
alternative method of proof.

Theorem 4.16. (Mayer–Vietoris in singular homology) Given any topological space X, for
any two subsets A,B of X such that X = Int(A) ∪ Int(B), there is a long exact sequence of
homology

// Hp(A ∩B;R)
ϕ∗ // Hp(A;R)⊕Hp(B;R)

ψ∗ // Hp(X;R)
∂∗ // Hp−1(A ∩B;R) //

where the maps ϕ and ψ are defined by

ϕ∗(c) = (i∗(c),−j∗(c))
ψ∗(a, b) = k∗(a) + l∗(b),
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and where i, j, k, l are the inclusion maps shown in the diagram below:

A ∩B i //

j

��

A

k
��

B
l
// X.

If A ∩B 6= ∅, a similar sequence exists in reduced homology.

Proof. For simplicity of notation we suppress the ring R in writing Sp(−, R) or Hp(−, R).
We define a sequence

0 // Sp(A ∩B)
ϕ // Sp(A)⊕ Sp(B)

ψ // Sp(A) + Sp(B) // 0

for every p ≥ 0, where ϕ and ψ are given by

ϕ(c) = (i](c),−j](c))
ψ(a, b) = k](a) + l](b).

Observe that ψ ◦ϕ = 0. The map ϕ is injective, while ψ is surjective. We have Imϕ ⊆ Kerψ
since ψ ◦ ϕ = 0. The kernel of ψ consists of all chains of the form (c,−c) where c ∈ Sp(A)
and −c ∈ Sp(B) so c ∈ Sp(A ∩ B) and ϕ(c) = (c,−c), which shows that Kerψ ⊆ Imϕ.
Therefore the sequence is exact, and we have a short exact sequence of chain complexes

0 // S∗(A ∩B)
ϕ // S∗(A)⊕ S∗(B)

ψ // S∗(A) + S∗(B) // 0. (∗MV)

By the long exact sequence of homology we have the long exact sequence

// Hp(A ∩B)
ϕ∗ // Hp(A)⊕Hp(B)

ψ∗ // Hp(S∗(A) + S∗(B))
∂∗ // Hp−1(A ∩B) // .

However, since X = Int(A) ∪ Int(B), Proposition 4.15 implies that

Hp(S∗(A) + S∗(B)) ∼= Hp(X),

and we obtain the long exact sequence

· · · // Hp(A ∩B)
ϕ∗ // Hp(A)⊕Hp(B)

ψ∗ // Hp(X)
∂∗ // Hp−1(A ∩B) // · · · ,

as desired. A similar argument applies to reduced homology by augmenting the complexes
S∗(A ∩B), S∗(A)⊕ S∗(B), and S∗(A) + S∗(B) using the maps ε : S0(A ∩B)→ R,
ε⊕ ε : S0(A)⊕ S0(B)→ R⊕R, and ε : S0(A) + S0(B)→ R.

Remark: The sequence (∗MV) is actually a split short exact sequence. This follows from
Corollary 2.3, since S∗(A) + S∗(B) is a free R-module.

The Mayer–Vietoris sequence can be used to compute the homology of spaces in terms
of some of their pieces. For example, this is a way to compute the homology of the n-torus.

There are two more important properties of singular homology that should be mentioned:
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(1) The axiom of compact support.

(2) The additivity axiom.

The axiom of compact support implies that the homology groups Hp(X,A;R) are deter-
mined by the groups Hp(C,D;R) where (C,D) is a compact pair in (X,A), which means
that D ⊆ C ⊆ X, D ⊆ A ⊆ X, C is compact, and D is compact in C. See Figure 4.13.

X A( ),

C D,( )

C D,( ) X A( ),compact pair in

Figure 4.13: Let X be the unit disk in R2 and A its green boundary, namely S1. Then (C,D)
is a compact pair of (X,A).

Let K(X,A) be the sets of all compact pairs of (X,A) ordered by inclusion. It is a
directed preorder.

Proposition 4.17. For any pair (X,A) of topological spaces with A ⊆ X, the following
properties hold:

(1) Given any homology class α ∈ Hp(X,A), there is a compact pair (C,D) in (X,A) and
a homology class β ∈ Hp(C,D;R) such that i∗(β) = α, where i : (C,D) → (X,A) is
the inclusion map.

(2) Let (C,D) be any compact pair in (X,A), and let β ∈ Hp(C,D;R) be any homology
class such that i∗(β) = 0. Then there exists a compact pair (C ′, D′) such that (C,D) ⊆
(C ′, D′) ⊆ (X,A) and j∗(β) = 0, where j : (C,D)→ (C ′, D′) is the inclusion map.
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(3) The homology functor commutes with direct limits.

(4) The R-module Hp(X,A;R) is isomorphic to the direct limit (see Section 8.3)

Hp(X,A;R) ∼= lim−→
(C,D)∈K(X,A)

Hp(C,D;R).

Parts (1) and (2) of Proposition 4.17 are proven in Massey [41] (Chapter VIII, Section 6,
Proposition 6.1) and Rotman [51] (Chapter 4, Theorem 4.16). Part (3) is proven in Spanier
[59] (Chapter 4, Section 1, Theorem 7), as well as Part (4) (Chapter 4, Section 4, Theorem
6).

Sketch of proof. The proof of (1) is not difficult and relies on the fact that for any singular p-
chain a ∈ Sp(X;R) there is a compact subset C of X such that a ∈ Sp(C;R). For simplicity

of exposition assume that A = ∅. If a =
∑k

i=1 λiσi ∈ Sp(X,R) is a cycle representing the
homology class α, with λi ∈ R and each σi a p-simplex σi : ∆p → X, since ∆p is compact and
each σi is continuous, C = σ1(∆p)∪ · · ·∪σk(∆p) is a compact subset of X and a ∈ Sp(C;R).

Let b =
∑k

i=1 λiσ
′
i ∈ Sp(C,R) be the p-chain in which σ′i : ∆p → C is the corestriction of σi

to C. We need to check that b is a p-cycle. By definition of the inclusion i we have a = i](b),
and since a is a p-cycle we have

i] ◦ ∂(b) = ∂ ◦ i](b) = ∂a = 0.

Since i is an injection, i] is also an injection, thus ∂b = 0, which means that b ∈ Sp(C;R) is
indeed a p-cycle, and if β denotes the homology class of b, we have i∗(β) = α. The above
argument is easily adapted to the case where A 6= ∅. The proof of (2) is similar and left as
an exercise.

The above fact suggests the following axiom of homology.

Axiom of Compact Support .

Given any pair (X,A) with A ⊆ X and given any homology class α ∈ Hp(X,A), there is
a compact pair (C,D) in (X,A) and a homology class β ∈ Hp(C,D;R) such that i∗(β) = α,
where i : (C,D)→ (X,A) is the inclusion map.

This axiom is another of the axioms of a homology theory; see Munkres [48] (Chapter 3,
Section 26, Axiom 8), or Spanier [59] (Chapter 4, Section 8, No. 11).

Remark: It turns out that Part (4) of Proposition 4.17 is equivalent to the fact that the
axiom of compact support holds; see Spanier [59] (Chapter 4, Section 8, Theorem 13).

To state the additivity axiom we need to define the topological sum of a family of spaces.

Definition 4.16. If (Xi)i∈I is a family of topological spaces we define the topological sum⊔
i∈I Xi of the family (Xi)i∈I as the disjoint union of the spaces Xi, and we give it the

topology for which a subset Z ⊆
⊔
i∈I Xi is open iff Z ∩Xi is open for all i ∈ I.
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Additivity Axiom.

For any family of topological spaces (Xi)i∈I there is an isomorphism

Hp

(⊔

i∈I
Xi;R

)
∼=
⊕

i∈I
Hp(Xi;R) for all p ≥ 0.

The above axiom introduced by Milnor is stated in Bredon [7] (Chapter IV, Section 6),
May [43] (Chapter 13, Section 1), and Hatcher [31] (Chapter 2, Section 2.3), where it is
stated for relative homology and for a wedge sum of spaces.

The additivity axiom is a general property of chain complexes. Indeed, homology com-
mutes with sums, products, and direct limits; see Spanier [59] (Chapter 4, Section 1, Theorem
6 and Theorem 7). This axiom is only needed for infinite sums.

4.6 Some Applications of Singular Homology

It is remarkable that Proposition 4.8, Theorem 4.9, Theorem 4.11, Theorem 4.13, Theorem
4.14 and Theorem 4.16 can be used to compute the singular homology of some of the familiar
simple spaces. The key idea is that the excision axiom, the homotopy axiom, and either
the long exact sequence of relative homology (Theorem 4.9), or the long exact sequence of
reduced relative homology (Theorem 4.11), or the long exact sequence of reduced homology
for a good pair (Theorem 4.13), or the Mayer–Vietoris long exact sequence (Theorem 4.16),
can be used to produce exact sequences in which two consecutive homology groups are
“trapped” between zeros, and thus are isomorphic. Often we can obtain more isomorphisms
by induction. For example, We show below how to compute the homology groups of the
spheres.

Recall that the n-dimensional ball Dn and the the n-dimensional sphere Sn are defined
respectively as the subspaces of Rn and Rn+1 given by

Dn = {x ∈ Rn | ‖x‖2 ≤ 1}
Sn = {x ∈ Rn+1 | ‖x‖2 = 1}.

Observe that D0 = {0}, a point-point space. Furthermore, Sn = ∂Dn+1, the boundary of
Dn+1, and Dn/∂Dn is homeomorphic to Sn (n ≥ 1). We also know that Dn is convex for all
n ≥ 0, so by Proposition 4.3, its homology groups are given by

H0(Dn;R) = R

Hp(D
n;R) = (0), p ≥ 0,

or equivalently

H̃p(D
n;R) = (0), p ≥ 0.
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Proposition 4.18. The reduced homology of Sn is given by

H̃p(S
n;R) =

{
R if p = n

(0) if p 6= n,

or equivalently the homology of Sn is given by

H0(S0;R) = R⊕R
Hp(S

0;R) = (0), p > 0,

and for n ≥ 1,

Hp(S
n;R) =

{
R if p = 0, n

(0) if p 6= 0, n.

Proof. For simplicity of notation, we drop the ring R in writing homology groups. Since
S0 = {−1, 1}, by the excision axiom (Theorem 4.14) with X = S0 = {−1, 1}, A = {−1}
and B = {1}, we get

Hp(S
0, {−1}) ∼= Hp({1}, ∅) = Hp({1})

for all p ≥ 0. The long exact sequence of Theorem 4.9 for the pair (S0, {−1}) gives the exact
sequence

// Hp({−1}) // Hp(S
0) // Hp(S

0, {−1}) // Hp−1({−1}) //

If p ≥ 1, since Hp({−1}) = Hp({1}) = (0) and Hp(S
0, {−1}) ∼= Hp({1}), we get Hp(S

0) =
(0). If p = 0, since H0({−1}) = H0({1}) = R, we get H0(S0) = R⊕R.

If n ≥ 1, then since Dn/∂Dn is homeomorphic to Sn and ∂Dn = Sn−1 is a deformation
retract of Dn−{x}, the long exact sequence of Theorem 4.13 for the good pair (Dn, ∂Dn) =
(Dn, Sn−1) yields the exact sequence

// H̃p(D
n) // H̃p(D

n/Sn−1) = H̃p(S
n) // H̃p−1(Sn−1) // H̃p−1(Dn−1) //

and if p ≥ 1, since H̃p(D
n) = H̃p−1(Dn−1) = (0), we get

H̃p(S
n) ∼= H̃p−1(Sn−1) p ≥ 1.

We conclude by induction on n ≥ 1.

The most convenient setting to compute homology groups is the homology of cell com-
plexes or simplicial homology; see Chapter 6. For example, cellular homology can used to
compute the homology of the real and complex projective spaces RPn and CPn; see Section
6.2, and also Hatcher [31], Munkres [48], and Bredon [7]. Even though we do not have the
machinery to compute these homology groups, we believe that the reader will appreciate
seeing concrete examples of homology groups, in particular for classical spaces such as the
projective spaces and the tori.



136 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

Example 4.1. The real projective space RPn is the quotient of Rn+1−{0} by the equivalence
relation ∼ defined such that for all (u1, . . . , un+1) ∈ Rn+1 − {0} and all (v1, . . . , vn+1) ∈
Rn+1 − {0},

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ R− {0}) (v1, . . . , vn+1) = α(u1, . . . , un+1).

Equivalently, RPn is the quotient of the subset Sn of Rn+1 defined by

Sn = {(u1, . . . , un+1) ∈ Rn+1 | u2
1 + · · ·+ u2

n+1 = 1},

in other words, the n-sphere, by the equivalence relation ∼ on Sn defined so that for all
(u1, . . . , un+1) ∈ Sn and all (v1, . . . , vn+1) ∈ Sn,

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (v1, . . . , vn+1) = ±(u1, . . . , un+1).

This says that two points on the sphere Sn are equivalent iff they are antipodal. See Figure
4.14. We have a quotient map π : Sn → RPn.

x

x

2

2

y

y
z = 1

[u] ~[v]~

(1,0,0) (0,1,0)

(0,0,1)

z = 0

RP

RP

Figure 4.14: Two representations of RP2. In the left representation, lines through the origin
are “points”. We can view RP2 as the union of the points in the blue plane z = 1 with the
points at infinity corresponding to lines through the origin in the plane z = 0. In the right
representation, RP2 is formed as quotient of S2 via the antipodal equivalence.

The complex projective space CPn is the quotient of Cn+1−{0} by the equivalence relation
∼ defined such that for all (u1, . . . , un+1) ∈ Cn+1 − {0} and all (v1, . . . , vn+1) ∈ Cn+1 − {0},

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ C− {0}) (v1, . . . , vn+1) = α(u1, . . . , un+1).
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Equivalently, CPn is the quotient of the subset Σn of Cn+1 defined by

Σn = {(u1, . . . , un+1) ∈ Cn+1 | |u1|2 + · · ·+ |un+1|2 = 1},

by the equivalence relation ∼ on Σn defined so that for all (u1, . . . , un+1) ∈ Σn and all
(v1, . . . , vn+1) ∈ Σn,

(u1, . . . , un+1) ∼ (v1, . . . , vn+1) iff (∃α ∈ C, |α| = 1) (v1, . . . , vn+1) = α(u1, . . . , un+1).

If we write uj = xj + iyj with xj, yj ∈ R, we have (u1, . . . , un+1) ∈ Σn iff

x2
1 + y2

1 + · · ·+ x2
n+1 + y2

n+1 = 1,

iff (x1, y1, . . . , xn+1, yn+1) ∈ S2n+1. Therefore we can identify Σn with S2n+1, and we can
view CPn as the quotient of S2n+1 by the above equivalence relation. We have a quotient
map π : S2n+1 → CPn.

For R = Z, the homology groups of CPn and RPn are given by

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =





Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise.

The homology of the n-torus T n = S1 × · · · × S1

︸ ︷︷ ︸
n

exhibits a remarkable symmetry:

Hp(T
n;R) = R⊕ · · · ⊕R︸ ︷︷ ︸

(np)

.

The homology of the n-torus T n can be computed by induction. Indeed, using the Mayer–
Vietoris sequence (Theorem 4.16), it can be shown that

Hp(X × S1;Z) ∼= Hp(X;Z)⊕Hp−1(X;Z)

for any topological space X; see Exercise 36 in Hatcher [31].

Surprisingly, computing the homology groups Hp(SO(n);Z) of the rotation group SO(n)
is more difficult. It can be shown that the groups Hp(SO(n);Z) are directs sums of copies of
Z and Z/2Z, but their exact structure is harder to obtain. For more on this topic, we refer
the reader to Hatcher [31] (Chapter 3, Sections 3.D and 3.E).

One of the most spectacular applications of homology is a proof of a generalized version
of the Jordan curve theorem. First we need a bit of terminology.
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Definition 4.17. Given two topological spaces X and Y , an embedding is a homeomorphism
f : X → Y of X onto its image f(X). A m-cell or cell of dimension m is any space B
homeomorphic to the closed ball Dm. A subspace A of a space X separates X if X − A is
not connected.

Proposition 4.19. Let B be a k-cell in Sn. Then Sn − B is acyclic, which means that
Hp(S

n −B) = (0) for all p 6= 0. In particular B does not separate Sn.

Proposition 4.19 is proven in Munkres [48] (Chapter 4, Section 36, Theorem 36.1). See
also Bredon [7] (Chapter IV, Corollary 19.3).

Proposition 4.20. Let n > k ≥ 0. For any embedding h : Sk → Sn we have

H̃p(S
n − h(Sk)) =

{
Z if p = n− k − 1

0 otherwise.

This implies that H̃p(S
n − h(Sk)) ∼= H̃p(S

n−k−1).

Proposition 4.20 is proven in Munkres [48] (Chapter 4, Section 36, Theorem 36.2) and
Bredon [7] (Chapter IV, Theorem 19.4). The proof uses an induction on k and a Mayer-
Vietoris sequence. Proposition 4.20 implies the following generalization of the Jordan curve
theorem for n ≥ 1.

Theorem 4.21. (Generalized Jordan Curve Theorem in Sn) Let n > 0 and let C be any
subset of Sn homeomorphic to Sn−1. Then Sn−C has precisely two components, both acyclic,
and C is their common topological boundary. See Figure 4.15.

Theorem 4.21 is proved in Munkres [48] (Chapter 4, Section 36, Theorem 36.3) and
Bredon [7] (Chapter IV, Theorem 19.5), in which it is called the Jordan–Brouwer separation
theorem.

The first part of the theorem is obtained by applying Proposition 4.20 in the case where
k = n − 1. In this case we see that H̃0(Sn − C) = Z, so H0(Sn − C) = Z ⊕ Z and this
implies that Sn − C has precisely two path components. The proof of the second part uses
Proposition 4.19.

One might think that because C is homeomorphic to Sn−1 the two components W1 and
W2 of Sn−C should be n-cells, but this is false in general. The problem is that an embedding
of Sn−1 into Sn can be very complicated. There is a famous embedding of S2 into S3 called
the Alexander horned sphere for which the sets W1 and W2 are not even simply connected;
see Bredon [7] (Chapter IV, Page 232) and Hatcher [31] (Chapter 2, Example 2B.2). In the
case n = 2, things are simpler; see Hatcher [31] (Chapter 2, Section 2.B) and Bredon [7]
(Chapter IV, Pages 235–236).

The classical version of the Jordan curve theorem is stated for embeddings of Sn−1 into
Rn.
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C 

S - C2

g

S2

~=

Figure 4.15: An illustration of the Jordan curve theorem in S2. Let C be the red curve
which is homeomorphic to S1. Then S2−C has two component, which in this case, are each
homeomorphic to D2.

Theorem 4.22. (Generalized Jordan curve theorem in Rn) Let n > 1 and let C be any
subset of Rn homeomorphic to Sn−1. Then Rn − C has precisely two components, one of
which is bounded and the other one is not. The bounded component is acyclic and the other
has the homology of Sn−1.

Proof. Using the inverse stereographic projection from the north pole N we can embed C
into Sn. See Figure 4.16. By Theorem 4.21 Sn − C has two acyclic components. Let V be
the component containing N . Obviously the other component U is bounded and acyclic.
It follows that Sn − U is homeomorphic to Dn so we can view V as being a subset of Dn.
Next we follow Bredon [7] (Chapter IV, Corollary 19.6). Consider the piece of the long exact
sequence of the pair (V, V − {N}) given by Theorem 4.11 with X = V and A = V − {N}:

H̃p+1(V ) // Hp+1(V, V − {N}) // H̃p(V − {N}) // H̃p(V ),

where we used the fact that H̃p+1(V, V − {N}) = Hp+1(V, V − {N}), since p + 1 ≥ 1. By
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Theorem 4.21 the homology of V is acyclic, so we have the following isomorphisms

H̃p(V − {N}) ∼= Hp+1(V, V − {N})
∼= Hp+1(Dn, Dn − {0})
∼= H̃p(D

n − {0})
∼= H̃p(S

n−1),

where the second isomorphism holds by excision since V ⊆ Dn, the third holds from the
long exact sequence of (Dn, Dn − {0}), and the fourth by homotopy.

(0,0,1)N

C

(0,0,1)N

C

Figure 4.16: Let C be the red curve in R2 which is homeomorphic to S1. The top figure
shows how to use the inverse stereographic projection to embed C into S2. The embedded
curve is illustrated in the bottom figure.

Later on, to define orientable manifolds we will need to compute the groups Hp(M,M −
{x};R) where M is a topological manifold and x is any point in M .

Recall the definition of a topological manifold.
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Definition 4.18. A topological manifold M of dimension n, for short an n-manifold , is a
topological space such that for every x ∈M , there is some open subset U of M containing x
and some homeomorphism ϕU : U → Ω (called a chart at x) onto some open subset Ω ⊆ Rn.
See Figure 4.17.

φ

U

Ω

(U)

φ

φ = Ω

M
U

U

U

R
2

(x)

x

Figure 4.17: A two dimensional manifold M and a chart at x. Note that M is homeomorphic
to T 2.

We have the following result.

Proposition 4.23. If M is a topological manifold of dimension n and if R is any commu-
tative ring with a multiplicative identity element, then

Hp(M,M − {x};R) ∼= Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R) ∼= H̃p−1(Sn−1)

for all p ≥ 0. Consequently

Hp(M,M − {x};R) ∼=

{
R if p = n

(0) if p 6= n.

Proof. By shrinking U is necessary we may assume that U is homeomorphic to Rn, so by
excision with X = M,A = M − x, and Z = M − U (see Theorem 4.14), we obtain

Hp(M,M − {x};R) ∼= Hp(U,U − {x};R) ∼= Hp(Rn,Rn − {x};R).
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By Theorem 4.11 the long exact sequence of homology yields an exact sequence

H̃p+1(Rn;R) // H̃p+1(Rn,Rn − {x};R) // H̃p(Rn − {x};R) // H̃p(Rn;R).

Since Rn is contractible, H̃p+1(Rn;R) = (0) and H̃p(Rn;R) = (0) so we have isomorphisms

H̃p+1(Rn,Rn − {x};R) ∼= H̃p(Rn − {x};R)

for all p ≥ 0. Since H̃p+1(Rn,Rn − {x};R) = Hp+1(Rn,Rn − {x};R) for p ≥ 1, we get

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R)

for all p ≥ 1. To finish the proof if p ≥ 1, observe that Sn−1 is a deformation retract of
Rn − {x}, so by the homotopy axiom (Proposition 4.8) we get

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Sn−1;R)

for all p ≥ 1. We conclude by using Proposition 4.18.

For p = 0, the end of the long exact sequence given by Theorem 4.9 yields

H1(Rn,Rn − {x}) f // H0(Rn − {x}) g // H0(Rn) h // H0(Rn,Rn − {x}) // 0.

If n > 1, then we just proved that H1(Rn,Rn − {x};R) = (0). In this case H0(Rn;R) = R
and H0(Rn − {x};R) = R so we have the exact sequence

0
f // R

g // R
h // H0(Rn,Rn − {x};R) // 0.

The map g is injective, so R = Im g = Ker h, and since h is also surjective, we conclude that
H0(Rn,Rn − {x};R) = (0).

If n = 1, then we proved that H1(R1,R1 − {x};R) = R. In this case H0(R1;R) = R and
H0(R1 − {x};R) = R⊕R, so we have the exact sequence

R
f // R⊕R g // R

h // H0(Rn,Rn − {x};R) // 0.

We must have Im g = R, because otherwise Im g = (0), so Ker g = R ⊕ R, and since
the sequence is exact, Im f = Ker g = R ⊕ R, which is impossible since the domain of f
is R. By exactness, since Ker h = Im g = R and since h is surjective, we conclude that
H0(R1,R1 − {x};R) = (0). Since homology (and reduced homology) of negative index are
(0), we obtain the isomorphisms

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Rn − {x};R) ∼= H̃p−1(Sn−1;R)

for all p ≥ 0.
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If M is an n-manifold, since the groups Hn(M,M−{x};R) are all isomorphic to R, a way
to define a notion of orientation is to pick some generator µx from Hn(M,M − {x};R) for
every x ∈ M . Since Hn(M,M − {x};R) is a ring with a unit, generators are just invertible
elements. To say that M is orientable means that we can pick these µx ∈ Hn(M,M−{x};R)
in such a way that they “vary continuously” with x. We will show how to do this in Section
7.1.

In the next section we show how singular homology can be generalized to deal with more
general coefficients.

4.7 Singular Homology with G-Coefficients

In the previous sections, given a commutative ring R with an identity element, we defined
the singular chain group Sp(X;R) as the free R-module generated by the set S∆p(X) of
singular p-simplices σ : ∆p → X. Thus, a singular chain c can be expressed as a formal
linear combination

c =
m∑

k=1

λiσi,

for some λi ∈ R and some σi ∈ S∆p(X).

If A is a subset of X, we defined the relative chain group Sp(X,A;R) as the quotient
Sp(X;R)/Sp(A;R). We observed that Sp(X,A;R) is also a free R-module, and a basis of
Sp(X,A;R) consists of the cosets σ + Sp(A;R) where the image of the singular simplex
σ : ∆p → X does not lie in A.

Experience shows that it is fruitful to generalize homology to allow coefficients in any
R-module G. Intuitively, a chain with coefficients in G is a formal linear combination

c =
m∑

k=1

giσi,

where the gi are elements of the module G. We may think of such chains as “vector-valued”
as opposed to the orginal chains which are “scalar-valued.” As we will see shortly, the usual
convention is to swap gi and σi so that these formal sums are of the form

∑
σigi.

A rigorous way to proceed is to define the following modules.

Definition 4.19. The module Sp(X;G) of singular p-chains with coefficients in G is defined
as the tensor product

Sp(X;G) = Sp(X;R)⊗R G.

It is an R-module.
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Since the R-module Sp(X;R) is freely generated by S∆p(X), it is a standard result of
linear algebra that we have an isomorphism

Sp(X;R)⊗R G ∼=
⊕

σ∈S∆p (X)

G,

the direct sum of copies of G, one for each σ ∈ S∆p(X).

Recall that this direct sum is the R-module of all functions c : S∆p(X)→ G that are zero
except for finitely many σ. For any g 6= 0 and any σ ∈ S∆p(X), if we denote by σg the
function from S∆p(X) to G which has the value 0 for all arguments except σ where its value
is g, then every c ∈ Sp(X;R)⊗R G = Sp(X;G) which is not identically 0 can be written in
a unique way as a finite sum

c =
m∑

k=1

σigi

for some σi ∈ S∆p(X) and some nonzero gi ∈ G. Observe that in the above expression the
“vector coefficient” gi comes after σi, to conform with the fact that we tensor with G on the
right.

Since we will always tensor over the ring R, for simplicity of notation we will drop the
subscript R in ⊗R. Now given the singular chain complex (S∗(X;R), ∂∗) displayed below

0 S0(X;R)
∂0oo S1(X;R)

∂1oo · · ·oo Sp−1(X;R)
∂p−1oo Sp(X;R)

∂poo · · · ,oo

(recall that ∂i ◦ ∂i+1 = 0 for all i ≥ 0) we can form the homology complex

0 S0(X;R)⊗G∂0⊗idoo S1(X;R)⊗G∂1⊗idoo · · ·oo Sp(X;R)⊗G · · ·∂p⊗idoo

denoted (S∗(X;R) ⊗ G, ∂∗ ⊗ id) obtained by tensoring with G, and since by definition
Sp(X;G) = Sp(X;R)⊗G, we have the homology complex

0 S0(X;G)
∂0⊗idoo S1(X;G)

∂1⊗idoo · · ·oo Sp(X;G)
∂p⊗idoo · · ·oo

denoted (S∗(X;G), ∂∗ ⊗ id) (of course, G∗(X;G) = S∗(X;R)⊗G).

Definition 4.20. Let R be a commutative ring with identity and let G be a R-module. The
singular homology modules Hp(X;G) with coefficients in G are the homology groups of the
above complex; that is,

Hp(X;G) = Hp(S∗(X;G)) p ≥ 0.

It is easily checked that if x ∈ X is a point then

Hp({x};G) =

{
G if p = 0

(0) if p 6= 0.
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Similarly, if X is any contractible space then,

Hp(X;G) =

{
G if p = 0

(0) if p 6= 0.

If ε : S0(X;R)→ R is the map of Definition 4.14, then we obtain an augmentation map
ε⊗ id : S0(X;R)⊗G→ R⊗G ∼= G, that is, a map ε⊗ id : S0(X;G)→ G, and we obtain an
augmented complex with G in dimension −1.

Definition 4.21. The corresponding homology groups are denoted H̃p(X;G) and are called
the reduced singular homology groups with coefficients in G.

As in Section 4.3 we can pick an injective map s : R → S0(X;R) such that ε ◦ s = id,
and since R⊗G ∼= G and the short exact sequence

0 // Ker ε // S0(X;R)
ε //

R
s

oo // 0

splits, by tensoring with G we get the short split exact sequence

0 // (Ker ε)⊗G // S0(X;R)⊗G
ε⊗id //

R⊗G ∼= G
s⊗id
oo // 0;

see Munkres [48] (Chapter 6, Section 51, Exercise 1). Thus

S0(X;G) = S0(X;R)⊗G ∼= ((Ker ε)⊗G)⊕G,

and since H0(X;G) = S0(X;G)/Im(∂1 ⊗ id), H̃0(X;G) = (Ker (ε ⊗ id))/Im(∂1 ⊗ id) ∼=
((Ker ε)⊗G)/Im(∂1 ⊗ id), and since Im ∂1 ⊆ Ker ε, we get

S0(X;G)/Im(∂1 ⊗ id) ∼= (((Ker ε)⊗G)/Im(∂1 ⊗ id))⊕G,

which shows that

H0(X;G) ∼= H̃0(X;G)⊕G
Hp(X;G) ∼= H̃p(X;G), p ≥ 1.

More generally, if A is a subset of X, we have the chain complex (S∗(X,A;R), ∂∗) dis-
played below

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·oo

where Sp(X,A;R) = Sp(X;R)/Sp(A;R), and by tensoring with G and writing

Sp(X,A;G) = Sp(X,A;R)⊗G,

we obtain the chain complex (S∗(X,A;R)⊗G, ∂∗ ⊗G)

0 S0(X,A;G)
∂0⊗idoo S1(X,A;G)

∂1⊗idoo · · ·oo Sp(X,A;G)
∂p⊗idoo · · ·oo

denoted (S∗(X,A;G), ∂∗ ⊗G).
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Definition 4.22. Let R be a commutative ring with identity and let G be a R-module.
For any subset A of the space X, the relative singular homology modules Hp(X,A;G) with
coefficients in G are the homology groups of the above complex; that is,

Hp(X,A;G) = Hp(S∗(X,A;G)) p ≥ 0.

Similarly, the reduced relative singular homology modules H̃p(X,A;G) with coefficients
in G are the homology groups of the complex obtained by tensoring the reduced homology
complex of (X,A) with G. As in Section 4.3, if A 6= ∅ we have

Hp(X,A;G) ∼= H̃p(X,A;G), p ≥ 0.

A continuous map h : (X,A)→ (Y,B) gives rise to a chain map

h]⊗id : S∗(X,A;R)⊗G→ S∗(Y,B;R)⊗G

which induces a homology homomorphism

h∗ : H∗(X,A;G)→ H∗(Y,B;G).

As we know (see the diagram just after Proposition 4.8), we have a short exact sequence

0 // Sp(A;R) // Sp(X;R) // Sp(X,A;R) // 0,

and since Sp(X,A;R) is free, it is a split exact sequence. Therefore, by tensoring with G we
obtain another short exact sequence

0 // Sp(A;R)⊗G // Sp(X;R)⊗G // Sp(X,A;R)⊗G // 0;

that is, a short exact sequence

0 // Sp(A;G) // Sp(X;G) // Sp(X,A;G) // 0,

By Theorem 2.22, we obtain a long exact sequence of homology, as described in the following
theorem which is the analog of Theorem 4.9.

Theorem 4.24. (Long Exact Sequence of Relative Homology) For every pair (X,A) of
spaces, for any R-module G, we have the following long exact sequence of homology groups

· · · // Hp+2(X,A;G)
∂∗p+2

// Hp+1(A;G)
i∗ // Hp+1(X;G)

j∗ // Hp+1(X,A;G)
∂∗p+1

// Hp(A;G)
i∗ // Hp(X;G)

j∗ // Hp(X,A;G)
∂∗p

// Hp−1(A;G) // · · ·
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ending in
H0(A;G) // H0(X;G) // H0(X,A;G) // 0.

The version of Theorem 4.24 for reduced homology also holds; it is the analog of Theorem
4.11.

It is quite easy to see that the homotopy axiom also holds for homology with coefficients
in G (see Munkres [48], Chapter 6, Section 51).

Proposition 4.25. (Homotopy Axiom) Given any two continuous maps f, g : (X,A) →
(Y,B) if f and g are homotopic and Hp(f), Hp(g) : Hp(X,A;G) → Hp(Y,B;G) are the
induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A) and
(Y,B) are homotopy equivalent, then for any R-module G the homology groups Hp(X,A;G)
and Hp(Y,A;G) are isomorphic for all p ≥ 0.

The excision axiom also holds but the proof requires a little more work (see Munkres
[48], Chapter 6, Section 51).

Theorem 4.26. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of Z
is contained in the interior of A, then for any R-module G the inclusion (X−Z,A−Z) −→
(X,A) induces isomorphisms of singular homology

Hp(X − Z,A− Z;G) ∼= Hp(X,A;G), for all p ≥ 0.

Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the inclusion map
(B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;G) ∼= Hp(X,A;G), for all p ≥ 0.

Theorem 4.13 about good pairs also holds for coefficients in G. As a consequence, since
the homotopy axiom, the excision axiom and the long exact sequence of homology exists,
the proof of Proposition 4.18 goes through with G-coefficients. The homology of Dn is given
by

H0(Dn;G) = G

Hp(D
n;G) = (0), p > 0,

or equivalently
H̃p(D

n;G) = (0), p ≥ 0,

and we have the following result.

Proposition 4.27. For any R-module G the reduced homology of Sn is given by

H̃p(S
n;G) =

{
G if p = n

(0) if p 6= n,
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or equivalently the homology of Sn is given by

H0(S0;G) = G⊕G
Hp(S

0;G) = (0), p > 0,

and for n ≥ 1,

Hp(S
n;G) =

{
G if p = 0, n

(0) if p 6= 0, n.

Proposition 4.23 also extends to homology with G-coefficients.

Relative singular homology with coefficients in G satisfies the axioms of homology theory
singled out by Eilenberg and Steenrod [15]. The Mayer–Vietoris theorem (Theorem 4.16)
also holds for homology with coefficients in G. The proof relies on the fact that the sequence
(∗MV) is actually a split short exact sequence, so by Proposition 2.17, tensoring with an R-
module yields another split short exact sequence, and we can form the long exact sequence
of homology. This version of the Mayer–Vietoris theorem is also discussed in Spanier [59],
Chapter 5, Section 1, Corollary 14.

A version of the Mayer–Vietoris sequence for relative singular homology will be needed
to prove Poincaré duality. The version stated below is from May [43] (Chapter 14, Section
5).

Theorem 4.28. (Mayer–Vietoris in relative singular homology) Given any two topological
spaces X and Y with Y ⊆ X, for any two subsets A,B of X such that Y = Int(A)∪ Int(B),
there is a long exact sequence of relative homology

// Hp+1(X,A ∩B;G) // Hp+1(X,A;G)⊕Hp+1(X,B;G) // Hp+1(X, Y ;G)

// Hp(X,A ∩B;G) // Hp(X,A;G)⊕Hp(X,B;G) // Hp(X, Y ;G) //

The universal coefficient theorem for homology (Theorem 12.5) shows that if R is a PID,
then the module Hp(X,A;G) can be expressed in terms of the modules Hp(X,A;R) and
Hp−1(X,A;R) for any R-module G.

For example, we find that the homology groups of the real projective space with values
in an R-module G are given by

Hp(RPn;G) =





G for p = 0, n

G/2G for p odd, 0 < p < n

Ker (G
2−→ G) for p even 0 < p < n

(0) otherwise
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if n is odd, and

Hp(RPn;G) =





G for p = 0

G/2G for p odd, 0 < p < n

Ker (G
2−→ G) for p even 0 < p ≤ n

(0) otherwise

if n is even, where the map G
2−→ G is the map g 7→ 2g.

Although homology theory is a very interesting subject, we proceed with cohomology,
which is our primary focus.

4.8 Singular Cohomology

Roughly, to obtain cohomology from homology we dualize everything.

Definition 4.23. Given a topological space X and a commutative ring R, for any p ≥ 0
we define the singular cochain group Sp(X;R) as the dual HomR(Sp(X;R), R) of the R-
module Sp(X;R), namely the space of all R-linear maps from Sp(X;R) to R. The elements
of Sp(X;R) are called singular p-cochains . We set Sp(X;R) = (0) for p < 0.

Since Sp(X;R) is the free R-module generated by the set S∆p(X) of singular p-simplices,
every linear map from Sp(X;R) to R is completely determined by its restriction to S∆p(X),
so we may view an element of Sp(X;R) as an arbitrary function f : S∆p(X) → R assigning
some element of R to every singular p-simplex σ. Recall that the set of functions from
S∆p(X) to R forms an R-module under the operations of multiplication by a scalar and
addition given by

(λf)(σ) = λ(f(σ))

(f + g)(σ) = f(σ) + g(σ)

for any singular p-simplex σ ∈ S∆p(X) and any scalar λ ∈ R. Any singular p-cochain
f : S∆p(X) → R can be evaluated on any singular p-chain α =

∑m
i=1 λiσi, where the σi are

singular p-simplices in S∆p(X), by

f(σ) =
m∑

i=1

λif(σi).

We define the direct sum S∗(X;R) as

S∗(X;R) =
⊕

p≥0

Sp(X;R).
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All we need to get a chain complex is to define the coboundary map δp : Sp(X;R) →
Sp+1(X;R).

It is quite natural to say that for any singular p-cochain f : S∆p(X)→ R, the value δpf
should be the function whose value (δpf)(α) on a singular (p+ 1)-chain α is given by

(δpf)(α) = ±f(∂p+1α).

If we write 〈g, β〉 = g(β) for the result of evaluating the singular p-cochain g ∈ Sp(X;R) on
the singular p-chain β ∈ Sp(X;R), then the above is written as

〈δpf, α〉 = ±〈f, ∂p+1α〉,

which is reminiscent of an adjoint. It remains to pick the sign of the right-hand side. Bott
and Tu [4], Greenberg and Harper [25], Hatcher [31], May [43], Munkres [48] and Warner
[62] pick the + sign, whereas Bredon [7], Mac Lane [37] and Milnor and Stasheff [45] pick
the sign (−1)p+1, so that

〈δpf, α〉+ (−1)p〈f, ∂p+1α〉 = 0.

Milnor and Stasheff explain that their choice of sign agrees with the convention that
whenever two symbols of dimension m and n are permuted, the sign (−1)mn should be
introduced. Here δ is considered to have sign +1 and ∂ is considered to have sign −1.
Mac Lane explains that the choice of the sign (−1)p+1 is desirable if a generalization of
cohomology is considered; see Mac Lane [37] (Chapter II, Section 3).

Regardless of the choice of sign, δp+1 ◦ δp = 0. Since the + sign is simpler, this is the one
that we adopt. Thus, δpf is defined by

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;R).

If we let A = Sp+1(X;R), B = Sp(X;R) and ϕ = ∂p+1, we see that the definition of δp is
equivalent to

δp = ∂>p+1.

The cohomology complex is indeed obtained from the homology complex by dualizing spaces
and maps.

Definition 4.24. Given a topological space X and a commutative ring R, for any p ≥ 0,
the coboundary homomorphism

δp : Sp(X;R)→ Sp+1(X;R)

is defined by
〈δpf, α〉 = 〈f, ∂p+1α〉,

for every singular p-cochain f : S∆p(X)→ R and every singular (p+1)-chain α ∈ Sp+1(X;R);
equivalently,

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;R).

We obtain a coboundary map

δ : S∗(X;R)→ S∗(X;R).
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The following proposition is immediately obtained.

Proposition 4.29. Given a topological space X and a commutative ring R, the coboundary
map δ : S∗(X;R)→ S∗(X;R) satisfies the equation

δ ◦ δ = 0.

We now have all the ingredients to define cohomology groups. Since the Sp(X;R) together
with the coboundary maps δp form the chain complex

0 δ−1
// S0(X;R) δ0

// S1(X;R) // · · · δ
p−1
// Sp(X;R) δp // Sp+1(X;R) δp+1

// · · ·

as in Section 2.5, we obtain familiar spaces.

Definition 4.25. Let Zp(X;R) = Ker δp be the space of singular p-cocycles and Bp(X;R) =
Im δp−1 be the space of singular p-coboundaries .

By Proposition 4.29, Bp(X;R) is a submodule of Zp(X;R) so we obtain cohomology
spaces:

Definition 4.26. Given a topological space X and a commutative ring R, for any p ≥ 0 the
singular cohomology module Hp(X;R) is defined by

Hp(X;R) = ker δp/Im δp−1 = Zp(X;R)/Bp(X;R).

We set Hp(X;R) = (0) if p < 0 and define H∗(X;R) as the direct sum

H∗(X;R) =
⊕

p≥0

Hp(X;R)

and call it the singular cohomology of X with coefficients in R.

It is common practice to refer to the spaces Hp(X;R) as groups even though they are
R-modules.

Until now we have been very compulsive in adding the term singular in front of every
notion (chain, cochain, cycle, cocycle, boundary, coboundary, etc.). From now on we will
drop this term unless confusion may arise. We may also drop X or R in Hp(X;R) etc.
whenever possible (that is, not causing confusion).

At this stage, one may wonder if there is any connection between the homology groups
Hp(X;R) and the cohomology groups Hp(X;R). The answer is yes and it is given by
the universal coefficient theorem. However, even to state the universal coefficient theorem
requires a fair amount of homological algebra, so we postpone this topic until Chapter12.
Let us just mention the following useful isomorphisms in dimension 0 and 1:

H0(X;R) = HomR(H0(X;R), R)

H1(X;R) = HomR(H1(X;R), R).
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It is not hard to see that H0(X;R) consists of those functions from X to R that are constant
on path-components. Readers who want to learn about universal coefficient theorems should
consult Chapter 12. If R is a PID, then the following result proven in Milnor and Stasheff
[45] (Appendix A, Theorem A.1) gives a very clean answer.

Theorem 4.30. Let X be a topological space X and let R be a PID. If the homology group
Hp−1(X;R) is a free R-module or (0), then the cohomology group Hp(X;R) is canonically
isomorphic to the dual HomR(Hp(X;R), R) of Hp(X;R).

In particular, Theorem 4.30 holds if R is a field.

There is a generalization of singular cohomology which is useful for certain applications.
The idea is to use more general coefficients. We can use a R-module G as the set of coeffi-
cients.

Definition 4.27. Given a topological space X, a commutative ring R, and a R-module G,
for any p ≥ 0 the singular cochain group Sp(X;G) is the R-module HomR(Sp(X;R), G) of
R-linear maps from Sp(X;R) to G. We set Sp(X;G) = (0) for p < 0.

Following Warner [62], since Sp(X;R) is the free R-module generated by the set S∆p(X)
of singular p-simplices, we can view Sp(X;G) as the set of all functions f : S∆p(X) → G.
This is also a R-module. As a special case, if R = Z, then G can be any abelian group. As
before, we obtain R-modules Zp(X;G) and Bp(X;G) and coboundary maps δp : Sp(X;G)→
Sp+1(X;G) defined by

δpf = f ◦ ∂p+1 for all f ∈ Sp(X;G).

We get the chain complex

0 δ−1
// S0(X;G) δ0

// S1(X;G) // · · · δ
p−1
// Sp(X;G) δp // Sp+1(X;G) δp+1

// · · ·

and we obtain cohomology groups.

Definition 4.28. Given a topological space X, a commutative ring R, and a R-module G,
for any p ≥ 0 the singular cohomology module Hp(X;G) is defined by

Hp(X;G) = ker δp/Im δp−1 = Zp(X;G)/Bp(X;G).

We set Hp(X;G) = (0) if p < 0 and define H∗(X;G) as the direct sum

H∗(X;G) =
⊕

p≥0

Hp(X;G)

and call it the singular cohomology of X with coefficients in G.
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Warner uses the notation Hp
∆(X;G) instead of Hp(X;G). When more than one coho-

mology theory is used, this is a useful device to distinguish among the various cohomology
groups.

Cohomology is also functorial. If f : X → Y is a continuous map, then we know
from Proposition 4.4 that there is a chain map f],p : Sp(X;R) → Sp(Y ;R), so by apply-
ing HomR(−, G) we obtain a cochain map f ],p : Sp(Y ;G) → Sp(X;G) which commutes
with coboundaries, and thus a homomorphism Hp(f) : Hp(Y ;G) → Hp(X;G). This fact is
recorded as the following proposition.

Proposition 4.31. If X and Y are two topological spaces and if f : X → Y is a continuous
function between them, then there are homomorphisms Hp(f) : Hp(Y ;G) → Hp(X;G) for
all p ≥ 0.

The map Hp(f) : Hp(Y ;G)→ Hp(X;G) is also denoted by f ∗p : Hp(Y ;G)→ Hp(X;G).

We also have the following version of Proposition 4.6 for cohomology.

Proposition 4.32. Given any two continuous maps f, g : X → Y (where X and Y are
topological spaces), if f and g are homotopic and Hp(f), Hp(g) : Hp(Y ;G)→ Hp(X;G) are
the induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if X
and Y are homotopy equivalent, then the cohomology groups Hp(X;G) and Hp(Y ;G) are
isomorphic for all p ≥ 0,

For any PID R, there is a universal coefficient theorem for cohomology that yields an
expression for Hp(X;G) in terms of Hp−1(X;R) and Hp(X;R); see Theorem 12.11.

There is also a version of the Mayer–Vietoris exact sequence for singular cohomology.
Given any topological space X, for any two subsets A,B of X such that X = Int(A)∪Int(B),
recall from Theorem 4.16 that we have a short exact sequence

0 // Sp(A ∩B)
ϕ // Sp(A)⊕ Sp(B)

ψ // Sp(A) + Sp(B) // 0 (∗MV)

for every p ≥ 0, where ϕ and ψ are given by

ϕ(c) = (i](c),−j](c))
ψ(a, b) = k](a) + l](b).

Because Sp(A) ⊕ Sp(B) is free and because Sp(A ∩ B) is a submodule of both Sp(A) and
Sp(B), we can choose bases in Sp(A) and Sp(B) by completing a basis of Sp(A ∩B), and as
a consequence we can define a map p : Sp(A) ⊕ Sp(B) → Sp(A ∩ B) such that p ◦ ϕ = id.
Therefore, by Proposition 2.2, the above sequence splits, and if we apply HomR(−, R) to it,
by Proposition 2.7, we obtain a split short exact sequence

0 // Hom(Sp(A) + Sp(B), R)
ψ⊥ // Sp(A)⊕ Sp(B)

ϕ⊥ // Sp(A ∩B) // 0 (∗)
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where ϕ⊥ = Hom(ϕ,R) and ψ⊥ = Hom(ψ,R). Since the inclusions ιp : Sp(A) + Sp(B) →
Sp(X) form a chain homotopy equivalence, which means that there are maps ρp : Sp(X) →
Sp(A) + Sp(B) such that ρ ◦ ι and ι ◦ ρ are chain homotopic to id, by applying HomR(−, R)
we see that there is also a chain homotopy equivalence between Hom(Sp(A) + Sp(B), R)
and Hom(Sp(X), R) = Sp(X), so the long exact sequence associated with the short exact
sequence (∗) yields the following result.

Theorem 4.33. (Mayer–Vietoris in singular cohomology) Given any topological space X,
for any two subsets A,B of X such that X = Int(A)∪ Int(B), there is a long exact sequence
of cohomology

// Hp(X;G) // Hp(A;G)⊕Hp(B;G) // Hp(A ∩B;G) // Hp+1(X;G) // · · ·

If A ∩B 6= ∅, a similar sequence exists in reduced cohomology.

The Mayer-Vietoris theorem in cohomology (Theorem 4.33) also holds for cohomology
with coefficients in G. This is because (∗MV) is a split short exact sequence, and by Proposi-
tion 2.12, if we apply Hom(−, G) where G is an R-module, the analog of (∗) (with coefficients
in G) also holds. This version of the Mayer-Vietoris theorem in cohomology is also discussed
in Spanier [59], Chapter 5, Section 4, Corollary 9.

There is a notion of singular cohomology with compact support and generalizations of
Poincaré duality. Some of the steps still use the Mayer–Vietoris sequences and the five
lemma, but the proof is harder and requires two kinds of induction. Basically, Poincaré
duality asserts that for any orientable manifold M of dimension n and any commutative ring
R with an identity element, there are isomorphisms

Hp
c (M ;R) ∼= Hn−p(M ;R).

On left-hand side Hp
c (M ;R) denotes the pth singular cohomology group with compact sup-

port, and on the right-hand side Hn−p(M ;R) denotes the (n−p)th singular homology group.
By manifold, we mean a topological manifold (thus, Hausdorff and paracompact), not nec-
essarily a smooth manifold, so this is a very general theorem. For details, the interested
reader is referred to Chapter 7 (Theorem 7.16), and for comprehensive presentations includ-
ing proofs, to Milnor and Stasheff [45] (Appendix A), Hatcher [31] (Chapter 3), and Munkres
[48] (Chapter 8).

If M is a smooth manifold and if R = R, a famous result of de Rham states that de
Rham cohomology and singular cohomology are isomorphic, that is

HdR(M) ∼= H∗(M ;R).

This is a hard theorem to prove. A complete proof can be found Warner [62] (Chapter 5).
Another proof can be found in Morita [46] (Chapter 3). These proofs use Čech cohomology,
which will be discussed later. It should be pointed that Chapter 5 of Warner [62] covers
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far more than the de Rham theorem. It provides a very thorough presentation of sheaf
cohomology from an axiomatic point of view and shows the equivalence of four “classical”
cohomology theories for smooth manifolds: Alexander-Spanier, de Rham, singular, and Čech
cohomology. Warner’s presentation is based on an approach due to Henri Cartan written in
the early 1950’s and based on fine sheaves. In Chapter 13 we develop sheaf cohomology using
a more general and more powerful approach due to Grothendieck based on derived functors
and δ-functors. This material is very technical; don’t give up, it will probably require many
passes to be digested.

4.9 Relative Singular Cohomology Groups

In this section R is any commutative with unit 1 and G is any R-module.

Definition 4.29. The reduced singular cohomology groups H̃p(X;G) are defined by dualizing
the augmented chain complex

0 Roo S0(X;R)εoo S1(X;R)
∂1oo · · ·oo Sp−1(X;R)

∂p−1oo Sp(X;R)
∂poo · · ·

∂p+1oo

by applying HomR(−, G). We have

H̃0(X;G) = HomR(H̃0(X;R), G)

H̃p(X;G) = Hp(X;G) p ≥ 1.

In fact, it can be shown that

H0(X;G) ∼= H̃0(X;G)⊕G;

see Munkres [48] (Chapter 5, Section 44).

To obtain the relative cohomology groups we dualize the chain complex of relative ho-
mology

0 S0(X,A;R)
∂0oo S1(X,A;R)

∂1oo · · ·oo Sp−1(X,A;R)
∂p−1oo Sp(X,A;R)

∂poo · · ·
∂p+1oo

by applying HomR(−, G), where Sp(X,A;R) = Sp(X,R)/Sp(A,R).

Definition 4.30. The chain complex S∗(X,A;G) is the complex

0 δ−1
// S0(X,A;G) δ0

// S1(X,A;G) // · · · δ
p−1
// Sp(X,A;G) δp // Sp+1(X,A;G) δp+1

//· · ·

with Sp(X,A;G) = HomR(Sp(X,A;R), G) and δp = HomR(∂p, G) for all p ≥ 0 (and δ−1 is
the zero map). More explicitly

δp(f) = f ◦ ∂p+1 for all f ∈ Sp(X,A;G);

that is,

δp(f)(σ) = f(∂p+1(σ))for all f ∈ Sp(X,A;G) = HomR(Sp(X,A;R), G)

and all σ ∈ Sp+1(X;A;R);



156 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

Note that Sp(X,A;G) = HomR(Sp(X,A;R), G) = HomR(Sp(X;R)/Sp(A;R), G) is iso-
morphic to the submodule of Sp(X;G) = HomR(Sp(X;R), G) consisting of all linear maps
with values in G defined on singular simplices in Sp(X;R) that vanish on singular simplices
in Sp(A;R). Consequently, the coboundary map

δp : Sp(X,A;G)→ Sp+1(X,A;G)

is the restriction of δpX : Sp(X;G)→ Sp+1(X;G) to Sp(X,A;G) where δpX is the coboundary
map of absolute cohomology.

Definition 4.31. Given a pair of spaces (X,A), the singular relative cohomology groups
Hp(X,A;G) of (X,A) arise from the chain complex

0 δ−1
// S0(X,A;G) δ0

// S1(X,A;G) // · · · δ
p−1
// Sp(X,A;G) δp // Sp+1(X,A;G) δp+1

//· · ·

and are given by

Hp(X,A;G) = Ker δp/Im δp−1, p ≥ 0.

As in the case of absolute singular cohomology, a continuous map f : (X,A)→ (Y,B) in-
duces a homomorphism of relative cohomology f ∗ : H∗(Y,B)→ H∗(X,A). This is because by
Proposition 4.7 the map f induces a chain map f] : S∗(X,A;R)→ S∗(Y,B;R), and by apply-
ing HomR(−, G) we obtain a cochain map f ] : S∗(Y,B;G) → S∗(X,A;G) which commutes
with coboundaries, and thus induces homomorphisms Hp(f) : Hp(Y,B;G)→ Hp(X,A;G).

Proposition 4.34. If (X,A) and (Y,B) are pairs of topological spaces and if f : (X,A) →
(Y,B) is a continuous function between them, then there are homomorphisms
Hp(f) : Hp(Y,B;G)→ Hp(X,A;G) for all p ≥ 0.

The map Hp(f) : Hp(Y,B;G) → Hp(X,A;G) is also denoted by f ∗p : Hp(Y,B;G) →
Hp(X,A;G).

We also have the following version of Proposition 4.6 for relative cohomology which is
the cohomological version of Proposition 4.8.

Proposition 4.35. (Homotopy Axiom) Given any two continuous maps f, g : (X,A) →
(Y,B), if f and g are homotopic and Hp(f), Hp(g) : Hp(Y,B;G) → Hp(X,A;G) are the
induced homomorphisms, then Hp(f) = Hp(g) for all p ≥ 0. As a consequence, if (X,A)
and (Y,B) are homotopy equivalent then the cohomology groups Hp(X,A;G) and Hp(Y,B;G)
are isomorphic for all p ≥ 0,

To obtain the long exact sequence of relative cohomology we dualize the short exact
sequence

0 // S∗(A;R) i // S∗(X;R)
j // S∗(X,A;R) // 0
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where S∗(X,A;R) = S∗(X,R)/S∗(A,R) by applying Hom(−, G) and we obtain the sequence

0 // S∗(X,A;G)
j> // S∗(X;G) i> // S∗(A;G) // 0,

where by definition S∗(X,A;G) = HomR(S∗(X;R)/S∗(A;R), G), and as before S∗(A;G) =
HomR(S∗(A;R), G) and S∗(X;G) = HomG(S∗(X;R), G).

Since Sp(X,A;R) = Sp(X,R)/Sp(A,R) is a free module for every p, by Proposition 2.8
the sequence of chain complexes

0 // S∗(X,A;G)
j> // S∗(X;G) i> // S∗(A;G) // 0

is exact (this can also be verified directly; see Hatcher [31], Section 3.1). Therefore, we can
apply the zig-zag lemma for cohomology (Theorem 2.22) to this short exact sequence and
we obtain the following cohomological version of Theorem 4.9.

Theorem 4.36. (Long Exact Sequence of Relative Cohomology) For every pair (X,A) of
spaces, we have the following long exact sequence of cohomology groups

· · · // Hp−1(A;G)
δ∗p−1

// Hp(X,A;G)
(j>)∗ // Hp(X;G)

(i>)∗ // Hp(A;G)
δ∗p

// Hp+1(X,A;G)
(j>)∗ // Hp+1(X;G)

(i>)∗ // Hp+1(A;G)
δ∗p+1

// Hp+2(X,A;G) // · · ·

There is also a version of Theorem 4.36 for reduced relative cohomology with A 6= ∅. As
in the case of reduced homology with A 6= ∅, we have

H̃p(X,A,G) = Hp(X,A,G) for all p ≥ 0.

By setting A = {pt}, the version of Theorem 4.36 for relative cohomology yields the isomor-
phisms

Hp(X, {pt};G) ∼= H̃p(X;G) for all p ≥ 0.

Finally, the excision property also holds for relative cohomology.

Theorem 4.37. (Excision Axiom) Given subspaces Z ⊆ A ⊆ X such that the closure of
Z is contained in the interior of A, then the inclusion (X − Z,A − Z) −→ (X,A) induces
isomorphisms of singular cohomology

Hp(X − Z,A− Z;G) ∼= Hp(X,A;G), for all p ≥ 0.
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Equivalently, for any subspaces A,B ⊆ X whose interiors cover X, the inclusion map
(B,A ∩B) −→ (X,A) induces isomorphisms

Hp(B,A ∩B;G) ∼= Hp(X,A;G), for all p ≥ 0.

The proof of Theorem 4.37 does not follow immediately by dualization of Theorem 4.14.
For details the reader is referred to Munkres [48] (Chapter 5, §44) or Hatcher [31] (Section
3.1).

Proposition 4.35, Theorem 4.36, and Theorem 4.37 state three of the properties that were
singled out as characterizing cohomology theories by Eilenberg and Steenrod [15]. As in the
case of homology, these properties hold for most of the known cohomology theories, and thus
can be taken as axioms for cohomology theory; see Sato [54], Mac Lane [37], Munkres [48],
or Hatcher [31].

� The axiom of compact support fails for cohomology.

A version of the Mayer–Vietoris sequence for relative singular cohomology will be needed
to prove Poincaré duality. The version stated below is from May [43] (Chapter 19, Section
3).

Theorem 4.38. (Mayer–Vietoris in relative singular cohomology) Given any two topological
spaces X and Y with Y ⊆ X, for any two subsets A,B of X such that Y = Int(A)∪ Int(B),
there is a long exact sequence of relative cohomology

// Hp(X, Y ;R) // Hp(X,A;R)⊕Hp(X,B;R) // Hp(X,A ∩B;R)

// Hp+1(X, Y ;R) // Hp+1(X,A;R)⊕Hp+1(X,B;R) // Hp+1(X,A ∩B;R) //

There is an even more general version of Theorem 4.38 for pairs of spaces (X, Y ), pairs
of subsets (A,B) of X and pairs of subsets (C,D) of Y , with Y ⊆ X, C ⊆ A, D ⊆ B,
X = Int(A)∪ Int(B), and Y = Int(C)∪ Int(D). We have the long exact sequence of relative
cohomology

// Hp(X, Y ) // Hp(A,C)⊕Hp(B,D) // Hp(A ∩B,C ∩D)

// Hp+1(X, Y ) // Hp+1(A,C)⊕Hp+1(B,D) // Hp+1(A ∩B,C ∩D) // · · ·

where we omitted the ring R due to lack of space. See Hatcher [31] (Chapter 3, Section 3.1,
Page 204). Theorem 4.38 corresponds to the special case X = A = B.

For any PID R, there is a universal coefficient theorem for cohomology that yields an
expression for Hp(X,A;G) in terms of Hp−1(X,A;R) and Hp(X,A;R); see Theorem 12.11.
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4.10 The Cup Product and the Cohomology Ring

We will see later in Chapter 12 (the universal coefficient theorem for cohomology, Theorem
12.11) that the homology groups of a space with values in a PID R determine its cohomology
groups with values in any R-module G. One might then think that cohomology groups are
not useful, but this is far from the truth for several reasons.

First, cohomology groups arise naturally as various “obstructions,” such as the Ext-
groups discussed in Chapter 12, or in the problem of classifying, up to homotopy, maps from
one space into another. We will also see that in some cases only cohomology can be defined,
as in the case of sheaves. But another reason why cohomology is important is that there is a
natural way to define a multiplication operation on cohomology classes that makes the direct
sum of the cohomology modules into a (graded) algebra. This additional structure allows
the distinction between spaces that would not otherwise be distinguished by their homology
(and cohomology).

We would like to define an operation ^ that takes two cochains c ∈ Sp(X;R) and
d ∈ Sq(X;R) and produces a cochain c ^ d ∈ Sp+q(X;R). For this we define two affine
maps λp : ∆p → ∆p+q and ρq : ∆q → ∆p+q by

λp(e
p+1
i ) = ep+q+1

i 1 ≤ i ≤ p+ 1

ρq(e
q+1
i ) = ep+q+1

p+i , 1 ≤ i ≤ q + 1.

For any singular (p+q)-simplex σ : ∆p+q → X, observe that σ ◦λp : ∆p → X is a singular
p-simplex and σ ◦ ρq : ∆q → X is a singular q-simplex. See Figure 4.18.

Recall from Definition 4.23 that a singular p-cochain is a R-linear map from Sp(X;R) to
R, where Sp(X;R) is the R-module of singular p-chains. Since Sp(X;R) is the free R-module
generated by the set S∆p(X) of singular p-simplices, every singular p-cochain c is completely
determined by its restriction to S∆p(X), and thus can be viewed as a function from S∆p(X)
to R.

Definition 4.32. If σ : ∆p+q → X is a singular simplex, we call σ ◦ λp the front p-face of σ,
and σ ◦ ρq the back q-face of σ. See Figure 4.19. Given any two cochains c ∈ Sp(X;R) and
d ∈ Sq(X;R), their cup product c ^ d ∈ Sp+q(X;R) is the cochain defined by

(c ^ d)(σ) = c(σ ◦ λp)d(σ ◦ ρq)

for all singular simplices σ ∈ S∆p+q(X). The above defines a function
^ : Sp(X;R)× Sq(X;R)→ Sp+q(X;R).

Since c(σ ◦ λp) ∈ R and d(σ ◦ ρq) ∈ R, we have (c ^ d)(σ) ∈ R, as desired.

Remark: Other authors, including Milnor and Stasheff [45], add the sign (−1)pq to the
formula in the definition of the cup product.



160 CHAPTER 4. SINGULAR HOMOLOGY AND COHOMOLOGY

e

e
e

e

1

2
3

4

e

e
e

e

1

2
3

4

∆2

e1

e2

e3

∆
1

e2

e1

∆2

e1

e2

e3

∆
1

e

e2

∆
3

∆
3

λ 1

λ

1ρ

2

ρ
2

Figure 4.18: Two ways of embedding a 1-simplex and a 2-simplex into a 3-simplex. For the
top figure, p = 1 and q = 2, while for the bottom figure, p = 2 and q = 1.

The reader familiar with exterior algebra and differential forms will observe that the cup
product can be viewed as a generalization of the wedge product.

Recall that S∗(X;R) is the R-module
⊕

p≥0 S
p(X;R), and that ε : S0(X;R)→ R is the

unique homomorphism such that ε(x) = 1 for every point x ∈ S0(X;R). Thus ε ∈ S0(X;R)
and since δ0ε = ε ◦ ∂1 = 0, the cochain ε is actually a cocycle and its cohomology class
[ε] ∈ H0(X;R) is denoted by 1.

The following proposition is immediate from the definition of the cup-product.

Proposition 4.39. The cup product operation ^ in S∗(X;R) is bilinear, associative, and
has the cocycle ε as identity element. Thus S∗(X;R) is an associative graded ring with unit
element.

The following technical property implies that the cup product is well defined on cocycles.

Proposition 4.40. For any two cochains c ∈ Sp(X;R) and d ∈ Sq(X;R) we have

δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd).
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Figure 4.19: A 2-simplex embedded in a torus, where p = 1 = q. The front 1-face is the blue
edge while the back 1-face is the maroon edge.

Again note the analogy with the exterior derivative on differential forms. A proof of
Proposition 4.39 can be found in Hatcher [31] (Chapter 3, Section 3.2, Lemma 3.6) and
Munkres [48] (Chapter 6, Theorem 48.1).

The formula of Proposition 4.40 implies that the cup product of cocycles is a cocycle,
and that the cup product of a cocycle with a coboundary in either order is a coboundary, so
we obtain an induced cup product on cohomology classes

^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R).

The cup product is bilinear, associative, and has 1 has identity element.

A continuous map f : X → Y induces a homomorphisms of cohomology fp∗ : Hp(Y ;R)→
Hp(X;R) for all p ≥ 0, and the cup product behaves well with respect to these maps.

Proposition 4.41. Given any continuous map f : X → Y , for all ω ∈ Hp(Y ;R) and all
η ∈ Hq(Y ;R), we have

f (p+q)∗(ω ^Y η) = fp∗(ω) ^X f q∗(η).

Thus, f ∗ = (fp∗)p≥0 is a homomorphism between the graded rings H∗(Y ;R) (with the cup
product ^Y ) and H∗(X;R) (with the cup product ^X).

Proposition 4.41 is proven in Hatcher [31] (Chapter 3, Section 3.2, Proposition 3.10) and
Munkres [48] (Chapter 6, Theorem 48.3).

Definition 4.33. Given a topological space X, its cohomology ring H∗(X;R) is the graded
ring

⊕
p≥0H

p(X;R) equipped with the multiplication operation^ induced by the operations
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^ : Hp(X;R)×Hq(X;R)→ Hp+q(X;R) for all p, q ≥ 0.1 An element ω ∈ Hp(X;R) is said
to be of degree (or dimension) p, and we write p = deg(ω).

Although the cup product is not commutative in general, it is skew-commutative in the
following sense.

Proposition 4.42. For all ω ∈ Hp(X;R) and all η ∈ Hq(X;R), we have

ω ^ η = (−1)pq(η ^ ω).

The proof of Proposition 4.42 is more complicated than the proofs of the previous propo-
sitions. It can be found in Hatcher [31] (Chapter 3, Section 2, Theorem 3.14). Another way
to prove Proposition 4.42 is to first define the notion of cross-product and to define the cup
product in terms of the cross-product. This is the approach followed by Bredon [7] (Chapter
VI, Sections 3 and 4), and Spanier [59] (Chapter 5, Section 6).

The cohomology ring of most common spaces can be determined explicitly, but in some
cases requires more machinery (such as Poincaré duality). Let us mention four examples.

Example 4.2. In the case of the sphere Sn, the cohomology ring H∗(Sn;R) is the graded
ring generated by one element α of degree n subject to the single relation α2 = 0.

The cohomology ring H∗(T n;R) of the n-torus T n (with T n = S1 × · · · × S1 n times) is
isomorphic to the exterior algebra

∧
Rn, with n-generators α1, . . . , αn of degree 1 satisfying

the relations αiαj = −αjαi for all i 6= j and α2
i = 0.

The cohomology ring H∗(RPn,Z/2Z) of real projective space RPn with respect to R =
Z/2Z is isomorphic to the truncated polynomial ring Z/2Z[α]/(αn+1), with α an element of
degree 1. It is also possible to determine the cohomology ring H∗(RPn,Z), but it is more
complicated; see Hatcher [31] (Chapter 3, Theorem 3.12, and before Example 3.13).

The cohomology ring H∗(CPn,Z) of complex projective space CPn with respect to R = Z
is isomorphic to the truncated polynomial ring Z[α]/(αn+1), with α an element of degree 2;
see Hatcher [31] (Chapter 3, Theorem 3.12).

The cup product can be generalized in various ways. Here is a first generalization.

Definition 4.34. The cup product

^ : Sp(X;R)× Sq(X;G)→ Sp+q(X;G)

where G is any R-module, using the exact same formula

(c ^ d)(σ) = c(σ ◦ λp)d(σ ◦ ρq)

with c ∈ Sp(X;R) and d ∈ Sq(X;G), for all singular simplices σ ∈ S∆p+q(X).

1To be very precise, we have a family of multiplications ^p,q : Hp(X;R)×Hq(X;R)→ Hp+q(X;R), but
this notation is too heavy and never used.
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Since c(σ ◦λp) ∈ R and d(σ ◦ρq) ∈ G, their product is in G so the above definition makes
sense.

The formula

δ(c ^ d) = (δc) ^ d+ (−1)pc ^ (δd)

of Proposition 4.40 still holds, but associativity only holds in a restricted fashion. Still, we
obtain a cup product

^ : Hp(X;R)×Hq(X;G)→ Hp+q(X;G)

A second generalization if a version of the cup product for relative cohomology,

^ : Sp(X,A;R)× Sq(X;A,G)→ Sp+q(X;G)

where G is any R-module, using the exact same formula

(c ^ d)(σ) = c(σ ◦ λp)d(σ ◦ ρq)

as before. One has to check that the above formula yields an absolute cocycle in Sp+q(X;G),
which is left as an exercise. The above cup product induces a cup product

^ : Hp(X,A;R)×Hq(X;A,G)→ Hp+q(X;G).

Another generalization involves relative cohomology. For example, if A and B are open
subset of a manifold X, there is a well-defined cup product

^ : Hp(X,A;R)×Hq(X,B;R)→ Hp+q(X,A ∪B;R);

see Hatcher [31] (Chapter 3, Section 3.2) and Milnor and Stasheff [45] (Appendix A, Pages
264–265).

There are a number of interesting applications of the cup product but we will not go into
this here, and instead refer the reader to Hatcher [31] (Chapter 3, Section 3.2), Bredon [7]
(Chapter VI), and Spanier [59] (Chapter 5).

4.11 Problems

Problem 4.1. Prove Proposition 4.1.

Problem 4.2. Prove Proposition 4.3.

Problem 4.3. Prove the details of the proof of Proposition 4.7.
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Problem 4.4. Prove that for any topological space X, we have

Hi(X × Sn;R) ∼= Hi(X;R)⊕Hi−n(X;R)

for all i, n ≥ 0 (recall that Hj(X;R) = (0) for j < 0).

Hint . First prove that

Hi(X × Sn;R) ∼= Hi(X;R)⊕Hi(X × Sn, X × {x0};R),

Hi(X × Sn, X × {x0};R) ∼= Hi−1(X × Sn−1, X × {x0};R),

using Mayer–Vietoris for the second isomorphism.

Problem 4.5. Prove that for any n-torus T n we have

Hp(T
n;R) = R⊕ · · · ⊕R︸ ︷︷ ︸

(np)

.

Hint . Use Problem 4.4.

Problem 4.6. Prove Proposition 4.39.

Problem 4.7. Prove that the homology of SO(3) is given by

H0(SO(3);Z) = Z
H1(SO(3);Z) = Z/2Z
H2(SO(3);Z) = (0)

H3(SO(3);Z) = Z.

Problem 4.8. (1) Prove that there is a homeomorphism between SO(4) and SO(3)× S3.

(2) Prove that the homology of SO(4) is given by

H0(SO(3);Z) = Z
H1(SO(3);Z) = Z/2Z
H2(SO(3);Z) = (0)

H3(SO(3);Z) = Z⊕ Z
H4(SO(3);Z) = Z/2Z
H5(SO(3);Z) = (0)

H6(SO(3);Z) = Z.

Hint . Use Problem 4.4.



Chapter 5

Simplicial Homology and Cohomology

In Chapter 4 we introduced the singular homology groups and the singular cohomology
groups and presented some of their properties. Historically, singular homology and coho-
mology was developed in the 1940s, starting with a seminal paper of Eilenberg published in
1944 (building up on work by Alexander and Lefschetz among others), but it was not the
first homology theory. Simplicial homology emerged in the early 1920s, more than thirty
years after the publication of Poincaré’s first seminal paper on “analysis situ” in 1892. Until
the early 1930s, homology groups had not been defined and people worked with numerical
invariants such as Betti numbers and torsion numbers. Emmy Noether played a significant
role in introducing homology groups as the main objects of study.

One of the main differences between singular homology and simplicial homology is that
singular homology groups can be assigned to any topological space X, but simplicial ho-
mology groups are defined for certain combinatorial objects called simplicial complexes . A
simplicial complex is a combinatorial object that describes how to construct a space from
simple building blocks generalizing points, line segments, triangles, and tetrahedra, called
simplices . These building blocks are required to be glued in a “nice” way. Thus, simplicial
homology is not as general as singular homology, but it is less abstract and more computa-
tional.

Given a simplicial complex K, we can associate to it a chain complex C∗(K). In order
to define the abelian groups Cp(K) it is necessary to define the notion of oriented simplex.
Then Cp(K) is the free abelian group of oriented p-simplices. We can define boundary maps
∂p : Cp(K)→ Cp−1(K) to obtain a chain complex

0 C0(K)
∂0oo C1(K)

∂1oo · · ·oo Cp−1(K)
∂p−1oo Cp(K)

∂poo · · ·
∂p+1oo

denoted C∗(K). As usual, we let

Zp(K) = Ker ∂p and Bp(K) = Im ∂p+1,

and we define the simplicial homology group Hp(K) as

Hp(K) = Zp(K)/Bp(K).

165
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In the construction above, it is implicitly assumed that the coefficients belong to Z.
We can generalize the construction to obtain simplicial homology modules Hp(K;G) with
coefficients in a module G over a commutative ring with unit R. Basically, the chain complex
C∗(K;G) is obtained by tensoring C∗(K) with G.

We can also define relative simplicial homology groups Hp(K,L;G), where L is a subcom-
plex of K. The zig-zag lemma yields the long exact sequence of relative simplicial homology.

The crucial connection between simplicial homology and singular homology is that the
simplicial homology groups of a simplicial complex K are isomorphic to the singular homol-
ogy groups of the space Kg built up from K, called its geometric realization.

Proving this result takes a fair amount of work and the introduction of various tech-
niques (Mayer–Vietoris sequences, categories with models and acyclic models; see Spanier
[59] Chapter 4). As a consequence, if two simplicial complexes K and K ′ have homeomor-
phic geometric realizations Kg and K ′g, then the simplicial homology groups of K and K ′

are isomorphic. Thus, simplicial homology is subsumed by singular homology, but the more
computational flavor of simplicial homology should not be overlooked as it provides tech-
niques not offered by singular homology. In Chapter 6 we will present another homology
theory based on spaces called CW complexes built up from spherical cells. This homology
theory is also equivalent to singular homology but it is more computational.

The combinatorial nature of a simplicial complex K (of dimension m) allows the definition
of the Euler–Poincaré characteristic χ(K) of K, namely

χ(K) =
m∑

p=0

(−1)p mp,

where mp is the number of p-simplices in K. The remarkable fact is that χ(K) depends only
on the geometric realization of K. Indeed, it can be proven that

χ(K) =
m∑

p=0

(−1)p rank(Hp(K)).

Here it is assumed that the homology groups Hp(K) are defined with coefficients in Z; that
is, they are abelian groups. The above formula makes sense because it can be shown that the
homology groups Hp(K) are finitely generated abelian groups, so by the structure theorem
for finitely abelian groups, the notion of rank is well-defined.

We conclude by defining simplicial cohomology and relative simplicial cohomology. The
cohomology cochain complex

0 δ−1
// C0(K,L;G) δ0

// C1(K,L;G) // · · · δ
p−1
// Cp(K,L;G) δp // Cp+1(K,L;G) δ

p+1
// · · ·

is obtained by applying the functor HomR(−, G) to the chain complex of relative simplicial
homology
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0 C0(K,L;R)
∂0oo C1(K,L;R)

∂1oo · · ·oo Cp−1(K,L;R)
∂p−1oo Cp(K,L;R)

∂poo · · ·
∂p+1oo

As usual, the relative simplicial cohomology modules H(K,L;G) are defined by

Hp(K,L;G) = Ker δp/Im δp−1, p ≥ 0.

If R is a PID, then for any R-module G we have isomorphisms

Hp(K,L;G) ∼= Hp(Kg, Lg;G) for all p ≥ 0

between the relative simplicial cohomology of the pair of complexes (K,L) and the relative
singular cohomology of the pair of geometric realizations (Kg, Lg).

In summary, simplicial cohomology is subsumed by singular cohomology (at least when
R is a PID). Nevertheless, simplicial cohomology is much more amenable to computation
than singular cohomology.

5.1 Simplices and Simplicial Complexes

In this section we define simplicial complexes. A simplicial complex is a combinatorial object
which describes how to build a space by putting together some basic building blocks called
simplices. The building blocks are required to be “glued” nicely, which means roughly that
they can only be glued along faces (a notion to be define rigoroulsy). The building blocks
(simplices) are generalizations of points, line segments, triangles, tetrahedra. Simplices are
very triangular in nature; in fact, they can be defined rigorously as convex hulls of affinely
independent points.

To be on firm grounds we need to review some basics of affine geometry. For more
comprehensive expositions the reader should consult Munkres [48] (Chapter 1, Section 1),
Rotman [51] (Chapter 2), or Gallier [19] (Chapter 2). The basic idea is that an affine space
is a vector space without a prescribed origin. So properties of affine spaces are invariant not
only under linear maps but also under translations. When we view Rn as an affine space we
often refer to the vectors in Rn as points .

Definition 5.1. Given n+1 points, a0, a1, . . . , an ∈ Rm, these points are affinely independent
iff the n vectors, (a1 − a0 . . . , an − a0), are linearly independent.

Note that Munkres uses the terminology geometrically independent instead of affinely
independent.

Definition 5.2. Given any sequence of n points a1, . . . , an in Rm, an affine combination of
these points is a linear combination

λ1a1 + · · ·+ λnan,
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with λi ∈ R, and with the restriction that

λ1 + · · ·+ λn = 1. (∗)

Condition (∗) ensures that an affine combination does not depend on the choice of an
origin.

Definition 5.3. An affine combination is a convex combination if the scalars λi satisfy the
extra conditions λi ≥ 0, in addition to λ1 + · · ·+ λn = 1.

Definition 5.4. A function f : Rn → Rm is affine if f preserves affine combinations, that
is,

f(λ1a1 + · · ·+ λpap) = λ1f(a1) + · · ·+ λpf(ap),

for all a1, . . . , ap ∈ Rn and all λ1, . . . , λp ∈ R with λ1 + · · ·+ λp = 1.

A simplex is just the convex hull of a finite number of affinely independent points, but
we also need to define faces, the boundary, and the interior of a simplex.

Definition 5.5. Given any n+1 affinely independent points, a0, . . . , an in Rm, the n-simplex
(or simplex) σ defined by a0, . . . , an is the convex hull of the points a0, . . . , an, that is, the
set of all convex combinations λ0a0 + · · · + λnan, where λ0 + · · · + λn = 1, and λi ≥ 0 for
all i, 0 ≤ i ≤ n. The scalars λ0, . . . , λn are called barycentric coordinates . We call n the
dimension of the n-simplex σ, and the points a0, . . . , an are the vertices of σ.

Given any subset {ai0 , . . . , aik} of {a0, . . . , an} (where 0 ≤ k ≤ n), the k-simplex gen-
erated by ai0 , . . . , aik is called a face of σ. A face s of σ is a proper face if s 6= σ (we
agree that the empty set is a face of any simplex). For any vertex ai, the face generated by
a0, . . . , ai−1, ai+1, . . . , an (i.e., omitting ai) is called the face opposite ai. Every face which is
a (n− 1)-simplex is called a boundary face.

The union of the boundary faces is the boundary of σ, denoted as ∂σ, and the complement

of ∂σ in σ is the interior
◦
σ = σ − ∂σ of σ. The interior

◦
σ of σ is sometimes called an open

simplex .

It should be noted that for a 0-simplex consisting of a single point {a0}, ∂{a0} = ∅, and
◦
{a0}= {a0}. Of course, a 0-simplex is a single point, a 1-simplex is the line segment (a0, a1),
a 2-simplex is a triangle (a0, a1, a2) (with its interior), and a 3-simplex is a tetrahedron
(a0, a1, a2, a3) (with its interior), as illustrated in Figure 5.1.

We now state a number of properties of simplices whose proofs are left as an exercise.
Clearly, a point x belongs to the boundary ∂σ of σ iff at least one of its barycentric coordi-

nates (λ0, . . . , λn) is zero, and a point x belongs to the interior
◦
σ of σ iff all of its barycentric

coordinates (λ0, . . . , λn) are positive, i.e., λi > 0 for all i, 0 ≤ i ≤ n. Then for every x ∈ σ,

there is a unique face s such that x ∈ ◦s, the face generated by those points ai for which
λi > 0, where (λ0, . . . , λn) are the barycentric coordinates of x.
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Figure 5.1: Examples of simplices.

A simplex σ is convex, arcwise connected, compact, and closed. The interior
◦
σ of a

simplex is convex, arwise connected, open, and σ is the closure of
◦
σ.

We now need to put simplices together to form more complex shapes. We define ab-
stract simplicial complexes and their geometric realizations. This seems easier than defining
simplicial complexes directly, as for example, in Munkres [48].

Definition 5.6. An abstract simplicial complex (for short simplicial complex ) is a pair,
K = (V,S), consisting of a (finite or infinite) nonempty set V of vertices , together with a
family S of finite subsets of V called abstract simplices (for short simplices), and satisfying
the following conditions:

(A1) Every x ∈ V belongs to at least one and at most a finite number of simplices in S.

(A2) Every subset of a simplex σ ∈ S is also a simplex in S.

If σ ∈ S is a nonempty simplex of n + 1 vertices, then its dimension is n, and it is called
an n-simplex . A 0-simplex {x} is identified with the vertex x ∈ V . The dimension of an
abstract complex is the maximum dimension of its simplices if finite, and ∞ otherwise.

We will often use the abbreviation complex for abstract simplicial complex and simplex
for abstract simplex. Also, given a simplex s ∈ S, we will often use the notation s ∈ K.

The purpose of Condition (A1) is to insure that the geometric realization of a complex
is locally compact. Condition (A2) is the technical way of defining faces.

Recall that given any set I, the real vector space R(I) freely generated by I is defined as
the subset of the Cartesian product RI consisting of families (λi)i∈I of elements of R with
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finite support, which means that λi = 0 for all but finitely many indices i ∈ I (where RI

denotes the set of all functions from I to R). Then every abstract complex (V,S) has a
geometric realization as a topological subspace of the normed vector space R(V ) with the
norm

‖(λv)v∈V ‖ =
(∑

v∈V
λ2
v

)1/2

.

Since λv = 0 for all but finitely many indices v ∈ V this sum is well defined.

Definition 5.7. Given a simplicial complex, K = (V,S), its geometric realization (also
called the polytope of K = (V,S)) is the subspace Kg of R(V ) defined as follows: Kg is the
set of all families λ = (λa)a∈V with finite support, such that:

(B1) λa ≥ 0, for all a ∈ V ;

(B2) The set {a ∈ V | λa > 0} is a simplex in S;

(B3)
∑

a∈V λa = 1.

The term polyhedron is sometimes used instead of polytope, and the notation |K| is also
used instead of Kg.

For every simplex s ∈ S, we obtain a subset sg of Kg by considering those families
λ = (λa)a∈V in Kg such that λa = 0 for all a /∈ s. In particular, every vertex v ∈ V is
realized as the point vg ∈ Kg whose coordinates (λa)a∈V are given by λv = 1 and λa = 0 for
all a 6= v. We sometimes abuse notation and denote vg by v. By (B2), we note that

Kg =
⋃

s∈S
sg.

It is also clear that for every n-simplex s, its geometric realization sg can be identified with
an n-simplex in Rn.

Figure 5.2 illustrates the definition of a complex, where V = {v1, v2, v3, v4} and S =
{∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}, {v2, v4}, {v1, v2, v3}, {v2, v3, v4}}.
For clarity, the two triangles (2-simplices) are drawn as disjoint objects even though they
share the common edge, (v2, v3) (a 1-simplex) and similarly for the edges that meet at some
common vertex.

The geometric realization of the complex from Figure 5.2 is shown in Figure 5.3. Note
that technically these polyhedra live in R4, so we are displaying homeomorphic copies. The
same is true for the figures shown below.

Some collections of simplices violating Condition (A2) of Definition 5.6 are shown in
Figure 5.4. In Figure 5.4(i), V = {v1, v2, v3, v4, v5, v6, w1, w2, w3, w4} and S contains the two
2-simplices {v1, v2, v3}, {v4, v5, v6}, neither of which intersect at along an edge or at a vertex
of either triangle. In other words, S does not contain the 2-simplex {w1, w2, w3}, a violation of
Condition (A2). In Figure 5.4(ii), V = {v1, v2, v3, v4, v5, v6} and S = {∅, {v1}, {v2}, {v3}, {v4},
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Figure 5.2: A set of simplices forming a complex. 1

v1
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v4

Figure 5.3: The geometric realization of the complex of Figure 5.2.

{v5}, {v6}, {v1, v2}, {v2, v3}, {v1, v3}, {v4, v5}, {v5, v6}, {v4, v6}, {v1, v2, v3}, {v4, v5, v6}}. Note
that the two 2-simplices meet along an edge {v3, v4} which is not contained in S, another
violation of Condition (A2). In Figure 5.4(iii), V = {v1, v2, v3, v4} and S contains the two
2-simplices {v1, v2, v3}, {v2, v3, v4} but does not contain the edge {v1, v2} and the vertex v1.

Some geometric realizations of “legal” complexes are shown in Figure 5.5.

Note that distinct complexes may have the same geometric realization. In fact, all the
complexes obtained by subdividing the simplices of a given complex yield the same geometric
realization (more exactly, homeomorphic copies).

Definition 5.8. Given a vertex a ∈ V , we define the star of a, denoted as St a, as the finite

union of the interiors
◦
sg of the geometric simplices sg such that a ∈ s. Clearly, a ∈ Sta. The

closed star of a, denoted as St a, is the finite union of the geometric simplices sg such that
a ∈ s. See Figure 5.6

We define a topology on Kg by defining a subset F of Kg to be closed if F ∩sg is closed in
sg for all s ∈ S for the topology induced by R(V ). It is immediately verified that the axioms
of a topological space hold.

Definition 5.9. A topological space X is triangulable if it is homeomorphic to the geometric
realization Kg (with the above topology) of some simplicial complex K.



172 CHAPTER 5. SIMPLICIAL HOMOLOGY AND COHOMOLOGY
1

v1

v1

v1

v2v2

v2

v3
v3 v3

v4v4

v4

v5

v5

v6

v6

w1

w2

w3
w4

i. ii. iii.

Figure 5.4: Collections of simplices not forming a complex. 1

Figure 5.5: Examples of geometric realizations of complexes.

Actually, we can find a nice basis for this topology, as shown in the next proposition.

Proposition 5.1. The family of subsets U of Kg such that U ∩ sg = ∅ for all but finitely
many s ∈ S, and such that U ∩ sg is open in sg when U ∩ sg 6= ∅, forms a basis of open sets
for the topology of Kg. For any a ∈ V , the star St a of a is open, the closed star St a is the
closure of St a and is compact, and both St a and St a are arcwise connected. The space Kg

is locally compact, locally arcwise connected, and Hausdorff.

We also observe that for any two simplices s1, s2 of S, we have

(s1 ∩ s2)g = (s1)g ∩ (s2)g.

We say that a complex K = (V,S) is connected if it is not the union of two complexes
(V1,S1) and (V2,S2), where V = V1 ∪ V2 with V1 and V2 disjoint, and S = S1 ∪ S2 with S1

and S2 disjoint. The next proposition shows that a connected complex contains countably
many simplices.

Proposition 5.2. If K = (V,S) is a connected complex, then S and V are countable.
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a

St a
St a

a a

Figure 5.6: Illustrations of St a and St a.
1

d

d d

a b

c

Figure 5.7: A triangulation of the sphere.

Next we give several examples of simplicial complexes whose geometric realizations are
classical surfaces. These complexes have additional properties that make them triangulations
but we will not discuss triangulations here. Figure 5.7 shows a triangulation of the sphere.

The geometric realization of the above triangulation is obtained by pasting together the
pairs of edges labeled (a, d), (b, d), (c, d). The geometric realization is a tetrahedron. See
Figure 5.8.

a b

c

d

Figure 5.8: The geometric realization of Figure 5.7.
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Figure 5.9 shows a triangulation of a surface called a torus . The geometric realization
of this triangulation is obtained by pasting together the pairs of edges labeled (a, d), (d, e),
(e, a), and the pairs of edges labeled (a, b), (b, c), (c, a). See Figure 5.10.

1
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Figure 5.9: A triangulation of the torus.
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Figure 5.10: Visualization of the torus with three spiral curves.
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Figure 5.11 shows a triangulation of a surface called the projective plane and denoted by
RP2. The geometric realization of the above triangulation is obtained by pasting together
the pairs of edges labeled (a, f), (f, e), (e, d), and the pairs of edges labeled (a, b), (b, c),
(c, d). This time, the gluing requires a “twist”, since the the paired edges have opposite
orientation. Visualizing this surface in R3 is actually nontrivial.

1

d

e

f

a

c

j

g

b

b

k

h

c

a

f

e

d

Figure 5.11: A triangulation of the projective plane.

Figure 5.12 shows a triangulation of a surface called the Klein bottle. The geometric
realization of the above triangulation is obtained by pasting together the pairs of edges
labeled (a, d), (d, e), (e, a), and the pairs of edges labeled (a, b), (b, c), (c, a). Again, some of
the gluing requires a “twist”, since some paired edges have opposite orientation. 1

a

e

d

a

b

i

f

b

c

j

g

c

a

d

e

a

Figure 5.12: A triangulation of the Klein bottle.

Visualizing this surface in R3 is not too difficult, but self-intersection cannnot be avoided.
See Figure 5.13.
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Step 1: Form tapered cylinder.

Step 2: Wrap around and self intersect

Step 3: Twist handle to correctly align and attach

How to visualize the Klein Bottle 

Figure 5.13: Visualization of a Klein Bottle in R3.

The notion of subcomplex is defined as follows.

Definition 5.10. Given a simplicial complex K = (V,S), a subcomplex L of K is a simplicial
complex L = (VL,SL) such that VL ⊆ V and SL ⊆ S

Finally, the notion of map between simplicial complexes is defined as follows.

Definition 5.11. Given two simplicial complexes and K1 = (V1,S1) and K2 = (V2,S2),
a simplicial map f : K1 → K2 is a function f : V1 → V2 such that whenever {v1, . . . , vk}
is a simplex in S1, then {f(v1), . . . , f(vk)} is simplex in S2. Note that the f(vi) are not
necessarily distinct. If L1 is a subcomplex of K1 and L2 is a subcomplex of K2, a simplicial
map f : (K1, L1)→ (K2, L2) is a simplicial map f : K1 → K2 which carries every simplex of
L1 to a simplex of L2.

A simplicial map f : K1 → K2 induces a continuous map f̂ : (K1)g → (K2)g, namely the

function f̂ whose restriction to every simplex sg ∈ (K1)g is the unique affine map mapping
vi to f(vi) in (K2)g, where s = {v1, . . . , vk} ∈ S1.
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5.2 Simplicial Homology Groups

In order to define the simplicial homology groups we need to describe how a chain complex
C∗(K), called a simplicial chain complex, is associated to a simplicial complex K. First we
assume that the ring of homology coefficients is R = Z.

Let K = (V,S) be a simplicial complex, for short a complex. The chain complex C∗(K)
associated with K consists of free abelian groups Cp(K) made out of oriented p-simplices.
Every oriented p-simplex σ is assigned a boundary ∂pσ. Technically, this is achieved by
defining homomorphisms,

∂p : Cp(K)→ Cp−1(K),

with the property that ∂p−1 ◦ ∂p = 0. As in the case of singular homology, if we let Zp(K)
be the kernel of ∂p and

Bp(K) = ∂p+1(Cp+1(K))

be the image of ∂p+1 in Cp(K), since ∂p ◦ ∂p+1 = 0, the group Bp(K) is a subgroup of the
group Zp(K), and we define the simplicial homology group Hp(K) as the quotient group

Hp(K) = Zp(K)/Bp(K).

What makes the homology groups of a complex interesting is that they only depend on
the geometric realization Kg of the complex K and not on the various complexes representing
Kg. We will return to this point later.

The first step is to define oriented simplices. Given a complex K = (V,S), recall that an
n-simplex is a subset σ = {α0, . . . , αn} of V that belongs to the family S. Thus, the set σ
corresponds to (n+ 1)! linearly ordered sequences s : {1, 2, . . . , n+ 1} → σ, where each s is a
bijection. We define an equivalence relation on these sequences by saying that two sequences
s1 : {1, 2, . . . , n + 1} → σ and s2 : {1, 2, . . . , n + 1} → σ are equivalent iff π = s−1

2 ◦ s1 is a
permutation of even signature (π is the product of an even number of transpositions).

Definition 5.12. The two equivalence classes associated with a simplex σ are called oriented
simplices , and if σ = {α0, . . . , αn}, we denote the equivalence class of s as [s(1), . . . , s(n+1)],
where s is one of the sequences s : {1, 2, . . . , n + 1} → σ. We also say that the two classes
associated with σ are the orientations of σ.

Two oriented simplices σ1 and σ2 are said to have opposite orientation if they are the two
classes associated with some simplex σ. Given an oriented simplex, σ, we denote the oriented
simplex having the opposite orientation by −σ, with the convention that −(−σ) = σ.

For example, if σ = {a0, a1, a2} is a 2-simplex (a triangle), there are six ordered se-
quences, the sequences 〈a2, a1, a0〉, 〈a1, a0, a2〉, and 〈a0, a2, a1〉, are equivalent, and the se-
quences 〈a0, a1, a2〉, 〈a1, a2, a0〉, and 〈a2, a0, a1〉, are also equivalent. Thus, we have the two
oriented simplices, [a0, a1, a2] and [a2, a1, a0]. We now define p-chains.
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Definition 5.13. Given a complex, K = (V,S), a simplicial p-chain on K is a function c
from the set of oriented p-simplices to Z, such that

(1) c(−σ) = −c(σ), iff σ and −σ have opposite orientation;

(2) c(σ) = 0, for all but finitely many simplices σ.

We define addition of p-chains pointwise, i.e., c1 + c2 is the p-chain such that (c1 + c2)(σ) =
c1(σ) + c2(σ), for every oriented p-simplex σ. The group of simplicial p-chains is denoted by
Cp(K). If p < 0 or p > dim(K), we set Cp(K) = {0}.

To every oriented p-simplex σ is associated an elementary p-chain c, defined such that

c(σ) = 1,

c(−σ) = −1, where −σ is the opposite orientation of σ, and

c(σ′) = 0, for all other oriented simplices σ′.

We will often denote the elementary p-chain associated with the oriented p-simplex σ
also by σ.

The following proposition is obvious, and simply confirms the fact that Cp(K) is indeed
a free abelian group.

Proposition 5.3. For every complex, K = (V,S), for every p, the group Cp(K) is a free
abelian group. For every choice of an orientation for every p-simplex, the corresponding
elementary chains form a basis for Cp(K).

The only point worth elaborating is that except for C0(K), where no choice is involved,
there is no canonical basis for Cp(K) for p ≥ 1, since different choices for the orientations of
the simplices yield different bases.

If there are mp p-simplices in K, the above proposition shows that Cp(K) = Zmp .
As an immediate consequence of Proposition 5.3, for any abelian group G and any func-

tion f mapping the oriented p-simplices of a complex K to G and such that f(−σ) = −f(σ)

for every oriented p-simplex σ, there is a unique homomorphism, f̂ : Cp(K)→ G, extending
f .

We now define the boundary maps ∂p : Cp(K)→ Cp−1(K).

Definition 5.14. Given a complex, K = (V,S), for every oriented p-simplex,

σ = [α0, . . . , αp],

we define the boundary, ∂pσ, of σ by

∂pσ =

p∑

i=0

(−1)i[α0, . . . , α̂i, . . . , αp],
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where [α0, . . . , α̂i, . . . , αp] denotes the oriented (p − 1)-simplex obtained by deleting vertex
αi. The boundary map, ∂p : Cp(K) → Cp−1(K), is the unique homomorphism extending ∂p
on oriented p-simplices. For p ≤ 0, ∂p is the null homomorphism.

One must verify that ∂p(−σ) = −∂pσ, but this is immediate.

If σ = [α0, α1], then
∂1σ = α1 − α0.

If σ = [α0, α1, α2], then

∂2σ = [α1, α2]− [α0, α2] + [α0, α1] = [α1, α2] + [α2, α0] + [α0, α1].

If σ = [α0, α1, α2, α3], then

∂3σ = [α1, α2, α3]− [α0, α2, α3] + [α0, α1, α3]− [α0, α1, α2].

If σ is the chain
σ = [α0, α1] + [α1, α2] + [α2, α3],

shown in Figure 5.14 (a), then

∂1σ = ∂1[α0, α1] + ∂1[α1, α2] + ∂1[α2, α3]

= α1 − α0 + α2 − α1 + α3 − α2

= α3 − α0.

On the other hand, if σ is the closed cycle,

σ = [α0, α1] + [α1, α2] + [α2, α0],

shown in Figure 5.14 (b), then

∂1σ = ∂1[α0, α1] + ∂1[α1, α2] + ∂1[α2, α0]

= α1 − α0 + α2 − α1 + α0 − α2

= 0.

We have the following fundamental property:

Proposition 5.4. For every complex, K = (V,S), for every p, we have ∂p−1 ◦ ∂p = 0.

Proof. For any oriented p-simplex, σ = [α0, . . . , αp], we have

∂p−1 ◦ ∂pσ =

p∑

i=0

(−1)i∂p−1[α0, . . . , α̂i, . . . , αp],

=

p∑

i=0

i−1∑

j=0

(−1)i(−1)j[α0, . . . , α̂j, . . . , α̂i, . . . , αp]

+

p∑

i=0

p∑

j=i+1

(−1)i(−1)j−1[α0, . . . , α̂i, . . . , α̂j, . . . , αp]

= 0.
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α0 α1 α2 α3
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α0 α1
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Figure 5.14: (a) A chain with boundary α3 − α0. (b) A chain with 0 boundary.

The rest of the proof follows from the fact that ∂p : Cp(K)→ Cp−1(K) is the unique homo-
morphism extending ∂p on oriented p-simplices.

Proposition 5.4 shows that the family (Cp(K))p≥0 together with the boundary maps
∂p : Cp(K)→ Cp−1(K) form a chain complex

0 C0(K)
∂0oo C1(K)

∂1oo · · ·oo Cp−1(K)
∂p−1oo Cp(K)

∂poo · · ·
∂p+1oo

denoted C∗(K) called the (oriented) simplicial chain complex associated with the complex
K.

Definition 5.15. Given a complex, K = (V,S), the kernel Ker ∂p of the homomorphism
∂p : Cp(K)→ Cp−1(K) is denoted by Zp(K), and the elements of Zp(K) are called p-cycles .
The image ∂p+1(Cp+1) of the homomorphism ∂p+1 : Cp+1(K)→ Cp(K) is denoted by Bp(K),
and the elements of Bp(K) are called p-boundaries . The p-th (oriented) simplicial homology
group Hp(K) is the quotient group

Hp(K) = Zp(K)/Bp(K).

Two p-chains c, c′ are said to be homologous if there is some (p + 1)-chain d such that
c = c′ + ∂p+1d.

We will often omit the subscript p in ∂p.

If K = (V,S) is a finite-dimensional complex, as each group Cp(K) is free and finitely
generated, the homology groups Hp(K) are all finitely generated.

Example 5.1. Consider the simplicial complex K1 displayed in Figure 5.15. This complex
consists of 6 vertices {v1, . . . , v6} and 8 oriented edges (1-simplices)

a1 = [v2, v1] a2 = [v1, v4] b1 = [v2, v3] b2 = [v3, v4]

c1 = [v2, v5] c2 = [v5, v4] d1 = [v2, v6] d2 = [v6, v4].
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Figure 5.15: A 1-dimensional simplicial complex.

Since this complex is connected, we claim that

H0(K1) = Z.

Indeed, given any two vertices, u, u′ in K1, there is a path

π = [u0, u1], [u1, u2], . . . , [un−1, un],

where each ui is a vertex in K1, with u0 = u and un = u′, and we have

∂1(π) = un − u0 = u′ − u,

which shows that u and u′ are equivalent. Consequently, any 0-chain
∑
nivi is equivalent to(∑

ni
)
v0, which proves that

H0(K1) = Z.

If we look at the 1-cycles in C1(K1), we observe that they are not all independent, but
it is not hard to see that the three cycles

a1 + a2 − b1 − b2 b1 + b2 − c1 − c2 c1 + c2 − d1 − d2

form a basis of C1(K1). It follows that

H1(K1) = Ker ∂1/Im ∂2 = Ker ∂1
∼= Z⊕ Z⊕ Z.

This reflects the fact that K1 has three one-dimensional holes.
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Example 5.2. Next consider the 2-dimensional simplicial complex K2 displayed in Figure
5.16. This complex consists of 6 vertices {v1, . . . , v6}, 9 oriented edges (1-simplices)

a1 = [v2, v1] a2 = [v1, v4] b1 = [v2, v3] b2 = [v3, v4]

c1 = [v2, v5] c2 = [v5, v4] d1 = [v2, v6] d2 = [v6, v4]

e1 = [v1, v3],

and two oriented triangles (2-simplices)

A1 = [v2, v1, v3] A2 = [v1, v4, v3].

We have

∂2A1 = a1 + e1 − b1 ∂2A2 = a2 − b2 − e1.

It follows that
∂2(A1 + A2) = a1 + a2 − b1 − b2,

and A1 + A2 is a diamond with boundary a1 + a2 − b1 − b2. Since there are no 2-cycles,

v1 v3

v2

v4

v5 v6

a1

a2

b1

b2

c1

c2

d1

d2

e1

Figure 5.16: A 2-dimensional simplicial complex with a diamond.

H2(K2) = 0.

In order to compute
H1(K2) = Ker ∂1/Im ∂2,

we observe that the cycles in Im ∂2 belong to the diamond A1 +A2, and so the only cycles in
C1(K2) whose equivalence class is nonzero must contain either c1 + c2 or d1 + d2. Then, any
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two cycles containing c1 + c2 (resp. d1 +d2) and passing through A1 +A2 are equivalent. For
example, the cycles a1 + a2− c1− c2 and b1 + b2− c1− c2 are equivalent since their difference

a1 + a2 − c1 − c2 − (b1 + b2 − c1 − c2) = a1 + a2 − b1 − b2

is the boundary ∂2(A1 +A2). Similarly, the cycles a1 + e1 + b2− c1− c2 and a1 + a2− c1− c2

are equivalent since their difference is

a1 + e1 + b2 − c1 − c2 − (a1 + a2 − c1 − c2) = e1 + b2 − a2 = ∂2(−A2).

Generalizing this argument, we can show that every cycle is equivalent to either a multiple
of a1 + a2 − c1 − c2 or a multiple of a1 + a2 − d1 − d2, and thus

H1(K2) ∼= Z⊕ Z,

which reflects the fact that K2 has two one-dimensional holes. Observe that one of the three
holes of the complex K1 has been filled in by the diamond A1 + A2. Since K2 is connected,
H0(K2) = Z.

Example 5.3. Now consider the 2-dimensional simplicial complex K3 displayed in Figure
5.17. This complex consists of 8 vertices {v1, . . . , v8}, 16 oriented edges (1-simplices)

a1 = [v5, v1] a2 = [v1, v6] b1 = [v5, v3] b2 = [v3, v6]

c1 = [v5, v7] c2 = [v7, v6] d1 = [v5, v8] d2 = [v8, v6]

e1 = [v1, v2] e2 = [v2, v3] f1 = [v1, v4] f2 = [v4, v3]

g1 = [v5, v2] g2 = [v2, v6] h1 = [v5, v4] h2 = [v4, v6],

and 8 oriented triangles (2-simplices)

A1 = [v5, v1, v2] A2 = [v5, v2, v3] A3 = [v1, v6, v2] A4 = [v2, v6, v3]

B1 = [v5, v1, v4] B2 = [v5, v4, v3] B3 = [v1, v6, v4] B4 = [v4, v6, v3].

It is easy to check that

∂2A1 = a1 + e1 − g1 ∂2A2 = g1 + e2 − b1

∂2A3 = a2 − g2 − e1 ∂2A4 = g2 − b2 − e2

∂2B1 = a1 + f1 − h1 ∂2B2 = h1 + f2 − b1

∂2B3 = a2 − h2 − f1 ∂2B4 = h2 − b2 − f2.

If we let
A = A1 + A2 + A3 + A4 and B = B1 +B2 +B3 +B4,

then we get
∂2A = ∂2B = a1 + a2 − b1 − b2,
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Figure 5.17: A 2-dimensional simplicial complex with an octahedron.

and thus,

∂2(B − A) = 0.

Thus, D = B − A is a 2-chain, and as we can see, it represents an octahedron. Observe
that the chain group C2(K3) is the eight-dimensional abelian group consisting of all linear
combinations of Ais and Bjs, and the fact that ∂2(B −A) = 0 means that the kernel of the
boundary map

∂2 : C2(K3)→ C1(K3)

is nontrivial. It follows that B − A generates the homology group

H2(K3) = Ker ∂2
∼= Z.

This reflects the fact that K3 has a single two-dimenensional hole. The reader should check
that as before,

H1(K3) = Ker ∂1/Im ∂2
∼= Z⊕ Z.

Intuitively, this is because every cycle outside of the ocahedron D must contain either c1 +c2

or d1 + d2, and the “rest” of the cycle belongs to D. It follows that any two distinct cycles
involving c1 + c2 (resp. d1 + d2) can be deformed into each other by “sliding” over D. The
complex K3 also has two one-dimensional holes. Since K3 is connected, H0(K3) = Z.

Example 5.4. Finally consider the 3-dimensional simplicial complex K4 displayed in Figure
5.18 obtained from K3 by adding the oriented edge

k = [v2, v4]

and the four oriented tetrahedra (3-simplices)
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Figure 5.18: A 3-dimensional simplicial complex with a solid octahedron.

T1 = [v1, v2, v4, v6] T2 = [v3, v4, v2, v6]

T3 = [v1, v4, v2, v5] T4 = [v3, v2, v4, v5].

We get

∂3T1 = [v2, v4, v6]− [v1, v4, v6] + [v1, v2, v6]− [v1, v2, v4]

∂3T2 = [v4, v2, v6]− [v3, v2, v6] + [v3, v4, v6]− [v3, v4, v2]

∂3T3 = [v4, v2, v5]− [v1, v2, v5] + [v1, v4, v5]− [v1, v4, v2]

∂3T4 = [v2, v4, v5]− [v3, v4, v5] + [v3, v2, v5]− [v3, v2, v4].

Observe that

∂(T1 + T2 + T3 + T4) = −[v1, v4, v6] + [v1, v2, v6]− [v3, v2, v6] + [v3, v4, v6]

− [v1, v2, v5] + [v1, v4, v5]− [v3, v4, v5] + [v3, v2, v5]

= B3 − A3 − A4 +B4 − A1 +B1 +B2 − A2

= B1 +B2 +B3 +B4 − (A1 + A2 + A3 + A4)

= B − A.

It follows that
∂3 : C3(K4)→ C2(K4)

maps the solid octahedron T = T1 + T2 + T3 + T4 to B−A, and since Ker ∂2 is generated by
B − A, we get

H2(K4) = Ker ∂2/Im ∂3 = 0.

We also have
H3(K4) = Ker ∂3/Im ∂3 = Ker ∂3 = 0,
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and as before,
H0(K4) = Z and H1(K4) = Z⊕ Z

The complex K4 still has two one-dimensional holes but the two-dimensional hole of K3 has
been filled up by the solid octahedron.

Example 5.5. For another example of a 2-dimensional simplicial complex with a hole (an
annulus in the plane) consider the complex K5 shown in Figure 5.19. This complex consists

a1 a2 a3

b1

b2

b3

c1 c2 c3

d1

d2

d3

e

f

g

h

Figure 5.19: A 2-dimensional simplicial complex with a hole.

of 16 vertices, 32 edges (1-simplicies) oriented as shown in the Figure 5.19, and 16 triangles
(2-simplicies) oriented according to the direction of their boundary edges. The boundary of
K5 is

∂2(K5) = a1 + a2 + a3 + b1 + b2 + b3 + c1 + c2 + c3 + d1 + d2 + d3 + e+ f + g + h.

As a consequence, the outer boundary a1 + a2 + a3 + b1 + b2 + b3 + c1 + c2 + c3 + d1 + d2 + d3

is equivalent to the inner boundary −(e+ f + g+h). It follows that all cycles in C2(K5) not
equivalent to zero are equivalent to a multiple of e+ f + g + h, and thus

H1(K5) = Z,

indicating that K5 has a single one-dimensional hole. Since K5 is connected,
H0(K5) = Z, and H2(K5) = 0 since Ker ∂2 = 0.

As we said in the introduction, the simplicial homology groups have a computational
flavor, and this is one of the main reasons why they are attractive and useful. In fact, if K
is any finite simplicial complex, there is an algorithm for computing the simplicial homology
groups of K. This algorithm relies on a matrix reduction method (The Smith normal form)
involving some simple row operations reminiscent of row-echelon reduction. This algorithm
is described in detail in Munkres [48] (Chapter 1, Section 11) and Rotman [51] (Chapter 7).
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5.3 Simplicial and Relative Homology with

G-Coefficients

The generalization of simplicial homology to coefficients in any R-module G is immediate,
where R is any commutative ring with an identity element. Simply define the chain group
Cp(K;G) as the R-module of functions c from the set of oriented p-simplices to G, such that

(1) c(−σ) = −c(σ), iff σ and −σ have opposite orientation;

(2) c(σ) = 0, for all but finitely many simplices σ.

A p-chain in Cp(K;G) is a “vector-valued” formal finite linear combination
∑

i

σigi,

with gi ∈ G and σi an oriented p-simplex. Since by Proposition 5.3, the abelian group
Cp(K) (a Z-module) is free with basis any choice of a set of oriented p-simplices, we have an
isomorphism

Cp(K)⊗Z G ∼=
⊕

[σ]∈C∆p (K)

G ∼= Cp(K;G),

where C∆p(K) denotes the set of equivalence classes of oriented p-simplices. The Z-module
Cp(K;G) is made into an R-module by setting

α ·

(∑

i

σigi,

)
=
∑

i

σi(αgi), α ∈ R.

Consequently, we can define the complex C∗(K;G) as the complex C∗(K)⊗ZG obtained
by tensoring the complex C∗(K) with G (over the ring Z) shown below:

0 C0(K)⊗Z G
∂0⊗idoo C1(K)⊗Z G

∂1⊗idoo · · ·oo Cp(K)⊗Z G · · · .
∂p⊗idoo

Since by definition, Cp(K;G) = Cp(K)⊗Z G, we have the homology complex

0 C0(K;G)
∂0⊗idoo C1(K;G)

∂1⊗idoo · · ·oo Cp(K;G)
∂p⊗idoo · · ·oo

denoted (C∗(K;G), ∂∗ ⊗ id). When G = R, each module Cp(K;R) is a free R-module.

Definition 5.16. The simplicial homology groups Hp(K;G) are the homology groups (really
R-modules) of the simplicial chain complex (C∗(K;G), ∂∗ ⊗ id).

Definition 5.17. Given two simplicial complexes K1 and K2, a simplicial map f : K1 → K2

induces a homomorphism f],p : Cp(K1;G) → Cp(K2;G) between the modules of oriented
p-chains defined as follows: For any p-simplex {v0, . . . , vp} in K1, we set

f]([v0, . . . , vp]) =

{
[f(v0), . . . , f(vp)] if the f(vi) are pairwise distinct

0 otherwise.
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It is easy to check that the f],p commute with the boundary maps, so f] = (f],p)p≥0 is a
chain map between the chain complexes C∗(K1;G) and C∗(K2;G) which induces homomor-
phisms

f∗,p : Hp(K1;G)→ Hp(K2;G) for all p ≥ 0.

This assignment is functorial; see Munkres [48] (Chapter I, Section 12).

The relative simplicial homology groups are also easily defined (by analogy with relative
singular homology).

Definition 5.18. Given a complex K and a subcomplex L of K, we define the relative
simplicial chain complex C∗(K,L;Z) by

Cp(K,L;Z) = Cp(K;Z)/Cp(L;Z).

As in the case of singular homology, Cp(K,L;Z) is a free abelian group, because it has a
basis consisting of the cosets of the form

σ + Cp(L;Z),

where σ is an oriented p-simplex of K that is not in L. We obtain the relative simplicial
homology groups Hp(K,L;Z). We define the chain complex C∗(K,L;G) as C∗(K,L;Z)⊗ZG,
and we obtain relative simplicial homology groups Hp(K,L;G) with coefficients in G.

Given two pairs of simplicial complexes (K1, L1) and (K2, L2), where L1 is a subcomplex
of K1 and L2 is a subcomplex of K2, as in the absolute case a simplicial map f : (K1, L1)→
(K2, L2) induces a homomorphism f],p : Cp(K1, L1;G)→ Cp(K2, L2;G) between the modules
of oriented p-chains, and thus homomorphisms

f∗,p : Hp(K1, L1;G)→ Hp(K2, L2;G) for all p ≥ 0.

Again, this assignment is functorial.

A version of the excision axiom holds for relative simplicial homology. The following
result is Theorem 9.1 in Munkres [48] (Chapter I, Section 9).

Theorem 5.5. Let K be a complex. Let K0 be a subcomplex of K and let U be an open
subset contained in (K0)g, such that Kg − U is the geometric realization of a subcomplex L
of K. Then inclusion induces isomorphisms

Hp(L,L0) ∼= Hp(K,K0), p ≥ 0.

A slightly more general version of Theorem 5.5 holds for triangulable spaces; see Theorem
27.2 in Munkres [48] (Chapter III, Section 27).

The following version of the homotopy axiom holds, combining Theorem 19.2 and The-
orem 19.5 in Munkres [48] (Chapter II, Section 19).
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Theorem 5.6. Let K and L be two complexes. If f, g : Kg → Lg are homotopic maps and
if Hp(f) : Hp(K) → Hp(L) and Hp(g) : Hp(K) → Hp(L) are the induced homomorphisms,
then Hp(f) = Hp(g) for all p ≥ 0. In particular, if Kg and Lg are homotopy equivalent, then
Hp(K) ∼= Hp(L) for all p ≥ 0.

Theorem 5.6 also holds for reduced simplicial homology and for relative simplicial ho-
mology; see Theorem 19.3 in Munkres [48] (Chapter II, Section 19).

We also have a long exact sequence of homology of a pair (K0, K); see Theorem 23.3 in
Munkres [48] (Chapter III, Section 23).

Theorem 5.7. (Long Exact Sequence of Relative Simplicial Homology) For any pair (K0, K)
of complexes with K0 a subcomplex of K, we have the following long exact sequence of
homology groups

· · · // Hp+2(K,K0)
∂∗p+2

// Hp+1(K0)
i∗ // Hp+1(K)

j∗ // Hp+1(K,K0)
∂∗p+1

// Hp(K0)
i∗ // Hp(K)

j∗ // Hp(K,K0)
∂∗p

// Hp−1(K0) // · · ·

ending in
H0(K0) // H0(K) // H0(K,K0) // 0.

Theorem 5.5, Theorem 5.6 and Theorem 5.7 also hold for simplicial homology with coef-
ficients in an R-module G; see Munkres [48], Chapter 6, Section 51.

5.4 Equivalence of Simplicial and Singular Homology

Simplicial homology assigns homology groups to a simplicial complex K, not to a topological
space. We can view the groups Hp(K) as groups assigned to the geometric realization Kg of
K, which is a space. Let us temporarily denote these groups by H∆

p (Kg). Now the following
question arises.

If K and K ′ are two simplicial complexes whose geometric realizations Kg and K ′g are
homeomorphic, are the groups H∆

p (Kg) and H∆
p (K ′g) isomorphic, that is, are the groups

Hp(K) and Hp(K
′) isomorphic?

If the answer to this question was no, then the simplicial homology groups would not be
useful objects for classifying spaces up to homeomorphism, but fortunately the answer is yes.
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However, the proof of this fact is quite involved. This can be proven directly as in Munkres
[48] (Chapter II), or by proving that the simplicial homology group Hp(K) is isomorphic to
the singular homology group Hp(Kg) of the geometric realization of K. We will sketch this
second approach. Unfortunately, the proof of this isomorphism also requires a lot of work.

In order to prove the equivalence of simplicial homology with singular homology we
introduce a variant of the simplicial homology groups called ordered simplicial homology
groups .

Definition 5.19. Let K = (V,S) be a simplicial complex. An ordered p-simplex of K is a
(p + 1)-tuple (v0, . . . , vp) of vertices in V , where the vi are vertices of some simplex σ of K
but need not be distinct .

For example, if {v, w} is a 1-simplex, then (v, w, w, v) is an ordered 3-simplex.

Let C ′p(K;R) be the free R-module generated by the ordered p-simplices, called the group
of ordered p-chains , and define the boundary map ∂′p : C ′p(K;R)→ C ′p−1(K;R) by

∂′p(v0, . . . , vp) =

p∑

i=0

(−1)i(v0, . . . , v̂i, . . . , vp),

where (v0, . . . , v̂i, . . . , vp) denotes the ordered (p− 1)-simplex obtained by deleting vertex vi.

It is easily checked that ∂′p ◦ ∂′p+1 = 0, so we obtain a chain complex C ′∗(K;R) called
the ordered simplicial chain complex of K. This is a huge and redundant complex, but it is
useful to prove the equivalence of simplicial homology and singular homology.

Given a simplicial complex K and a subcomplex L, the relative ordered simplicial chain
complex C ′∗(K,L;R) of (K,L) is defined by

C ′∗(K,L;R) = C ′∗(K;R)/C ′∗(L;R).

We obtain the ordered relative simplicial homology groups H ′p(K,L;R).

Theorem 5.8 below is proven in Munkres [48] (Chapter I, Section 13, Theorem 13.6) and
in Spanier [59] (Chapter 4, Section 3, Theorem 8, and Section 5, Corollary 12). The proof
uses a techniques known as “categories with models” and “acyclic models.” These results
are proven for R = Z, but because the oriented chain modules Cp(K,L;R) and the ordered
chain modules C ′p(K,L;R) are free R-modules, it can be checked that the constructions and
the proofs go through for any commutative ring with an identity element 1.

Assuming for simplicity that L = ∅, the idea is to define two chain maps ϕ : Cp(K;R)→
C ′p(K;R) and ψ : C ′p(K;R)→ Cp(K;R) that are chain homotopy inverses. To achieve this,
pick a partial order ≤ of the vertices of K = (V,S) that induces a total order on the vertices
of every simplex in S, and define ϕ by

ϕ([v0, . . . , vp]) = (v0, . . . , vp) if v0 < v1 < · · · < vp,
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and ψ by

ψ((w0, . . . , wp)) =

{
[w0, . . . , wp] if the wi are pairwise distinct

0 otherwise.

Then it can be shown that ϕ and ψ are natural transformations (with respect to simpli-
cial maps) and that they are chain homotopy inverses. The maps ϕ and ψ can also be
defined for pairs of complexes (K,L), as chain maps ϕ : Cp(K,L;R) → C ′p(K,L;R) and
ψ : C ′p(K,L;R)→ Cp(K,L;R) which are chain homotopic.

Theorem 5.8. For any simplicial complex K and any subcomplex L of K, there are (natural)
isomorphims

Hp(K,L;R) ∼= H ′p(K,L;R) for all p ≥ 0

between the relative simplicial homology groups and the ordered relative simplicial homology
groups.

Theorem 5.8 follows from the special case of the theorem in which L = ∅ by the five
lemma (Proposition 2.5). This is a common trick in the subject which is used over and over
again (see the proof of Theorem 5.9).

By naturality of the long exact sequence of homology of the pair (K,L), the chain map
ϕ : C∗(K,L;R)→ C ′∗(K,L;R) yields the following commutative diagram:

· · · // Hp(L;R) //

��

Hp(K;R) //

��

Hp(K,L;R) //

��

Hp−1(L;R) //

��

Hp−1(K;R) //

��

· · ·

· · · // H ′p(L;R) // H ′p(K;R) // H ′p(K,L;R) // H ′p−1(L;R) // H ′p−1(K;R) // · · ·

in which the horizontal rows are exact. If we assume that the isomorphisms of the theorem
hold in the absolute case, then all vertical arrows except the middle one are isomorphisms,
and by the five lemma (Proposition 2.5), the middle arrow is also an isomorphism.

The proof that the simplicial homology group Hp(K;Z) is isomorphic to the singular
homology group Hp(Kg;Z) is nontrivial. Proofs can be found in Munkres [48] (Chapter 4,
Section 34), Spanier [59] (Chapter 4, Sections 4 and 6), Hatcher [31] (Chapter II, Section 2.1),
and Rotman [51] (Chapter 7). These proofs use variants of acyclic models, Mayer–Vietoris
sequences, and the five lemma.

Given a simplicial complex K, the idea is to define a chain map θ : C ′∗(K;Z)→ S∗(Kg;Z)
that induces isomorphisms θ∗,p : H ′p(K;Z)→ Hp(Kg;Z) for all p ≥ 0. Since Kg is a topolog-
ical space, the only homology that applies is singular homology, and S∗(Kg;Z) denotes the
singular chain complex of singular homology; see Definition 4.3.

This can be done as follows: let `(e1, . . . , ep+1) be the unique affine map from ∆p (recall
Definition 4.1) to Kg such that `(ei+1) = (vi)g for i = 0, . . . , p. Then let

θ((v0, . . . , vp)) = `(e1, . . . , ep+1).
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It is also easy to define θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z) for pairs of complexes (K,L) with
L a subcomplex of K. Then we define the chain map η : C∗(K,L;Z) → S∗(Kg, Lg;Z) as
the composition η = θ ◦ ϕ, where ϕ : C∗(K,L;Z) → C ′∗(K,L;Z) is the chain map between
oriented and ordered homology discussed earlier. The following important theorem shows
that η induces an isomorphism between simplicial homology and singular homology.

Theorem 5.9. Given any pair of simplicial complexes (K,L), where L is a subcomplex of
K, the chain map η : C∗(K,L;Z)→ S∗(Kg, Lg;Z) induces isomorphisms

Hp(K,L;Z) ∼= Hp(Kg, Lg;Z) for all p ≥ 0.

Proof sketch. By Theorem 5.8 it suffices to prove that the homology groups H ′p(K,L;Z) and
the singular homology groups Hp(Kg, Lg;Z) are isomorphic. Again, we use the trick which
consists in showing that Theorem 5.9 follows from the special case of the theorem in which
L = ∅ by the five lemma (Proposition 2.5). Indeed, by naturality of the long exact sequence
of homology of the pair (K,L), the chain map θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z) yields the
following commutative diagram

· · · // H ′p(L;Z) //

��

H ′p(K;Z) //

��

H ′p(K,L;Z) //

��

H ′p−1(L;Z) //

��

H ′p−1(K;Z) //

��

· · ·

· · · // Hp(Lg;Z) // Hp(Kg;Z) // Hp(Kg, Lg;Z) // Hp−1(Lg;Z) // Hp−1(Kg;Z) // · · ·

in which the horizontal rows are exact. If we assume that the isomorphisms of the theorem
hold in the absolute case, then all vertical arrows except the middle one are isomorphisms,
and by the five lemma (Proposition 2.5), the middle arrow is also an isomorphism.

The proof of the isomorphims H ′p(K;Z) ∼= Hp(Kg;Z) proceeds in two steps. We follow
Spanier’s proof Spanier [59] (Theorem 8, Chapter 4, Section 6). Rotman’s proof is nearly
the same; see Rotman [51] (Chapter 7), but beware that there appears to be some typos at
the bottom of Page 151.

Step 1 . We prove our result for a finite simplicial complex K by induction on the number
n of simplices on K.

Base case, n = 1. For any abstract simplex s, let s be the simplicial complex consisting
of all the faces of s (including s itself). The following result will be needed.

Proposition 5.10. Given any abstract simplex s, there are isomorphisms

H ′p(s;Z) ∼= Hp(sg;Z) for all p ≥ 0.

Proposition 5.10 is Corollary 4.4.2 in Spanier [59] (Chapter 4, Section 4). Intuitively,
Proposition 5.10 is kind of obvious, since s corresponds to the combinatorial decomposition
of a simplex, and sg is a convex body homeomorphic to some ball Dm. Their corresponding
homology should be (0) for p > 0 and Z for p = 0.

A rigorous proof of Proposition 5.10 uses the following results:
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(1) We have the following isomorphisms between unreduced and reduced homology:

H ′0(K;Z) ∼= H̃ ′0(K;Z)⊕ Z

H ′p(K;Z) ∼= H̃ ′p(K;Z) p ≥ 1

in ordered homology, and

H0(Kg;Z) ∼= H̃0(Kg;Z)⊕ Z
Hp(Kg;Z) ∼= H̃p(Kg;Z) p ≥ 1

in singular homology. This is Lemma 4.3.1 in Spanier [59] (Chapter 4, Section 3).

(2) For any abstract simplex s, the reduced chain complex of ordered homology of s is
acyclic; that is,

H̃ ′p(s;Z) = (0) for all p ≥ 0.

This is Corollary 4.3.7 in Spanier [59] (Chapter 4, Section 3). A more direct proof
of the second fact (oriented simplicial homology) is given in Rotman [51] (Chapter 7,
Corollary 7.18). It is easily adapted to ordered homology.

(3) A chain complex C is said to be contractible if there is a chain homotopy between the
identity chain map idC of C and the zero chain map 0C of C. Then a contractible
chain complex is acyclic; that is, Hp(C) = (0) for all p ≥ 0. This is Corollary 4.2.3 in
Spanier [59] (Chapter 4, Section 2).

(4) Let X be any star-shaped subset of Rn. Then the reduced singular complex of X is
chain contractible. This is Lemma 4.4.1 in Spanier [59] (Chapter 4, Section 4).

Induction step, n > 1. We will need the following facts:

(1) The Mayer–Vietoris sequence holds in ordered homology. This is not hard to prove;
see Spanier [59] (Chapter 4, Section 6).

(2) The Mayer–Vietoris sequence holds in reduced singular homology; this is Theorem
4.16.

(3) If K1 and K2 are are subcomplexes of a simplicial complex K, then the Mayer–Vietoris
sequence of singular homology holds for (K1)g and (K2)g. This is Lemma 4.6.7 in
Spanier [59] (Chapter 4, Section 6). Actually, the above result is only needed in
the following situation: if s is any simplex of K of highest dimension, then K1 =
K − {s} and K2 = s; this is Lemma 7.20 in Rotman [51] (Chapter 7). Since a
Mayer–Vietoris sequence arises from a long exact sequence of homology, the chain map
θ : C ′∗(K,L;Z) → S∗(Kg, Lg;Z) induces a commutative diagram in which the top and
bottom arrows are Mayer–Vietoris sequences and the vertical maps are induced by θ;
see below.
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Assume inductively that our result holds for any simplicial complex with less than n > 1
simplices. Pick any simplex s of maximal dimension, and let K1 = K − {s} and K2 = s, so
that K = K1 ∪K2. Since n > 1 and s has maximal dimension, both K1 and K1 ∩K2 are
complexes (Condition (A2) is satisfied) and have less than n simplices, so by the induction
hypothesis

H ′p(K1;Z) ∼= Hp((K1)g;Z) for all p ≥ 0

and
H ′p(K1 ∩K2;Z) ∼= Hp((K1 ∩K2)g;Z) for all p ≥ 0.

By Proposition 5.10 we also have

H ′p(K2;R) = H ′p(s;Z) ∼= Hp(sg;Z) = Hp((K2)g;R) for all p ≥ 0.

Now Fact (3) (of the induction step) implies that we have the following diagram in which
the horizontal rows are exact Mayer–Vietoris sequences (for a more direct argument, see
Rotman [51] (Chapter 7, Proposition 7.21)), and where we have suppressed the ring Z to
simplify notation.

H ′p(K1 ∩ s) //

��

H ′p(K1)⊕H ′p(s) //

��

H ′p(K) //

��

H ′p−1(K1 ∩ s) //

��

H ′p−1(K1)⊕H ′p−1(s)

��
Hp((K1 ∩ s)g) // Hp((K1)g)⊕Hp(sg) // Hp(Kg) // Hp−1((K1 ∩ s)g) // Hp−1((K1)g)⊕Hp−1(sg)

Since all vertical arrows except the middle one are isomorphisms, by the five lemma (Propo-
sition 2.5) the middle vertical arrow is also an isomorphism, which establishes the induction
hypothesis. Therefore, we proved Theorem 5.9 for finite simplicial complexes.

Step 2 . We prove our result for an infinite simplicial complex K. We resort to a direct
limit argument (see Section 8.3). Let (Kα) be the family of finite subcomplexes of K under
the inclusion ordering. It is a directed family. A version of this argument is given in Munkres
[48] (Chapter 4, Section 34, Lemma 44.2). Spanier proves that

H ′p(K;Z) ∼= lim−→H ′p(Kα;Z)

and that
Hp(Kg;Z) ∼= lim−→Hp((Kα)g;Z).

The first result is Theorem 4.3.11 in Spanier [59] (Chapter 4, Section 3). This is an imme-
diate consequence of the fact that homology commutes with direct limits; see Spanier [59]
(Theorem 4.1.7, Chapter 4, Section 1). The second result is the axiom of compact support
for singular homology (Theorem 4.17). This completes the proof.

Theorem 5.9 proves the claim we made earlier that any two complexes K and K ′ that
have homeomorphic geometric realizations have isomorphic simplicial homology groups, a
result first proved by Alexander and Veblen.
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The proofs of Theorem 5.9 found in the references cited earlier all assume that the ring
of coefficients is R = Z. However, close examination of Spanier’s proof shows that the only
result that makes use of the fact that R = Z is Proposition 5.10. If Proposition 5.10 holds
for any commutative ring R with an identity element, then so does the theorem.

Fact (1) of Step 1 holds for any ring, in fact for any R-module G.

Fact (2) of Step 1 is a corollary of Theorem 4.3.6, which itself depends on Lemma 4.3.2;
see Spanier [59] (Chapter 4, Section 3). One needs to find right inverses to the augmentation
maps ε : C ′0(K;R)→ R and ε : C ′0(K ∗w;R)→ R, where K ∗w is the cone with base K and
vertex w; see Spanier [59] (Chapter 3, Section 2). This is essentially the argument we gave
in Section 4.4 just after Definition 4.14.

Actually, this argument can be generalized to any R-module G, as explained in Section
4.7 just after Definition 4.21, so we have the following generalization of Proposition 5.10:
For any abstract simplex s and any R-module G, we have

H ′p(s;G) ∼= Hp(sg;G) for all p ≥ 0.

By tensoring with G, the chain map θ yields a chain map (also denoted θ) θ : C ′∗(K,L;G)→
S∗(Kg, Lg;G). The chain map ϕ : C∗(K,L;R) → C ′∗(K,L;R) can also be generalized to a
chain map (also denoted ϕ) ϕ : C∗(K,L;G)→ C ′∗(K,L;G) by tensoring with G. We define
ϕ : C∗(K,L;G)→ S∗(Kg, Lg;G) as η = θ ◦ ϕ. Then we obtain a more general version of the
isomorphism between simplicial homology and singular homology.

Theorem 5.11. For any commutative ring R with an identity element 1 and for any R-
module G, given any pair of simplicial complexes (K,L), where L is a subcomplex of K, the
chain map η : C∗(K,L;G)→ S∗(Kg, Lg;G) induces isomorphisms

Hp(K,L;G) ∼= Hp(Kg, Lg;G) for all p ≥ 0.

In summary, singular homology subsumes simplicial homology. Still, simplicial homology
is much more computational.

5.5 The Euler–Poincaré Characteristic of a

Simplicial Complex

In this section we assume that we are considering simplicial homology groups with coefficients
in Z. A fundamental invariant of finite complexes is the Euler–Poincaré characteristic. We
saw earlier that the simplicial homology groups of a finite simplicial complex K are finitely
generated abelian groups. We can assign a number χ(K) to K by making use of the fact
that the structure of finitely generated abelian groups can be completely described. It turns
out that every finitely generated abelian group can be expressed as the sum of the special
abelian groups Zr and Z/mZ. The crucial result is the following.
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Proposition 5.12. Let G be a free abelian group finitely generated by (a1, . . . , an) and let
H be any subgroup of G. Then H is a free abelian group and there is a basis, (e1, ..., en), of
G, some q ≤ n, and some positive natural numbers, n1, . . . , nq, such that (n1e1, . . . , nqeq) is
a basis of H and ni divides ni+1 for all i, with 1 ≤ i ≤ q − 1.

A neat proof of Proposition 5.12 can be found in Samuel [53]; see also Dummit and Foote
[14] (Chapter 12, Theorem 4).

Remark: Actually, Proposition 5.12 is a special case of the structure theorem for finitely
generated modules over a principal ring. Recall that Z is a principal ring, which means that
every ideal I in Z is of the form dZ, for some d ∈ N.

We abbreviate the direct sum Z⊕ · · · ⊕ Z︸ ︷︷ ︸
m

of m copies of Z as Zm. Using Proposition

5.12, we can also show the following useful result.

Theorem 5.13. (Structure theorem for finitely generated abelian groups) Let G be a finitely
generated abelian group. There is some natural number, m ≥ 0, and some natural numbers
n1, . . . , nq ≥ 2, such that G is isomorphic to the direct sum

Zm ⊕ Z/n1Z⊕ · · · ⊕ Z/nqZ,

and where ni divides ni+1 for all i, with 1 ≤ i ≤ q − 1.

Proof. Assume that G is generated by A = (a1, . . . , an) and let F (A) be the free abelian
group generated by A. The inclusion map i : A → G can be extended to a unique homo-
morphism f : F (A) → G which is surjective since A generates G, and thus G is isomorphic
to F (A)/f−1(0). By Proposition 5.12, H = f−1(0) is a free abelian group and there is a
basis (e1, ..., en) of G, some p ≤ n, and some positive natural numbers k1, . . . , kp, such that
(k1e1, . . . , kpep) is a basis of H, and ki divides ki+1 for all i, with 1 ≤ i ≤ p − 1. Let r,
0 ≤ r ≤ p, be the largest natural number such that k1 = . . . = kr = 1, rename kr+i as ni,
where 1 ≤ i ≤ p− r, and let q = p− r. Then we can write

H = Zp−q ⊕ n1Z⊕ · · · ⊕ nqZ,

and since F (A) is isomorphic to Zn, it is easy to verify that F (A)/H is isomorphic to

Zn−p ⊕ Z/n1Z⊕ · · · ⊕ Z/nqZ,

which proves the proposition.

Observe that G is a free abelian group iff q = 0, and otherwise Z/n1Z ⊕ · · · ⊕ Z/nqZ is
the torsion subgroup of G. Thus, as a corollary of Proposition 5.13, we obtain the fact that
every finitely generated abelian group G is a direct sum, G = Zm⊕T , where T is the torsion
subgroup of G and Zm is the free abelian group of dimension m.

One verifies that m is the rank (the maximal dimension of linearly independent sets in
G) of G, denoted rank(G).
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Definition 5.20. The number m = rank(G) is called the Betti number of G and the numbers
n1, . . . , nq are the torsion numbers of G.

It can also be shown that q and the ni only depend on G.

In the early days of algebraic topology (between the late 1890s and the early 1930s), an
area of mathematics started by Henri Poincaré in the late 1890s, homology groups had not
been defined and people worked with Betti numbers and torsion coefficients. Emmy Noether
played a crucial role in introducing homology groups into the field.

Figure 5.20: Leonhard Euler, 1707–1783 (left), and Henri Poincaré, 1854–1912 (right).

Definition 5.21. Given a finite complex K = (V,S) of dimension m, if we let mp be the
number of p-simplices in K, we define the Euler–Poincaré characteristic χ(K) of K by

χ(K) =
m∑

p=0

(−1)p mp.

In order to prove Theorem 5.15 we make use of Proposition 5.14 stated below.

Proposition 5.14. If
0 // E // F // G // 0

is a short exact sequence of homomorphisms of abelian groups and if F has finite rank, then

rank(F ) = rank(E) + rank(G).

In particular, if G is an abelian group of finite rank and if H is a subgroup of G, then
rank(G) = rank(H) + rank(G/H).

Proposition 5.14 follows from the fact that Q is a flat Z-module (see Definition 11.1
and Proposition 11.12). By tensoring with Q with obtain an exact sequence in which the
spaces E ⊗Z Q, F ⊗Z Q, and G⊗Z Q, are vector spaces over Q whose dimensions are equal
to the ranks of the abelian groups being tensored with; see Proposition 11.13. A proof of
Proposition 5.14 is also given in Greenberg and Harper [25] (Chapter 20, Lemma 20.7 and
Lemma 20.8).

The following remarkable theorem holds:
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Theorem 5.15. Given a finite complex K = (V,S) of dimension m, we have

χ(K) =
m∑

p=0

(−1)p rank(Hp(K)),

the alternating sum of the Betti numbers (the ranks) of the homology groups of K.

Proof. We know that Cp(K) is a free group of rank mp. Since Hp(K) = Zp(K)/Bp(K), by
Proposition 5.14, we have

rank(Hp(K)) = rank(Zp(K))− rank(Bp(K)).

Since we have a short exact sequence

0 −→ Zp(K) −→ Cp(K)
∂p−→ Bp−1(K) −→ 0,

again, by Proposition 5.14, we have

rank(Cp(K)) = mp = rank(Zp(K)) + rank(Bp−1(K)).

Also, note that Bm(K) = 0, and B−1(K) = 0. Then, we have

χ(K) =
m∑

p=0

(−1)p mp

=
m∑

p=0

(−1)p (rank(Zp(K)) + rank(Bp−1(K)))

=
m∑

p=0

(−1)p rank(Zp(K)) +
m∑

p=0

(−1)p rank(Bp−1(K)).

Using the fact that Bm(K) = 0, and B−1(K) = 0, we get

χ(K) =
m∑

p=0

(−1)p rank(Zp(K)) +
m∑

p=0

(−1)p+1 rank(Bp(K))

=
m∑

p=0

(−1)p (rank(Zp(K))− rank(Bp(K)))

=
m∑

p=0

(−1)p rank(Hp(K)).

A striking corollary of Theorem 5.15 (together with Theorem 5.9) is that the Euler–
Poincaré characteristic, χ(K), of a complex of finite dimension m only depends on the
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geometric realization Kg of K, since it only depends on the homology groups Hp(K) =
Hp(Kg) of the polytope Kg. Thus, the Euler–Poincaré characteristic is an invariant of all
the finite complexes corresponding to the same polytope, X = Kg. We can say that it is the
Euler–Poincaré characteristic of the polytope X = Kg, and denote it by χ(X). In particular,
this is true of surfaces that admit a triangulation. The Euler–Poincaré characteristic in
one of the major ingredients in the classification of the compact surfaces. In this case,
χ(K) = m0 −m1 + m2, where m0 is the number of vertices, m1 the number of edges, and
m2 the number of triangles in K.

Going back to the triangulations of the sphere, the torus, the projective space, and the
Klein bottle, we find that they have Euler–Poincaré characteristics 2 (sphere), 0 (torus), 1
(projective space), and 0 (Klein bottle).

5.6 Simplicial Cohomology

In this section G is any R-module over a commutative ring R with an identity element 1.
The relative (and absolute) simplicial cohomology groups of a pair of simplicial complexes
(K,L) (where L is a subcomplex of K) are defined the same way that the singular relative
cohomology groups are defined from the singular homology groups by applying HomR(−;G),
as in Section 4.9.

Given the chain complex of relative simplicial homology

0 C0(K,L;R)
∂0oo C1(K,L;R)

∂1oo · · ·oo Cp−1(K,L;R)
∂p−1oo Cp(K,L;R)

∂poo · · ·
∂p+1oo

by applying HomR(−, G), where Cp(K,L;R) = Cp(K,R)/Cp(L,R), we obtain the chain
complex

0 δ−1
// C0(K,L;G) δ0

// C1(K,L;G) // · · · δ
p−1
// Cp(K,L;G) δp // Cp+1(K,L;G) δ

p+1
// · · ·

with Cp(K,L;G) = HomR(Cp(K,L;R), G) and δp = HomR(∂p, G) for all p ≥ 0 (and δ−1 is
the zero map). More explicitly

δp(f) = f ◦ ∂p+1 for all f ∈ Cp(K,L;G);

that is

δp(f)(σ) = f(∂p+1(σ)) for all f ∈ Cp(K,L;G) = HomR(Cp(K,L;R), G)

and all σ ∈ Cp+1(K;L;R);

Definition 5.22. Given a pair of complexes (K,L) with L a subcomplex of K, the simplicial
relative cohomology groups Hp(K,L;G) of (K,L) arise from the chain complex

0 δ−1
// C0(K,L;G) δ0

// C1(K,L;G) // · · · δ
p−1
// Cp(K,L;G) δp // Cp+1(K,L;G) δ

p+1
// · · ·
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with
δp(f) = f ◦ ∂p+1 for all f ∈ Cp(K,L;G),

and are given by
Hp(K,L;G) = Ker δp/Im δp−1, p ≥ 0.

To obtain the long exact sequence of relative simplicial cohomology we dualize the short
exact sequence

0 // C∗(L;R) i // C∗(K;R)
j // C∗(K,L;R) // 0

where C∗(K,L;R) = C∗(K,R)/C∗(L,R) by applying Hom(−, G) and we obtain the sequence

0 // C∗(K,L;G)
j> // C∗(K;G) i> // C∗(L;G) // 0,

where by definition C∗(K,L;G) = HomR(C∗(K;R)/C∗(L;R), G), and as before C∗(L;G) =
HomR(C∗(L;R), G) and C∗(K;G) = HomG(C∗(K;R), G).

Since Cp(K,L;R) = Cp(K,R)/Cp(L,R) is a free module for every p, by Proposition 2.8
the sequence of chain complexes

0 // C∗(K,L;G)
j> // C∗(K;G) i> // C∗(L;G) // 0

is exact.

Given two pairs of simplicial complexes (K1, L1) and (K2, L2), where L1 is a subcomplex
of K1 and L2 is a subcomplex of K2, a simplicial map f : (K1, L1) → (K2, L2) induces
a homomorphism f],p : Cp(K1, L1;R) → Cp(K2, L2;R) between the modules of oriented p-
chains, and thus by applying HomR(−, G) we get a homomorphism f ],p : Cp(K2, L2;G) →
Cp(K1, L1;G) commuting with coboundaries which induces homomorphisms

f ∗,p : Hp(K2, L2;G)→ Hp(K1, L1;G) for all p ≥ 0.

Again, this assignment is functorial. The above fact is the simplicial analog of Proposition
4.36.

If R is a PID, then the simplicial cohomology group Hp(K,L;G) is isomorphic to the
singular cohomology group Hp(Kg, Lg;G) for every p ≥ 0. This result is easily obtained
from the universal coefficient theorem for cohomology, or by an argument about free chain
complexes; see Munkres [48] (Chapter 5, Section 45, Theorem 45.5).

Theorem 5.16. Let (K,L) be any pair of simplicial complexes with L a subcomplex of K.
If R is a PID, then for any R-module G we have isomorphisms

Hp(K,L;G) ∼= Hp(Kg, Lg;G) for all p ≥ 0

between the relative simplicial cohomology of the pair of complexes (K,L) and the relative
singular cohomology of the pair of geometric realizations (Kg, Lg).
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Proof. Let η : C∗(K,L;R)→ S∗(Kg, Lg;R) be the chain map of Theorem 5.9. By the natu-
rality part of universal coefficient theorem for cohomology (Theorem 12.6, and see Example
11.1 for the definition of Ext1

R), we have the commutative diagram

0 // Ext1
R(Hp−1(Kg, Lg;R), G) //

ExtR1 (η∗)
��

Hp(Kg, Lg;G) //

(HomR(η,G))∗

��

HomR(Hp(Kg, Lg;R), G) //

HomR(η∗,id)

��

0

0 // Ext1
R(Hp−1(K,L;R), G) // Hp(K,L;G) // HomR(Hp(K,L;R), G) // 0.

By Theorem 5.9 the chain map η induces isomorphisms Hp−1(K,L;R) ∼= Hp−1(Kg, Lg;R)
and Hp(K,L;R) ∼= Hp(Kg, Lg;R), so the first and the third map in the above diagram are
isomorphisms. By the short five lemma (Proposition 2.4) we conclude that the middle map
is an isomorphism.

The above proof shows the stronger result that if Hp−1(K,L;R) ∼= Hp−1(Kg, Lg;R) and
Hp(K,L;R) ∼= Hp(Kg, Lg;R), then Hp(K,L;G) ∼= Hp(Kg, Lg;G).

In summary, simplicial cohomology is subsumed by singular cohomology (at least when
R is a PID). Nevertheless, simplicial cohomology is much more amenable to computation
than singular cohomology. In particular, simplicial cohomology can be used to compute the
cohomology ring of various spaces; see Munkres [48] (Chapter 5, Section 49).

Indeed, it is possible to define a cup product on the simplicial cohomology of a complex.
If K = (V,S) is a simplicial complex, let ≤ be a partial order of the vertices of K that
induces a total order on the vertices of every simplex in S.

Definition 5.23. Given a simplicial complex K = (V,S) and a partial order of its vertices
as above, define a map

^∆ : Cp(K;R)× Cq(K;R)→ Cp+q(K;R)

by
(c ^∆ d)([v0, . . . , vp+q]) = c([v0, . . . , vp]) d([vp, . . . , vp+q])

iff v0 < v1 < · · · < vp+q, for all simplicial p-cochains c ∈ Cp(K;R) and all simplicial q-
cochains d ∈ Cq(K;R).

It can be shown that the map ^∆ : Cp(K;R) × Cq(K;R) → Cp+q(K;R) induces a cup
product

^∆ : Hp(K;R)×Hq(K;R)→ Hp+q(K;R)

which is bilinear and associative and independent of the partial order ≤ chosen on V ; see
Munkres [48] (Chapter 5, Section 49, Theorem 49.1 and Theorem 49.2).

It can also be shown that if η : C∗(K;R)→ S∗(Kg;R) is the chain map of Theorem 5.9,
then η∗ = HomR(η,R) carries the cup product ^ of singular cohomology to the cup product
^∆ of simplicial cohomology of Definition 4.32. If h : K1 → K2 is a simplicial map between
two simplicial complexes, then h∗ preserves cup products; see Munkres [48] (Chapter 5,
Section 49, Theorem 49.1 and Theorem 49.2).



202 CHAPTER 5. SIMPLICIAL HOMOLOGY AND COHOMOLOGY

5.7 Problems

Problem 5.1. Prove that homology (with integer coefficients) of the torus T specified by
the complex of Figure 5.9 is given by

H0(T ) = Z
H1(T ) = Z⊕ Z
H2(T ) = Z.

Problem 5.2. Prove that homology (with integer coefficients) of the projective plane RP2

specified by the complex of Figure 5.11 is given by

H0(RP2) = Z
H1(RP2) = Z/2Z
H2(RP2) = (0).

Problem 5.3. Prove that homology (with integer coefficients) of the Klein bottle K specified
by the complex of Figure 5.12 is given by

H0(K) = Z
H1(K) = Z⊕ (Z/2Z)

H2(K) = (0).

Problem 5.4. Given two (two-dimensional) tori T , their connected sum T ] T is the space (a
surface) obtained by deleting a region homeomorphic to an open disc (in the plane) from each
torus and gluing together the pieces that remain. Such a space is the geometric realization
of a complex shown in Figure 6.11 of Munkres [48], Page 40. Prove that the homology of
T ] T is given by

H0(T ] T ) = Z
H1(T ] T ) = Z4

H2(T ] T ) = Z.

Problem 5.5. Given a (two-dimensional) torus T , we can form its g-fold connected sum

Xg = T ] · · · ] T︸ ︷︷ ︸
g

by gluing together g ≥ 2 tori. Prove that the homology of Xg is given by

H0(Xg) = Z
H1(Xg) = Z2g

H2(Xg) = Z.
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You will have to figure out a complex whose geometric realization is Xg.

We let X0 = S2 and X1 = T . Check that the Euler characteristic of Xg is given by

χ(Xg) = 2− 2g, g ≥ 0.

The number g is called the genus of the surface Xg.

Problem 5.6. Given two projective planes RP2, their connected sum RP2 ]RP2 is the space
(a surface) obtained by deleting a region homeomorphic to an open disc (in the plane)
from each projective plane and gluing together the pieces that remain. Such a space is the
geometric realization of a complex shown in Figure 6.8 of Munkres [48], Page 38. Prove that
the homology of RP2 ]RP2 is given by

H0(RP2 ]RP2) = Z
H1(RP2 ]RP2) = Z⊕ (Z2/Z)

H2(RP2 ]RP2) = (0).

Prove that RP2 ]RP2 is homeomorphic to the Klein bottle.

Problem 5.7. Given a projective plane RP2, we can form its g-fold connected sum

Yg = RP2 ] · · · ]RP2

︸ ︷︷ ︸
g

by gluing together g ≥ 2 projective planes. Prove that the homology of Yg is given by

H0(Yg) = Z
H1(Yg) = Zg−1 ⊕ (Z/2Z)

H2(Yg) = (0).

We let Y1 = RP2. Check that the Euler characteristic of Yg is given by

χ(Yg) = 2− g, g ≥ 1.

The number g is called the genus of the surface Yg.

Remark: A classical theorem of topology (the classification theorem for compact surfaces)
states that any compact surface (a topological two-dimensional manifold without boundary
which is compact) is homeomorphic to one of the spaces (surfaces)

S2, Xg, Yg, g ≥ 1.

This is a nontrivial theorem and it takes a lot of work to prove it in full. Problems 5.5 and 5.7
imply that no two of these surfaces are homeomorphic. The surfaces S2, Xg are orientable,
and the surfaces Yg are nonorientable. For comprehensive expositions, see Massey [40],
Alhfors and Sario [1], or Gallier and Xu [22].
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Chapter 6

Homology and Cohomology of CW
Complexes

Computing the singular homology (or cohomology) groups of a space X is generally very
difficult. J.H.C. Whitehead invented a class of spaces called CW complexes for which the
computation of the singular homology groups is much more tractable. Roughly speaking, a
CW complex X is built up inductively starting with a collection of points, in such a way that
if the space Xp has been obtained at stage p, then the space Xp+1 is obtained from Xp by
gluing, or as it is customary to say attaching, a collection of closed balls whose boundaries
are glued to Xp in a specific fashion. Each space Xp is called a p-skeleton of the space
X. Every compact manifold is homotopy equivalent to a CW complex, so the class of CW
complexes is quite rich. It also plays an important role in homotopy theory. In this short
chapter we describe CW complexes and explain how their homology and cohomology can be
computed.

One of the nice features of CW complexes is the fact that it is possible to assign to each
CW complex X a chain complex SCW

∗ (X;R) called its cellular chain complex, where

SCW
p (X;R) = Hp(X

p, Xp−1;R),

the relative p-th singular homology group of the pair (Xp, Xp−1), where Xp is the p-skeleton
of X. We will show that the module Hp(X

p, Xp−1;R) is a free R-module whose dimension
(when finite) is equal to the number of p-cells in X. Furthermore, the homology of the
cellular complex agrees with the singular homology. That is, if we write HCW

p (X;R) =
Hp(S

CW
∗ (X;R)), then

HCW
p (X;R) ∼= Hp(X;R) for all p ≥ 0,

where Hp(X;R) is the pth singular homology module of X; see Theorem 6.8. In many
practical cases, the number of p-cells is quite small so the cellular complex SCW

∗ (X;R) is
much more manageable than the singular complex S∗(X;R).

205
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The formula for the Euler–Poincaré characteristic given for simplicial complexes can be
generalized to a finite CW complex X of dimension n. We have

χ(X) =
∑

p

(−1)p rankHp(X;Z) =
n∑

p=0

(−1)pap,

where ap is the number of p-cells in X (here we use singular homology with coefficients in
Z). We discuss what happens when we replace Z by a more general ring R . It turns out
that χ(X) is independent of R if R is a PID.

To define cohomology module we consider the dual modules

Hk(Xp, Xp−1;G) = Hk(HomR(Sk(X
p, Xp−1;R), G),

where X is a CW complex, R is a commutative ring, and G is a R-module. If we assume
that R is a PID, then

Hp(Xp, Xp−1;G) = HomR(Hp(X
p, Xp−1;R), G),

and it is posssible to define a cochain complex S∗CW(X;G) whose modules are the cohomology
modules Hp(Xp, Xp−1;G), which defines cellular cohomology modules

Hp
CW(X;G) = Hp(S∗CW(X;G)).

It can be shown that for any PID R, there are isomorphisms

Hp
CW(X;G) ∼= Hp(X;G) for all p ≥ 0

between the cellular cohomology modules and the singular cohomology modules of X. Fur-
thermore, the cellular cochain complex S∗CW(X;G) is isomorphic to the cochain complex
HomR(SCW

∗ (X;R), G) (the dual of the cellular chain complex SCW
∗ (X;R) with respect to

G); see Theorem 6.16.

6.1 CW Complexes

First we define closed and open cells, and then we describe the process of attaching space
(or adjunction space). Recall that the n-dimensional ball Dn, the n-dimensional open ball
IntDn, and the n-dimensional sphere Sn, are defined by

Dn = {x ∈ Rn | ‖x‖2 ≤ 1}
IntDn+1 = {x ∈ Rn+1 | ‖x‖2 < 1}

Sn = {x ∈ Rn+1 | ‖x‖2 = 1}.

Furthermore, Sn = ∂Dn+1 = Dn+1 − Int Dn+1, the boundary of Dn+1, and Dn/∂Dn is
homeomorphic to Sn (n ≥ 1). When n = 0, we set IntD0 = D0 = {0}, and ∂D0 = S−1 = ∅.
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Definition 6.1. A (closed) cell of dimension m ≥ 0 (or closed m-cell) is a space homeomor-
phic to Dm, and an open cell of dimension m ≥ 0 (or open m-cell) is a space homeomorphic
to IntDm. We will usually denote an open m-cell by em (or simply e), and its closure by em

(or simply e). The set e− e is denoted by ė.

Observe that an open or closed 0-cell is a point.

Given two topological spaces X and Y , given a closed subset A of X, and given a
continuous map f : A→ Y , we would like to define the space X ∪f Y obtained by gluing X
and Y “along A.” We will define X ∪f Y as a quotient space of the disjoint union X t Y of
X and Y with the topology in which a subset Z ∈ X tY is open iff Z ∩X is open in X and
Z ∩ Y is open in Y . See Figure 6.3. More generally, recall the definition of the topological
sum of a family of spaces (Definition 4.16).

Definition 6.2. If (Xi)i∈I is a family of topological spaces we define the topological sum⊔
i∈I Xi of the family (Xi)i∈I as the disjoint union of the spaces Xi, and we give it the

topology for which a subset Z ⊆
⊔
i∈I Xi is open iff Z ∩Xi is open for all i ∈ I.

We will also need the notion of coherent union.

Definition 6.3. Given a topological space X, if (Xi)i∈I is a family of subspaces of X such
that X =

⋃
i∈I Xi, we say that the topology of X is coherent with the family (Xi)i∈I if a

subset A ⊆ X is open in X iff A ∩ Xi is open in Xi for all i ∈ I. We say that X is the
coherent union of the family (Xi)i∈I . See Figures 6.1 and 6.2.

Given X, Y,A, and f : A→ Y as above, we form the quotient space of XtY by identifying
each set

f−1(y) ∪ {y}

for each y ∈ Y to a point. This means that we form the quotient set corresponding to the
partition of X t Y into the subsets of the form f−1(y) ∪ {y} for all y ∈ Y , and all singleton
sets {x} for all x ∈ X − A. Observe that if y /∈ f(A), then f−1(y) = ∅, so in this case the
subset f−1(y) ∪ {y} reduces to {y}.

Definition 6.4. Given two topological spaces X and Y , given a closed subset A of X, and
given a continuous map f : A → Y , the adjunction space determined by f (or attaching
space determined by f), denoted by X ∪f Y , is the quotient space of the disjoint sum X t Y
corresponding to the partition of X t Y into the subsets of the form f−1(y) ∪ {y} for all
y ∈ Y , and all singleton sets {x} for all x ∈ X −A. The map f is called the adjunction map
(or attaching map). See Figure 6.3. Let π : X t Y → X ∪f Y be the quotient map. The
space X ∪f Y is given the quotient topology induced by π; that is, Z ⊆ X ∪f Y is open iff
π−1(Z) is open in X t Y .

Observe that the adjunction map f : A→ Y needs not be injective, that is, it could cause
some collapsing of parts of A. For example, if X = D1, A = S1, Y = {0} and f : A → Y
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open northern hemisphere

open southern hemisphere

open equatorial band

coherent union of the sphere

Figure 6.1: A coherent union of the sphere composed of the union of two open hemispheres
and an open equatorial cylinder.

is the constant function that “collapses” S1 onto {0}, then the adjunction space X ∪f Y is
homeomorphic to the sphere S2. See Figure 6.4.

0 1

0 3/4

15/6

0 5/6 Not a coherent union of [0,1]

Figure 6.2: Let X = [0, 1], where X = [0, 3/4] ∪ [0, 5/6] ∪ (5/6, 1] = A ∪ B ∪ C. This is not
coherent union since under the induced topology (3/4, 5/6] is open B and trivially open in
A and C, yet (3/4, 5/6] is not open in [0, 1].

It is easy to show that the quotient map π : X tY → X ∪f Y maps Y homeomorphically
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onto a closed subspace of X ∪f Y .

(x, 0) (x,1)

(x,1,1)

X Y

X Y

f

f

gf

Figure 6.3: Let X be the unit square in R2 and Y be the boundary of the unit cube in R3. Let
A be the union of the vertical line segments corresponding to x = 0 and x = 1. The attaching
map f : A → Y is defined via f(x, 0) = (1, 1, x) = f(x, 1). The upper figure shows an open
set in X ∪f Y as defined in Definition 6.4. The lower figure shows the three-dimensional
rendering of the quotient space X ∪f Y .

Definition 6.5. A topological space X is normal if the singleton subset {x} is closed for
all x ∈ X, and if for any two closed disjoint subsets A and B of X there exist two disjoint
open subsets U and V of X such that A ⊆ U and B ⊆ V .

Since every singleton subset is closed, a normal space is Hausdorff.

The following result is shown in Munkres [48] (Chapter 4, Theorem 37.2).

Proposition 6.1. Given X, Y,A, and f : A → Y as in Definition 6.4, if X and Y are
normal, then X ∪f Y is also normal, and in particular Hausdorff.

A CW complex can be defined intrinsically or by an inductive definition involving the
process of attaching cells. We begin with the second method since it is easier to grasp. To
simplify matters we begin with the notion of a finite CW complex.
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X

Y

X Ygf

Figure 6.4: Let X be the unit disk in R2 and Y be a point. Let A be the circular boundary
of X. The attaching map f : A→ Y collapses A to a point and wraps the disk into a sphere
as depicted by the four stage rendering of X ∪f Y .

Definition 6.6. A finite CW complex X of dimension n is defined inductively as follows:

(1) Let X0 be a finite set of points (0-cells) with the discrete topology.

(2) If p < n and if Xp has been constructed, let Ip+1 be a finite (possibly empty) index set,
let
⊔
i∈Ip+1

Dp+1
i be the disjoint union of closed (p+1)-balls, and if we write Spi = ∂Dp+1

i

let gp+1 :
⊔
i∈Ip+1

Spi → Xp be a continuous map (an attaching map). Then Xp+1 is the
adjunction space

Xp+1 =

( ⊔

i∈Ip+1

Dp+1
i

)
∪gp+1 X

p.

Either n = 0 and X = X0, or n ≥ 1 in which case X0 6= ∅ and In 6= ∅, that is, there is some
open n-cell, and we let X = Xn. The subspace Xp is called the p-skeleton of X.

If πCW
p+1 is the quotient map

πCW
p+1 :

( ⊔

i∈Ip+1

Dp+1
i

)
tXp →

( ⊔

i∈Ip+1

Dp+1
i

)
∪gp+1 X

p = Xp+1,

then we write ep+1
i = πCW

p+1(IntDp+1
i ).
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It is not hard to see that ep+1
i is an open (p+ 1)-cell (i.e. πCW

p+1 maps IntDp+1
i homeomor-

phically onto ep+1
i ). Furthermore, since πCW

p+1 maps Xp homeomorphically onto a subspace

of Xp+1, we can view πCW
p+1 as the inclusion on Xp and as gp+1 on

⊔
i∈Ip D

p+1
i . It follows

that the open (p + 1)-cells ep+1
i are disjoint from all the open cells in Xp. Since πCW

p+1 is

a homeomorphism on each Int Dp+1
i , we have ep+1

i ∩ ep+1
j = ∅ for all i 6= j. It follows by

induction that X = Xn is the disjoint union of all the open cells epi for p = 0, . . . , n and
all i ∈ Ip. The topology of the Xp, in particular X = Xn, is the quotient topology of an
adjunction space, as in Definition 6.4.

Since X0 is normal, by Proposition 6.1 we conclude that X = Xn is normal, thus Haus-
dorff. It is also clear that a finite CW complex is compact.

Example 6.1.

(1) A 0-dimensional CW complex is simply a discrete set of points. A 1-dimensional CW
complex X consists of 0-cells and 1-cells, where each 1-cell e1

i is homeomorphic to the
open line segment (−1, 1), whose boundaries are attached to some 0-cells x and y,
possibly identical. If we view each 1-cell as a directed edge and each 0-cell as a node
(or vertex), then the CW complex X is a (directed) graph in which several edges may
have the same endpoints and an edge may have identical endpoints (self-loops). See
Figure 6.5.

(2) The n-sphere Sn (n ≥ 1) is homeomorphic to the CW complex with one 0-cell e0, one
n-cell en, and with the attaching map gn : Sn−1 → e0, the constant map, with Sn = Xn.
See Figure 6.4. This is equivalent to viewing Sn as the quotient Dn/∂Dn = Dn/Sn−1.
When n = 0, S0 is the CW complex consisting of two disjoint 0-cells.

(3) The n-ball Dn (n ≥ 1) is homeomorphic to the CW complex X with one 0-cell e0, one
(n− 1)-cell en−1, and one n-cell en. First, Xn−1 = Sn−1 as explained in (2), and then
Dn = Xn is obtained using as attaching map the identity map gn : Sn−1 → Sn−1. See
Figure 6.6.

(4) The real projective space RP2 is is homeomorphic to the CW complex X with one
0-cell e0, one 1-cell e1, and one 2-cell e2. First, X1 is obtained by using the constant
map g1 : S0 → e0 as attaching map, and then X2 is obtained by using as attaching
map the map g2 : S1 → S1 that sends S1 around S1 twice (g2(eiθ) = e2iθ). Observe
that X1 = RP1. See Figure 6.7. This suggest a recursive method for obtaining a cell
structure for RPn.

(5) The projective space RPn(n ≥ 0) is homeomorphic to the CW complex X with exactly
one p-cell ep for p = 0, . . . , n; that is, the set of cells {e0, e1, . . . , en}. We have X0 =
{e0}, and assuming that Xn−1 = RPn−1 has been constructed, Xn = RPn is obtained
by using the quotient map gn : Sn−1 → RPn−1 that identifies two antipodal points as
attaching map; see Example 4.1.
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0-skeleton

seven 1- balls

1-dimensional CW complex

Figure 6.5: A directed graph is a 1-dimensional CW complex.

e 0

0-cell
e 1 1-cell

e
0

e
1

1-skeleton S 1

e 2 2-cell

1
e

1

e 2 D
2

Figure 6.6: D2 as a 2-dimensional CW complex.
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e 0

0-cell
e 1 1-cell

e
0

e
1

1-skeleton S 1

e 2 2-cell

e 0

e 0

p p RP
2

Figure 6.7: RP2 as a 2-dimensional CW complex, where antipodal points of e1 are glued
together.

(6) The complex projective space CPn(n ≥ 0) is homeomorphic to the CW complex X
with exactly one 2p-cell e2p for p = 0, . . . , n; that is, the set of cells {e0, e2, . . . , e2n}. We
have X0 = {e0}, and assuming that X2n−2 = CPn−1 has been constructed, X2n = CPn
is obtained by using the quotient map g2n : S2n−1 → CPn−1 as attaching map; see
Example 4.1.

(7) The 2-torus T 2 = S1 × S1 is homeomorphic to the CW complex X with one 0-cell
e0, two 1-cells e1

1, e
1
2, and one 2-cell e2. First X1 is obtained by using the constant

map g1 : S0 t S0 → e0 as attaching map. The space X1 consists of two circles on a
torus in R3 (in orthogonal planes) intersecting in a common point. Then T 2 = X2 is
obtained by using the map g2 : S1 → X1 that “wraps” S1 around the two circles of X1,
as attaching map; think of the construction of a torus from a square in which opposite
sides are glued in two steps. See Figure 6.8.

Remark: Ambitious readers should read Chapter 6 of Milnor and Stasheff [45], where a
cell structure for the Grassmann manifolds is described. This is a generalization of the cell
structure for RPn.
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X

X

X0

1

2

Figure 6.8: The CW complex construction of the torus T 2.

The definition of a CW complex can be generalized by allowing the index sets Ip to be
infinite and by allowing the sequence of p-skeleta Xp to be infinite.

Definition 6.7. A CW complex X is defined inductively as follows:

(1) Let X0 be a set of points (0-cells) with the discrete topology. If X0 = ∅, then let
X = ∅.

(2) If Xp has been constructed (p ≥ 0) and if Xp 6= ∅, let Ip+1 be a (possibly empty)
index set, let

⊔
i∈Ip+1

Dp+1
i be the disjoint union of closed (p+ 1)-balls, and if we write

Spi = ∂Dp+1
i let gp+1 :

⊔
i∈Ip+1

Spi → Xp be a continuous map (an attaching map). Then

Xp+1 is the adjunction space

Xp+1 =

( ⊔

i∈Ip+1

Dp+1
i

)
∪gp+1 X

p.

Suppose X0 6= ∅. If there is a smallest n ≥ 0 such that Ip = ∅ for all p ≥ n+ 1, then we let
X = Xn and we say that X has dimension n. In this case, note that Xn must have some
open n-cell. Otherwise we let X =

⋃
p≥0X

p, and we give X the topology for which X is the
coherent union of the family (Xp)p≥0; that is, a subset Z of X is open iff Z ∩Xp is open in
Xp for all p ≥ 0. Each subspace Xp is called a p-skeleton of X.
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As before if πCW
p+1 is the quotient map πCW

p+1 :

(⊔
i∈Ip+1

Dp+1
i

)
tXp → Xp+1, then we write

ep+1
i = πCW

p+1(IntDp+1
i ),

and it is not hard to see that ep+1
i is an open (p + 1)-cell (i.e. πCW

p+1 maps Int Dp+1
i homeo-

morphically onto ep+1
i ). It follows that X is the disjoint union of the cells epi for all p ≥ 0

and all i ∈ Ip. The topology of the Xp is the quotient topology of an adjunction space, as
in Definition 6.4.

Definition 6.8. For every p-ball Dp
i , the restriction to Dp

i of the composition of the quotient

map πCW
p from

(⊔
i∈Ip D

p
i

)
t Xp−1 to Xp with the inclusion Xp −→ X is a map from Dp

i

to X denoted by fi (or fpi if we want to be very precise) and called the characteristic map
of epi = πCW

p (IntDp
i ).

It is not hard to show that fi(D
p
i ) = epi , fi(S

p−1
i ) = ėpi , and fi is a homeomorphism of

IntDp
i onto epi .

Remark: One should be careful that the terminology “open cell” is slightly misleading.
Although an open cell epi is open in Xp, it may not be open in X. Consider the example of
the torus T 2 from Example 6.1(7). The open cell e1

1 = π1(IntD1
1) of X1 is not open in T 2.

Example 6.2. The infinite union X = RP∞ =
⋃
n≥0 RP

n is an infinite CW complex whose
n-skeleton Xn is RPn. The CW complex RP∞ has infinitely many n-cells en, one for each
dimension.

Similarly, the infinite union X = CP∞ =
⋃
n≥0 CP

n is an infinite CW complex whose
2n-skeleta X2n and X2n+1 are both CPn. The CW complex CP∞ has infinitely many n-cells
e2n, one for each even dimension.

Definition 6.9. A subcomplex of a CW complex X is a subspace A of X which is a union
of open cells ei of X such that the closure ei of each open cell ei in A is also in A.

Note that each p-skeleton Xp is a subcomplex of X. It is easy to show by induction over
skeleta that a subcomplex is a closed subspace; see Munkres [48] (Chapter 4, Section 38,
Page 217).

The following proposition states a crucial compactness property of CW complexes.

Proposition 6.2. If X is a CW complex, then the following properties hold and are all
equivalent.

(1) If a subspace A of X has no two points in the same open cell, then A is closed and
discrete.
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(2) If a subspace C of X is compact, then C is contained in a finite union of open cells.

(3) Each open cell of X is contained in a finite subcomplex of X.

Proposition 6.2 is proven in Bredon [7] (Chapter IV, Section 8, Proposition 8.1). As a
corollary we have the following result.

Proposition 6.3. If X is a CW complex, then any compact subset C of X is contained in
a finite subcomplex.

Proof. By Proposition 6.2(2) the compact subset C is contained in a union of a finite number
of open cells of X. By Proposition 6.2(3) each of these open cells is contained in a finite
subcomplex. But the union of this finite number of finite subcomplexes is a finite subcomplex
which contains C.

It can be shown that a CW complex X is normal; see Munkres [48] (Chapter 4, Section
38, Theorem 38.2 and Theorem 38.3). In fact, more can be proved.

Proposition 6.4. Let X be a CW complex as defined in Definition 6.7. Then the following
properties hold:

(1) The space X is the disjoint union of a collection of open cells.

(2) X is Hausdorff.

(3) For each open p-cell ei of the collection, there is a continuous map fi : D
p → X that

maps Int Dp homeomorphically onto ei and carries Sp−1 = ∂Dp into a finite union of
open cells ekj , each of dimension k < p.

(4) A set Z is closed in X iff Z ∩ ei is closed in ei for all open cells ei.

Proposition 6.4 is proven in Hatcher [31] (Appendix, Topology of cell complexes, Propo-
sition A2).

Property (3) is what is referred to as “closure-finiteness” by J.H.C. Whitehead. Property
(4) expresses the fact that X has the “weak topology.” This explains the CW in CW
complexes!

It is easy to see that Properties (3) and (4) imply that fi(D
p) = ei and fi(S

p−1) = ėi.
The map fi is called a characteristic map for the open cell ei.

The properties of Proposition 6.4 can be taken as the definition of a CW complex. This
is what J.H.C. Whitehead did originally, and this is the definition used by Munkres [48] and
Milnor and Stasheff [45]. Then it can be shown that this alternate definition is equivalent to
our previous definition (Definition 6.7). This is proven in Munkres [48] (Chapter 4, Section
38, Theorem 38.2 and Theorem 38.3).
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Since our primary goal is to determine the homology (and cohomology) groups of CW
complexes, we will not go into a more detailed study of these spaces. Let us just mention
that every CW complex X is normal, paracompact, compactly generated (which means that
X is the union of its compact subsets and that a set A ⊆ X is closed in X iff A∩C is closed
in C for every compact subset C of X), and a finite CW complex is an ENR (Euclidean
neighborhood retract).

We will also need the fact that a subcomplex A of a CW complex is a deformation
retract of a neighborhood of X. The following result is proven in Hatcher [31] (Appendix,
Proposition A.5).

Proposition 6.5. For any CW complex X and any subcomplex A of X, there is a neigh-
borhood N(A) of X that deformation retracts onto A. In other words, (X,A) is a good
pair.

In particular, if X is a CW complex, then (Xp, Xp−1) is a good pair.

For a more comprehensive exposition of CW complexes we refer the interested reader to
Hatcher [31] (Appendix, Topology of cell complexes), Bredon [7] (Chapter IV, Sections 8–14),
and Massey [41] (Chapter IX). Rotman [51] also contains a rather thorough yet elementary
treatment.

6.2 Homology of CW Complexes

Given a CW complexes X and a commutative ring R, it is possible to assign to X a chain
complex SCW

∗ (X;R) called its cellular chain complex, where

SCW
p (X;R) = Hp(X

p, Xp−1;R),

the relative p-th singular homology group of the pair (Xp, Xp−1), where Xp is the p-skeleton
of X (by convention X−1 = ∅). The module Hp(X

p, Xp−1;R) is a free R-module whose
dimension (when finite) is equal to the number of p-cells in X. This means that we can view
Hp(X

p, Xp−1;R) as the set of formal linear combinations
∑

i λie
p
i , where λi ∈ R and the epi

are open p-cells. Furthermore, the homology of the cellular complex agrees with the singular
homology. That is, if we write HCW

p (X;R) = Hp(S
CW
∗ (X;R)), then

HCW
p (X;R) ∼= Hp(X;R) for all p ≥ 0,

where Hp(X;R) is the pth singular homology module of X. In many practical cases, the
number of p-cells is quite small so the cellular complex SCW

∗ (X;R) is much more manageable
than the singular complex S∗(X;R).

We will need of few properties of the modules Hk(X
p, Xp−1;R). By convention, if X is

a CW complex we set X−1 = ∅. Then H0(X0, X−1;R) = H0(X0;R).

Proposition 6.6. If X is a CW complex, then the following properties hold.
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(a) We have Hk(X
p, Xp−1;R) = (0) for k 6= p and Hp(X

p, Xp−1;R) is a free R-module
with a basis in one-to-one correspondence with the p-cells of X.

(b) Hk(X
p;R) = (0) for all k > p. In particular, if X has finite dimension n then

Hp(X;R) = (0) for all p > n.

Sketch of proof. To prove (a) we use Proposition 6.5 which says that (Xp, Xp−1) is a good
pair. By Proposition 4.12

Hk(X
p, Xp−1;R) ∼= Hk(X

p/Xp−1, {pt};R) ∼= H̃k(X
p/Xp−1;R).

Then we use Corollary 2.25 from Hatcher [31] (Chapter 2, Section 2.1), the fact that Xp/Xp−1

is the wedge sum of p-spheres (the disjoint sum of p-spheres glued at the south pole, the
basepoint), and Proposition 4.18.

To prove (b) first observe that Hk(X
0;R) = (0) for all k > 0. Next consider the following

piece of the long exact sequence of homology of the pair (Xp, Xp−1) (see Theorem 4.9):

Hk+1(Xp, Xp−1;R) // Hk(X
p−1;R) // Hk(X

p;R) // Hk(X
p, Xp−1;R).

If k 6= p, p− 1, then the first and the fourth groups are zero by (a), so we have isomorphisms

Hk(X
p;R) ∼= Hk(X

p−1;R) k 6= p, p− 1.

Thus if k > p, by induction we get

Hk(X
p) ∼= Hk(X

0) = (0),

proving (b).

Proposition 6.6(a) implies that we can view Hp(X
p, Xp−1;R) as the set of formal linear

combinations
∑

i λie
p
i , where λi ∈ R and the epi are open p-cells.

Proposition 6.7. If X is a CW complex, then we have Hk(X
p;R) ∼= Hk(X;R) for all k < p.

Sketch of proof. Consider the following piece of the long exact sequence of homology of the
pair (Xp, Xp−1):

Hk+1(Xp+1, Xp;R) // Hk(X
p;R) // Hk(X

p+1;R) // Hk(X
p+1, Xp;R).

If k < p then k+ 1 < p+ 1 so the first and fourth groups are zero and we have isomorphisms

Hk(X
p;R) ∼= Hk(X

p+1;R) k < p.

By induction, if k < p then

Hk(X
p;R) ∼= Hk(X

p+m;R) for all m ≥ 0.
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If X is finite-dimensional, we are done. Otherwise, following Milnor and Stasheff [45] (Ap-
pendix A, Corollary A.3), we use the fact that

Hk(X;R) ∼= lim−→
r≥0

Hk(X
r;R),

because every singular simplex of X is contained in a compact subset, and hence in some
Xr. A similar proof is given in Hatcher [31] (Chapter 2, Lemma 2.34).

We now show that we can form a chain complex with the modules Hp(X
p, Xp−1;R).

Recall that Sk(X
p, Xp−1;G) = Sk(X

p;G)/Sk(X
p−1;G), so we have the quotient map

πk : Sk(X
p;G)→ Sk(X

p, Xp−1;G) which yields the map jk : Hk(X
p;G)→ Hk(X

p, Xp−1;G).
Consider the following pieces of the long exact sequence of homology of the pairs (Xp+1, Xp),
(Xp, Xp−1), and (Xp−1, Xp−2):

Hp+1(Xp+1, Xp;R)
∂p+1 // Hp(X

p;R) // Hp(X
p+1;R) // Hp(X

p+1, Xp;R)

Hp(X
p−1;R) // Hp(X

p;R)
jp // Hp(X

p, Xp−1;R)
∂p // Hp−1(Xp−1;R)

Hp−1(Xp−2;R) // Hp−1(Xp−1;R)
jp−1 // Hp−1(Xp−1, Xp−2;R) // Hp−2(Xp−2;R).

Observe that by Proposition 6.6 the modules showed in red are (0); that is, we have

Hp(X
p+1, Xp;R) = Hp(X

p−1;R) = Hp−1(Xp−2;R) = (0),

and by Proposition 6.7 we have Hp(X
p+1;R) ∼= Hp(X;R). We form the following diagram

(0)

(0)

))

Hp(X)

55

Hp(X
p)

jp

((

66

· · · // Hp+1(Xp+1, Xp)
dp+1 //

∂p+1 66

Hp(X
p, Xp−1)

dp //

∂p ))

Hp−1(Xp−1, Xp−2) // · · ·

Hp−1(Xp−1)
jp−1

44

(0)

55

in which for simplicity of notation we omitted the ring R, and where dp+1 = jp ◦ ∂p+1 and
dp = jp−1 ◦∂p. Since ∂p ◦ jp = 0 (because the sequence on that descending diagonal is exact),
we have

dp ◦ dp+1 = jp−1 ◦ ∂p ◦ jp ◦ ∂p+1 = 0.

Therefore, the modules Hp(X
p, Xp−1;R) together with the boundary maps

dp : Hp(X
p, Xp−1;R) → Hp−1(Xp−1, Xp−2;R) form a chain complex. Recall that we set

X−1 = ∅.
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Definition 6.10. Given a CW complex X, the cellular chain complex SCW
∗ (X;R) associ-

ated with X is the chain complex where SCW
p (X;R) = Hp(X

p, Xp−1;R) and the boundary
maps dp : Hp(X

p, Xp−1;R)→ Hp−1(Xp−1, Xp−2;R) are given by dp = jp−1 ◦ ∂p as in the dia-
gram above. We denote the cellular homology module Hp(S

CW
∗ (X;R)) of the chain complex

SCW
∗ (X;R) by HCW

p (X;R).

The reason for introducing the modules HCW
p (X;R) is that they are isomorphic to the

singular homology modules Hp(X;R), and in practice they are usually much easier to com-
pute.

Theorem 6.8. Let X be a CW complex. There are isomorphisms

HCW
p (X;R) ∼= Hp(X;R) for all p ≥ 0

between the cellular homology modules and the singular homology modules of X.

Proof. Exactness of the left ascending diagonal sequence in the diagram above (and the first
isomorphism theorem) shows that

Hp(X;R) ∼= Hp(X
p;R)/Im ∂p+1.

Since jp is injective, it maps Im ∂p+1 isomorphically onto Im jp ◦ ∂p+1 = Im dp+1 and it maps
Hp(X

p;R) isomorphically onto Im jp = Ker ∂p, so

Hp(X;R) ∼= Ker ∂p/Im dp+1.

Since jp−1 is injective, Ker ∂p = Ker dp, thus we obtain an isomorphism

Hp(X;R) ∼= Ker dp/Im dp+1 = HCW
p (X;R),

as claimed.

Theorem 6.8 has the following immediate corollaries:

(1) If the CW complex X has no p-cells, then Hp(X;R) = (0).

(2) If the the ring R is a PID and the CW complex X has k p-cells, then Hp(X;R) is
generated by at most k elements. By Proposition 6.6(a), Hp(X

p, Xp−1;R) is a free R-
module with a basis in one-to-one correspondence with the k p-cells of X. Since R is a
PID, the submodule Ker dp is also a free R-module generated by at most k elements,
so Ker dp/Im dp+1 is generated by at most k elements.

(3) If the CW complex X has no two of its cells in adjacent dimensions, then Hp(X;R)
is a free R-module with a basis in one-to-one correspondence with the p-cells in X.
This is because whenever there is some p-cell, then there are no (p − 1)-cells and no
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(p+ 1)-cells so Xp−2 = Xp−1 and Xp = Xp+1, which implies that Hp−1(Xp−1, Xp−2) =
Hp+1(Xp+1, Xp) = (0) and then we have the piece of the cellular chain complex

Hp+1(Xp+1, Xp) = (0) 0 // Hp(X
p, Xp−1)

dp // (0) = Hp−1(Xp−1, Xp−2),

and Hp(X;R) = Ker dp = Hp(X
p, Xp−1).

Example 6.3. Property (3) immediately yields the homology of CPn. Indeed, recall from
Example 6.1 that as a CW complex CPn has n+ 1 cells

e0, e2, e4, . . . , e2n.

Therefore, we get

Hp(CPn;R) =

{
R for p = 0, 2, 4, . . . , 2n

(0) otherwise.

We also get the homology of CP∞:

Hp(CP∞;R) =

{
R for p even

(0) otherwise.

Computing the homology of RPn is more difficult. The problem is to figure out what are
the boundary maps dp.

Generally, in order to be able to compute the cellular homology groups, we need a method
to “compute” the boundary maps dp. This can indeed be done in principle, and often in
practice although this can be tricky, using the notion of degree of a map of the sphere to
itself. To simplify matters assume that R = Z, although any abelian group G will do.

Definition 6.11. Let f : Sn → Sn be a continuous map. We have the homomorphism
f∗ : H̃n(Sn;Z)→ H̃n(Sn;Z), and since H̃n(Sn;Z) ∼= Z (see Proposition 4.18), the homomor-
phism f∗ must be of the form f∗(α) = dα for some d ∈ Z. The integer d is called the degree
of f and is denoted by deg f .

The degree is an important invariant of a map f : Sn → Sn. Intuitively, the degree
d = degf measures how many times f wraps around Sn (and preserves or reverses direction).
For example, it can be shown that the degree of the antipodal map −1 : Sn → Sn given by
−1(x) = −x is (−1)n+1.

Our intention is not to discuss degree theory, but simply to point out that this notion can
be used to determine the boundary maps dn. Detailed expositions about degrees of maps
can be found in Hatcher [31] (Chapter 2, Section 2.2), Bredon [7] (Chapter IV, Sections 6
and 7), and Rotman [51] (Chapter 6).

To compute dp, for every open p-cell epi ∈ X considered as a chain in Hp(X
p, Xp−1;R)

and for any open (p − 1)-cell ep−1
j ∈ X considered as a chain in Hp−1(Xp−1, Xp−2;R), we

define a map fij : Sp−1 → Sp−1 as follows:
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1. Let q : Xp−1 → Xp−1/Xp−2 be the quotient map.

2. Recall that Xp−1/Xp−2 is homeomorphic to the wedge sum of (p − 1)-spheres Sp−1,
one for each j ∈ Ip−1 (this is the disjoint sum of (p− 1)-spheres with their south pole
identified). See Figure 6.9. Let qj : Xp−1/Xp−2 → Sp−1 be the projection onto the jth

2-skeleton: tetrahedral surface

X2

X 1

1-skeleton: edges of tetrahedron

A

B

C

D

D

ABC ABCD

Forming the quotient X / X2 1

Figure 6.9: Let X3 be the solid tetrahedron. Then X2 is the surface comprised of four 2-cells
while X1 is the union of the edges. If we collapse all the edges to a single point, we obtain
four spheres joined to a single point, one sphere for each face of the tetrahedron.

sphere. It is the map that collapses all the other spheres in the wedge sum except the
jth one onto a point (the south pole). Then we let

fij = qj ◦ q ◦ fi|Sp−1,

where fi : D
p
i → X is the characteristic map of the cell epi and fi|Sp−1 is the restriction

of fi to Sp−1.

The following proposition is proven in Hatcher [31] (Chapter 2, Section 2.2, after Theorem
2.35) and in Bredon [7] (Chapter IV, Section 10, Theorem 10.3).
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Proposition 6.9. Let X be a CW complex. Then the boundary map dp : Hp(X
p, Xp−1;Z)→

Hp−1(Xp−1, Xp−2;Z) of the cellular complex SCW
∗ (X;Z) associated with X is given by

dp(e
p
i ) =

∑

j

dije
p−1
j

where dij = degfij is the degree of the map fij : Sp−1 → Sp−1 defined above as the composition
fij = qj ◦ q ◦ fi|Sp−1.

The sum in Proposition 6.9 is finite because fi maps Sp−1 into a the union of a finite
number of cells of dimension at most p−1 (by Proposition 6.4(3)). The degrees dij are often
called incidence numbers .

The boundary map d1 : H1(X1, X0;Z) → H0(X0;Z) is much easier to compute than it
appears. Recall that X1 is a graph in which every 1-cell ei (an edge) is attached to some
0-cells (nodes) x and y, with x attached to −1 and y attached to +1 (x and y may be
identical). Then it is not hard to show that

d1(e) = y − x.

Details of this computation are given in Bredon [7] (Chapter IV, Section 10).

As an illustration of Proposition 6.9 we can compute the homology groups of RPn.

Example 6.4. Recall that as a CW complex RPn has a cell structure with n+ 1 cells

e0, e1, e2, . . . , en.

It follows that the cellular cell complex is of the form

0 // Z dn // Z dn−1 // · · · // Z d3 // Z d2 // Z d1 // Z // 0.

In this case there is only one cell of dimension k − 1 so q1 = id and we just have to find
the degree of the map q ◦ fk|Sk−1 (from Sk−1 to itself). This map is a homeomorphism
when restricted to the two components of Sk−1 − Sk−2, and these two homeomorphisms are
obtained from each other by precomposing with the antipodal map of Sk−1, which has degree
(−1)k. Then one finds that the degree of the map q ◦ fk|Sk−1 is 1 + (−1)k; see Hatcher [31]
(Chapter 2, Example 2.42). It follows that dk is either 0 or multiplication by 2, according to
the parity of k. Thus if n is even we have the chain complex

0 // Z 2 // Z 0 // · · · 2 // Z 0 // Z 2 // Z 0 // Z // 0,

and if n is odd we have the chain complex

0 // Z 0 // Z 2 // · · · 2 // Z 0 // Z 2 // Z 0 // Z // 0.
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From this we get

Hp(RPn;Z) =





Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise,

as stated in Section 4.6.

Similarly we find that the homology of RP∞ is given by

Hp(RP∞;Z) =





Z for p = 0

Z/2Z for p odd

(0) otherwise.

Other examples are given in Hatcher [31] (Chapter 2, Section 2.2). A slightly different
approach to incidence numbers is presented in Massey [41] (Chapter IX, Sections 5–7).
Massey shows that for special types of CW complexes called regular complexes there is a
procedure for computing the incidence numbers (see Massey [41], Chapter IX, Section 7).

If R is any commutative ring, it is shown in Greenberg and Harper [25] (Chapter 19,
Theorem 19.27) that the homology groups Hp(RPn;R) of RPn are given by

Hp(RPn;R) =





R for p = 0, n

R/2R for p odd, 0 < p < n

Ker (R
2−→ R) for p even 0 < p < n

(0) otherwise

if n is odd, and

Hp(RPn;R) =





R for p = 0

R/2R for p odd, 0 < p < n

Ker (R
2−→ R) for p even 0 < p ≤ n

(0) otherwise

if n is even, where the map R
2−→ R is the map r 7→ 2r. Furthermore, if R is noetherian,

then these R-modules are finitely generated.

The generalization of cellular homology to coefficients in an R-module G is immediate.
We define the R-modules SCW

p (X;G) by

SCW
p (X;G) = Hp(X

p, Xp−1;G),

where as before we set X−1 = ∅. The only change in Proposition 6.6 is that

Hp(X
p, Xp−1;G) ∼=

⊕

epi |i∈Ip

G
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is the direct sum of copies of G, one for each open p-cell of X. This means that we can view
Hp(X

p, Xp−1;R) as the set of formal “vector-valued” linear combinations
∑

i e
p
i gi, where

gi ∈ G and the epi are open p-cells. Then Proposition 6.7 goes through, the boundary maps
are defined as before and we get the following theorem.

Theorem 6.10. Let X be a CW complex. For any R-module G there are isomorphisms

HCW
p (X;G) ∼= Hp(X;G) for all p ≥ 0

between the cellular homology modules and the singular homology modules of X.

6.3 The Euler–Poincaré Characteristic of a

CW Complex

In this section we generalize the Euler–Poincaré formula obtained for simplicial complexes
in Section 5.5 to CW complexes. Let us assume that our ring R is R = Z and that G = Z.
In this case we abbreviate Hp(X;Z) as Hp(X) (since cellular homology agrees with singular
homology we may assume that we are using singular homology). We know that if X is a
finite CW complex then its homology groups Hp(X;Z) are finitely generated abelian groups.
More generally we have the following definition.

Definition 6.12. Let X be a topological space. We say that X is of finite type if Hp(X)
if a finitely generated abelian group for all p ≥ 0, and X is of bounded finite type if it is of
finite type and Hp(X) = 0 for all but a finite number of indices p.

We can now define a famous invariant of a space.

Definition 6.13. If X is a space of bounded finite type, then its Euler–Poincaré character-
istic χ(X) is defined as

χ(X) =
∑

p

(−1)p rankHp(X).

Since X is of finite bounded type the above sum contains only finitely many nonzero terms.
The natural number rankHp(X) = rankHp(X;Z) is called the p-th Betti number of X and
is denoted by bp.

If X is a finite CW complex of dimension n, then each p-skeleton has a finite number of
p-cells, say ap. Remarkably χ(X) =

∑n
p=0(−1)pap, a formula generalizing Euler’s formula in

the case of a convex polyhedron. We can now prove the following beautiful result generalizing
Theorem 5.15 to CW complexes.

Theorem 6.11. (Euler–Poincaré) Let X be a finite CW complex of dimension n and let ap
be the number of p-cells in X. We have

χ(X) =
∑

p

(−1)p rankHp(X) =
n∑

p=0

(−1)pap.
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Proof. As usual let Bp = Im dp+1 ⊆ SCW
p (X) be the group of p-boundaries and let Zp =

Ker dp ⊆ SCW
p (X) be the group of p-cycles. By definition HCW

p (X) = Zp/Bp, by Theorem
6.8 we have HCW

p (X) ∼= Hp(X), and SCW
p (X) is a free abelian group of rank ap (the number

of p-cells). Observe that Bn = B−1 = (0). We have the exact sequence

0 // Zp
i // SCW

p (X)
dp // Bp−1

// 0

which (by Proposition 5.14) shows that

ap = rank(SCW
p (X)) = rank(Zp) + rank(Bp−1), (∗)

and the exact sequence

0 // Bp
// Zp // Hp(X) // 0

which (by Proposition 5.14) shows that

rank(Zp) = rank(Bp) + rank(Hp(X)). (∗∗)

From Equation (∗∗) we obtain

∑

p

(−1)p(rank(Bp) + rank(Hp(X))) =
∑

p

(−1)p rank(Zp),

and from Equation (∗) we obtain

∑

p

(−1)p rank(Zp) =
∑

p

(−1)p(ap − rank(Bp−1)),

so we obtain

∑

p

(−1)p rank(Bp) +
∑

p

(−1)p rank(Hp(X)) =
∑

p

(−1)pap +
∑

p

(−1)p−1 rank(Bp−1).

The sums involving the B∗ cancel out because Bn = B−1 = (0), and we obtain

∑

p

(−1)pap =
∑

p

(−1)p rank(Hp(X))) = χ(X),

as claimed.

Theorem 6.11 proves that the number
∑n

p=0(−1)pap is the same for all cell structures (of
CW complexes) defining a given space X. It is a topological invariant.
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Example 6.5. For example, if X = S2, we know that as a CW complex S2 has two cells e0

and e2, so we get
χ(S2) = 1 + (−1)2 × 1 = 2.

As a consequence, if X is any CW complex homeomorphic to S2 with V 0-cells, E 1-cells
and F 2-cells, we must have

F − E + V = 2,

a famous equation due to Euler (for convex polyhedra in R3).

Example 6.6. More generally, since the n-sphere Sn has a structure with one 0-cell and
one n-cell, we see that

χ(Sn) = 1 + (−1)n.

This is the Euler–Poincaré characteristic of any convex polytope in Rn+1, a formula proven
by Poincaré.

Example 6.7. For the the real projective plane RP2 we have a CW cell structure with three
cells e0, e1, e2, so we get

χ(RP2) = 1.

In general
χ(RP2n) = 1 and χ(RP2n+1) = 0.

Example 6.8. For the torus T 2, we have a CW cell structure with four cells e0, e1
1, e

1
2, e

2, so
we get

χ(T 2) = 0.

More generally, since the homology groups of the n-torus T n are given by

Hp(T
n) = Z(np),

using the fact that 0 = (1− 1)n =
∑n

p=0(−1)p
(
n
p

)
, we have

χ(T n) =
n∑

p=0

(−1)p
(
n

p

)
= 0.

Definition 6.14. If R is any ring and if X is a space of bounded finite type, then its
Euler–Poincaré characteristic χR(X) is defined as

χR(X) =
∑

p

(−1)p rankHp(X;R),

where rankHp(X;R) is the rank of R-module Hp(X;R).

Since Proposition 5.14 actually holds for finitely generated modules over an integral
domain R (see Proposition 11.13), and since the rest of the proof of Theorem 6.11 does not
depend on the ring R, we have the following slight generalization of Theorem 6.11.
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Theorem 6.12. (Euler–Poincaré) Let X be a finite CW complex of dimension n and let ap
be the number of p-cells in X. For any integral domain R, we have

χR(X) =
∑

p

(−1)p rankHp(X;R) =
n∑

p=0

(−1)pap.

Thus, for finite CW complexes, the Euler–Poincaré characteristic

χR(X) =
∑

p

(−1)p rankHp(X;R)

is independent of the ring R, as long as it is an integral domain. This fact is also noted in
Greenberg and Harper in the special case where R is a PID; see [25] (Chapter 20, Remark
20.19).

We also have the following proposition showing that for any space X of bounded finite
type, the Euler–Poincaré characteristic χR(X) =

∑
p(−1)p rank Hp(X;R) is independent

the ring R, provided that it is a PID.

Proposition 6.13. Let X be any space of bounded finite type and let R be any PID. Then
we have

χR(X) =
∑

p

(−1)prankHp(X;R) = χ(X) =
∑

p

(−1)prankHp(X;Z).

Proof. We use the universal coefficient theorem for homology (Theorem 12.1) and some
properties of TorZ1 stated after Theorem 12.5, including the following facts:

TorZ1 (Z/mZ, A) ∼= Ker (A
m−→ A)

Z/mZ⊗Z A ∼= A/mA

TorZ1 (Z, A) ∼= (0),

where A is any abelian group and the map A
m−→ A is multiplication by m. Also, the TorR

functor is defined in Example 11.1. Recall that the homology groups are finitely generated
abelian groups of the form

Hp(X;Z) = Zk ⊕ Z/m1Z⊕ · · · ⊕ Z/mqZ,

with k ≥ 0 and m1, . . . ,mq ≥ 2. Since (Theorem 12.1)

Hp(X;R) ∼= (Hp(X;Z)⊗Z R)⊕ TorZ1 (Hp−1(X;Z), R),

the term Zk in Hp(X;Z) after being tensored with R yields the term Rk in Hp(X;R), and
every term Z/mZ in Hp(X;Z) after being tensored with R yields the term Z/mZ ⊗Z R ∼=
R/mR in Hp(X;R). Since

Hp+1(X;R) ∼= (Hp+1(X;Z)⊗Z R)⊕ TorZ1 (Hp(X;Z), R),
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every term Z/mZ in Hp(X;Z) yields the term TorZ1 (Z/mZ, R) ∼= Ker (R
m−→ R) in Hp+1(X;

R). Since R is a PID, we have Ker (R
m−→ R) = sR for some natural number s, so we have

the exact sequence

0 // sR
i // R

m //mR // 0,

and since R is a PID it is an integral domain so the module mR is free over R and the above
sequence splits, which implies that

R ∼= sR⊕mR,

and thus
R/mR ∼= sR.

Either sR 6∼= R, in which case R/mR ∼= sR is a torsion term that does not contribute to the
sum

∑
p(−1)p rank Hp(X;R), or R/mR ∼= sR ∼= R, in which case the contributions of the

term Z/mZ ⊗Z R ∼= R in Hp(X;R) and of the term TorZ1 (Z/mZ, R) ∼= R in Hp+1(X;R) to
the sum

∑
p(−1)p rank Hp(X;R) cancel out since they have the signs (−1)p and (−1)p+1,

which proves that

∑

p

(−1)prankHp(X;R) =
∑

p

(−1)prankHp(X;Z),

as claimed. Properties of TorZ1 stated just after Theorem 12.5 are heavily used. We leave
the details as an exercise.

Proposition 6.13 justifies using the ring Z in the definition of the Euler–Poincaré charac-
teristic. This remark is also made in Greenberg and Harper; see [25] (Chapter 20, Remark
20.19).

In the next section we take a quick look at cellular cohomology.

6.4 Cohomology of CW Complexes

Recall that by Definition 4.30 that the cochain groups S∗(X,A;G) of a pair (X,A) with
coefficients in an R-module G are given by Sp(X,A;G) = HomR(Sp(X,A;R), G), so that
the cohomology modules Hp(X,A;G) are given by

Hp(X,A;G) = Hp(HomR(Sp(X,A;R), G)).

If we specialize X and A to Xp and Xp−1, where X is a CW complex, we obtain

Hk(Xp, Xp−1;G) = Hk(HomR(Sk(X
p, Xp−1;R), G).

By Proposition 6.6(a), Hk(X
p, Xp−1;R) = (0) if k 6= p and Hp(X

p, Xp−1;R) is a free R-
module, so this suggests using the universal coefficient theorem for cohomology to compute
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Hk(Xp, Xp−1;G). In order to be able to do this we assume that R is a PID, and we let G
be any R-module.

By the version of the universal coefficient theorem for cohomology given by Proposition
12.8 (with X−1 = ∅ as before) with C = S∗(Xp, Xp−1;R), a chain complex of free R-modules,
we have

Hp(Xp, Xp−1;G) = Hk(HomR(S∗(X
p, Xp−1;R), G))

∼= HomR(Hk(S∗(X
p, Xp−1R), G) = HomR(Hk(X

p, Xp−1;R), G),

so we obtain

Hp(Xp, Xp−1;G) ∼= HomR(Hp(X
p, Xp−1;R), G)

Hk(Xp, Xp−1;G) = (0) k 6= p.

Proposition 6.14. If X is a CW complex, then the following properties hold.

(a) We have Hk(Xp, Xp−1;G) = (0) for all k 6= p, and
Hp(Xp, Xp−1;G) ∼= HomR(Hp(X

p, Xp−1;R), G).

(b) We have Hk(Xp;G) ∼= (0) for all k > p.

(c) We have Hk(Xp;G) ∼= Hk(X;G) for all k < p.

Proof. (a) has already been proven.

(b) We have the following piece of the long exact sequence of cohomology (see Theorem
4.36) for the pair (Xp, Xp−1):

Hk(Xp, Xp−1;G) // Hk(Xp;G) // Hk(Xp−1;G) // Hk+1(Xp, Xp−1;G),

and if k 6= p − 1, p we know that Hk(Xp, Xp−1;G) = Hk+1(Xp, Xp−1;G) ∼= (0), so we have
isomorphisms

Hk(Xp;G) ∼= Hk(Xp−1;G) for all k 6= p− 1, p.

If we assume that k > p, then by induction on p we get

Hk(Xp;G) ∼= Hk(X0;G) ∼= (0).

(c) To prove (c) we will use the fact that Hk(X,X
p;R) = (0) for all k ≤ p. This is

proven in Hatcher [31] (Chapter 2, Lemma 2.34) using a construction known as the “map-
ping telescope.” In Milnor and Stasheff [45] (Page 262) it is shown that Hk(X,X

p;R) ∼=
Hk(X

p+1, Xp;R), and since Hk(X
p+1, Xp;R) = (0) for all k 6= p + 1 we conclude that

Hk(X,X
p;R) = (0) for all k ≤ p.

By the universal coefficient theorem for cohomology (Proposition 12.8) we deduce that

Hk(X,Xp;G) = (0) for all k ≤ p.
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Consider the following piece of the long exact sequence of cohomology of the pair (X,Xp):

Hk(X,Xp;G) // Hk(X;G) // Hk(Xp;G) // Hk+1(X,Xp;G).

If k < p then k + 1 ≤ p and we know that Hk(X,Xp;G) = Hk+1(X,Xp;G) = (0), so we get
isomorphisms

Hk(X;G) ∼= Hk(Xp;G) for all k < p,

as claimed

In particular, Proposition 6.14 implies that Hp(X;G) ∼= Hp(Xp+1;G).

Recall that Sk(X
p, Xp−1;G) = Sk(X

p;G)/Sk(X
p−1;G), so we have the quotient map

πk : Sk(X
p;G)→ Sk(X

p, Xp−1;G) which yields the map jk : Hk(Xp, Xp−1;G)→ Hk(Xp;G).
Consider the following pieces of the long exact sequences of cohomology for the pairs (Xp−1,
Xp−2), (Xp, Xp−1), and (Xp+1, Xp) (see Theorem 4.36):

Hp−2(Xp−2;G) // Hp−1(Xp−1, Xp−2;G)
jp−1
// Hp−1(Xp−1;G) // Hp−1(Xp−2;G)

Hp−1(Xp−1;G) δp−1
// Hp(Xp, Xp−1;G)

jp // Hp(Xp;G) // Hp(Xp−1;G)

Hp(Xp+1, Xp;G) // Hp(Xp+1;G) // Hp(Xp;G) δp // Hp+1(Xp+1, Xp;G).

Since by Proposition 6.14 we also have

Hp−1(Xp−2;G) = Hp(Xp−1;G) = Hp(Xp+1, Xp;G) = (0),

and Hp(X;G) ∼= Hp(Xp+1;G), we have the following diagram:

(0)

Hp−1(Xp−1)
δp−1

))

55

· · · // Hp−1(Xp−1, Xp−2) dp−1
//

jp−1 44

Hp(Xp, Xp−1) dp //

jp ((

Hp+1(Xp+1, Xp) // · · ·

Hp(Xp)
δp

66

))
Hp(X)

66

(0)

(0)

55

in which for simplicity of notation we omitted the module G, and where dp−1 = δp−1 ◦ jp−1

and dp = δp ◦ jp. Since jp ◦ δp−1 = 0 (because the sequence on that diagonal is exact), we
have

dp ◦ dp−1 = δp ◦ jp ◦ δp−1 ◦ jp−1 = 0.
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Definition 6.15. Given a CW complex X, the modules Hp(Xp, Xp−1;G) together with the
coboundary maps dp : Hp(Xp, Xp−1;G)→ Hp+1(Xp+1, Xp;G) defined above form a cochain
complex S∗CW(X;G) called the cellular cochain complex associated with X. The cohomology
modules associated with the cochain complex S∗CW(X;G) are denoted by

Hp
CW(X;G) = Hp(S∗CW(X;G))

and called the cellular cohomology modules of the cochain complex S∗CW(X;G).

The following simple proposition will needed to prove Theorem 6.16.

Proposition 6.15. If the following diagram is commutative and if j : A→ B is surjective

A
d //

j ��

C

B
δ

??

then
Ker δ ∼= Ker d/Ker j.

Proof. Define a map ϕ : Ker δ → Ker d/Ker j as follows: for any b ∈ Ker δ, let

ϕ(b) = a+ Ker j

for any a ∈ Ker d such that j(a) = b. Since j is surjective, there is some a ∈ A such
that j(a) = b. Furthermore, for any a ∈ A such that j(a) = b ∈ Ker δ, since d = δ ◦ j
we have d(a) = δ(j(a)) = δ(b) = 0, so a ∈ Ker d. This map is well defined because if
another a′ ∈ Ker d is chosen such that j(a′) = b, then j(a′) = j(a) so j(a′ − a) = 0, that is,
a′ − a ∈ Ker j, so a+ Ker j = a′ + Ker j.

The map ϕ is injective because if ϕ(b) = Ker j, since ϕ(b) = a+ Ker j for any a ∈ Ker d
such that j(a) = b, we have a+ Ker j = Ker j, which implies that a ∈ Ker j so b = j(a) = 0.
The map ϕ is surjective because for any a+ Ker j with a ∈ Ker d, by definition of ϕ we have
ϕ(j(a)) = a+ Ker j. Therefore ϕ : Ker δ → Ker d/Ker j is an isomorphism.

Theorem 6.16. Let X be a CW complex. For any PID R and any R-module G there are
isomorphisms

Hp
CW(X;G) ∼= Hp(X;G) for all p ≥ 0

between the cellular cohomology modules and the singular cohomology modules of X. Fur-
thermore, the cellular cochain complex S∗CW(X;G) is isomorphic to the cochain complex
HomR(SCW

∗ (X;R), G) (the dual of the cellular chain complex SCW
∗ (X;R) with respect to G).

Proof. The above diagram shows that

Hp(X;G) ∼= Ker δp.
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Since jp is surjective, Proposition 6.15 (with A = Hp(Xp, Xp−1), B = Hp(Xp) and C =
Hp+1(Xp+1, Xp)) shows that

Ker δp = Ker dp/Ker jp,

which yields Hp(X;G) ∼= Ker dp/Ker jp. But Ker jp = Im δp−1 so

Hp(X;G) ∼= Ker dp/Im δp−1.

Since jp−1 is surjective, Im δp−1 = Im dp−1, and finally we obtain

Hp(X;G) ∼= Ker dp/Im dp−1 = Hp
CW(X;G),

as claimed.

We now construct two commutative diagrams as follows.

Step 1 . The first one is obtained from the naturality part of the universal coefficient theorem
for cohomology (Theorem 12.6) applied to a chain map θ : C → C ′ of chain complexes C
and C ′ by retaining only the rightmost of the two squares in the diagram of Theorem 12.6,
and by flipping it about its diagonal. We obtain the diagram

Hp(HomR(C ′, G))

h′

��

(HomR(θ,id))∗ // Hp(HomR(C,G))

h
��

HomR(Hp(C
′), G)

HomR(θ∗,id)
// HomR(Hp(C), G).

If we specialize the above diagram to the chain map π : S∗(Xp;R) → S∗(Xp, Xp−1;R)
(with C = S∗(Xp, R), C ′ = S∗(Xp, Xp−1;R)), we find that (θ∗)p = jp, so the lower arrow is
j∗p = HomR(θ∗, id), and jp = (HomR(θ, id))∗, and since by definition

Hp(X
p;R) = Hp(S∗(X

p;R)) = Hp(C), Hp(X
p, Xp−1;R) = Hp(S∗(X

p, Xp−1;R)) = Hp(C
′),

S∗(Xp;G) = HomR(S∗(X
p;R), G) = HomR(C;G),

S∗(Xp, Xp−1;G) = HomR(S∗(X
p, Xp−1;R), G) = HomR(C ′;G),

Hp(Xp;G) = Hp(S∗(Xp;G)), Hp(Xp, Xp−1;G) = Hp(S∗(Xp, Xp−1;G)),

we obtain the following commutative diagram:

Hp(Xp, Xp−1;G)

hp

��

jp // Hp(Xp;G)

h
��

HomR(Hp(X
p, Xp−1;R), G)

j∗p
// HomR(Hp(X

p;R), G).

Step 2 . The second commutative diagram expresses a duality relationship between the
connecting homomorphisms δp : Hp(A;G) → Hp+1(X,A;G) and ∂p+1 : Hp+1(X,A;G) →
Hp(A;G) arising in the long exact sequences of relative cohomology and homology of a pair
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(X,A). The reason why the diagram shown below commutes is explained in Hatcher [31]
(Chapter 3, Section 3.1, Pages 200–201).

Hp(A;G)

h
��

δp // Hp+1(X,A;G)

h′

��
HomR(Hp(A;R);G)

∂∗p+1

// HomR(Hp+1(X,A;R);G).

If we specialize to X = Xp+1, A = Xp, we obtain the commutative diagram

Hp(Xp;G)

h
��

δp // Hp+1(Xp+1, Xp;G)

hp+1

��
HomR(Hp(X

p;R);G)
∂∗p+1

// HomR(Hp+1(Xp+1, Xp;R);G).

Next if we concatenate the (last) commutative diagrams obtained in Step 1 and Step 2,
we obtain the commutative diagram shown below.

Hp(Xp, Xp−1;G)

hp

��

jp // Hp(Xp;G) δp //

h
��

Hp+1(Xp+1, Xp;G)

hp+1

��
HomR(Hp(X

p, Xp−1;R), G)
j∗p
// HomR(Hp(X

p;R), G)
∂∗p+1

// HomR(Hp+1(Xp+1, Xp;R), G).

Thus the big rectangle commutes. Furthermore, by Proposition 12.8, the maps hp and
hp+1 are isomorphisms. But the composition of the two maps on the top row is dp, the
cellular coboundary map, and the composition of the two maps on the bottom row is d∗p+1 =
HomR(dp+1;G) since dp+1 = jp ◦ ∂p+1 which implies that d∗p+1 = ∂∗p+1 ◦ j∗p , so we have the
commutative diagram

Hp(Xp, Xp−1;G)

hp

��

dp // Hp+1(Xp+1, Xp;G)

hp+1

��
HomR(Hp(X

p, Xp−1;R), G)
d∗p+1

// HomR(Hp+1(Xp+1, Xp;R), G),

which shows that the cellular cochain complex S∗CW(X;G) is isomorphic to the cochain
complex HomR(SCW

∗ (X;R), G).

As a consequence, although this is not obvious a priori , the cellular cochain complex
S∗CW(X;G) is isomorphic to the cochain complex obtained by applying HomR(−, G) to the
cellular chain complex SCW

∗ (X;R). Also, the cellular cohomology modules “compute” the
singular cohomology modules.
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6.5 Problems

Problem 6.1. Prove that the Klein bottle can be expressed as a CW-complex with one
0-cell, two 2-cells, and one 2-cell, just as the torus T , but with different attaching maps.

Problem 6.2. Refer back to Problem 5.5 in which, given a (two-dimensional) torus T , we
formed the g-fold connected sum

Xg = T ] · · · ] T︸ ︷︷ ︸
g

by gluing together g ≥ 2 tori. Prove that Xg is obtained as a CW-complex having one 0-cell,
2n 1-cells, and one 2-cell.

Problem 6.3. Refer back to Problem 5.7 in which, given a projective plane RP2, we formed
its g-fold connected sum

Yg = RP2 ] · · · ]RP2

︸ ︷︷ ︸
g

by gluing together g ≥ 2 projective planes. Prove that Yg is obtained as a CW-complex
having one 0-cell, n 1-cells, and one 2-cell.

Problem 6.4. Prove Proposition 6.2.

Problem 6.5. Another way to compute the boundary maps of the cellular chain complex
associated with RPn is to triangulate Sn and RPn and to use simplicial homology. This
approach is discussed in Munkres [48], see Lemma 40.4, Lemma 40.7, Theorem 40.6, and
Theorem 40.7. Study this approach carefully.

Problem 6.6. (1) Prove that the index of the identity map I : Sn → Sn is +1.

(2) Prove that if f : Sn → Sn is not surjective, then deg f = 0.

Problem 6.7. (1) Prove that if f, g : Sn → Sn are homotopic maps, then deg f = deg g.

Prove that deg(g ◦ f) = (deg f)(deg g). Deduce that if f : Sn → Sn is a homotopy
equivalence, then deg f = ±1.

Problem 6.8. (1) Prove that if f : Sn → Sn is a reflection of Sn, which means that f fixes
a subspace homeomorphic to Sn−1 and exchanges the two complementary hemispheres, then
deg f = −1.

(2) Prove that the antipodal map −1 : Sn → Sn given by −1(x) = −x has degree
(−1)n+1.

Problem 6.9. Prove that if f : Sn → Sn has no fixed point, then deg f = (−1)n+1.

Problem 6.10. Prove that the cellular chain complex of the CW-complex for Xg determined
in Problem 6.2 is

0 // Z d2 // Z2g d1 // Z // 0,

and that d1 = d2 = 0. Use this to compute the homology of Xg.
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Problem 6.11. Prove that the cellular chain complex of the CW-complex for Yg determined
in Problem 6.3 is

0 // Z d2 // Zg d1 // Z // 0.

Prove that d1 = 0 and that d2 is defined by its action on 1 by d2(1) = (2, . . . , 2). Deduce
that H2(Yg) = (0).

By replacing the last vector (0, . . . , 0, 1) in the canonical basis for Zg by (1, . . . , 1), prove
that H1(Y ) = Zg−1 ⊕ (Z/2Z).

Problem 6.12. Prove that

χ(RP2n) = 1 and χ(RP2n+1) = 0.

Problem 6.13. Prove that if f : Sn → Sn has degree d, then the homomorphism induced
on cohomology, f ∗ : Hn(Sn;G)→ Hn(Sn;G), is multiplication by d.

Problem 6.14. Prove that if A is a closed subspace of X that is a deformation retract
of some neighborhood of X, then the quotient map π : X → X/A induces isomorphisms
Hp(X,A;G) ∼= Hp(X/A;G), for all p ≥ 0.



Chapter 7

Poincaré Duality

Our goal is to state a version of the Poincaré duality for singular homology and cohomology,
one of the most important results about the topology of manifolds. The basic version is that
if M is a “nice” n-manifold, then there are isomorphisms

Hp(M ;Z) ∼= Hn−p(M ;Z) (∗)

for all p ∈ Z. Here nice means compact and orientable, a notion that will be defined in
Section 7.1.

The isomorphisms (∗) are actually induced by an operation

_ : Sp(M ;Z)× Sn(M ;Z)→ Sn−p(M ;Z)

combining a chain and a cochain to make a chain, called cap product , which induces an
operation

_ : Hp(M ;Z)×Hn(M ;Z)→ Hn−p(M ;Z)

combining a homology class and a cohomology class to make a homology class. Furthermore,
if M is orientable, then there is a unique special homology class µM ∈ Hn(M ;Z) called the
fundamental class of M , and Poincaré duality means that the map

c 7→ c _ µM

is an isomorphism between Hp(M ;Z) and Hn−p(M ;Z).

All this can be generalized to coefficients in any commutative ring R with an identity
element and to compact manifolds that are R-orientable, a notion defined in Section 7.1.

It is even possible to generalize Poincaré duality to noncompact R-orientable manifolds,
by replacing singular cohomology by the more general notion of singular cohomology with
compact support. We will explain all this in the following sections. We begin with the notion
of orientation.

237
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7.1 Orientations of a Manifold

Since 0-dimensional manifolds constitute a degenerate case of little interest (discrete sets of
points), we assume that our manifolds have dimension n > 0.

If M is a topological manifold of dimension n > 0 and if R is any commutative ring with
multiplicative unit, we saw in Proposition 4.23 that

Hp(M,M − {x};R) ∼=

{
R if p = n

(0) if p 6= n.

Since the groups Hn(M,M −{x};R) are all isomorphic to R, a way to define a notion of
orientation is to pick some generator µx from Hn(M,M −{x};R), for every x ∈M . Here we
view R as a free R-module so a generator of R is an element s ∈ R such that the map r 7→ rs
(r ∈ R) is surjective. Since R is a ring with an identity element, a generator of R is just
an invertible element. To say that M is orientable means that we can pick these invertible
elements µx ∈ Hn(M,M − {x};R) in such a way that they “vary continuously” with x.

A way to achieve this is to introduce the notion of fundamental class of M at a subspace
A.

Definition 7.1. Given an n-manifold M and any subset A of M , an R-fundamental (ho-
mology) class of M at the subspace A is a homology class µA ∈ Hn(M,M −A;R) such that
for every x ∈ A,

ρAx (µA) = µx ∈ Hn(M,M − {x};R)

is a generator of Hn(M,M − {x};R), where ρAx : Hn(M,M − A;R) → Hn(M,M − {x};R)
is the homomorphism induced by the inclusion M − A ⊆ M − {x}. If A = M , we call µM
an R-fundamental (homology) class of M .

An R-orientation of M is an open cover U = (Ui)i∈I together with a family (µUi)i∈I of
fundamental classes of M at Ui such that whenever Ui ∩ Uj 6= ∅, then

ρUiUi∩Uj(µUi) = ρ
Uj
Ui∩Uj(µUj), (†)

where ρUiUi∩Uj : Hn(M,M−Ui;R)→ Hn(M,M−Ui∩Uj;R) and ρ
Uj
Ui∩Uj : Hn(M,M−Uj;R)→

Hn(M,M −Ui ∩Uj;R) are the homomorphisms induced by the inclusions Ui ∩Uj ⊆ Ui and
Ui ∩ Uj ⊆ Uj. A manifold M is R-orientable if it has an R-orientation.

When R = Z, we use the terminology fundamental classes and orientations (we drop the
prefix R). For simplicity of notation, we write µi instead of µUi .

Observe that if (U = (Ui)i∈I , (µi)i∈I) is an R-orientation of M , since ρUix = ρ
Ui∩Uj
x ◦ρUiUi∩Uj

and ρ
Uj
x = ρ

Ui∩Uj
x ◦ ρUjUi∩Uj , the condition ρUiUi∩Uj(µi) = ρ

Uj
Ui∩Uj(µj) implies that

ρUix (µi) = ρUjx (µj) for all x ∈ Ui ∩ Uj,
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that is, the R-orientation is indeed consistent. Consequently, if we set µx = ρUix (µi) for
every i ∈ U and for every x ∈ Ui, we obtain a well-defined family (µx)x∈M of generators
µx ∈ Hn(M,M−x;R). We call (µx)x∈M the family of generators induced by the orientation.

Remark: Readers familiar with differential geometry will observe the analogy between a
fundamental class and a (global) volume form in the case where the n-manifold is smooth. In
the smooth case, there is a tangent space at every point x ∈M , and an orientation is given by
a nonzero global section ω of the bundle

∧n T ∗M . In the absence of the tangent bundle, the
substitute is the orientation bundle whose fibres are the homology rings Hn(M,M−{x};R).

Definition 7.2. For any chart ϕU : U → Ω where U is an open subset of M , if D is a closed
ball contained in Ω ⊆ Rn, then B = ϕ−1

U (D) is a compact subset of M and we call it a
compact and convex subset of M . See Figure 7.1.

M

U

Ω

D

B

φ φ

φ (D)

-1

-1
=

R
n

Figure 7.1: An illustration of a compact and convex subset of the 2-manifold M .

Then a minor modification of Proposition 4.23 can be used to show the following fact
(see Bredon [7], Chapter VI, Proposition 7.1).

Proposition 7.1. Given a topological n-manifold M , for any compact and convex subset B,
for any point x ∈ B, the homomorphism ρBx : Hp(M,M −B;R)→ Hp(M,M −x;R) induced
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by the inclusion M −B ⊆M − x is an isomorphism for all p ≥ 0. We have

Hp(M,M −B;R) ∼=

{
R if p = n

(0) if p 6= n.

Proof. By shrinking the domain U of the chart ϕU : U → Ω such that B = ϕ−1
U (D) as in

Definition 7.2 and Figure 7.1, we may assume that U is homeomorphic to Rn. As in the proof
of Proposition 4.23, by excision with X = M,A = M − x, and Z = M − U (see Theorem
4.14), we obtain

Hp(M,M − {x};R) ∼= Hp(U,U − {x};R) ∼= Hp(Rn,Rn − {x};R),

and by excision with X = M,A = M −B, and Z = M − U , we obtain

Hp(M,M −B;R) ∼= Hp(U,U −B;R) ∼= Hp(Rn,Rn −B;R).

By the proof of Proposition 4.23, we have

Hp(Rn,Rn − {x};R) ∼= H̃p−1(Sn−1;R)

for all p ≥ 0. The exact same proof with Rn − {x} replaced by Rn −B also shows that

Hp(Rn,Rn −B;R) ∼= H̃p−1(Sn−1;R)

for all p ≥ 0. We also know from Proposition 4.23 that the only nonzero modules occur when
p = n, in which case they are isomorphic to R. We can check that we have the commutative
diagram

Hp(M,M −B;R)
ρBx //

∼=
��

Hp(M,M − {x};R)

Hp(Rn,Rn −B;R) //

∼=
��

Hp(Rn,Rn − {x};R)

∼=
OO

H̃n−1(Sn−1) =
// H̃n−1(Sp−1),

∼=
OO

which implies that the second horizontal arrow and the first horizontal arrow labeled by ρBx
are isomorphisms.

Proposition 7.1 shows that for any small enough compact subset B, the manifold M has
an R-fundamental class at B. Indeed, we can pick the fundamental class µB ∈ Hn(M,M −
B;R) ∼= R as any generator of R, and since ρBx is an isomorphism, each µx = ρBx (µB) is a
generator of Hn(M,M − {x};R). It is also easy to show that Proposition 7.1 implies that
Condition (†) in Definition 7.1 can be replaced by the condition

ρUix (µi) = ρUjx (µj) for all x ∈ Ui ∩ Uj.

Some textbooks use this condition instead of (†).
In the special case where R = Z/2Z, since Z/2Z = {0, 1}, the only generator of

Hn(M,M − {x},Z/2Z) ∼= Z/2Z is 1.
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Proposition 7.2. Every manifold has a Z/2Z-orientation.

Proof. Since Hn(M,M −{x},Z/2Z) ∼= Z/2Z only has 1 as generator, the consistency condi-
tions are trivial. We can use Proposition 7.1 to create a Z/2Z-orientation of M by covering M
with open balls and making a fundamental class associated with the closure of that ball.

Definition 7.3. A Z/2Z-orientation is also called a mod 2 orientation.

Proposition 7.3. If a manifold M has an R-fundamental class, then it has an R-orientation.

Proof. Since for any open cover U = (Ui)i∈I of M we have ρMx = ρUix ◦ ρMUi , we can take
µi = ρMUi(µM) ∈ Hn(M,M − Ui;R) as fundamental class of Ui. The consistency conditions
are immediately verified.

The converse of Proposition 7.3 holds if M is compact. This is a nontrivial and deep fact
whose proof is difficult (see Theorem 7.7, which relies on Theorem 7.4).

Remark: There are other ways of defining R-orientability. One can define the orientation
bundle MR of M by taking the disjoint union of the groups Hn(M,M − {x};R) where x
ranges over M , and giving it a suitable topology that amounts to a local consistency condition
for R-orientatbility. Then an R-orientation is a continuous section s : M → MR that picks
a generator of Hn(M,M − {x};R) for every x ∈ M . We refer the reader to Hatcher [31]
(Chapter 3, Section 3.3), Bredon [7] (Chapter VI, Section 7), and Spanier [59] (Chapter 6,
Sections 2 and 3). The notion of R-orientation in Definition 7.1 corresponds to the notion of
a U -compatible family in Spanier [59] (Chapter 6, Section 3). Milnor and Stasheff [45] use
a condition using the notion of a small cell, as defined in Spanier [59] (Chapter 6, Section
3). The equivalence of the condition of Definition 7.1 with the orientation bundle condition
amounts to the proof of Theorem 4 in Spanier [59] (Chapter 6, Section 3); see also Proposition
7.3 in Bredon [7] (Chapter VI, Section 7).

It can also be shown that a connected nonorientable n-manifold has a two-sheeted con-
nected covering space which is orientable. This implies that every simply connected manifold
is orientable; see Hatcher [31] (Chapter 3, Section 3.3, Proposition 3.25).

We see that we are naturally led to the study of the groups Hn(M,M −K;R), where K
is a compact subset of M . We have the following theorem which is the key to the existence
of an R-fundamental class µK ∈ Hn(M,M −K;R) if K is compact and M is R-orientable
(see Theorem 7.7). It is also the key to the vanishing theorem, which may be considered as
a prelude to Poincaré duality.

Theorem 7.4. Let M be an n-manifold.

(i) For any compact subset K, if p > n, then Hp(M,M −K;R) = (0).

(ii) For any homology class α ∈ Hn(M,M − K;R), we have α = 0 iff ρKx (α) = 0 for
all x ∈ K, where ρKx : Hn(M,M − K;R) → Hn(M,M − x;R) is the homomorphism
induced by the inclusion M −K ⊆M − x.



242 CHAPTER 7. POINCARÉ DUALITY

Theorem 7.4 is proven in Milnor and Stasheff [45] (Appendix A, Lemma A.7), Hatcher
[31] (Chapter 3, Lemma 3.27), May [43] (Chapter 20, Section 3), Massey [41] (Chapter XIV,
Lemma 2.3), and the first statement of the theorem is proven in Bredon [7] (Chapter VI,
Theorem 7.8(a)).

The following notation will be used in the proofs below.

Definition 7.4. For any two compact subsets L1 and L2 such that L1 ⊆ L2 ⊆M , the map
ρL2
L1

: Hp(M,M−L2;R)→ Hp(M,M−L1;R) is the homomorphism induced by the inclusion

M −L2 ⊆M −L1. To simplify notation, we often write ρL1 instead of ρL2
L1

. When L1 = {x}
(a single point), we write ρL2

x .

For any three compact subsets such that L1 ⊆ L2 ⊆ L3 ⊆M , the composition

Hn(M,M − L3;R)
ρ
L3
L2 // Hn(M,M − L2;R)

ρ
L2
L1 // Hn(M,M − L1;R)

is equal to the map ρL3
L1

: Hn(M,M − L3;R)→ Hn(M,M − L1;R), that is

ρL3
L1

= ρL2
L1
◦ ρL3

L2
. (†1)

In particular, if L1 = {x}, then

ρL3
x = ρL2

x ◦ ρ
L3
L2
. (†2)

See Figure 7.2.

Sketch of proof. We prove (i) and some cases of (ii) following Milnor and Stasheff [45] (Ap-
pendix A, Lemma A.7) with some help from Massey [41] (Chapter XIV, Lemma 2.3). In
(ii), since ρKx is a homomorphism, if α = 0, then obviously ρKx (α) = 0 so we will focus on
proving that if ρKx (α) = 0 for all x ∈ K, then α = 0. The proof is divided in six steps.

Case 1 . Suppose M = Rn and K is a compact and convex subset.

(i) By Proposition 7.1, we have isomorphisms

Hp(Rn,Rn −K;R) ∼= Hp(Rn,Rn − {x};R) ∼= H̃(Sn−1;R)

for all p, and again by Proposition 7.1, Hp(Rn,Rn −K;R) ∼= (0) for p > n.

(ii) By Proposition 7.1, the map ρKx : Hn(Rn,Rn − K;R) → Hn(Rn,Rn − {x};R) is an
isomorphism.

Case 2 . Let K = K1∪K2, with K1 and K2 compact, and assume that the theorem holds
for K1 and K2 and K1 ∩K2.

(i) If we construct the Mayer–Vietoris homology long exact sequence given by Theorem
4.28 applied to X = M , Y = M − (K1 ∩K2), A = M −K1, B = M −K2, since A ∩ B =
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M = R2

L
L

L

1
2

3

M - L 3

M - L
2

M - L 1

M = R
2

Figure 7.2: An illustration of the inclusions L1 ⊆ L2 ⊆ L3 ⊆M and the inclusions M−L3 ⊆
M − L2 ⊆M − L1.

M − (K1 ∪ K2) = M − K, (see Figure 7.3), we obtain the long exact sequence of relative
homology

// Hp+1(M,M − (K1 ∩K2)) ∂ // Hp(M,M −K)
ϕ

// Hp(X,M −K1)⊕Hp(M,M −K2)
ψ // Hp(M,M − (K1 ∩K2)) // · · · ,

where
ϕ(α) = ρKK1

(α)⊕ ρKK2
(α) and ψ(β ⊕ γ) = ρK1

K1∩K2
(β)− ρK2

K1∩K2
(γ).

Since by hypothesis Hp+1(M,M − (K1 ∩ K2);R) ∼= (0), Hp(M,M − K1;R) ∼= (0) and
Hp(M,M −K2;R) ∼= (0) for p > n, and since we have an exact sequence, we conclude that
Hp(M,M −K) = (0) for p > n.

(ii) If p = n, since we just showed that Hn+1(M,M − (K1∩K2)) ∼= (0), we have the piece
of exact sequence

// (0) ∂ // Hp(M,M −K)
ϕ

// Hp(X,M −K1)⊕Hp(M,M −K2)
ψ // Hp(M,M − (K1 ∩K2)) // · · · ,
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M = R2

K1
K2 K1

K2

K1
K2 K1

K2

K1
K2

Y

A B

A  h B = M - K

Figure 7.3: An illustration of the spaces K = K1 ∪K2, Y , A, B, and A ∩ B utilized in the
Mayer–Vietoris of Case 2.

which shows that ϕ is injective. For any α ∈ Hp(M,M −K;R), we have α = 0 iff ϕ(α) = 0
(since ϕ is injective) iff ρKK1

(α) ⊕ ρKK2
(α) = 0 iff ρKK1

(α) = 0 and ρKK2
(α) = 0. Since by

hypothesis (ii) holds for K1 and K2, we have ρKK1
(α) = 0 iff ρK1

x (ρKK1
(α)) = 0 for all x ∈ K1

and ρKK2
(α) = 0 iff ρK2

y (ρKK2
(α)) = 0 for all y ∈ K2, which by (†2) is equivalent to ρKx (α) = 0

for all x ∈ K1 and ρKy (α) = 0 for all y ∈ K2, and finally equivalent to ρKz (α) = 0 for all
z ∈ K = K1 ∪K2.

Case 3 . Suppose K = K1 ∪ · · · ∪Km, the union of compact and convex subsets of Rn.

(i) We proceed by induction on m. The base case m = 1 follows by Case 1. For

the induction step, observe that
(⋃m

j=1Kj

)
∩ Km+1 is the union of m compact and con-

vex subsets, and
⋃m
j=1Kj is also the union of m compact and convex subsets, so the in-

duction hypothesis applies to these two sets and we have Hp

(
M,M −

⋃m
j=1Kj;R

)
= (0)

and Hp

(
M,M −

(⋃m
j=1 Kj

)
∩Km+1;R

)
= (0) for all p > n. By Case 1, Hp(M,M −

Km+1;R) = (0) for all p > n, so using Case 2 (applied to
⋃m
j=1Kj and Km+1), we deduce

that Hp

(
M,M −

⋃m+1
j=1 Kj;R

)
= (0) for all p > n.
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(ii) This is also proven by induction on m using Case 1 and Case 2. The details are left
as an exercise.

Case 4 . Assume that K is an arbitrary compact subset of Rn. This case is technically
more difficult than the others. We reproduce Minor and Stasheff’s proof supplemented by
Massey [41] (Chapter XIV, Lemma 2.3).

(i) Given a class α ∈ Hp(Rn,Rn −K;R), we would like to find an open subset N ⊆ Rn

containing K small enough so that C ∩ N = ∅, and some class α′ ∈ Hp(Rn,Rn − N ;R)
such that α = ρNK(α′). For this, we use the fact that homology has compact support;
see just before and just after Proposition 4.17. Since homology has compact support, by
Proposition 4.17(1), there is a compact pair (B,C) ⊆ (Rn,Rn−K) and some homology class
β ∈ Hp(B,C;R) such that ρB,CK (β) = α, where ρB,CK : Hp(B,C;R) → Hp(Rn,Rn −K;R) is
the homomorphism induced by the inclusion (B,C) ⊆ (Rn,Rn −K).

Next we can pick an open subset N ⊆ Rn containing K small enough so that C ∩N = ∅.
Since

ρB,CK = ρNK ◦ (iB,C)∗,

where (iB,C)∗ : Hp(B,C;R) → Hp(Rn,Rn − N ;R) is the map induced by the inclusion
iB,C : (B,C) → (Rn,Rn − N) and ρNK : Hp(Rn − N ;R) → Hp(Rn,Rn − K;R) is the map
induced by the inclusion Rn − N ⊆ Rn − K, if we pick α′ = (iB,C)∗(β), then α′ ∈
Hp(Rn,Rn − N ;R) is a homology class such that α = ρB,CK (β) = ρNK ◦ (iB,C)∗(β) = ρNK(α′).
See Figure 7.4.

M = R2

K

B

C

N

β

α

α‘

Figure 7.4: A schematic illustration of the relationships between K, N , B, C and the
associated homology classes necessary for Case 4(i).

Cover K by finitely many closed balls B1, . . . , Bm such that Bi ⊆ N and Bi ∩ K 6= ∅
and write B = B1 ∪ · · · ∪ Bm. Then K ⊆ B ⊆ N and we have the following commutative
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diagram.

α′ ∈ Hp(Rn,Rn −N ;R)
ρNB //

ρNK ++

Hp(Rn,Rn − B;R) 3 α′′

ρBK
��

α ∈ Hp(Rn,Rn −K;R)

where ρNB is the map induced by the inclusion Rn−N ⊆ Rn−B, ρBK is the map induced by the
inclusion Rn−B ⊆ Rn−K, and ρNK is the map induced by the inclusion Rn−N ⊆ Rn−K.
See Figure 7.5.

M = R2

K

N
B

B
B

B
B

2
3

4
m

x

i y

Figure 7.5: A schematic illustration of the covering B used in the proof of Case 4(i).

If p > n, then Hp(Rn,Rn−B;R) = (0) by Case 3, hence ρNB (α′) = 0 and by (†1) we have
α = ρNK(α′) = ρBK(ρNB (α′)) = ρBK(0) = 0.

(ii) Now consider the situation where p = n. Assume that ρKx (α) = 0 for all x ∈ K. As
in (i), we can find an open subset N ⊆ Rn containing K and some α′ ∈ Hn(Rn,Rn −N ;R)
such that α = ρNK(α′). Let α′′ = ρNB (α′) so that by (†1) α = ρNK(α′) = ρBK(ρNB (α′)) = ρBK(α′′).

We claim that ρBy (α′′) = 0 for all y ∈ B.

To show this, assume that y ∈ Bi and pick some x ∈ Bi ∩ K. Refer to Figure 7.5.
Consider the following commutative diagram due to Massey.
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Hn(Rn,Rn − {y};R)

α′′ ∈ Hn(Rn,Rn − B;R)

ρBy
44

ρBK
��

ρBBi // Hn(Rn,Rn −Bi;R)

ρ
Bi
y

jj

ρ
Bi
x
��

α ∈ Hn(Rn,Rn −K;R)
ρKx

// Hn(Rn,Rn − {x};R)

All homomorphisms are induced by inclusions. Since Bi is a closed ball, by Proposition
7.1, the maps ρBix and ρBiy are isomorphisms. Since ρKx (α) = 0 and α = ρBK(α′′), using the
commutative square we have

0 = ρKx (α) = ρKx (ρBK(α′′)) = ρBix (ρBBi(α
′′)).

Since ρBix is an isomorphism, we have

ρBBi(α
′′) = 0.

Using the commutative triangle we have

ρBy (α′′) = ρBiy (ρBBi(α
′′)) = ρBiy (0) = 0,

that is, ρBy (α′′) = 0 for all y ∈ B. By Case 3, we must have α′′ = 0, and thus α = ρBK(α′′) = 0.

Case 5 . Suppose K is small enough so that K ⊆ U for some open subset U ⊆ M
homeomorphic to Rn.

(i) By excision (Theorem 4.14), Hp(M,M − K;R) ∼= Hp(U,U − K;R), and since U is
homeomorphic to Rn,

Hp(M,M −K;R) ∼= Hp(U,U −K;R) ∼= Hp(Rn,Rn −K;R),

so by Case 4, Hp(Rn,Rn−K;R) ∼= (0) for p > n and thus Hp(M,M−K;R) ∼= (0) for p > n.

(ii) We use the isomorphism ϕ : Hn(M,M − K;R) → Hn(Rn,Rn − K;R) and Case 4.
Details are left as an exercise.

Case 6 . Suppose K is an arbitrary compact subset of M . Since M is a manifold and K
is compact, there are finitely many charts covering K so we we can write K = K1∪· · ·∪Km,
a union of small compact subsets in the sense of Case 5.

(i) By induction on m essentially as in Case 3, we prove using Case 2 and Case 5 that
Hp(M,M −K;R) ∼= (0) for p > n.

(ii) The proof is also by induction on m. Details are left as an exercise.
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Remark: It can be shown that if A is a closed subset of M , then Hp(M,M − A;R) = (0)
for all p > n; see Greenberg and Harper [25] (Section 22, Theorem 22.24).

Theorem 7.5. (Vanishing) Let M be an n-manifold. We have Hp(M ;R) = (0) if p > n. If
M is connected and noncompact, then Hn(M ;R) = (0).

Theorem 7.5 is proven in Hatcher [31] (Chapter 3, Theorem 3.26(c) and Proposition
3.29), May [43] (Chapter 20, Section 4), and Bredon [7] (Chapter VI, Corollary 7.12).

Sketch of proof. If M = K is a compact n-manifold, by Theorem 7.4, we have Hp(K;R) =
(0) for all p > n. Since homology satisfies the axiom of compact support, by Theorem
4.17(4), we get

Hp(M ;R) = lim−→
K∈K(M)

Hp(K;R) = (0)

for all p > n (where K(M) denotes the set of compact subsets of M), as claimed.

Remark: The proof technique used to prove Theorem 7.4, as well as a number of other
results, is a type of induction on compact subsets involving some limit argument. It is nicely
presented in Bredon [7] (Chapter VI, Section 7), where it is called the Bootstrap Lemma.
Omitting proofs, here is a presentation of this method.

The Bootstrap Method

Given an n-manifold M , we would like to prove some property PM(A) about closed
subsets A of M . Consider the following five properties:

(i) If A is a compact and convex subset of M , then PM(A) holds.

(ii) If PM(A), PM(B) and PM(A∩B) hold for some closed subsets A and B, then PM(A∪B)
holds.

(iii) if A1 ⊇ A2 ⊇ · · ·Ai ⊇ Ai+1 ⊇ · · · is a sequence of compact subsets and if PM(Ai) holds

for all i, then P
(⋂

iAi

)
holds.

(iv) If (Ai)i∈I is a family of disjoint compact subsets with disjoint neighborhoods and if

PM(Ai) holds for all i, then P
(⋃

iAi

)
holds.

(v) For any closed subset A, if PM(A ∩W ) holds for all open subsets W of M such that
the closure of W is compact, then PM(A) holds.

We have the following proposition shown in Bredon [7] (Chapter VI, Section 7, Lemma
7.9) and called the Bootstrap Lemma.

Proposition 7.6. (Bootstrap Lemma) Let M be any n-manifold.
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(1) Let PM(A) be a property about compact subsets A of M . If (i), (ii), and (iii) hold,
then PM(A) holds for all compact subsets A of M .

(2) If M is a separable metric space, PM(A) is a property about closed subsets A of M ,
and all four statements (i)–(iv) hold, then PM(A) holds for all closed subsets A of M .

(3) Let PM(A) be a property about closed subsets A of M . If all five statements (i)–(v)
hold, then PM(A) holds for all closed subsets A of M .

Finally, we have our major result.

Theorem 7.7. (Existence of a fundamental class) Let M be an n-manifold. For any compact
subset K of M , for any R-orientation of M , there is a unique R-fundamental class µK of
M at K which determines the same family of generators as the family (µx)x∈K induced by
the R-orientation of M . If M is compact, then M has a unique R-fundamental class µM
corresponding to the family of generators (µx)x∈M induced by the R-orientation.

Theorem 7.7 is proven in Hatcher [31] (Chapter 3, Theorem 3.26), May [43] (Chapter 20,
Section 3), Massey [41] (Chapter XIV, Theorem 2.2) and Milnor and Stasheff [45] (Appendix
A, Theorem A.8).

Sketch of proof. We follow Milnor and Stasheff’s proof [45] (Appendix A, Theorem A.8).

First we prove uniqueness. Recall that if K and L are two compact subsets of M such
that K ⊆ L, we write ρLK : Hp(M,M − L;R) → Hp(M,M − K;R) for the homomorphism
induced by the inclusion M − L ⊆M −K. Assume that there are two fundamental classes
µ1
K and µ2

K . Then we have ρKx (µ1
K) = µx and ρKx (µ2

K) = µx for all x ∈ K, so ρKx (µ1
K−µ2

K) = 0
for all x ∈ K. By Theorem 7.4(ii), we deduce that µ1

K − µ2
K = 0, that is, µ1

K = µ2
K .

The existence proof is divided in three steps.

Case 1 . Since M is orientable, it has some open cover (Ui)i∈I such that each Ui has a
fundamental class µi satisfying the consistency property of an orientation. Assume that K
is contained in some Ui, and denote Ui as U and µi as µU . Then for all x ∈ U , the map
ρUx : Hn(M,M − U ;R)→ Hn(M,M − {x}) is equal to the composition

Hn(M,M − U ;R)
ρUK // Hn(M,M −K;R)

ρKx // Hn(M,M − {x};R).

Then if we let µK = ρUK(µU), because by (†2) ρUx = ρKx ◦ρUK , we have ρKx (µK) = ρKx (ρUK(µU)) =
ρUx (µU) = µx, where µx = ρUx (µU) is a generator of Hn(M,M − {x};R) since µU is a
fundamental class for U , and the consistency properties hold for µK since they hold for µU ,
so µK is a fundamental class for K. By construction, µU and µK induce the same set of
generators.
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Case 2 . Suppose that K = K1 ∪ K2, where K1 and K2 are two compact subsets and
assume that µK1 , µK2 and µK1∩K2 exist. As in Case 2 of the proof of Theorem 7.4, there is
a Mayer–Vietoris long exact sequence of relative homology

// Hp+1(M,M − (K1 ∩K2)) ∂ // Hp(M,M −K)
ϕ

// Hp(X,M −K1)⊕Hp(M,M −K2)
ψ // Hp(M,M − (K1 ∩K2)) // · · · ,

where
ϕ(α) = ρKK1

(α)⊕ ρKK2
(α) and ψ(β ⊕ γ) = ρK1

K1∩K2
(β)− ρK2

K1∩K2
(γ).

If p = n, by Theorem 7.4(i), we have Hn+1(M,M − (K1 ∩ K2)) ∼= (0), so we have the
piece of exact sequence

// (0) ∂ // Hn(M,M −K)
ϕ

// Hn(X,M −K1)⊕Hn(M,M −K2)
ψ // Hn(M,M − (K1 ∩K2)) // · · · ,

which shows that ϕ is injective. Since by hypothesis µK1 and µK2 exist, by (†2) we have

ρK1∩K2
x ◦ ρKiK1∩K2

(µKi) = ρKix (µKi) = µx for all x ∈ K1 ∩K2, i = 1, 2,

so
ρK1∩K2
x (ρK1

K1∩K2
(µK1)− ρK2

K1∩K2
(µK2)) = 0 for all x ∈ K1 ∩K2.

By Theorem 7.4(ii) applied to K1 ∩K2, we have

ρK1
K1∩K2

(µK1)− ρK2
K1∩K2

(µK2) = 0,

and since ψ(µK1 ⊕ µK2) = ρK1
K1∩K2

(µK1)− ρK2

K1∩K2
(µK2), we get

ψ(µK1 ⊕ µK2) = 0.

Since our sequence is exact, Imϕ = Kerψ, and since ϕ is injective, there is a unique µK ∈
Hn(M,M −K;R) such that

ϕ(µK) = µK1 ⊕ µK2 .

It remains to check that µK has properties required of a fundamental class, which is left as
an exercise.

Case 3 . Assume that K is an arbitrary compact subset of M . Since M is an R-orientable
manifold and K is compact, K is covered by finitely many oriented charts, so we can express
K as K = K1 ∪ · · · ∪Km, where each Ki is a compact subset of some open subset Ui of M
that has some fundamental class µi as in Case 1. Using Case 1 and Case 2, we construct µK
by induction on m.
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Definition 7.5. The fundamental class of a compact orientable manifold M is denoted by
[M ].

If M is any manifold, not necessarily compact, then we know that M is Z/2Z-orientable
and we have the following version of Theorem 7.7.

Theorem 7.8. (Existence of a fundamental class, mod 2 case) Let M be any n-manifold
(not necessarily orientable). For any compact subset K of M , there is a unique fundamental
class µK of M at K such that ρKx (µK) = µx for all x ∈ K, where µx is the unique nonzero
element of Hn(M,M −K,Z/2Z) ∼= Z/2Z.

The proof of Theorem 7.8 is essentially the same as the proof of Theorem 7.7.

The next theorem tells us what the group Hn(M ;R) looks like.

Theorem 7.9. Let M be an n-manifold. If M is connected, then

Hn(M ;R) =





R if M is compact and orientable

Ker (R
2−→ R) if M is compact and not orientable

(0) if M is not compact.

Here, the map R
2−→ R is the map r 7→ 2r.

Theorem 7.9 is proven in Bredon [7] (Chapter VI, Corollary 7.12).

In particular, Theorem 7.9 shows that if R = Z and if M is compact and not orientable
then Hn(M ;R) = (0), and that if M is compact then Hn(M ;Z/2Z) = Z/2Z.

Theorem 7.9 yields a crisp characterization of the orientability of a compact n-manifold
(when R = Z) in terms of the vanishing of Hn(M ;Z).

Proposition 7.10. If M is a connected and compact n-manifold, then either Hn(M ;Z) = (0)
and M is not orientable, or Hn(M ;Z) ∼= Z, M is orientable, and the homomorphisms
Hn(M ;Z) = Hn(M, ∅;Z) −→ Hn(M,M − {x};Z) are isomorphisms for all x ∈M .

Proposition 7.10 is a special case of Corollary 8 in Spanier [59] (Chapter 6, Section 3).
It is also proven in May [43] (Chapter 20, Section 3). This second proof only uses Theorem
7.9 together with the universal coefficient theorem for homology (Theorem 12.5), but it is a
nice proof worth presenting.

Proof. Since M is a compact manifold, for any x ∈M , the manifold M−{x} is not compact.
By Theorem 7.9, we have Hn(M − {x};R) = (0). The long exact sequence of relative
homology of the pair (M,M − {x}) (Theorem 4.9)) yields the exact sequence

Hn(M − {x};R) // Hn(M ;R) // Hn(M,M − {x};R),
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and since Hn(M − {x};R) = (0) we deduce that

Hn(M ;R) −→ Hn(M,M − {x};R) ∼= R

is an injective homomorphism for every ring R. We would like to conclude that if R = Z
and if Hn(M ;Z) 6= (0), then Hn(M ;Z) ∼= Z and the above map is an isomorphism.

Since TorZ1 (Z,Z/pZ) = (0) (see the discussion after Theorem 12.5), by Theorem 12.4 we
have

Hn(M ;Z/pZ) ∼= Hn(M ;Z)⊗ Z/pZ

and similarly

Hn(M,M − {x};Z/pZ) ∼= Hn(M,M − {x};Z)⊗ Z/pZ

for all p > 0. Since Hn(M ;R) −→ Hn(M,M − {x};R) ∼= R is an injective homomorphism
for every ring R, for R = Z the homomorphism

Hn(M ;Z)⊗ Z/pZ // Hn(M,M − {x};Z)⊗ Z/pZ ∼= Z⊗ Z/pZ ∼= Z/pZ (∗)

is injective for all p > 0. If Hn(M ;Z) 6= (0), then we leave it as an exercise to prove that
Hn(M ;Z) ∼= Z. Finally, the map Hn(M ;Z) −→ H(M,M −{x};Z) must be an isomorphism
since otherwise 1 would be mapped to some m > 1, but then the map (∗) would not be
injective for p = m (since m⊗ z = 0 for all z ∈ Z/mZ).

An important (and deep fact) about a compact manifold M is that its homology groups
are finitely generated. This is not easy to prove; see Bredon [7] (Appendix E, Corollary E.5),
and Hatcher [31] (Appendix, Topology of Cell Complexes, Corollaries A.8 and A.9). As
a consequence, using the universal coefficient theorem for cohomology (Theorem 12.11) we
have the following result about the cohomology group Hn(M ;R) (see Bredon [7], Chapter
VI, Section 7, Corollary 7.14).

Proposition 7.11. For any n-manifold M , if M is compact and connected, then

Hn(M ;R) =

{
R if M is orientable

R/2R if M is not orientable.

It should also be noted that if M is a smooth manifold, then the notion of orientability
in terms of Jacobians of transition functions or the existence of a volume form, as defined
for instance in Warner [62] or Tu [61], is equivalent to the notion of orientability given in
Definition 7.1. This is proven (with a bit of handwaving) in Bredon [7] (Chapter VI, Section
7, Theorem 7.15).

The second step to state the Poincaré duality theorem is to define the cap-product.
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7.2 The Cap Product

Recall the definition of the maps λp : ∆p → ∆p+q and ρq : ∆q → ∆p+q defined in Section
4.10 and the definition of the cup product ^; see Definition 4.32. In what follows, we write
n = p+ q, so q = n− p.

Definition 7.6. Given a cochain c ∈ Sp(X;R) and a chain σ ∈ Sn(X;R) (with n ≥ p ≥ 0),
define the cap product c _ σ as the chain in Sn−p(X;R) given by

c _ σ = c(σ ◦ ρp)(σ ◦ λn−p)

where σ ◦ λn−p is the front (n− p)-face of ∆n and σ ◦ ρp is the back p-face of ∆n.

Since σ ◦ ρp ∈ Sp(X;R) and σ ◦ λn−p ∈ Sn−p(X;R) we have c(σ ◦ ρp) ∈ R, and indeed
c(σ ◦ ρp)(σ ◦ λn−p) ∈ Sn−p(X;R).

Definition 7.6 is designed so that

a(b _ σ) = (a ^ b)(σ)

for all a ∈ Sn−p(X;R), all b ∈ Sp(X;R), and all σ ∈ Sn(X;R), or equivalently using the
bracket notation for evaluation as

〈a, b _ σ〉 = 〈a ^ b, σ〉, (∗)

which shows that _ is the adjoint of ^ with respect to the evaluation pairing 〈−,−〉. Recall
that the evaluation pairing 〈−,−〉 is defined by

〈c, τ〉 = c(τ), c ∈ Sp(X;R), τ ∈ Sp(X;R).

Indeed, since a ∈ Sn−p(X;R) and b ∈ Sp(X;R), by Definition 4.32, a ^ b ∈ Sn(X;R) is the
cocycle such that

(a ^ b)(σ) = a(σ ◦ λn−p)b(σ ◦ ρp), σ ∈ Sn(X;R),

so b _ σ ∈ Sn−p(X;R) should be the cycle satisfying the equation

a(b _ σ) = (a ^ b)(σ) = a(σ ◦ λn−p)b(σ ◦ ρp) = a(b(σ ◦ ρp)(σ ◦ λn−p))

for all a ∈ Sn−p(X;R) and all σ ∈ Sn(X;R), which implies

b _ σ = b(σ ◦ ρp)(σ ◦ λn−p),

confirming that Definition 7.6 is forced by Condition (∗).
The reader familiar with exterior algebra and differential forms will observe that the cap

product is a type of contraction (or hook).
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Remark: There are several variants of Definition 7.6. Our version is the one adopted by
Munkres [48] (Chapter 8, Section 66). Milnor and Stasheff [45] use the same formula except
for the presence of the sign (−1)p(n−p) (also recall their sign convention for the coboundary
operator). Hatcher [31] (Chapter 3, Section 3.3) uses the formula

σ _ c = c(σ ◦ λp)(σ ◦ ρn−p),

with the order of σ and c switched, which forces λ and ρ to be switched.

Beware that Greenberg and Harper [25] (Part III, Section 24, Page 205) also switch the
order of the aguments in the evaluation bracket: they write 〈τ, c〉 = c(τ); see Section 23,
Page 174. They also define the cap product σ _ c as in Hatcher, by

σ _ c = c(σ ◦ λp)(σ ◦ ρn−p).

Their pairing relation between the cup and the cap product is

(a ^ b)(σ) = 〈σ, a ^ b〉 = 〈σ _ a, b〉 = b(σ _ a).

In the end, this makes no difference but one has to be very careful about signs when
stating the formula for ∂(c _ σ).

Recall that ε : S0(X;R) → R (the augmentation map; see Definition 4.14) is the unique
homomorphism such that ε(x) = 1 for every point x ∈ S0(X;R). The cohomology class of
the cocycle ε (in H0(X;R)) is denoted by 1.

Also recall (see Proposition 4.4) that if f : X → Y is a continuous map between two topo-
logical spaces X and Y , then there are induced homomorphisms f],p : Sp(X;R)→ Sp(Y ;R)
and f∗p : Hp(X;R) → Hp(Y ;R). By applying HomR(−, R), we obtain homomorphisms
f ],p : Sp(Y ;R)→ Sp(X;R) and f ∗p : Hp(Y ;R)→ Hp(X;R) (see Proposition 4.31).

Proposition 7.12. For any c ∈ Sp(X;R) and any σ ∈ Sn(X;R), the cap product
_ : Sp(X;R)× Sn(X;R)→ Sn−p(X;R) is bilinear and we have

∂(c _ σ) = (−1)n−p(δc _ σ) + c _ ∂σ.

Furthermore, we have
ε _ σ = σ

for all σ ∈ Sn(X;R), and
c _ (d _ σ) = (c ^ d) _ σ,

for all c ∈ Sp(X;R), all d ∈ Sq(X;R), and all σ ∈ Sp+q+r(X;R).

The cap product is natural with respect to continuous maps f : X → Y , which means that
for all c ∈ Sp(Y ;R) and all σ ∈ Sn(X;R), we have

f](f
](c) _ σ) = c _ f](σ).
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Proposition 7.12 is from Munkres [48] (Chapter 8, Section 66, Theorem 66.1). As a
consequence of the first formula, we see that the cap product induces a bilinear operation
on cohomology and homology classes

_ : Hp(X;R)×Hn(X;R)→ Hn−p(X;R)

(if 0 ≤ p ≤ n), also called cap product .

Remark: Using Milnor and Stasheff’s sign convention both for δ and for the cap product,
the formula for ∂(c _ σ) is

∂(c _ σ) = δc _ σ + (−1)p(c _ ∂σ);

see Milnor and Stasheff [45], Appendix A Formula (4), Page 276. The virtue of this formula
is that there is a + sign in front of the term δc _ σ, so in the proof of Poincaré duality the
diagram in Case 2 of the proof commutes, not just up to sign. This sign issue is discussed in
Hatcher [31] (Chapter 3, Section 3.3, Lemma 3.36) and Massey [41] (Chapter XIV, Section
8).

The following properties are immediate consequences of Proposition 7.12.

Proposition 7.13. For any a ∈ Hn(X;R) we have

1 _ a = a,

and
ω _ (η _ a) = (ω ^ η) _ a,

for all ω ∈ Hp(X;R), all η ∈ Hq(X;R), and all a ∈ Hp+q+r(X;R).

The cap product is natural with respect to continuous maps f : X → Y , which means that
for all [c] ∈ Hp(Y ;R) and all [σ] ∈ Hn(X;R), we have

f∗(f
∗([c]) _ [σ]) = [c] _ f∗([σ]).

Given any cochain c ∈ Sp(X;R) and any chain σ ∈ Sp(X;R), the operation (eval-
uation) (c, σ) 7→ c(σ) is bilinear, and it is easy to check that it induces a bilinear map
〈−,−〉 : Hp(X;R)×Hp(X;R) −→ R called the Kronecker index . The map ε : S0(X;R)→ R
carries boundaries to zero, hence it induces a homomorphism ε∗ : H0(X;R) → R; see just
after Definition 4.14.

If X is path connected, then this homomorphism is an isomorphism (since H0(X;R) ∼=
R). The following result shows how ε∗ and the Kronecker index are related in terms of the
cap product.

Proposition 7.14. Let M be an n-manifold. For all ω ∈ Hp(X;R) and all a ∈ Hp(X;R),
we have

ε∗(ω _ a) = 〈ω, a〉,
with 0 ≤ p ≤ n.
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Proposition 7.14 is proven in Munkres [48] (Chapter 8, Section 66, Theorem 66.3).

There is also a version of the cap product for relative homology and cohomology,

_ : Hp(X,A;R)×Hn(X,A ∪B;R)→ Hn−p(X,B;R),

where A and B are open in X.

We will need the version where B = ∅ in the proof of the Poincaré duality theorem,
namely

_ : Hp(X,A;R)×Hn(X,A;R)→ Hn−p(X;R).

First we define the cap product

_ : Sp(X,A;R)× Sn(X,A;R)→ Sn−p(X;R)

using the formula of Definition 7.6. To show that this definition makes sense at the level of
relative cochains and chains, we need to check that for any cochain ω ∈ Sp(X;R) and any
chain σ ∈ Sn(X;R), if ω vanishes on all chains carried by A, and if σ is carried by A, then
ω _ σ = 0, which is left as an exercise. Proposition 7.12 holds for this cap product so we
can define a cap product

_ : Hp(X,A;R)×Hn(X,A;R)→ Hn−p(X;R).

Proposition 7.14 also holds for this relative version of the cap product.

For any continuous map f : (X,A) → (Y,B) (see Definition 4.13), we have induced ho-
morphisms f] : S∗(X,A;R)→ S∗(Y,B;R) and f∗ : H∗(X,A;R)→ H∗(Y,B;R) (see Proposi-
tion 4.7), and induced homorphisms f ] : S∗(Y,B;R)→ S∗(X,A;R) and f ∗ : H∗(Y,B;R)→
H∗(X,A;R) (see Proposition 4.34). The cap product defined above is natural with respect
to continuous map f : (X,A) → (Y,B), which means that for all c ∈ Sp(Y,B;R) and all
σ ∈ Sn(X,A;R), we have

f](f
](c) _ σ) = c _ f](σ).

We leave it as an exercise to prove that Proposition 7.13 also holds for this relative version
of the cap product.

7.3 Cohomology with Compact Support

We define a subcomplex S∗c (X;R) of S∗(X;R) where each module Spc (X;R) consists of
cochains with compact support as follows.

Definition 7.7. A cochain c ∈ Sp(X;R) is said to have compact support if there is some
compact subset K ⊆ X such that such that c ∈ Sp(X,X − K;R), or equivalently if c
has value zero on every singular simplex in X − K. For such a cochain c we see that δc
also vanishes on all singular simplices in X −K, so the modules Spc (X;R) of cochains with
compact support form a subcomplex S∗c (X;R) of S∗(X;R) whose cohomology modules are
denoted Hp

c (X;R) and called cohomology groups with compact support .
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It turns out that the group Hp
c (X;R) can be conveniently expressed as the direct limit of

the groups of the form Hp(X,X −K;R) where K is compact. Observe that if K and L are
any two compact subsets of X and if K ⊆ L, then Sp(X;X −K;R) ⊆ Sp(X,X −L;R) , so
we have a module homomorphism ρKL : Hp(X,X −K;R) → Hp(X,X − L;R). The family
K of all compact subsets of X ordered by inclusion is a directed set since the union of two
compact sets is compact, so the direct limit

lim−→
K∈K

Hp(X,X −K;R)

of the mapping family (Hp(X,X −K;R)K∈K, (ρKL )K⊆L) is well-defined; see Section 8.3.

Proposition 7.15. We have isomorphisms

Hp
c (X;R) ∼= lim−→

K∈K
Hp(X,X −K;R)

for all p ≥ 0. Furthermore, if X is compact, then Hp
c (X;R) ∼= Hp(X;R).

Proposition 7.15 is actually not hard to prove; see Hatcher [31] (Chapter 3, Section 3.3,
just after Proposition 3.33). Intuitively, X is approximated by larger and larger compact
subsets K. If K is very large, X − K is very small, so the group Hp(X,X − K;R) is a
“good” approximation of Hp

c (X;R).

Remark: Unlike the case for ordinary singular cohomology, if f : X → Y is a continuous
map, there is not necessarily an induced map f ∗ : Hp

c (Y ;R) → Hp
c (X;R). The problem is

that if K is a compact subset of Y , then f−1(K) is not necessarily compact. However, proper
maps have this property and induce a corresponding map between cohomology groups with
compact support. If f is proper, for any compact subset K of Y , f−1(K) is compact in X, so
f maps X−f−1(K) into Y −K and there is an induced homomorphism from Hp(Y, Y −K;R)
to Hp(X,X−f−1(K);R). Since Hp

c (X;R) is the direct limit of the Hp(X,X−L;R) where L
ranges over compact subsets in X, there is a homomorphism from Hp(X,X − f−1(K);R) to
Hp
c (X;R), so we have a homomorphism from Hp(Y, Y −K;R) to Hp

c (X;R). We leave it as
an exercise that these homomorphisms induce a homomorphism f ∗ : Hp

c (Y ;R)→ Hp
c (X;R).

Fortunately, the maps involved in Poincaré duality are inclusions and they are proper.

We know from Theorem 7.7 that if K is compact and if the n-manifold M is R-orientable,
then there is a unique R-fundamental class µK ∈ Hn(M,M−K;R) of M at K. In particular,
if M itself is compact and R-orientable, then there is a R-fundamental class µM .

Definition 7.8. Let M be a compact and R-orientable manifold. The map

DM : Hp(M ;R)→ Hn−p(M ;R) (0 ≤ p ≤ n)

is defined by DM(ω) = ω _ µM .
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Poincaré duality asserts that the map DM is an isomorphism. To extend this isomorphism
to cohomology with compact support when M is R-orientable we need to define DM for
noncompact spaces. We do this as follows.

Recall that there is a cap product

_ : Hp(M,M −K;R)×Hn(M,M −K;R)→ Hn−p(M ;R).

Since there is an isomorphism

Hp
c (M ;R) ∼= lim−→

K∈K
Hp(M,M −K;R),

we generalize Definition 7.8 as follows.

Definition 7.9. Let M be an R-orientable manifold. For any ω ∈ Hp
c (M ;R) (0 ≤ p ≤ n),

pick some representative ω′ in the equivalence class defining ω in lim−→Hp(M,M − K;R),
namely some ω′ ∈ Hp(M,M −K;R) for some compact subset K, and set

DM(ω) = ω′ _ µK ∈ Hn−p(M ;R),

where µK ∈ Hn(M,M −K;R).

We need to prove that the above definition does not depend on the choice of the repre-
sentative ω′ ∈ Hp(M,M − K;R). If ω′′ ∈ Hp(M,M − L;R) is another representative for
some compact subset such that K ⊆ L, then it is easy to show that the diagram

Hp(M,M −K;R) //

−_µK ))

Hp(M,M − L;R)

−_µLuu
Hn−p(M ;R)

is commutative, and thus
DM : Hp

c (M ;R)→ Hn−p(M ;R)

as specified above is indeed well-defined.

7.4 The Poincaré Duality Theorem

The following theorem is a very general version of Poincaré duality applying to compact as
well as noncompact manifolds.

Theorem 7.16. (Poincaré Duality Theorem) Let M be an n-manifold and let R be a PID.
If M is R-orientable, then the map

DM : Hp
c (M ;R)→ Hn−p(M ;R)
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given in Definition 7.9 is an isomorphism for all p ∈ Z. Furthermore, Hp(M ;R) = (0) and
Hp
c (M ;R) = (0) for all p such that p < 0 or p > n. If R = Z/2Z, the above map is an

isomorphism whether M is orientable or not.

If M is compact and R-orientable, then the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;R) and Hn−p(M ;R) for all p ∈ Z. Furthermore, Hp(M ;R)
= (0) and Hp(M ;R) = (0) for all p such that p < 0 or p > n.

The “canonical” proof of Theorem 7.4 can be found in Milnor and Stasheff [45] (Appendix
A, Pages 277–279). This is a very elegant proof but some of the details are not worked out
explicitly. Hatcher [31] (Chapter 3, Theorem 3.35), Greenberg and Harper [25] (Part III,
Section 26, Theorem 26.6), Massey [41] (Chapter XIV, Theorem 4.1), and May [43] (Chapter
20, Section 5) give more detailed and slightly more general proofs (it is not assumed that R
is a PID).

A sticky point in the proof is the commutativity of a certain diagram in which the top
row is a Mayer–Vietoris sequence of cohomology and the bottom row is a Mayer–Vietoris
sequence of homology (see Case 2 of the proof in Milnor and Stasheff [45], Appendix A).
With the sign convention for δ and the definition of the cap product used by Hatcher and
Greenberg and Harper, this diagram only commutes up to sign. This fact is carefully proven
by these authors. The diagram commutes with the definitions used by Massey [41] (Chapter
XIV, Lemma 8.2). May claims that the diagram commutes with his definition of the cap
product but leaves this fact as an exercise to the reader.

On the other hand, and this is where the sign conventions used by Milnor and Stasheff
pay off, it can be checked that the diagram in Milnor and Stasheff’s proof commutes (not
just up to sign). In the end, this is a technical point that does not affect the final result, but
we felt that the reader should be warned.

The proof of Poincaré duality can be viewed as a sophisticated type of induction making
use of Mayer–Vietoris sequences. The technical difficulty is that the induction step applies
to open subsets. Cohomology with compact support comes to the rescue since we can take
limits (really colimits) involving compact subsets. It turns out that we also need to use two
kinds of induction: usual (finitary) induction, and transfinite induction in the form of Zorn’s
lemma.

Proof. We now present Milnor and Stasheff’s proof, occationally elaborated as in Hatcher,
Greenberg and Harper, and Massey. The proof consists of five steps. Step 2 is one of the
technically most involved.

Case 1 . Assume that M = Rn.
For any closed ball B, we know by Proposition 7.1 that Hn(Rn,Rn − B;R) ∼= R with

generator µB, and Hp(Rn,Rn − B;R) = (0) for all p 6= n. By Theorem 12.11 or Theorem
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4.30 we have

Hn(Rn,Rn −B;R) ∼= HomR(Hn(Rn,Rn −B;R), R) ∼= HomR(R,R) ∼= R

with a generator a such that 〈a, µB〉 = 1. Now Proposition 7.13 and Property (∗) applied to
the cap product

_ : Hn(Rn,Rn −B;R)×Hn(Rn,Rn −B;R)→ H0(Rn;R)

imply that
1 = 〈a, µB〉 = 〈1 ^ a, µB〉 = 〈1, a _ µB〉,

and by definition of 1 (as the cohomology class of ε), a _ µB is a generator of H0(Rn;R) ∼= R.
Thus −_ µB maps Hn(Rn,Rn−B;R) isomorphically to H0(Rn;R), and since all the other
modules are zero for p 6= n, by passing to the direct limit over the balls B as they become
larger it follows that DM maps H∗c (Rn;R) isomorphically onto H∗(Rn;R).

Case 2 . Suppose that M = U ∪ V , where U and V are two open subsets of M , and
assume that Poincaré duality holds for U, V , and U ∩ V . See Figure 7.6.

M = S2

U

V

U g V U h V

Figure 7.6: An illustration of Case 2 where M = S2 = U ∪ V .

The goal is to construct the following commutative diagram involving a homological exact
Mayer–Vietoris sequence on the bottom row and a cohomological Mayer–Vietoris sequence
on the top row.

// Hp
c (U ∩ V )

DU∩V
��

// Hp
c (U)⊕Hp

c (V ) //

DU⊕DV
��

Hp
c (M)

DM
��

////

// Hn−p(U ∩ V ) // Hn−p(U)⊕Hn−p(V ) // Hn−p(M) // .
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Due to the lack of space we could not show more modules but the above diagram continues
as

// Hp
c (M)

DM
��

// Hp+1
c (U ∩ V )

DU∩V
��

// Hp+1
c (U)⊕Hp+1

c (V ) //

DU⊕DV
��

// Hn−p(M) // Hn−p−1(U ∩ V ) // Hn−p−1(U)⊕Hn−p−1(V ) // .

The homological Mayer–Vietoris sequence on the bottom row is exact and we will prove
that the cohomological sequence on the top row is also exact. Since by hypothesis (applied
to U, V and U ∩V ) the two leftmost and the two rightmost vertical arrows are isomorphisms,
by the five lemma, the middle map DM : Hp

c (M)→ Hn−p(M) is an isomorphism.

It remains to prove that the above diagram commutes (at least, up to signs).

The bottom row is obtained using the Mayer–Vietoris sequence for homology for X =
M,A = U,B = V ; see Theorem 4.16.

To obtain the top row, pick some compact subsets K ⊆ U and L ⊆ V and apply Mayer–
Vietoris in relative singular cohomology (Theorem 4.38) to X = M,Y = M − (K ∩ L), A =
M −K,B = M − L. See Figures 7.7 and 7.8.

U

V

K

L

Figure 7.7: Illustrations of the compact subsets K and L, where S2 = U ∪ V .

Since A ∩B = (M −K) ∩ (M − L) = M − (K ∪ L), we obtain the long exact sequence

// Hp(M,M − (K ∩ L)) // Hp(M,M −K)⊕Hp(M,M − L)

// Hp(M,M − (K ∪ L)) // Hp+1(M,M − (K ∩ L)) // .
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X = M

A = M - K

K

L

B = M - L L

K

A h B = M - (K  g L)

L

K

Y = M - (K  h  L)

Figure 7.8: The spaces associated with the Mayer–Vietoris sequence of Case 2.

By excision (Theorem 4.37), deleting M − (U ∩ V ) from M and M − (K ∩L) we obtain

Hp(M,M − (K ∩ L)) ∼= Hp(U ∩ V, (U ∩ V )− (K ∩ L))

Hp+1(M,M − (K ∩ L)) ∼= Hp+1(U ∩ V, (U ∩ V )− (K ∩ L)),

deleting M − U from M and K we obtain

Hp(M,M −K) ∼= Hp(U,U −K),

and deleting M − V from M and L we obtain

Hp(M,M − L) ∼= Hp(V, V −K).

Thus we obtain the exact sequence

// Hp(U ∩ V, (U ∩ V )− (K ∩ L)) // Hp(U,U −K)⊕Hp(V, V − L)

// Hp(M,M − (K ∪ L)) // Hp+1(U ∩ V, (U ∩ V )− (K ∩ L)) // .

Abbreviating Hp(U∩V, (U∩V )−(K∩L)) as Hp(U∩V | K∩L), Hp(U,U−K) as Hp(U | K),
Hp(V, V − L) as Hp(V | L), Hp(M,M − (K ∪ L)) as Hp(M | K ∪ L), etc., we obtain the
following diagram which is shown in two pieces since it does not fit on one line.
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// Hp(U ∩ V | K ∩ L)

DU∩V
��

// Hp(U | K)⊕Hp(V | L) //

DU⊕DV
��

Hp
c (M | K ∪ L)

DM
��

//

// Hn−p(U ∩ V ) // Hn−p(U)⊕Hn−p(V ) // Hn−p(M) //

// Hp(M | K ∪ L)

DM
��

δ // Hp+1(U ∩ V | K ∩ L)

DU∩V
��

// Hp+1(U | K)⊕Hp+1(V | L) //

DU⊕DV
��

// Hn−p(M)
∂

// Hn−p−1(U ∩ V ) // Hn−p−1(U)⊕Hn−p−1(V ) // .

We now come to the most tedious part of the proof where it is necessary to prove that all
the squares commute. The commutativity of the squares not involving the coboundary map
δ and the boundary map ∂ are a consequence of the naturality of the map D which follows
immediately from the naturality of the relative cap product (Proposition 7.13 generalized to
the relative cap product). The commutativity of the diagram involving δ and ∂ is tedious
and a bit tricky. With our sign convention (which is the same as Bott and Tu), this diagram
commutes only up to sign. The same thing holds with Hatcher and Greenberg and Harper’s
convention. These facts are proven in gory details by these authors. Massey proves that
with his definitions, the diagram commutes. In fact, he devotes an entire appendix to this
proof. It is a little tricky to follow his proof because the cap product is defined in terms of
the slant product (see Massey [41] (Chapter XIII, Section 3). With Milnor and Stasheff’s
convention, the diagram also commutes. The verification is left as an exercise.

To finish the proof, we pass to the limit over the compact subsets K ⊆ U and L ⊆ V , so
in the limit we obtain the commutative diagram with cohomology with compact support on
the top row discussed earlier and repeated below:

// Hp
c (U ∩ V )

DU∩V
��

// Hp
c (U)⊕Hp

c (V ) //

DU⊕DV
��

Hp
c (M)

DM
��

//

// Hn−p(U ∩ V ) // Hn−p(U)⊕Hn−p(V ) // Hn−p(M) //

// Hp
c (M)

DM
��

// Hp+1
c (U ∩ V )

DU∩V
��

// Hp+1
c (U)⊕Hp+1

c (V ) //

DU⊕DV
��

// Hn−p(M) // Hn−p−1(U ∩ V ) // Hn−p−1(U)⊕Hn−p−1(V ) // .

Since colimits preserve exactness, the top row is exact. Then we finish the proof using
the five lemma as we did before.

Case 3 . Suppose that M = U =
⋃
i∈I Ui, for some family of open subsets Ui such

that Ui ⊆ Ui+1 for all i ≥ 0, and assume that Poincaré duality holds for each Ui, namely
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Hp
c (Ui;R) ∼= Hn−p(Ui;R). Since direct limits (colimits) preserve isomorphisms, we obtain an

isomorphism
lim−→
i∈I

Hp
c (Ui;R) ∼= lim−→

i∈I
Hn−p(Ui;R).

We need to prove that

Hp
c (U ;R) ∼= lim−→

i∈I
Hp
c (Ui;R) and Hn−p(U,R) ∼= lim−→

i∈I
Hn−p(Ui;R)

to finish the proof.

Any compact subset K of U is contained in some Ui. Since homology is compactly
supported (Proposition 4.17), we conclude that

Hn−p(U,R) ∼= lim−→
i∈I

Hn−p(Ui;R).

To prove the other isomorphims, observe that

Hp
c (U ;R) ∼= lim−→

i∈I
lim−→

K|K⊆Ui
Hp(Ui, Ui −K;R)

∼= lim−→
K⊆U

lim−→
i|K⊆Ui

Hp(Ui, Ui −K;R)

∼= lim−→
K⊆U

Hp(U,U −K;R).

The first isomorphism is an exchange of colimits, and the second isomorphism is a conse-
quence of the fact that by excision, for i large enough, Hp(Ui, Ui−K;R) ∼= Hp(U,U−K;R);
the details are left as an exercise. Finally, by definition,

lim−→
K⊆U

Hp(U,U −K;R) ∼= Hp
c (U ;R).

Case 4 . M is an open subset of Rn. We can write M as a countable union of convex
subsets, in fact, open balls Ui, say M =

⋃
i≥1 Ui. See Figure 7.9.

Also recall that a convex open subset of Rn is homeomorphic to Rn. Define the sequence
(Vi) of open sets Vi given by

V1 = U1

Vi+1 = Vi ∪ Ui+1.

See Figure 7.10.
Both Vi and Vi ∩Ui+1 are unions of i convex open sets so we are reduced to proving that

if (Wj)
m
j=1 is any finite family of convex opens sets, then Poincaré duality holds for their

union
⋃m
j=1 Wj.
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M is open subset of R 2

U

U U

U
U

1

2 3

4
m

Figure 7.9: Let M be an open subset of R2 with an associated open cover
⋃
i≥1 Ui.

We proceed by induction on m. The base case m = 1 follows by Case 1. If we assume
inductively that Poincaré duality holds for any family of m convex open sets, since all the Wj

are convex and open for j = 1, . . . ,m + 1, the intersection
(⋃m

j=1 Wj

)
∩Wm+1 is the union

of m convex open sets, so by the induction hypothesis, Poincaré duality holds for
⋃m
j=1Wj

and
(⋃m

j=1Wj

)
∩Wm+1, but it also holds for Wm+1 by the base case, so by Case (2) it holds

for
⋃m+1
j=1 Wj.

Applying the above with Wj = Uj, we conclude that Poincaré duality holds for
⋃m
j=1 Uj =

Vm for all m ≥ 1. By Case (3), Poincaré duality holds for M =
⋃
i≥1 Vi =

⋃
i≥1 Ui.

Case 5 . If M is covered by a finite or a countable family of open subsets Ui (domains of
charts) homeomorphic to Rn, then we can repeat the argument in Case 4 to conclude that
Poincaré duality holds for M .

Otherwise, we use transfinite induction. This is what Milnor and Stasheff do. An alterna-
tive is to use Zorn’s lemma. Consider the family of open subsets U ⊆M for which Poincaré
duality holds. We can check that this family has the property that for every totally ordered
sequence (under inclusion) (Ui)i∈I of such open subsets, by Case (3), Poincaré duality holds
for

⋃
i∈I Ui. By Zorn’s lemma, there is a maximal open set V ⊆ M such that Poincaré

duality holds for V . If V 6= M , then pick some x ∈ M − V and some coordinate chart W
with x ∈ W . Since W is homeomorphic to an open subset of Rn and since V is open, V ∩W
is also homeomorphic to an open subset of Rn, so Poincaré duality holds for W and V ∩W
by Case (4), and also for V by hypothesis, so by Case (2) Poincaré duality holds for V ∪W .
But V 6= V ∪W since x ∈ W and x /∈ V , contradicting the maximality of V .
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U
U

U

1

3

4 V1

U

U

U
1

3

U

U U

1

2 3

V3

U

U U

U

1

2 3

4

V
2

U

U U

U

1

2 3

4

U

U U

U
U

1

2 3

4
m

V

 V    = M

4

m

Figure 7.10: The construction of Vi from the open cover
⋃
i≥1 Ui. Note Vi ⊆ Vi+1 for

1 ≤ i ≤ m− 1.

Theorem 7.16 actually holds for any commutative ring R with an identity element, not
necessarily a PID. The only change in the proof occurs in Case (1); see Hatcher [31] (Chapter
3, Case (1) in the proof of Theorem 3.35), May [43] (Chapter 20, Section 5, Page 159),
Greenberg and Harper [25] (Part III, Section 26, Step 3, Pages 220–221), and Massey [41]
(Chapter XIV, Theorem 4.1).

Sketch of proof of Case (1) for any commutative ring. We follow Massey [41] (Chapter XIV,
Theorem 4.1) with a twist of Greenberg and Harper [25]. In this case M = Rn and since
every compact subset of Rn is contained in some closed ball B, we have

Hp
c (Rn;R) ∼= lim−→

B

Hp(Rn,Rn −B;R)

with the limit taken over all closed balls in Rn.

Using a translation of a homological argument into a cohomological argument (as in
Proposition 4.18) it can be shown that

H̃p(Sn;R) =

{
R if p = n

(0) if p 6= n;
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see Greenberg and Harper [25] (Part II, Section 15, Page 84, and Part III, Section 23, Page
183).

It can also be shown (by adapting the homological proof of Proposition 4.23 into a
cohomological proof) that for any x ∈ B,

Hp(Rn,Rn −B;R) ∼= Hp(Rn,Rn − {x};R) ∼= H̃p−1(Sn−1;R) ∼= H̃p(Sn;R);

see Greenberg and Harper [25] (Part III, Section 26, Page 216). Therefore, we have

Hp
c (Rn;R) ∼= H̃p(Sn;R),

and the only nonzero module occurs for p = n. Since Rn is path connected, ε∗ : H0(Rn;R)→
R is an isomorphism, and by Proposition 7.14, for all ω ∈ Hn(Rn;Rn − B;R) and all
a ∈ Hn(Rn,Rn −B;R), we have

ε∗(ω _ a) = 〈ω, a〉 = ω(a).

It follows that the map DB given by DB(ω) = ω _ µB is an isomorphism

DB : Hn(Rn,Rn −B;R)→ H0(Rn;R)

for every closed ball B, so by passing to the limit, as isomorphisms are preserved, we get an
isomorphism

DRn : Hn
c (Rn;R)→ H0(Rn;R) ∼= R,

proving Poincaré duality for Rn.

Example 7.1. Since the sphere Sn is compact and orientable, we can obtain its cohomology
from its homology. Recall from Proposition 4.18 that for n ≥ 1 we have

Hp(S
n;R) =

{
R if p = 0, n

(0) if p 6= 0, n.

Thus we obtain

Hp(Sn;R) =

{
R if p = 0, n

(0) if p 6= 0, n.

Similarly, since the n-torus T n = S1 × · · · × S1

︸ ︷︷ ︸
n

is compact and orientable, its cohomology is

given by
Hp(T n;R) = R⊕ · · · ⊕R︸ ︷︷ ︸

(np)

.

As in the case of the sphere, it is identical to its homology, which reconfirms that these
spaces are very symmetric.



268 CHAPTER 7. POINCARÉ DUALITY

Applications of Poincaré duality often involve the universal coefficient theorems (see
Chapter 12). The reader is referred to Hatcher [31] (Chapter 3) for some of these applications.
In particular, one will find a proof of the fact that the cohomology ring H∗(CPn;Z) is
isomorphic to Z[α]/(αn+1), with α of degree 2. As an application of Poincaré duality, we
prove an important fact about compact manifolds of odd dimension.

Recall from Section 6.3 that the Euler–Poincaré characteristic χ(M) of a compact n-
dimensional manifold is defined by

χ(M) =
n∑

p=0

(−1)p rankHp(M ;Z).

The natural numbers rankHp(M ;Z) are the Betti numbers of M and are denoted by bp.

Proposition 7.17. If M is a compact topological manifold (orientable or not) of odd di-
mension, then its Euler–Poincaré characteristic is zero, that is, χ(M) = 0.

Proof. Let dim M = 2m + 1. If M is orientable, by Poincaré duality H2m+1−p(M ;Z) ∼=
Hp(M ;Z) for p = 0, . . . , 2m+1, so rankHp(M ;Z) = rankH2m+1−p(M ;Z), but by Proposition
12.12, we have

Hn(M ;Z) ∼= Fn ⊕ Tn−1

where Hn(M ;Z) = Fn ⊕ Tn with Fn free and Tn a torsion abelian group, so
rankH2m+1−p(M ;Z) = rankH2m+1−p(M ;Z). Therefore,

rankHp(M ;Z) = rankH2m+1−p(M ;Z),

and since 2m+ 1 is odd we get

χ(M) =
2m+1∑

p=0

(−1)p rankHp(M ;Z)

=
2m+1∑

p=0

(−1)p rankH2m+1−p(M ;Z)

= −
2m+1∑

p=0

(−1)2m+1−p rankH2m+1−p(M ;Z)

= −χ(M),

so χ(M) = 0.

If M is not orientable we apply Poincaré duality with R = Z/2Z. In this case each
Hp(M ;Z/2Z) and each H2m+1−p(M ;Z/2Z) is a vector space and their rank is just their
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dimension. Because Z/2Z is a field, H2m+1−p(M ;Z/2Z) and H2m+1−p(M ;Z/2Z) are dual
spaces of the same dimension, and as above we conclude that

2m+1∑

p=0

(−1)p dimHp(M ;Z/2Z) = 0.

If we can show that

χ(M) =
2m+1∑

p=0

(−1)p dimHp(M ;Z/2Z),

we are done. Since Z/2Z is a field it is a PID, and the above equation follows from Proposition
6.13. For the sake of those readers who have not read Chapter 6 we provide the proof in the
special case R = Z/2Z.

By the universal coefficient theorem for homology (Theorem 12.1) and the fact that

Z/mZ⊗Z Z/nZ ∼= TorZ1 (Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z,

every term Zk in Hp(M ;Z) when tensored with Z/2Z gives a term (Z/2Z)k in Hp(M ;Z/2Z),
every term Z/qZ in Hp(M ;Z) with q > 2 when tensored with Z/2Z yields (0), and every
term (Z/2Z)h in Hp(M ;Z) when tensored with Z/2Z yields a term (Z/2Z)h in Hp(M ;Z/2Z),
and the same term (Z/2Z)h in Hp+1(M ;Z/2Z) as the contribution of TorZ1 ((Z/2Z)h,Z/2Z).
The contribution of the two terms (Z/2Z)h to the sum

∑2m+1
p=0 (−1)p dimHp(M ;Z/2Z) cancel

out since their respective signs are (−1)p and (−1)p+1, so

χ(M) =
2m+1∑

p=0

(−1)p dimHp(M ;Z/2Z),

which concludes the proof.

In the next section we present an even more general version of Poincaré Duality for
cohomology and homology with coefficients in any R-module G and any commutative ring
with identity element 1.

7.5 The Poincaré Duality Theorem with Coefficients

in G

The first step is to define a version of the cap product that accommodates coefficients in G.

Definition 7.10. Define the cap product

_ : Sp(X;G)× Sn(X;R)→ Sn−p(X;G)



270 CHAPTER 7. POINCARÉ DUALITY

using a variant of the formula of Definition 7.6, namely for any cochain c ∈ Sp(X;G) and
any chain σ ∈ Sn(X;R),

c _ σ = (σ ◦ λn−p)c(σ ◦ ρp),

where we switched the order of the two expressions on the right-hand side to conform with
the convention that a chain in Sn−p(X;G) is a formal combination of the form

∑
σigi with

gi ∈ G and σi a (n− p)-simplex.

Since σ ◦ρp ∈ Sp(X;R), σ ◦λn−p ∈ Sn−p(X;R), and c ∈ Sp(X;G), we have c(σ ◦ρp) ∈ G,
and indeed (σ ◦ λn−p)c(σ ◦ ρp) ∈ Sn−p(X;G) so the above definition makes sense.

If a ∈ Sn−p(X;R), b ∈ Sp(X;G) and σ ∈ Sn(X;R), by Definition 4.34, we have

〈a ^ b, σ〉 = a(σ ◦ λn−p)b(σ ◦ ρp),

and
b _ σ = (σ ◦ λn−p)b(σ ◦ ρp),

so if 〈f, s〉 with f ∈ Sp(X;R) and s ∈ Sp(X;G) is defined the right way, the identity

〈a, b _ σ〉 = 〈a ^ b, σ〉

will hold. But the definition of a pairing 〈−,−〉 : Sq(X;R) × Sq(X;G) → G is standard,
namely

〈f,
∑

σigi〉 =
∑

f(σi)gi,

where f ∈ Sq(X;R) and
∑
σigi is a singular q-simplex in Sq(X;G) (where the σi are q-

simplices). In the above situation, q = n− p.
It is even possible to define a pairing 〈−,−〉 : Sq(X;G)× Sq(X;G′)→ G⊗G′, where G

and G′ are two different R-modules; see Spanier [59] (Chapter 5, Section 5, Page 243). In
summary, the equation

〈a, b _ σ〉 = 〈a ^ b, σ〉

holds for this more general version of cup products and cap products.

The formula
∂(c _ σ) = (−1)n−p(δc _ σ) + c _ ∂σ.

of Proposition 7.12 still holds for any c ∈ Sp(X;G) and any σ ∈ Sn(X;R), so we obtain a
cap product

_ : Hp(X;G)×Hn(X;R)→ Hn−p(X;G).

There is also a relative version of the cap product

_ : Hp(X,A;G)×Hn(X,A;R)→ Hn−p(X;G)

which will be used in the version of Poincaré duality with coefficients in G; see May [43]
(Chapter 20, Section 2), but beware that this definition is very abstract. Actually it is
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possible to use Definition 7.10 to define the above relative cap product and to justify this
definition using the reasoning at the end of Section 7.2. We leave this verification as an
exercise.

The most general relative cap product is a bilinear map

_ : Hp(X,A;G)×Hn(X,A ∪B;R)→ Hn−p(X;B,G)

where A and B are subsets of X such that Int(A) ∪ Int(B) = A ∪ B, where these interiors
are defined with respect to the subspace topology on A ∪ B induced by X; see Spanier
[59] (Chapter 5, Section 7, Page 254), Munkres [48] (Chapter 8, Section 66, Page 392) and
Hatcher [31] (Chapter 3, Section 3.3). This version of the cap product will be used in Section
14.5 on Alexander–Lefschetz duality.

Next we promote singular cohomology with coefficients in G to cohomology with compact
support. All one has to do is replace R by G everywhere. We obtain the cohomology groups
with compact support Hp

c (X;G). It is easy to verify that that Proposition 7.15 also holds.

Proposition 7.18. We have isomorphisms

Hp
c (X;G) ∼= lim−→

K∈K
Hp(X,X −K;G)

for all p ≥ 0. Furthermore, if X is compact, then Hp
c (X;G) ∼= Hp(X;G).

Given an R-orientable manifold M we also have to generalize the mapping
DM : Hp

c (M ;R)→ Hn−p(M ;R) to a mapping

DM : Hp
c (M ;G)→ Hn−p(M ;G),

and for this we use the cup product

_ : Hp(M,M −K;G)×Hn(M,M −K;R)→ Hn−p(X;G)

defined above. Since there is an isomorphism

Hp
c (M ;G) ∼= lim−→

K∈K
Hp(M,M −K;G),

for any ω ∈ Hp
c (M ;G) we pick some representative ω′ in the equivalence class defining ω in

lim−→Hp(M,M − K;G), namely some ω′ ∈ Hp(M,M − K;G) for some compact subset K,
and since µK ∈ Hn(M,M −K;R) we set

DM(ω) = ω′ _ µK ∈ Hn−p(M ;G).

Then we prove that the above definition does not depend on the choice of the representative
ω′ ∈ Hp(M,M −K;G) just as in the case where G = R. In conclusion, we obtain our map

DM : Hp
c (M ;G)→ Hn−p(M ;G).

Using this map, the following version of Poincaré duality can be proven.
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Theorem 7.19. (Poincaré Duality Theorem for Coefficients in a Module) Let M be an
n-manifold, let R be any commutative ring with unit 1, and let G be any R-module. If M is
R-orientable, then the map

DM : Hp
c (M ;G)→ Hn−p(M ;G)

defined above is an isomorphism for all p ∈ Z. Furthermore, Hp(M ;G) = (0) and Hp
c (M ;G)

= (0) for all p such that p < 0 or p > n. If R = Z/2Z, the above map is an isomorphism
whether M is orientable or not.

If M is compact and R-orientable, then the map

DM : ω 7→ ω _ µM

is an isomorphism between Hp(M ;G) and Hn−p(M ;G) for all p ∈ Z. Furthermore, we have
Hp(M ;G) = (0) and Hp(M ;G) = (0) for all p such that p < 0 or p > n.

Theorem 7.19 is proven in May [43] (Chapter 20, Section 5) and Massey [41] (Chapter
XIV, Theorem 4.1). Except for Case (1), the proof is basically identical to the proof of
Theorem 7.16.

The proof of Case 1 is modified as follows. By tensoring withG, the map ε : S0(X;R)→ R
yields a map S0(X;R) ⊗ G → R ⊗ G ∼= G which induces a homomorphism which we also
denote ε∗ : H0(X;G) → G. This homomorphism is an isomorphism if X is path connected,
and Proposition 7.14 holds, namely

ε∗(ω _ a) = 〈ω, a〉,

for all ω ∈ Hp(X;G) and all a ∈ Hp(X;G) (0 ≤ p ≤ n). The rest of the proof is analogous
to the proof given in Section 7.4.

We will see later on that there is an even more general version of duality known as
Alexander–Lefschetz duality; see Chapter 14.

7.6 Problems

Problem 7.1. Prove that Condition (†) in Definition 7.1 can be replaced by the condition

ρUix (µi) = ρUjx (µj) for all x ∈ Ui ∩ Uj.

Hint . Use Proposition 7.1.

Problem 7.2. Prove the identities from Proposition 7.12 listed below. For any c ∈ Sp(X;R)
and any σ ∈ Sn(X;R), we have

∂(c _ σ) = (−1)n−p(δc _ σ) + c _ ∂σ.
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Furthermore, we have
ε _ σ = σ

for all σ ∈ Sn(X;R), and
c _ (d _ σ) = (c ^ d) _ σ,

for all c ∈ Sp(X;R), all d ∈ Sq(X;R), and all σ ∈ Sp+q+r(X;R).

Problem 7.3. Prove Proposition 7.14.

Problem 7.4. Define the cap product

_ : Sp(X,A;R)× Sn(X,A;R)→ Sn−p(X;R)

using the formula of Definition 7.6.

(1) Check carefully that this cap product is well defined.

(2) Prove Proposition 7.12 for this cap product.

(3) Prove Proposition 7.14 for this cap product.

Problem 7.5. Prove that the diagram

Hp(M,M −K;R) //

−_µK ))

Hp(M,M − L;R)

−_µLuu
Hn−p(M ;R)

where K ⊆ L are compact subsets of M is commutative, and thus

DM : Hp
c (M ;R)→ Hn−p(M ;R)

as specified in Definition 7.9 at the end of Section 7.3 is indeed well-defined.

Problem 7.6. It can be shown that projective space RPn with n odd is orientable. Use this
fact to prove that

Hp(RPn;Z) =





Z for p = 0 and for p = n odd

Z/2Z for p even, 0 < p ≤ n

(0) otherwise.

Problem 7.7. Recall from Problem 5.5 that the space Xg (a surface) is obtained by forming
the g-fold connected sum

Xg = T ] · · · ] T︸ ︷︷ ︸
g

by gluing together g ≥ 2 tori. It can be shown that these surfaces are orientable. Prove that
the cohomology of Xg is given by

H0(Xg) = Z
H1(Xg) = Z2g

H2(Xg) = Z.
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Problem 7.8. Prove that if M is a compact orientable manifold of dimension n = 4k + 2,
then χ(M) is even.

Hint . This is a hard problem. For help, see Greenberg and Harper [25] (Corollary 26.11).



Chapter 8

Presheaves and Sheaves; Basics

Presheaves and sheaves are two of the indispensible tools used in some of the more advanced
parts of algebraic topology and algebraic geometry. Therefore it is important for the reader
to be exposed to these concepts as soon as possible. Unfortunately, many presentations of
these concepts quickly take a very abstract turn, especially when explaining the process of
converting a presheaf into a sheaf.

We believe that it is best to proceed in two stages. In the first stage, the concepts
of preseaves and sheaves are defined as concretely as possible, using familiar examples as
illustrations. This is what we do in this chapter. In Chapter 9 we show how the notion
of presheaf can be used to define a very general kind of cohomology based on open covers,
called Čech cohomology. In the second stage, we discuss more sophisticated aspects of
sheaves, including the process of converting a presheaf into a sheaf (sheafification) and exact
sequences of sheaves. This second stage is presented in Chapter 10.

According to Dieudonné the origin of the notions of presehaves and sheaves can be traced
to papers of Jean Leray published in 1945–1947. In his 1945 paper, Leray’s goal was to define
a cohomology theory on an arbitrary topological space X, starting from some (almost)
arbitrary cochain complex C∗. In this theory, every cochain c ∈ C∗ is assigned a support
S(c) ⊆ X subject to certain axioms. A pair of the form (C∗, S) is called a concrete complex .
The central objects in Leray’s theory are special kinds of concrete complexes that he called
couvertures . The English translation of “couverture” is “cover” (it could also be “blanket”).
In his 1947 paper, Leray introduced the notion of fine complex and fine couverture. Using
these notions he was able to establish the equivalence of his notion of cohomology with the
Alexander–Spanier cohomology discussed later in this book.

The notion of couverture was abandoned shortly after its creation but there is little doubt
that it was one of the intermediate steps that led Leray to the much more flexible notion of
sheaf.

Another motivation for the the notion of sheaf was the desire to define cohomology
theories with varying coefficients (as opposed to using a fixed abelian group G, use a family
of abelian group Gα). Reidemeister came up with such a theory in 1935 to study the

275
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homology of a covering space. Steenrod in his work on fibre bundles in 1942 considered
homology and cohomology with local coefficients.

Presheaves and sheaves were introduced for the first time in a paper of Jean Leray
published in 1946. One of Leray’s main motivations was the following problem: given a
continuous map f : Y → X between two topological spaces Y and X, find a relationship
between the cohomology of Y and the cohomology of X using properties of f . In particular,
assuming f surjective, is it possible to reconstruct the cohomology H∗(Y ) of Y from the
cohomology H∗(X) of X and the cohomology H∗(f−1(x)) of each fibre f−1(x) (x ∈ X)?

The above question suggests considering the assigment of some module F(x) to x ∈ X,
and more generally of some module F(E) to each subset E in some designated family of
subsets of X. Leray picked the closed subsets. Such assigments E 7→ F(E) must satisfy
certain properties which allow the “passage from local to global information.” These are
sheaves in the sense of Leray.

Leray’s paper and subsequent lectures on the subject triggered some major activity on
the subject in the years 1947–1951. Henri Cartan became very active on this topic, as
well as two of his students, Jean-Pierre Serre and Jean-Louis Koszul. Armand Borel also
played a key role in these developments. Henri Cartan who had worked on some problems
in complex analysis was very familiar with the passage from local to global and realized
that it was preferable to define a sheaf as an assigment of a module F(U) to an open set
U . His definition is essentially the definition we adopted, as presented by Godement [24];
see also Serre [55]. Another definition of a sheaf was given by Henri Cartan and Michel
Lazard in 1951 based on the notion of “espace étalé.” The Cartan–Lazard notion of a sheaf
is equivalent to the previous definition of a sheaf. We will discuss this equivalence in Chapter
10.

After this historical introduction, let us return to the topics covered in this chapter. In
Section 8.1 we define presheaves and maps (morphisms) of presheaves.

Presheaves are typically used to keep track of local information assigned to a global object
(the space X). It is usually desirable to use consistent local information to recover some
global information, but this requires a sharper notion, that of a sheaf. Section 8.2 is devoted
to an elementary presentation of sheaves. A deeper study is conducted in Chapter 10.

In general, a presheaf fails to satisfy the consistency conditions of a sheaf but there is a
procedure (known as sheafification) for converting a presheaf into a sheaf (see Chapter 10).
This method uses a notion of limit of a family of modules called a direct mapping family.
This notion of limit is also needed in defining the Čech cohomology modules Ȟp(X,F) of a
space X with values in a preseheaf F from the family of Čech cohomology modules Ȟp(U ,F)
associated with open covers U of X (see Chapter 9). In preparation for the topics mentioned
above we carefully discuss direct mapping families and direct limits in Section 8.3.
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8.1 Presheaves

Roughly speaking, presheaves (and sheaves) are a way of packaging local information about
a topological space X in a way that is mathematically useful. We can imagine that above
every open subset U of X there is a “balloon” F(U) of information about U , often a set of
functions, and that this information is compatible with restriction; namely if V is another
open set contained in U , then the balloon of information F(V ) is obtained from F(U) by
some restriction function ρUV . See Figure 8.1.

The typical example of a presheaf (in this case, actually sheaf) is as follows: given a
topological space X (for simplicity, you may assume that X = R, or X = Rn), for every
(nonempty) open subset U of X, let C0(U) be the set of all real-valued continuous functions
f : U → R. For any open subset V ⊆ U , we obtain a function ρUV : C0(U) → C0(V ) by
restricting any function f : U → R to V . See Figure 8.1.

UV

C (U)0

Figure 8.1: The elevated blue balloon is a schematic representation of a presheaf of real
valued functions over the open set U ⊆ R2. Each “function” is represented as blue and green
dotted lines, where the green dash is the restriction of the function on V .

Observe that if W ⊆ V ⊆ U , then

ρUW = ρVW ◦ ρUV

and

ρUU = idU .

See Figure 8.2.
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W
V

U

Figure 8.2: A schematic representation of the nested presheaves of continuous functions
associated with the open subsets W ⊆ V ⊆ U ⊆ R2. The wavy plane with the bold dashed
line represents the graph of a continuous real-valued function with domain in U . If this
function is restricted to the different colored “balloons,” (which have been opened to show
the graph of the continuous function), the domain is restricted appropriately, namely to
either V or W , as evidenced by the color change.

The assignment U 7→ C0(U) is a presheaf on X. In the above example each C0(U) can
be viewed as a set, but also as a real vector space, or a ring, or even as an algebra, since
functions can be added, rescaled, and multiplied pointwise.

More generally, we can pick a class of structures, say sets, vector spaces, R-modules
(where R is a commutative ring with a multiplicative identity), groups, commutative rings,
R-algebra, etc., and assign an object F(U) in this class to every open subset U of X, and
for every pair of open subsets U, V such that V ⊆ U , if we write i : V → U for the inclusion
map from V to U , then we assign to i a map F(i) : F(U) → F(V ) which is a morphism of
the class of of objects under consideration. This means that if the F(U) are sets, then the
F(i) are just functions; if the F(U) are R-modules then the F(i) are R-linear maps; if the
F(U) are groups then the F(i) are group homomorphisms; if the F(U) are rings then the
F(i) are ring homomorphisms, etc.

A fancy way to proceed would be assume that we have a category C and that objects of
C are assigned to open subsets of X and morphisms of C are assigned to inclusion maps,
so that a presheaf is a contravariant functor. For our purposes it is not necessary to assume
such generality.

Definition 8.1. Given a topological space X and a class C of structures (a category), say
sets, vector spaces, R-modules, groups, commutative rings, etc., a presheaf on X with values
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in C consists of an assignment of some object F(U) in C to every open subset U of X and
of a map F(i) : F(U) → F(V ) of the class of structures in C to every inclusion i : V → U
of open subsets V ⊆ U ⊆ X, such that

F(i ◦ j) = F(j) ◦ F(i)

F(idU) = idF(U),

for any two inclusions i : V → U and j : W → V , with W ⊆ V ⊆ U .

Note that the order of composition is switched in F(i ◦ j) = F(j) ◦ F(i).

Intuitively, the map F(i) : F(U) → F(V ) is a restriction map if we think of F(U) and
F(V ) as sets of functions (which is often the case). For this reason, the map F(i) : F(U)→
F(V ) is also denoted by ρUV : F(U) → F(V ), and the first equation of Definition 8.1 is
expressed by

ρUW = ρVW ◦ ρUV .
See Figures 8.1 and 8.2. Here are some examples of presheaves.

Example 8.1.

(1) The constant presheaf GX with values in G ∈ C, defined such that GX(U) = G for
all open subsets U of X, and ρUV is the identity function of G for all open subsets U, V
with V ⊆ U . A variant of the constant presheaf which comes up in cohomology has
GX(∅) = (0) instead of GX(∅) = G when G is an algebraic structure with an identity
element 0.

(2) If Y is another topological space, then C0
Y is the presheaf defined so that C0

Y (U) is the
set of all continuous functions f : U → Y from the open subset U of X to Y .

(3) If Y = (R,+, usual metric topology), then C0
Y is the presheaf of real-valued continuous

functions on X. It is presheaf of R-algebras.

(4) If Y = (R,+, trivial topology), then C0
Y is the presheaf of all real-valued functions on

X. It is presheaf of R-algebras.

(5) If M is a smooth manifold, then C∞ is the presheaf defined so that C∞(U) is the set
of all smooth real-valued functions f : U → R from the open subset U of M .

A map between two presheaves is defined as follows.

Definition 8.2. Given a topological space X and a fixed class C of structures (a category),
say sets, vector spaces, R-modules, groups, commutative rings, etc., a map (or morphism)
ϕ : F → G of presheaves F and G on X consists of a family of maps ϕU : F(U) → G(U) of
the class of structures in C, such that

ϕV ◦ (ρF)UV = (ρG)
U
V ◦ ϕU
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for every pair of open subsets U, V such that V ⊆ U ⊆ X. Equivalently, the following
diagrams commute for every pair of open subsets U, V such that V ⊆ U ⊆ X (and i : V → U
is the corresponding inclusion map):

F(U)
ϕU //

F(i)

��

G(U)

G(i)

��
F(V ) ϕV

// G(V ),

or using the restriction notation (ρF)UV for F(i) and (ρG)UV for G(i),

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V ).

See Figure 8.3.

U

V

F Gρ

(V )

(U)

G

G

(V )

(U)F

F

ρ (( )) UU

VV

U

V

φ

φ

Figure 8.3: The two purple “eggplants” represent the elements of the presheaves F and G.
The presheaf map ϕU : F(U)→ G(U) maps the left “eggplant” to the right “eggplant” in a
manner which preserves restrictions associated with the inclusion V ⊆ U ⊆ R2.

Remark: In fancy terms, a map of presheaves is a natural transformation.
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Definition 8.3. Given three presheaves F ,G,H on X and two maps of presheaves ϕ : F → G
and ψ : G → H, the composition ψ ◦ ϕ of ϕ and ψ is defined by the family of maps

(ψ ◦ ϕ)U = ψU ◦ ϕU

for all open subsets U of X.

It is easily checked that ψ ◦ ϕ is indeed a map of presheaves from F to H.

Definition 8.4. Given two presheaves F and G on X, a presheaf map ϕ : F → G is injective
if every map ϕU : F(U) → G(U) is injective, surjective if every map ϕU : F(U) → G(U) is
surjective (for each open subset U of X). Two presheaves F and G are isomorphic if there
exists some presheaf map ϕ : F → G and ψ : G → F such that ψ ◦ ϕ = id and ϕ ◦ ψ = id.

It is not hard to see that a presheaf map is an isomorphism iff it is injective and surjective.

If F and G are presheaves of algebraic structures (modules, groups, commutative rings,
etc.) then there is a notion of kernel, image, and cokernel of a map of presheaves. This
allows the definition of exact sequences of presheaves. We will come back to this point later
on.

8.2 Sheaves

In Section 8.1 we defined the notion of a presheaf. Presheaves are typically used to keep
track of local information assigned to a global object (the space X). It is usually desirable
to use consistent local information to recover some global information, but this requires a
sharper notion, that of a sheaf.

Expositions on the subject of sheaves tend to be rather abstract and assume a significant
amount of background. Our goal is to provide just enough background to have a good
understanding of the sheafification process and of the subtleties involving exact sequences of
presheaves and sheaves. These topics will be discussed in Chapter 10.

We should mention some of the classics, including (in alphabetic order) Bredon [7], Eisen-
bud and Harris [17], Forster [18], Godement [24], Griffiths and Harris [26], Gunning [29],
Hartshorne [30], Hirzebruch [33], Kashiwara and Shapira [34], Mac Lane and Moerdijk [38],
Mumford [47], Narasimham [49], Rotman [52], Serre FAC [55], Shafarevich [57], Spanier [59].
One of the most accessible (and quite thorough) presentations is found in Tennison [60].

The motivation for the extra condition that a sheaf should satisfy is this. Suppose we
consider the presheaf of continuous functions on a topological space X. If U is any open
subset of X and if (Ui)i∈I is an open cover of U , for any family (fi)i∈I of continuous functions
fi : Ui → R, if fi and fj agree on the overlap Ui∩Uj, then the fi patch to a unique continuous
function f : U → R whose restriction to Ui is fi.
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Definition 8.5. Given a topological space X and a class C of structures (a category), say
sets, vector spaces, R-modules, groups, commutative rings, etc., a sheaf on X with values in
C is a presheaf F on X such that for any open subset U of X, for every open cover (Ui)i∈I of
U (that is, U =

⋃
i∈I Ui for some open subsets Ui ⊆ U of X), the following conditions hold:

(G) (Gluing condition) For every family (fi)i∈I with fi ∈ F(Ui), if the fi are consistent,
which means that

ρUiUi∩Uj(fi) = ρ
Uj
Ui∩Uj(fj) for all i, j ∈ I,

then there is some f ∈ F(U) such that ρUUi(f) = fi for all i ∈ I. See Figure 8.4.

(M) (Monopresheaf condition) For any two elements f, g ∈ F(U), if f and g agree on all
the Ui, which means that

ρUUi(f) = ρUUi(g) for all i ∈ I,

then f = g.

Ui

f i

Uj

fj

U

Figure 8.4: A schematic representation Condition (G) for the set U = Ui ∪ Uj ⊆ R2. The
element fi ∈ F(Ui) is represented by the wavy peach plane with the bold peach dotted
line in the peach “balloon” while the element fj ∈ F(Uj) is represented by the wavy green
plane with the bold green dotted line. Where the two “balloons” intersect, the peach plane
overlaps the green plane. In other words ρUiUi∩Uj(fi) = ρ

Uj
Ui∩Uj(fj).
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Obviously, Condition (M) implies that in Condition (G) the element f obtained by patch-
ing the fi is unique.

Another notation often used for F(U) is Γ(U,F). An element of Γ(U,F) is called a section
above U , and elements of Γ(X,F) = F(X) are called global sections . This terminology
is justified by the fact that many sheaves arise as continuous sections of some surjective
continuous map p : E → X; that is, continuous functions s : U → E such that p ◦ s = idU ;
see Example 8.2 (1).

For any two open subsets U and V with V ⊆ U , for any s ∈ Γ(U,F) = F(U), it is often
convenient to abbreviate ρUV (s) by s|V .

Remarks:

1. If F(U) = ∅ for some open subset U of X, then F is the trivial sheaf such that
F(V ) = ∅ for all open subsets V of X. This is because there is a restriction function
ρXU : F(X)→ ∅, but the only function with range ∅ is the empty function with domain
∅ so F(X) = ∅. Since there is restriction function ρXV : F(X) → F(V ) for every open
subset V of X, we deduce that F(V ) = ∅ for all open subsets of X. This observation is
due to Godement [24]. From now on, we rule out the above possibility. Note that it is
ruled out automatically for sheaves of algebraic structures having an identity element.

2. Assuming that F is not the trivial sheaf, then Conditions (G) and (M) apply to all
open subsets U of X and all families of open covers (Ui)i∈I of U , including the case
where U = ∅ and I = ∅. In this case, Conditions (G) and (M) implies that F(∅) is a
one-element set. In the case of groups, modules, groups, commutative rings, etc., we
have F(∅) = {0}.

3. Condition (G) applies to open subsets U that are the disjoint union of open subsets
Ui ⊆ U . In this case, every family (fi)i∈I with fi ∈ F(Ui) must patch to yield some
global element f ∈ F(U) such that ρUUi(f) = fi. Thus, the gluing condition imposes
some consistency among the local pieces fi ∈ F(Ui), even if the Ui are pairwise disjoint.
This is a major difference with presheaves, where unrelated and inconsistent objects
may be assigned to disjoint open subsets.

4. If F is a sheaf of R-modules or commutative rings, then Condition (M) can be replaced
by the following condition which is often more convenient:

(M) (Monopresheaf condition) For any element f ∈ F(U), if f is zero on the Ui, which
means that

ρUUi(f) = 0 for all i ∈ I,

then f = 0.

5. If F is a sheaf of R-modules or commutative rings, then Conditions (M) and (G) can
be stated as an exactness condition. For any nonempty subset U of X, for any open
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cover (Ui)i∈I of U , define the maps f : F(U) →
∏

i∈I F(Ui) and g :
∏

i∈I F(Ui) →∏
i,j∈I F(Ui ∩ Uj) by

f(s) = (ρUUi(s))i∈I

g((si)i∈I) = (ρUiUi∩Uj(si)− ρ
Uj
Ui∩Uj(sj))(i,j)∈I×I .

Then Conditions (M) and (G) are equivalent to the hypothesis that the sequence

0 // F(U)
f //
∏

i∈I
F(Ui)

g //
∏

(i,j)∈I×I
F(Ui ∩ Uj)

is exact.

6. Intuitively, we may think of the elements f ∈ F(U) (the sections above U) as abstract
functions. In fact, this point of view can be justified rigorously. For every sheaf F on
a space X, we can construct a “big” space E with a continuous projection function
p : E → X so that for every open subset U of X, every s ∈ F(U) can be viewed as a
function s̃ : U → E (a section of p, see Example 8.2 (1) below). In fact, p is a local
homeomorphism. We will investigate the construction of E in Section 10.1.

Here are some examples of sheaves.

Example 8.2.

1. Let p : E → X be a surjective continuous map between two topological spaces E and
X. We define the sheaf Γ[E, p] of (continuous) sections of p on X as follows: for every
open subset U of X,

Γ[E, p](U) = Γ(U,Γ[E, p]) = {s : U → E | p ◦ s = id and s is continuous};

equivalently, the following diagram commutes:

E

p

��
U

s
>>

� � // X

where the horizontal arrow is inclusion; see Figure 8.5. For the sake of notational
simplicity, the sheaf Γ[E, p] is often denoted by ΓE.

2. If Y is another topological space, E = X×Y , and p : X×Y → X is the first projection,
then the sheaf Γ[E, p] in (1) corresponds to the presheaf on X of Example 8.1(2–4),
which is actually a sheaf. Indeed, since p is the map (x, y) 7→ x, every continuous
section s of p above U is a function of the form x 7→ (x, f(x)), where f : U → Y is
a continuous function. Therefore, there is a bijection between the set of continuous
sections of p above U and the set of continuous functions from U to Y . See Figure 8.6.
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S2

UX

E
S
1

S3

Figure 8.5: A schematic representation of the sheaf of sections Γ[E, p] where X is the circular
base and E be the solid gray upside-down “lamp shade”. Note p−1(x) for x ∈ X is a twisted
orange “spaghetti strand.” We illustrate three elements of Γ[E, p](U) as bold blue, green,
and purple wavy disks which connect the various preimages in a continuous manner, namely
p ◦ s(u) = u for u ∈ U .

3. If Y is given the discrete topology, E = X × Y , and p : X × Y → X is the first
projection, then the sheaf Γ[E, p] in (1) corresponds to the sheaf of locally constant
functions with values in Y , because every continuous section s of p above U is a function
of the form x 7→ (x, f(x)), where f : U → Y is a locally constant function. Recall that
a function f : U → Y is locally constant if for every x ∈ U there is some open subset
V of U containing x such that f is constant on V . For any x ∈ U , since Y is discrete
the set {f(x)} is open, and since f is continuous V = f−1(f(x)) is some open subset of
U containing x and f is constant on V (with value f(x)). A locally constant function
must have a constant value on a connected open subset. See Figure 8.7.

The sheaf of locally constant functions on X with values in Y is denoted ỸX (or Y +
X if

the “tilde” notation is already used). Beware that in general this is not the constant
presheaf YX with values in Y . Indeed if X is the union of two disjoint open subsets
U1 and U2 and if Y has at least two distinct elements y1, y2, then we can pick the
family (y1, y2) with y1 ∈ YX(U1) = Y and y2 ∈ YX(U2) = Y , and since U1 ∩ U2 = ∅, by
Condition (G) there should be some element y ∈ YX(X) = Y such that ρXU1

(y) = y1

and ρXU2
(y) = y2. But since YX is the constant presheaf, ρXU1

= ρXU2
= id, so we should

have y = y1 = y2, which is impossible since y1 6= y2. The sheaf ỸX of locally constant
functions with values in Y is usually called (confusingly) the constant sheaf with values
in Y .
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(x, f(x))

UX

X x Y

Figure 8.6: Let X be the closed unit disk, Y = [0, 1], and E = X × Y be the solid grey
cylinder. Each p−1(x) is straight orange “spaghetti strand.” We illustrate an element of
Γ[E, p](U) associated with the continuous function f : U → Y as a wavy purple disk.

4. Given a smooth manifold M , the smooth real-valued functions on M form a sheaf C∞.
For every open subset U of M , let C∞(U) be the R-algebra of smooth functions on U .

5. Given a smooth manifold M , the differential forms on M form a sheaf A∗X . For
every open subset U of M , let Ap(U) be the vector space of of p-forms on U , and let
A∗X(U) = Ap(U). Then it is easy to check that we obtain a sheaf of vector spaces; the
restriction maps are the pullbacks of forms.

We just observed that in general the constant presheaf with values in Y in not a sheaf.
Here is another example of a presheaf which is not a sheaf.

Example 8.3. Let X be any topological space with at least two points (for example, X =
{0, 1}), and let F1 be the presheaf given by

F1(U) =

{
Z if U = X

(0) if U 6= X is an open subset,

with all ρUV equal to the zero map except if U = V = X (in which case it is the identity).
It is easy to check that Condition (M) fails. In particular if X = {0, 1} with the discrete
topology, then X = {0} ∪ {1}, where {0} and {1} are open sets in X. Let f ∈ F1(X) be
f = 1, while g ∈ F1(X) is g = −1. Then

ρX{0}(f) = 0 = ρX{1}(g),

where f 6= g.
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X U

X x Y

Figure 8.7: Let X be the closed unit disk, Y = [0, 1], and E = X × Y be the solid grey
cylinder. Each p−1(x) is straight orange “spaghetti strand” composed of disjoint open points.
Since Y has the discrete topology, an element of Γ[E, p](U) is illustrated as the purple “jump”
function.

The notion of a map ϕ : F → G between two sheaves F and G is exactly as in Definition
8.2.

Definition 8.6. Two sheaves F and G are isomorphic if there exist some sheaf morphisms
ϕ : F → G and ψ : G → F such that ψ ◦ ϕ = id and ϕ ◦ ψ = id.

It turns out that every sheaf is isomorphic to a sheaf of sections as in Example 8.2(1),
but to prove this we need the notion of direct limit; see Section 8.8.

Definition 8.7. Given a topological space X, for every (nonempty) open subset U of X,
for every presheaf (or sheaf) F on X, the restriction F|U of F to U is defined so that for
every open subset V of U ,

(F|U)(V ) = F(V ).

If F is a sheaf, it is immediate that F|U is a also a sheaf. Given two preshaves (or sheaves)
F and G on X, the presheaf Hom(F ,G) is defined by

Hom(F ,G)(U) = Hom(F|U,G|U)

for every open subset U of X. If F and G are sheaves, it is easy to see that Hom(F ,G) is
also a sheaf.

The next section is devoted to direct limits, an indispensible tool in sheaf theory and the
cohomology of sheaves.
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8.3 Direct Mapping Families and Direct Limits

We begin our study of direct limits with the following two definitions.

Definition 8.8. A directed set is a set I equipped with a preorder ≤ (where ≤ is a reflexive
and transitive relation) such that for all i, j ∈ I, there is some k ∈ I such that i ≤ k and
j ≤ k. A subset J of I is said to be cofinal in I if for every i ∈ I there is some j ∈ J such
that i ≤ j. For example, 2Z is cofinal in Z, where 2Z = {2x | x ∈ Z}.

Definition 8.9. A direct mapping family of sets (or R-modules, or commutative rings, etc.)
is a pair ((Fi)i∈I , (ρij)i≤j) where (Fi)i∈I is a family of sets (R-modules, commutative rings,
etc.) Fi whose index set I is a directed set, and for all i, j ∈ I with i ≤ j, ρij : Fi → Fj is a
map (R-linear, ring homomorphism, etc.) so that

ρii = id

ρik = ρjk ◦ ρ
i
j

for all i, j, k ∈ I with i ≤ j ≤ k, as illustrated below

Fi
ρik //

ρij   

Fk

Fj.
ρjk

>>

Here are two examples of direct mapping families.

Example 8.4.

1. Let X be a topological space and pick any point x ∈ X. Then the family of open
subsets U of X such that x ∈ U forms a directed set under the preorder U ≺ V
iff V ⊆ U . If C0(U) is the set of continuous R-valued functions defined in U and if
ρUV : C0(U)→ C0(V ) is the restriction map, then the family of sets (rings) (C0(U))U3x
(for all open subsets U of X containing x) forms a direct mapping family.

2. More generally, if F is a presheaf on X, then the family of sets (R-modules, etc.)
(F(U))U3x forms a direct mapping family, with ρUV : F(U)→ F(V ) whenever V ⊆ U ,
the presheaf restriction map.

The direct limit of a direct mapping family ((Fi)i∈I , (ρij)i≤j) is obtained as a quotient of
a disjoint union of the Fi.

Definition 8.10. The direct limit (or inductive limit) lim−→Fi of the direct mapping family

((Fi)i∈I , (ρij)i≤j) of sets (R-modules, commutative rings, etc.) is defined as follows:
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First form the disjoint union
∐

i∈I Fi. Next let ∼ be the equivalence relation on
∐

i∈I Fi
defined by:

fi ∼ fj iff ρik(fi) = ρjk(fj) for some k ∈ I with k ≥ i, j,

for any fi ∈ Fi and any fj ∈ Fj; see Figure 8.8. Finally the direct limit lim−→Fi is given by

lim−→
i∈I

Fi =

(∐

i∈I
Fi

)
/ ∼ .

It is clear that ∼ is reflexive and symmetric but we need to check transitivity. This is
where the fact that I is a directed set is used. If fi ∼ fj and fj ∼ fk, then there exist
p, q ∈ I such that i, j ≤ p, j, k ≤ q, ρip(fi) = ρjp(fj) and ρjq(fj) = ρkq(fk). Since I is a directed
preorder there is some r ∈ I such that p, q ≤ r. We claim that

ρir(fi) = ρkr(fk),

showing that fi ∼ fk. This is because

ρir(fi) = ρpr ◦ ρip(fi) = ρpr ◦ ρjp(fj) = ρjr(fj) = ρqr ◦ ρjq(fj) = ρqr ◦ ρkq(fk) = ρkr(fk),

as illustrated by the following diagram

Fr

Fp

ρpr

;;

Fq

ρqr

cc

fi ∈ Fi

ρip
;;

ρir

00

fj ∈ Fj

ρjp
cc

ρjq
;;ρjr

OO

fk ∈ Fk.

ρkq
cc

ρkr

nn

For every index i ∈ I, we have the canonical injection εi : Fi →
∐

i∈I Fi, and thus, a
canonical map πi : Fi −→ lim−→Fi, namely

πi : f 7→ [εi(f)]∼ = [εi(f)].

(Here, [x]∼ = [x] means equivalence class of x modulo ∼.) It is obvious that πi = πj ◦ ρij for
all i, j ∈ I with i ≤ j as illustrated in the diagram below

Fi
ρij //

πi
""

Fj

πj
||

lim−→Fi.

If each Fi is a R-module, then lim−→Fi is also a R-module (a ring, etc.). We define addition
by

[fi] + [fj] = [ρik(fi) + ρjk(fj)], for any k ∈ I with k ≥ i, j,
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Figure 8.8: An illustration of the equivalence relation ∼ used in the direct limit construction.
Since ρ5

12(f5) = ρ9
12(f9), f5 ∼ f9.

and multiplication by a scalar as

λ[fi] = [λfi].

If the Fi are rings, then we define multiplication by

[fi] · [fj] = [ρik(fi) · ρ
j
k(fj)], for any k ∈ I with k ≥ i, j.

The direct limit (lim−→Fi, (πi)i∈I)) is characterized by the important universal mapping
property : for every set (R-module, commutative ring, etc.) G and every family of maps
θi : Fi → G such that θi = θj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

θi ��

Fj

θj��
G,

there is a unique map ϕ : lim−→Fi → G, so that

θi = ϕ ◦ πi, for all i ∈ I
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as illustrated in the diagram below

Fi
ρij //

πi

##

θi

��

Fj

πj

{{

θj

��

lim−→Fi

ϕ

��
G.

The universal mapping property of the direct limit implies that it is unique up to iso-
morphism.

Remark: The direct limit lim−→Fi is actually a colimit ; it is an initial object in a suitably
defined category. Unfortunately, following common practice (probably due to some obscure
historical tradition) it is called a direct limit.

The following proposition gives a useful criterion to show that an object is a direct limit.

Proposition 8.1. Given a direct mapping family ((Fi)i∈I , (ρij)i≤j) of sets (R-modules, com-
mutative rings, etc.), suppose G is a set (R-module, ring, etc.) and (θi)i∈I is a family of
maps θi : Fi → G such that θi = θj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

θi   

Fj

θj~~
G.

If the following two conditions are satisfied

(a) For every g ∈ G, there is some i ∈ I and some fi ∈ Fi such that g = θi(fi)

(b) For all i, j ∈ I, for any fi ∈ Fi and any fj ∈ Fj,

θi(fi) = θj(fj) iff ∃k such that i ≤ k, j ≤ k and ρik(fi) = ρjk(fj),

then (G, (θi)i∈I) is a direct limit of the direct mapping family ((Fi)i∈I , (ρij)i≤j).

Proof. It suffices to prove that (G, (θi)i∈I) satisfies the universal mapping family. Let H be
a set (R-module, commutative ring, etc.) and (ηi)i∈I is a family of maps ηi : Fi → H such
that ηi = ηj ◦ ρij, for all i, j ∈ I with i ≤ j as in the diagram below

Fi
ρij //

ηi   

Fj

ηj~~
H.
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We need to prove that there is a unique map ϕ : G → H such that the following diagram
commutes for all i, j

Fi
ρij //

θi

""
ηi

��

Fj

θj

{{
ηj

��

G

ϕ

��
H.

By (a), since every g ∈ G is of the form g = θi(fi) for some fi ∈ Fi, then we must have

ϕ(g) = ϕ(θi(fi)) = ηi(fi).

Thus, if ϕ exists, it is unique. It remains to show that the definition of ϕ(g) as ηi(fi) does
not depend on the choice of fi. If fj ∈ Fj is another element such that θj(fj) = g, then
θi(fi) = θj(fj), which by (b) means that there is some k ∈ I such that, i ≤ k, j ≤ k and
ρik(fi) = ρjk(fj). But then since the following diagrams commute

Fi
ρik //

ηi   

Fk

ηk~~
H

Fj
ρjk //

ηj ��

Fk

ηk��
H ,

we have
ηi(fi) = ηk(ρ

i
k(fi)) = ηk(ρ

j
k(fj)) = ηj(fj),

which shows that ϕ(g) is well defined.

We will also need the notion of map between two direct mapping families and of the
direct limit of such a map.

Definition 8.11. Given any two direct mapping families ((Fi)i∈I , ((ρF )ij)i≤j) and ((Gi)i∈I ,
((ρG)ij)i≤j) of sets (R-modules, commutative rings, etc.) over the same directed preorder
I, a map from ((Fi)i∈I , ((ρF )ij)i≤j) to ((Gi)i∈I , ((ρG)ij)i≤j) is a family ϕ = (ϕi)∈I of maps
ϕi : Fi → Gi (of sets, of R-modules, commutative rings, etc.) such that the following diagram
commutes for all i ≤ j:

Fi
(ρF )ij //

ϕi

��

Fj

ϕj

��
Gi

(ρG)ij

// Gj.
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Let ϕ = (ϕi)∈I be a map between two direct mapping families ((Fi)i∈I , ((ρF )ij)i≤j) and
((Gi)i∈I , ((ρG)ij)i≤j). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit of the first fam-
ily and (G = lim−→Gi, ηi : Gi → G) for the direct limit of the second family, the commutativity
of the following diagram

Fi
(ρF )ij //

ϕi

��

Fj

ϕj

��
Gi

(ρG)ij //

ηi

��

Gj

ηj
��

G

shows that if we write ψi = ηi ◦ ϕi, then following diagram commutes

Fi
(ρF )ij //

ψi   

Fj

ψj~~
G.

Therefore by the universal mapping property of the direct limit (F = lim−→Fi, θi : Fi → F ),
there is a unique map Φ: F → G such that the following diagram commutes

Fi
(ρF )ij //

θi

$$
ϕi

��

ψi

..

Fj
θj

zz
ϕj

��

ψj

pp

F

Φ

��

Gi

ηi $$

// Gj

ηjzz
G

and so the following diagram commutes for all i ∈ I:

Fi
ϕi //

θi

��

Gi

ηi

��
F

Φ // G.

Definition 8.12. Let ϕ = (ϕi)∈I be a map between two direct mapping families ((Fi)i∈I ,
((ρF )ij)i≤j) and ((Gi)i∈I , ((ρG)ij)i≤j). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit
of the first family and (G = lim−→Gi, ηi : Gi → G) for the direct limit of the second family, the
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direct limit Φ = lim−→ϕi is the unique map Φ: lim−→Fi → lim−→Gi such that the diagram below
commutes for all i ∈ I

Fi
ϕi //

θi

��

Gi

ηi

��
F Φ // G.

We will also need a generalization of the notion of map of direct mapping families for
families indexed by different index sets. Such maps will be needed to define the notion of
homomorphism induced by a continuous map in Čech cohomology.

Definition 8.13. Given any two direct mapping families ((Fi)i∈I , ((ρF )ik)i≤k) and ((Gj)j∈J ,
((ρG)jl )j≤l) of sets (R-modules, commutative rings, etc.) over the directed preorders I and
J , a map from ((Fi)i∈I , ((ρF )ik)i≤k) to ((Gj)j∈J , ((ρG)jl )j≤l) is pair (τ, ϕ), where τ : I → J is
an order-preserving map and ϕ is a family ϕ = (ϕi)∈I of maps ϕi : Fi → Gτ(i) (of sets, of
R-modules, commutative rings, etc.) such that the following diagram commutes for all i ≤ k

Fi
(ρF )ik //

ϕi

��

Fk

ϕk

��
Gτ(i)

(ρG)
τ(i)
τ(k)

// Gτ(k).

Let (τ, ϕ = (ϕi)∈I) be a map between two direct mapping families ((Fi)i∈I , ((ρF )ik)i≤k)
and ((Gj)j∈J , ((ρG)jl )j≤l). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit of the
first family and (G = lim−→Gj, ηj : Gj → G) for the direct limit of the second family, the
commutativity of the following diagram

Fi
(ρF )ik //

ϕi

��

Fk

ϕk

��
Gτ(i)

(ρG)
τ(i)
τ(k) //

ητ(i)

!!

Gτ(k)

ητ(k)

}}
G

shows that if we write ψi = ητ(i) ◦ ϕi, then the following diagram commutes for all i, k

Fi
(ρF )ik //

ψi   

Fk

ψk~~
G.
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Therefore by the universal mapping property of the direct limit (F = lim−→Fi, θi : Fi → F ),
there is a unique map Φ: F → G such that the following diagram commutes for all i ∈ I

Fi
ϕi //

θi

��

Gτ(i)

ητ(i)

��
F

Φ // G.

Definition 8.14. Let (τ, ϕ = (ϕi)∈I) be a map between two direct mapping families ((Fi)i∈I ,
((ρF )ik)i≤k) and ((Gj)j∈J , ((ρG)jl )j≤l). If we write (F = lim−→Fi, θi : Fi → F ) for the direct limit
of the first family and (G = lim−→Gj, ηj : Gj → G) for the direct limit of the second family, the
direct limit Φ = lim−→ϕi is the unique map Φ: lim−→Fi → lim−→Gj such that the diagram below
commutes for all i ∈ I

Fi
ϕi //

θi

��

Gτ(i)

ητ(i)

��
F

Φ // G.

8.4 Problems

Problem 8.1. Prove that a presehaf map is an isomorphism iff it is injective and surjective.

Problem 8.2. Given a smooth manifold M , check that the assignment of the space of
differential p-forms Ap(U) to an open subet U of M is a sheaf.

Problem 8.3. Check that if F and G are sheaves on a space X, then Hom(F ,G) is also a
sheaf.

Problem 8.4. The notion of kernel Kerϕ and image Imϕ of a presheaf or sheaf map ϕ : F →
G of presheaves of R-modules over a space X is defined as follows. The presheaf Kerϕ is
defined by (Kerϕ)(U) = KerϕU , and the presheaf Im ϕ is defined by (Im ϕ)(U) = Im ϕU
(where U is any open subset of X).

(1) Prove that if F and G are presheaves, then Kerϕ and Im ϕ are also presheaves.

(2) Prove that if F and G are sheaves, then Kerϕ is a sheaf. Give an example where F
and G are sheaves but Im ϕ is not a sheaf.

Problem 8.5. Check the universal mapping property of the direct limit of a direct map-
ping family ((Fi)i∈I , (ρij)i≤j). Prove that any two direct limits of a direct mapping family
((Fi)i∈I , (ρij)i≤j) are isomorphic.
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Chapter 9

Čech Cohomology with Values in a
Presheaf

Given a topological space X and a presehaf F , there is a way of defining cohomology groups
Ȟp(X,F) as a limit process involving the definition of some cohomology groups Ȟp(U ,F)
associated with open covers U = (Uj)j∈J of the space X. Given two open covers U and V , we
can define when V is a refinement of U , and then we define the cohomology group Ȟp(X,F)
as the direct limit of the directed system of groups Ȟp(U ,F). When the presheaf F has
some special properties and when nice covers exist, the limit process can be bypassed.

Because it can be defined for any presheaf and for any topological space, Čech cohomology
is a very powerful and most valuable tool. It plays a major role in algebraic topology (duality)
and algebraic geometry (derived functors cohomology).

From a historical perspective, Čech defined certain kinds of homology groups (with coef-
ficients in Q) in a paper published in 1932. The definition of these homology groups involved
finite covers U of a topological space X, and a notion of refinement. Then the Čech homol-
ogy groups are defined by taking an inverse limit rather than a direct limit. Roughly at the
same time, Alexandroff extended this concept to coefficients in any commutative ring. A
few years later (1936), Steenrod made an extensive study of these Čech homology groups.

The Čech cohomology groups defined in terms of covers seem to have been first introduced
and studied by Spanier (1948), Dowker (1950), and Eilenberg and Steenrod (1952). At first,
finite covers were used, but Dowker realized that this led to some pathologies and switched
to arbitrary covers, arriving at the definition given in this chapter. Čech cohomology is given
a very thorough treatment in Eilenberg and Steenrod’s famous book [15]. The generalization
of Čech cohomology to presheaves is probably due to the “Cartan school.” It is quite an
obvious step for someone familar with sheaves. An early occurrence of this definition appears
in Serre [55].

After this historical digression we return to the topics discussed in this chapter. In Section
9.1 we define the cohomology modules Ȟp(U ,F) associated with a cover U of a topological
space X. The definition of the modules Cp(U ,F) of Čech cochains with values in a presheaf

297
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F requires considering intersections

Ui0 ∩ · · · ∩ Uip ,

where the Uk are open subsets in the cover U . Technically, it is simpler to consider sequences
with possible repetitions to deal correctly with the passage to a finer cover. It is also possible
to use alternating cochains, which are more economical. We state a result of Serre [55] which
shows that both approaches are equivalent.

In Section 9.2 we define the Čech cohomology modules Ȟp(X,F) associated with a topo-
logical space X. The module Ȟp(X,F) is obtained as the direct limit of the mapping family
(Ȟp(U ,F))U with respect to the directed set of open covers under the notion of refinement.
Here one has to be careful to avoid set theoretic pitfalls (the family of all open covers of a
given space is not a set). This difficulty can be avoided using a device due to Serre [55].
In writing this section we have greatly benefited from Serre’s classical exposition of Čech
cohomology in one of his landmark papers, Faisceaux algébriques cohérents [55], abbreviated
as FAC, and published in 1955.

In Section 9.3 we investigate the relationship between de Rham cohomology and classical
Čech cohomology for the constant sheaf R̃X (corresponding to coefficients in R). If M is a
smooth manifold and if U is a good cover of M (as in Definition 3.6), then the de Rham
cohomology and the Čech cohomology modules are isomorphic, that is,

Hp
dR(M) ∼= Ȟp(M, R̃M) ∼= Ȟp(U , R̃M),

for all p ≥ 0. The main technical tool to prove the above equivalence is a double complex
known as the Čech–de Rham complex . This elegant proof method is due to André Weil and
we follow closely Bott and Tu’s exposition [4].

If X is a paracompact manifold (see Definition 13.7), then singular cohomology and

classical Čech cohomology for the constant sheaf Z̃X (corresponding to coefficients in Z) are
isomorphic. More can be said if X has a good cover.

9.1 Čech Cohomology of a Cover

Throughout this chapter, R will denote a fixed commutative ring with unit. Let F be a
presheaf of R-modules on X. We always assume that that F(∅) = (0), as in the case of a
sheaf. Our first goal is to define R-modules of cochains, Cp(U ,F). Here a decision must be
made, namely whether we use sequences of indices with or without repetitions allowed. This
is one of the confusing aspects of the set up of Čech cohomology, as the literature uses both
approaches typically without any motivation. The crucial point is to deal correctly with the
passage to a finer cover. The proof is simpler if we allow repetitions of indices, and we will
follow this approach. However, it can also be shown that using special kinds of cochains
called alternating cochains, isomorphic cohomology R-modules are obtained. As a corollary,
one may indeed assume that sequences without repetitions are used.
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Let X be a topological space and let U be an open cover for X. Given any finite sequence
I = (i0, . . . , ip) of elements of some index set J (where p ≥ 0 and the ij are not necessarily
distinct), we let

UI = Ui0···ip = Ui0 ∩ · · · ∩ Uip .
Note that it may happen that UI = ∅ (this is another confusing point: some authors only
consider sequences I = (i0, . . . , ip) for which Ui0···ip 6= ∅). We denote by Ui0···îj ···ip the inter-
section

Ui0···îj ···ip = Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uip
of the p subsets obtained by omitting Uij from Ui0···ip = Ui0 ∩ · · · ∩ Uip (the intersection of
the p+ 1 subsets). See Figure 9.1.

U i

U i0

U i0

U i0

U i0

U i1

U i1

U i1

U i1

U i2

U i2
3U i 3

U i 3

Ui0 i1 i2 i 3

Ui0 i1 i2 i 3

^

=

= h

h h h

h U i 3

Figure 9.1: An illustration of Ui0i1i2i3 and Ui0i1 î2i3 .

Then we have p+ 1 inclusion maps

δpj : Ui0···ip −→ Ui0···îj ···ip , 0 ≤ j ≤ p.

For example, if p = 0 we have the map

δ0
0 : Ui0 −→ X;

for p = 1, we have the two maps

δ1
0 : Ui0 ∩ Ui1 −→ Ui1 , δ1

1 : Ui0 ∩ Ui1 −→ Ui0 ;

for p = 2, we have the three maps

δ2
0 : Ui0∩Ui1∩Ui2 −→ Ui1∩Ui2 , δ2

1 : Ui0∩Ui1∩Ui2 −→ Ui0∩Ui2 , δ2
2 : Ui0∩Ui1∩Ui2 −→ Ui1∩Ui2 .
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Definition 9.1. Given a topological spaceX, an open cover U = (Uj)j∈J ofX, and a presheaf
of abelian groups F on X, for any p ≥ 0, the R-module of Čech p-cochains Cp(U ,F) is the
set of all functions f with domain Jp+1 such that f(i0, . . . , ip) ∈ F(Ui0···ip); in other words,

Cp(U ,F) =
∏

(i0,...,ip)∈Jp+1

F(Ui0···ip),

the set of all Jp+1-indexed families (fi0,...,ip)(i0,...,ip)∈Jp+1 with fi0,...,ip ∈ F(Ui0···ip).

In particular, for p = 0 we have

C0(U ,F) =
∏

j∈J
F(Uj),

so a 0-cochain is a J-indexed family f = (fj)j∈J with fj ∈ F(Uj), and for p = 1 we have

C1(U ,F) =
∏

(i,j)∈J2

F(Ui ∩ Uj),

so a 1-cochain is a J2-indexed family f = (fi,j)(i,j)∈J2 with fi,j ∈ F(Ui ∩ Uj).

Remark: Since F(∅) = (0), for any cochain f ∈ Cp(U ,F), if Ui0···ip = ∅, then fi0···ip = 0.
Therefore, we could define Cp(U ,F) as the set of families fi0···ip ∈ F(Ui0···ip) corresponding
to tuples (i0, . . . , ip) ∈ Jp+1 such that Ui0···ip 6= ∅. This is the definition adopted by several
authors, including Warner [62] (Chapter 5, Section 5.33).

Each inclusion map δpj : Ui0···ip −→ Ui0···îj ···ip induces a map

F(δpj ) : F(Ui0···îj ···ip) −→ F(Ui0···ip)

which is none other that the restriction map ρ
Ui0···îj ···ip
Ui0···ip

which, for the sake of notational

simplicity, we denote by ρji0···ip .

Definition 9.2. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the coboundary maps δpF : Cp(U ,F)→ Cp+1(U ,F) are given
by

δpF =

p+1∑

j=0

(−1)jF(δp+1
j ), p ≥ 0.

More explicitly, for any p-cochain f ∈ Cp(U ,F), for any sequence (i0, . . . , ip+1) ∈ Jp+2, we
have

(δpFf)i0,...,ip+1 =

p+1∑

j=0

(−1)jρji0···ip+1
(fi0,...,îj ,...,ip+1

).
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Note that the definition of (δpFf)i0,...,ip+1 is reminiscent of the definition of the boundary
map ∂σ given in Definition 4.3, but here we are dealing with cohomology.

Unravelling Definition 9.2, for p = 0 we have

(δ0
Ff)i,j = ρ0

ij(fj)− ρ1
ij(fi), (δ0)

and for p = 1 we have

(δ1
Ff)i,j,k = ρ0

ijk(fj,k)− ρ1
ijk(fi,k) + ρ2

ijk(fi,j). (δ1)

Example 9.1. As an explicit example of Definitions 9.1 and 9.2, let X be the union of two
open sets, namely X = U1 ∪ U2. See Figure 9.2.

X

X

(i.)

(ii.)

U1

U1

U1

U2

U2

U2

f 1

f2

f12
F
F

F (

(

(

)

)

U12 )

Figure 9.2: An illustration of X in Example 9.1. Figure (ii.) illustrates the associated
presheaf F .

Then

C0(U ,F) = F(U1)×F(U2)

C1(U ,F) = F(U11)×F(U12)×F(U21)×F(U22)

C2(U ,F) = F(U111)×F(U112)×F(U121)×F(U122)×F(U211)×F(U212)

×F(U221)×F(U222),
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where

U11 = U1 ∩ U1 = U1, U12 = U1 ∩ U2 = U21, U22 = U2 ∩ U2 = U2

U111 = U1 ∩ U1 ∩ U1 = U1, U222 = U2 ∩ U2 ∩ U2 = U2

U112 = U121 = U211 = U1 ∩ U1 ∩ U2 = U1 ∩ U2 ∩ U2 = U221 = U212 = U122.

In general Cp(U ,F) is a product with 2p+1 factors. A typical element of C0(U ,F) has the
form (f1, f2) where f1 is an element of the group associated with U1 and f2 is an element of
the group associated with U2. A typical element of C1(U ,F) has the form (f1,1, f1,2, f2,1, f2,2)
where f1,1 is an element of the group associated with U11 = U1, f1,2 is an element of the
group associated with U12 = U1 ∩ U2, f2,1 is another element of the group associated with
U21 = U12, and f2,2 is an element of the group associated with U22. In general f1,2 6= f2,1. A
typical element of C2(U ,F) has the form

(f1,1,1, f1,1,2, f1,2,1, f1,2,2, f2,1,1, f2,1,2, f2,2,1, f2,2,2),

where f1,1,1 is an element of the group associated with U111 = U1, f1,1,2 is an element of
the group associated with U112 = U1 ∩ U2, f1,2,1 is an element of the group associated with
U121 = U112, f1,2,2 is an element of the group associated with U122 = U112, f2,1,1 is an element
of the group associated with U211 = U112, f2,1,2 is an element of the group associated with
U212 = U112, f2,2,1 is an element of the group associated with U221 = U112, and f2,2,2 is an
element of the group associated with U222 = U2. In general, a typical element of Cp(U ,F) is
a 2p+1-tuple.

The coboundary map δ0
F : C0(U ,F) → C1(U ,F) takes f ∈ C0(U ,F), say f = (f1, f2),

and makes it into element of C1(U ,F) by calculating

(δ0
Ff)1,1 = ρ0

11(f1)− ρ1
11(f1) = 0

(δ0
Ff)1,2 = ρ0

12(f2)− ρ1
12(f1)

(δ0
Ff)2,1 = ρ0

21(f1)− ρ1
21(f2)

(δ0
Ff)2,2 = ρ0

22(f2)− ρ1
22(f2) = 0.

In other words

δ0
F(f1, f2) = (0, ρ0

12(f2)− ρ1
12(f1), ρ0

21(f1)− ρ1
21(f2), 0) ∈ C1(U ,F).

The coboundary map δ1
F : C1(U ,F)→ C2(U ,F) takes f ∈ C1(U ,F), say



9.1. ČECH COHOMOLOGY OF A COVER 303

f = (f1,1, f1,2, f2,1, f2,2), and makes it into element of C2(U ,F) by calculating

(δ1
Ff)1,1,1 = ρ0

111(f1,1)− ρ1
111(f1,1) + ρ2

111(f1,1) = ρ2
111(f1,1)

(δ1
Ff)1,1,2 = ρ0

112(f1,2)− ρ1
112(f1,2) + ρ2

112(f1,1) = ρ2
112(f1,1)

(δ1
Ff)1,2,1 = ρ0

121(f2,1)− ρ1
121(f1,1) + ρ2

121(f1,2)

(δ1
Ff)1,2,2 = ρ0

122(f2,2)− ρ1
122(f1,2) + ρ2

122(f1,2) = ρ0
122(f2,2)

(δ1
Ff)2,1,1 = ρ0

211(f1,1)− ρ1
211(f2,1) + ρ2

211(f2,1) = ρ0
211(f1,1)

(δ1
Ff)2,1,2 = ρ0

212(f1,2)− ρ1
212(f2,2) + ρ2

212(f2,1)

(δ1
Ff)2,2,1 = ρ0

221(f2,1)− ρ1
221(f2,1) + ρ2

221(f2,2) = ρ2
221(f2,2)

(δ1
Ff)2,2,2 = ρ0

222(f2,2)− ρ1
222(f2,2) + ρ2

222(f2,2) = ρ2
222(f2,2).

In other words

δ1
F(f1,1, f1,2, f2,1, f2,2) = (ρ2

111(f1,1), ρ2
112(f1,1), ρ0

121(f2,1)− ρ1
121(f1,1) + ρ2

121(f1,2), ρ0
122(f2,2),

ρ0
211(f1,1), ρ0

212(f1,2)− ρ1
212(f2,2) + ρ2

212(f2,1), ρ2
221(f2,2), ρ2

222(f2,2)).

Families of the form (δ0
Ff)i,j form the group (R-module) B1(U ,F) of Čech coboundaries,

and the group (R-module) Z0(U ,F) of Čech cocycles consists of the families (fj)j∈J ∈
C0(U ,F) such that (δ0

Ff) = 0; that is, families (fj)j∈J ∈ C0(U ,F) such that

ρ0
ij(fj) = ρ1

ij(fi)

for all i, j ∈ J .

Families of the form (δ1
Ff)i,jk form the group (R-module) B2(U ,F) of Čech coboundaries,

and the group (R-module) Z1(U ,F) of Čech cocycles consists of the families (fij)(i,j)∈J2 ∈
C1(U ,F) such that (δ1

Ff) = 0; that is, families (fi,j)(i,j)∈J2 ∈ C1(U ,F) such that

ρ1
ijk(fi,k) = ρ2

ijk(fi,j) + ρ0
ijk(fj,k)

for all i, j, k ∈ J .

In general the definition of Bp(U ,F) and Zp(U ,F) is as follows.

Definition 9.3. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the R-module Bp(U ,F) of Čech p-boundaries is given by
Bp(U ,F) = Im δp−1

F for p ≥ 1 with B0(U ,F) = (0), and the R-module Zp(U ,F) of Čech
p-cocycles is given by Zp(U ,F) = Ker δpF , for p ≥ 0.

It is easy to check that δp+1
F ◦ δpF = 0 for all p ≥ 0, so we have a chain complex C∗(U ,F)

of cohomology

0
δ−1
F // C0(U ,F)

δ0
F // C1(U ,F)

δ1
F // · · ·

δp−1
F // Cp(U ,F)

δpF // Cp+1(U ,F)
δp+1
F // · · ·

called the Čech complex , and we can define the Čech cohomology groups as follows. Let G
be an R-module, and write GX for the constant presheaf on X such that GX(U) = G for
every nonempty open subset U ⊆ X (with GX(∅) = (0)).
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Definition 9.4. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the Čech cohomology groups Ȟp(U ,F) of the cover U with
values in F are defined by

Ȟp(U ,F) = Zp(U ,F)/Bp(U ,F), p ≥ 0.

The classical Čech cohomology groups Ȟp(U ;G) of the cover U with coefficients in the R-
module G are the groups Ȟp(U , GX).

The groups Ȟp(U ,F) and Ȟp(U , GX) are in fact R-modules.

If F is a sheaf, then Ȟ0(U ,F) is independent of the cover U .

Proposition 9.1. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, if F is a sheaf, then

Ȟ0(U ,F) = F(X) = Γ(X,F),

the module of global sections of F .

Proof. We saw earlier that a 0-cocycle is a family (fj)j∈J ∈ C0(U ,F) such that

ρ0
ij(fj) = ρ1

ij(fi)

for all i, j ∈ J . Since F is a sheaf, the fi patch to a global section f ∈ F(X) such that
ρXUi(f) = fi for all i ∈ I.

The module of p-cochains Cp(U ,F) consists of the set of all families (fi0,...,ip)(i0,...,ip)∈Jp+1

with fi0,...,ip ∈ F(Ui0···ip). This is not a very economical definition. It turns out that the

same Čech cohomology groups are obtained using the more economical notion of alternating
cochain.

Definition 9.5. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, a cochain f ∈ Cp(U ,F) is alternating if it satisfies the
following conditions:

(a) fi0,...,ip = 0 whenever two of the indices i0, . . . , ip are equal.

(b) fσ(i0),...,σ(ip) = sign(σ)fi0,...,ip , for every permutation σ of the set {0, . . . , p} (where
sign(σ) denotes the sign of the permutation σ).

The set of alternating p-cochains forms a submodule C
′p(U ,F) of Cp(U ,F).

It is easily checked that δpFf is alternating if f is alternating. As a consequence the
alternating cochains yield a chain complex (C

′∗(U ,F), δF). The corresponding cohomology
groups are denoted by Ȟ

′p(U ,F). The following proposition is shown in FAC [55] (Chapter
1, §3, Subsection 20).
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Proposition 9.2. Given a topological space X, an open cover U = (Uj)j∈J of X, and a
presheaf of R-modules F on X, the Čech cohomology groups Ȟp(U ,F) and Ȟ

′p(U ,F) are
isomorphic for all p ≥ 0.

The proof of Proposition 9.2 consists in definining a suitable chain homotopy. It also
justifies the fact that we may assume that the index set J is totally ordered (say by ≤), and
using cochains fi0,...,ip where the indices form a strictly increasing sequence i0 < i1 < · · · < ip;
Bott and Tu [4] use this approach (Chapter II, §8).

Our next goal is to define Čech cohomology groups Ȟp(X,F) that are independent of
the open cover U chosen for X. Such groups are obtained as direct limits of direct mapping
families of modules, as defined in Section 8.8. The direct limit construction is applied to the
preorder of refinement among open coverings.

9.2 Čech Cohomology with Values in a Presheaf

First we need to define the notion of refinement of a cover.

Definition 9.6. Given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space X, we say that V
is a refinement of U , denoted U ≺ V ,1 if there is a function τ : J → I such that

Vj ⊆ Uτ(j) for all j ∈ J.

See Figure 9.3. We say that two covers U and V are equivalent if V ≺ U and U ≺ V .

Let τ : J → I be a function such that

Vj ⊆ Uτ(j) for all j ∈ J

as above.

Definition 9.7. The homomorphism τ p from Cp(U ,F) to Cp(V ,F) is defined as follows:
for every p-cochain f ∈ Cp(U ,F), let τ pf ∈ Cp(V ,F) be the p-cochain given by

(τ pf)j0···jp = ρUV (fτ(j0)···τ(jp))

for all (j0, . . . , jp) ∈ Jp+1, where ρUV denotes the restriction map associated with the inclusion
of Vj0···jp into Uτ(j0)···τ(jp).

Example 9.2. For example, if we take the refinement U ≺ V illustrated by Figure 9.3, set
p = 0, and take a cochain f = (f1, f2, f3) ∈ C0(U ,F), where f1 is an element of the group

1This is the notation used by Bott and Tu [4]. Serre uses the opposite notation V ≺ U , in FAC [55]
(Chapter 1, §3, Subsection 22).
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V
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V

Figure 9.3: Let U = U1 ∪ U2 ∪ U3. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6. Then U ≺ V
with τ : {1, 2, 3, 4, 5, 6} → {1, 2, 3} where τ(1) = 1, τ(2) = 1, τ(3) = 2, τ(4) = 2, τ(5) = 3,
τ(6) = 3 since V1 ⊆ U1, V2 ⊆ U1, V3 ⊆ U2, V4 ⊆ U2, V5 ⊆ U3, V6 ⊆ U3.

associated with U1, f2 is an element of the group associated with U2, and f3 is an element
of the group associated with U3, we calculate τ 0f ∈ C0(V ,F) as

(τ 0f)1 = ρU1
V1

(fτ(1)) = ρU1
V1

(f1)

(τ 0f)2 = ρU1
V2

(fτ(2)) = ρU1
V2

(f1)

(τ 0f)3 = ρU2
V3

(fτ(3)) = ρU2
V3

(f2)

(τ 0f)4 = ρU2
V4

(fτ(4)) = ρU2
V4

(f2)

(τ 0f)5 = ρU3
V5

(fτ(5)) = ρU3
V5

(f3)

(τ 0f)6 = ρU3
V6

(fτ(6)) = ρU3
V6

(f3).

In other words

τ 0(f1, f2, f3) = (ρU1
V1

(f1), ρU1
V2

(f1), ρU2
V3

(f2), ρU2
V4

(f2), ρU3
V5

(f3), ρU3
V6

(f3)).

Note that even if the jks are distinct, τ may not be injective so the τ(jk)’s may not be
distinct. This is why it is necessary to define the modules Cp(U ,F) using families indexed
by sequences whose elements are not necessarily distinct.

It is easy to see that the map τ p : Cp(U ,F)→ Cp(V ,F) commutes with δF so we obtain
homomorphisms

τ ∗p : Ȟp(U ,F)→ Ȟp(V ,F).
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Proposition 9.3. Given any two open covers U and V of a space X, if U ≺ V and if
τ1 : J → I and τ2 : J → I are functions such that

Vj ⊆ Uτ1(j) and Vj ⊆ Uτ2(j) for all j ∈ J,

then τ ∗p1 = τ ∗p2 for all p ≥ 0.

Proof Sketch. Following Serre (see FAC [55], Chapter 1, §3, Subsection 21), we define the
maps kp : Cp(U ,F)→ Cp−1(V ,F) such that given any f ∈ Cp(U ,F),

(kpf)j0···jp−1 =

p−1∑

h=0

(−1)hρh(fτ1(j0)···τ1(jh)τ2(jh)···τ2(jp−1))

for all (j0, . . . , jp−1) ∈ Jp, where ρh denotes the restriction map associated with the inclusion
of Vj0···jp−1 into Uτ1(j0)···τ1(jh)τ2(jh)···τ2(jp−1). Then it can be verified that

δF ◦ kp(f) + kp+1 ◦ δF(f) = τ p2 (f)− τ p1 (f).

It follows that the maps kp : Cp(U ,F) → Cp−1(V ,F) define a chain homotopy, and by
Proposition 2.20, we have τ ∗p1 = τ ∗p2 for all p ≥ 0.

Proposition 9.3 implies that if U ≺ V , then there is a homomorphism

ρUV : Ȟp(U ,F)→ Ȟp(V ,F).

It is easy to check that the relation U ≺ V among covers is a directed preorder; indeed,
given any two covers U = (Ui)i∈I and V = (Vj)j∈J , the cover W = (Ui ∩ Vj)(i,j)∈I×J is a
common refinement of both U and V , so U ≺ W and V ≺ W . See Figure 9.4.

It is also immediately verified that if U ≺ V ≺ W , then

ρUW = ρVW ◦ ρUV

and that
ρUU = id.

Furthermore, if U and V are equivalent, then because

ρVU ◦ ρUV = id and ρUV ◦ ρVU = id,

we see that
ρUV : Ȟp(U ,F)→ Ȟp(V ,F)

is an isomorphism.

Consequently, it appears that the family (Ȟp(U ,F))U is a direct mapping family of
modules indexed by the directed set of open covers of X.
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U1 Northern hemisphere

U2 Southern hemisphere

V1 front hemisphere

V2 back hemisphere

Common refinement

U   h   V U   h   V

U   h   V

U   h   V

1 11 2

2 1

2 2

Figure 9.4: Let X = S2 with two covers U = U1 ∪ U2 and V = V1 ∪ V2. The common
refinement W is an open cover consisting four sets.

However, there is a set-theoretic difficulty, which is that the family of open covers of X
is not a set because it allows arbitrary index sets.2

A way to circumvent this difficulty is provided by Serre (see FAC [55], Chapter 1, §3,
Subsection 22). The key observation is that any covering (Ui)i∈I is equivalent to a covering
(U ′λ)λ∈L whose index set L is a subset of 2X . Indeed, we can take for (U ′λ)λ∈L the set of all
open subsets of X that belong to the family (Ui)i∈I .

As we noted earlier, if U = (Ui)i∈I and V = (Vj)j∈J are equivalent, then there is an
isomorphism between Ȟp(U ,F) and Ȟp(V ,F), so we can define

Ȟp(X,F) = lim−→U
Ȟp(U ,F)

with respect to coverings U = (Ui)i∈I whose index set I is a subset of 2X . Another way to
circumvent the set theoretic difficulty is to use a device due to Godement ([24], Chapter 5,
Section 5.8).

In summary, we have the following definition.

2Most textboook presentations of Čech cohomology ignore this subtle point.
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Definition 9.8. Given a topological space X and a presheaf F of R-modules on X, the
Čech cohomology groups Ȟp(X,F) with values in F are defined by

Ȟp(X,F) = lim−→U
Ȟp(U ,F)

with respect to coverings U = (Ui)i∈I whose index set I is a subset of 2X . The classical Čech
cohomology groups Ȟp(X;G) with coefficients in the R-module G are the groups Ȟp(X,GX)
where GX is the constant presheaf with value G.

Remark: Warner [62] and Bott and Tu [4] (second edition) define the classical Čech coho-

mology groups Ȟp(X;G) as the groups Ȟp(X, G̃X), where G̃X is the sheaf of locally constant
functions with values in G. Although this is not obvious, if X is paracompact (see Definition

13.7), then the groups Ȟp(X,GX) are Ȟp(X, G̃X) are isomorphic; this is proven in Propo-
sition 13.16. As a consequence, for manifolds (which by definition are paracompact), this
makes no difference. However, Alexander–Lefschetz duality is proven for the classical defini-
tion of Čech cohomology corresponding to the case where the constant presheaf GX is used,
and this is why we used it in our definition.

9.3 Equivalence of Čech Cohomology to Other

Cohomologies

Next we will investigate the relationship between de Rham cohomology and classical Čech
cohomology for the constant sheaf R̃X (corresponding to coefficients in R), and singular

cohomology and classical Čech cohomology for the constant sheaf Z̃X (corresponding to
coefficients in Z). For manifolds, the de Rham cohomology and the classical Čech cohomology

for the constant sheaf R̃X are isomorphic, and the singular cohomology and the classical Čech
cohomology for the constant sheaf Z̃X are also isomorphic. Furthermore, we will see that
if our spaces have a good cover U (recall Definition 3.6), then the Čech cohomology groups

Ȟp(U , R̃X) are independent of U and in fact isomorphic to the de Rham cohomology groups
Hp

dR(X). The main technical tool to prove the above equivalence is a double complex known
as the Čech–de Rham complex .

Similarly, the Čech cohomology groups Ȟp(U , Z̃X) are independent of U and in fact
isomorphic to the singular cohomology groups Hp(X;Z) (if X is triangularizable).

Theorem 9.4. Let M be a smooth manifold. The de Rham cohomology groups are isomor-
phic to the Čech cohomology groups with values in the sheaf R̃M , and also isomorphic to the
Čech cohomology groups associated with good covers (with values in the sheaf R̃M):

Hp
dR(M) ∼= Ȟp(U , R̃M) ∼= Ȟp(M, R̃M),

for all p ≥ 0 and all good covers U of M .
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By a previous remark, since manifolds are paracompact, the above theorem also holds
with the constant presheaf RM instead of the sheaf R̃M .

Theorem 9.4 is proven in Bott and Tu [4] (Theorem 8.9 and Proposition 10.6). The
technique used for proving the first isomorphism is based on an idea of André Weil. The
idea is to use a double complex known as the Čech–de–Rham complex . A complete exposition
is given in Chapter 2, Section 8, of Bott and Tu [4], and we provide most of the proof.

Let M be a smooth manifold. The differential p-forms on M form a sheaf ApM with
Γ(U,ApM) = Ap(U), the vector space of p-forms on the open subset U ⊆M .

Given an open cover U = (Uj)j∈J of M we define the double complex AC∗,∗(U) by

ACp,q(U) =
∏

(i0,...,ip)∈Jp+1

Γ(Ui0···ip ,A
q
M) =

∏

(i0,...,ip)∈Jp+1

Aq(Ui0···ip).

There are two differentials

δp,q : ACp,q(U)→ ACp+1,q(U) and dp,q : ACp,q(U)→ ACp,q+1(U)

and we have δp+1,q ◦ δp,q = 0, dp,q+1 ◦ dp,q = 0, and δp,q and dp,q obviously commute. To
reduce the amount of notation we often write δp (or even δ) instead of δp,q and dq (or even
d) instead of dp,q.

We also define Dp,q : ACp,q(U)→ ACp+1,q(U)⊕ACp,q+1(U) by

Dp,q = δp + (−1)pdq.

We associate to the double complex AC∗,∗(U) the single complex AC∗(U) defined by

ACn(U) =
⊕

p+q=n

ACp,q(U),

with the differential Dn : ACn(U)→ ACn+1(U) given by

Dn =
∑

p+q=n

Dp,q.

For any ω = ω0 + · · ·+ ωn with ωp ∈ ACp,n−p(U), we have

Dn(ω) =
n∑

p=0

Dp,n−p(ωp).

It is easily verified that

Dn+1 ◦Dn = 0.
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It suffices to verify that Dn+1(Dnω) = 0 for ω ∈ ACp,q(U) with p+ q = n. Since Dp,qω =
δpω+(−1)pdqω with δpω ∈ ACp+1,q(U) and dqω ∈ ACp,q+1(U), only Dp+1,q = δp+1+(−1)p+1dq

and Dp,q+1 = δp + (−1)pdq+1 apply, and we get

(Dp+1,q +Dp,q+1)(Dp,q(ω)) = Dp+1,q(δpω) +Dp,q+1((−1)pdqω)

= (δp+1 + (−1)p+1dq)(δpω) + (δp + (−1)pdq+1)((−1)pdqω)

= δp+1(δpω) + (−1)p+1dq(δpω) + (−1)pδp(dqω) + dq+1(dqω)

= (−1)p+1dq(δpω) + (−1)pdq(δpω) = 0

since δp and dq commute. See the diagram below for a graphical illustration.

ACp,q+2(U)

dqω ∈ ACp,q+1(U) δp //

dq+1

OO
Dp,q+1

66

ACp+1,q+1(U)

ω ∈ ACp,q(U)
δp

//

dq

OO

δpω ∈ ACp+1,q(U)

dq

OO

δp+1
//

Dp+1,q

88

ACp+2,q(U)

For simplicity of notation we often write D instead of Dp,q or Dn.

The double complex AC∗,∗(U) can be displayed as a two-dimensional array (infinite in
both dimensions) with the x-axis corresponding to the index p and the y-axis corresponding
to the index q as follows.

q
...

...
...

A2(M) AC0,2(U) AC1,2(U) AC2,2(U)
. . .

A1(M) AC0,1(U) AC1,1(U) AC2,1(U)
. . .

A0(M) AC0,0(U) AC1,0(U) AC2,0(U)
. . .

C0(U , R̃M) C1(U , R̃M) C2(U , R̃M)
p

We added an extra column consisting of the spaces of differential forms Aq(M) and

an extra row consisting of the Čech cochain modules Cp(U , R̃M) associated with the cover

U and the constant sheaf R̃M . Each Cp(U , R̃M) is the kernel of the lowest d in the pth

column, so Cp(U , R̃M) consists of locally constant functions on the open subsets Ui0···ip with
(i0, . . . , ip) ∈ Jp+1. The reason for doing so is that this extra column is the de Rham complex
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(with differential d) whose cohomology is the de Rham cohomology H∗dR(M), and this extra
row is the Čech complex (with differential δ) whose cohomology is the Čech cohomology

Ȟ∗(U , R̃M). The module

ACn(U) =
⊕

p+q=n

ACp,q(U)

is obtained by summing along the diagonal line p+ q = n. The cohomology of the complex
(AC∗(U), D) is denoted by H∗D(AC∗(U)). In Bott and Tu [4] it is denoted HD{AC∗(U ,A∗M)}.

The following result is is shown in Bott and Tu [4].

Theorem 9.5. For any smooth manifold M and any open cover U , there is an isomorphism

H∗dR(M) ∼= H∗D(AC∗(U)).

Theorem 9.5 follows from the following facts:

(1) Each (augmented) row

0 // Aq(M) rq // AC0,q(U) δ0
// AC1,q(U) δ1

// AC2,q(U) δ2
// · · ·

of the double complex is exact, where the map rq is the restriction from Aq(M) to
AC0,q(U) =

∏
j∈J Aq(Uj) given by rq(ω) = (ω | Uj)j∈J . This is proven in Proposition

8.5 of Bott and Tu [4]. The argument uses a partition of unity.

(2) The fact that the rows of the double complex are exact implies that the cohomology
of the complex (AC∗(U), D) is equal to the cohomology of the first column (consisting
of AC0,0(U),AC0,1(U), . . . ,AC0,q(U), . . .) of the double complex.

(3) The de Rham cohomology H∗dR(M) is isomorphic to the cohomology of the first column
(consisting of AC0,0(U),AC0,1(U), . . . ,AC0,q(U), . . .) of the double complex.

Both (2) and (3) are proven in Proposition 8.8 of Bott and Tu [4].

Proof of (2). Every cocycle in ACn(U) =
⊕

p+q=nAC
p,q(U) is of the form

ω = ω0 + ω1 + · · ·+ ωn,

with ωp a D-cocycle in ACp,n−p(U) for p = 0, . . . , n (that is, Dp,n−pωp = 0). Since ωn ∈
ACn,0(U), Dn,0 = δn + (−1)nd0, δnωn ∈ ACn+1,0(U) and d0ωn ∈ ACn,1(U), we see that
Dn,0ωn = 0 iff δnωn = 0 and d0ωn = 0. Since ωn ∈ ACn,0(U), δnωn = 0, and since every row
of the double complex is exact, for q = 0 the diagram

· · · // ACn−1,0(U) δn−1
// ACn,0(U) δn // ACn+1,0(U) // · · ·
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is exact, we have ωn ∈ Ker δn = Im δn−1, which means that ωn = δn−1β with β ∈ ACn−1,0(U).
Now Dn−1,0β ∈ ACn(U) and

Dn−1,0β = δn−1β + (−1)n−1d0β = ωn + (−1)n−1d0β

with d0β ∈ ACn−1,1(U), so ωn−Dn−1,0β = (−1)nd0β ∈ ACn−1,1(U) withDn,0(ωn−Dn−1,0β) =
Dn,0ωn −Dn,0Dn−1,0β = 0, so the cohomology class [ω] is also represented by the cocycle

ω0 + ω1 + · · ·+ ωn−2 + ωn−1 + ωn −Dn−1,0β

with ωn−1+ωn−Dn−1,0β = ωn−1+(−1)nd0β a cocycle in ACn−1,1(U). A graphical illustration
of this argument is provided by Figure 9.5. The idea is to climb up the diagonal starting
from the (n, 0) slot up to the (0, n) slot, each time subtracting Dp−1,n−pβ from ωp in the
(p, n−p) slot for some β ∈ ACp−1,n−p(U) such that δp−1β = ωp. Such a form β exists because
δpωp = 0 (since Dp,n−pωp = 0) and because the pth row of the double complex is exact.

AC   (U)

AC   (U)

0,n

1, n-1

AC   (U)2, n-2

AC   (U)n-1,1

AC   (U)n,0

ω

ω

ω

0
n-form

n-1 form

n-2 form

1

2

AC   (U)n-1,0

β δ     (β) = ωn-1
n

0-form

0-form

δ n-1

ωn-1

D    (
ω   ) 

= 0

n,0 n

AC   (U)n,1

d0

(-1)   d  (β)
n 0+

1-form

d0

 

replacement

Figure 9.5: A graphical illustration of the replacement induction of Case 2.

By induction we can prove that the cohomology class [ω] with ω ∈ ACn(U) is represented
by a cocycle of the form

ω = ω0, ω0 ∈ AC0,n(U),

proving (2).
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Proof of (3). We need to show that the restriction map r from An(M) to AC0,n(U) ⊆
ACn(U) =

⊕
p+q=nAC

p,q(U) induces an isomorphism r∗ between Hn
dR(M) and Hn

D (ACn(U)).
In all rigor we should write rn but the context makes it clear which rn applies.

First we check that r = (rn) is chain map, and for this we need to check that for every
n the following diagram is commutative.

An(M) rn //

d
��

ACn(U)

D
��

An+1(M)
rn+1

// ACn+1(U).

Since the rows of the double complex are exact and Im rn ⊆ AC0,n(U), only D0,n applies and
we have δ0 ◦ rn = 0, so (as p = 0)

D0,n ◦ rn = (δ0 + dn) ◦ rn

= dn ◦ rn

= rn+1 ◦ dn

by definition of rn and rn+1.

Next we need to prove that r∗ : Hn
dR(M)→ Hn

D (ACn(U)) is an isomorphism.

First we prove that r∗ is surjective. By the reasoning in Part (2), a cohomology class
[ω] ∈ Hn

D (ACn(U)) is represented by a cocycle ω ∈ AC0,n(U) such that D0,nω = 0. Since
ω ∈ AC0,n(U), we have

D0,nω = δ0ω + dnω

with δ0ω ∈ AC1,n(U) and dnω ∈ AC0,n+1(U) so D0,nω = 0 iff δ0ω = 0 and dnω = 0. By
definition of δ0 : AC0,n(U) → AC1,n(U) and Equation (δ0), δ0ω = 0 means that the forms
ω | Uj agree on overlaps Uj ∩Uk, so ω is actually a closed form in An(M), which shows that
r∗ is surjective. The following diagram is an illustration of the proof.

(dnω = 0) ∈ AC0,n+1(U) D0,nω = 0

An(M) rn // ω ∈ AC0,n(U) δ0
//

dn

OO
D0,n

55

ω

kk (δ0ω = 0) ∈ AC1,n(U)

Second we prove that r∗ is injective. If r∗([ω1]) = r∗([ω2]), then r∗([ω1]− [ω2]) = 0, which
means that rn(ω1 − ω2) = Dn−1β for some cochain β ∈ ACn−1(U). Using the reasoning
in Part (2), we may assume that β ∈ AC0,n−1(U). Since ω1 − ω2 ∈ An(M), we have
rn(ω1 − ω2) ∈ AC0,n(U), and we also have

D0,n−1β = δ0β + dn−1β
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with δ0β ∈ AC1,n−1(U) and dn−1β ∈ AC0,n(U), so rn(ω1 − ω2) = D0,n−1β = δ0β + dn−1β
implies that

δ0β = 0.

Therefore, β is a global form in An−1(M), so rn(ω1 − ω2) = D0,n−1β = dn−1β implies that
ω1 − ω2 = dn−1β, that is [ω1] = [ω2], proving that r∗ is injective. The following diagram is
an illustration of the proof.

ω1 − ω2 ∈ An(M) rn // (D0,n−1β = dn−1β) ∈ AC0,n(U)

An−1(M) rn−1
//

dn−1

OO

β ∈ AC0,n−1(U) δ0
//

dn−1

OO

D0,n−1

OO

β

ll (δ0β = 0) ∈ AC1,n−1(U)

This concludes the proof that r∗ is an isomorphism.

Furthermore, if U is a a good cover, the following result is shown in Bott and Tu [4]
(before Theorem 8.9).

Theorem 9.6. For any smooth manifold M and any good cover U , there is an isomorphism

Ȟp(U , R̃M) ∼= H∗D(AC∗(U)).

The reason is that if U is a good cover, then the augmented columns (consisting of

Cp(U , R̃M), ACp,0(U),ACp,1(U), . . . ,ACp,q(U), . . .) of the double complex are exact. Here

the first map ip : Cp(U , R̃M)→ ACp,0(U) is the inclusion map (recall that Cp(U , R̃M) is the
kernel of d0 : ACp,0(U) → ACp,1(U)). Indeed, the qth cohomology group of the pth column
(q ≥ 1) is ∏

(i0,...,ip)∈Jp+1

Hq(Ui0···ip),

but if U is a good cover, the open subsets Ui0···ip are contractible,3 so by the Poincaré lemma,

Hq(Ui0···ip) = (0) for all q ≥ 1, thus
∏

(i0,...,ip)∈Jp+1 Hq(Ui0···ip) = (0), and since Cp(U , R̃M) is
the kernel of the lowest d in the column, the pth column is exact.

By an argument analogous to (2) we can prove that the cohomology of the complex
(AC∗, D) is equal to the cohomology of the first row (consisting of AC0,0(U),AC1,0(U), · · · ,
ACp,0(U), . . .) of the double complex. By an argument analogous to (3) we can prove that

the Čech cohomology Ȟ∗(U , R̃M) is isomorphic to the cohomology of the first row (consisting
of AC0,0(U),AC1,0(U), . . . ,ACp,0(U), . . .) of the double complex.

3In fact, diffeomorphic to Rn. A more general notion of a good cover U on a topological space (not
necessarily a manifold) is that all finite intersections are contractible; see Bott and Tu [4], Chapter II,
Section 13.
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Consequently, by Theorem 9.5 and Theorem 9.6, we obtain an isomorphism

Hp
dR(M) ∼= Ȟp(U , R̃M)

for all good covers U and all p ≥ 0.

Since every smooth manifold has a good cover (see Theorem 3.4), and since the good
covers are cofinal in the set of all covers of M (with index set in 2M), following Bott and Tu
[4] (Proposition 10.6), we obtain the isomorphism

Ȟp(M, R̃M) ∼= Ȟp(U , R̃M)

for all good covers U and all p ≥ 0.

Remark: Morita also proves Theorem 9.4 using the double complex AC∗,∗(U), but without
introducing the single complex AC∗(U); see Morita [46] (Chapter 3). Morita does not prove
Theorem 9.5 and Theorem 9.6.

We now turn to singular cohomology.

Theorem 9.7. If M is a paracompact topological manifold and if G is a R-module over a
commutative ring R with a unit, then the singular cohomology groups Hp(M ;G) are isomor-

phic to the Čech cohomology groups Ȟp(M, G̃M):

Hp(M ;G) ∼= Ȟp(M, G̃M) for all p ≥ 0.

If X is a topological space and if U is a good cover of X, then we have isomorphisms between
the singular cohomology groups Hp(X;Z) and the Čech cohomology groups Ȟp(X, Z̃X) and

Ȟp(U , Z̃X):

Hp(X,Z) ∼= Ȟp(U , Z̃X) ∼= Ȟp(X, Z̃X) for all p ≥ 0.

In particular, the above holds if X is a smooth manifold.

By a previous remark, since our spaces are paracompact, the above theorem also holds
with the constant presheaf GX (or ZX) instead of the sheaf G̃X (or Z̃X)).

The proof of the isomorphism Hp(X;G) ∼= Ȟp(X, G̃X) takes a lot of work. A version
of this proof can be found in Warner [62] (Chapter 5). Another type of cohomology known
as sheaf cohomology is introduced, and it is shown that both singular cohomology and
Čech cohomology agree with sheaf cohomology if X is paracompact and locally Euclidean.
Sheaf cohomology is a special case of Grothendieck’s approach to cohomology using derived
functors. This is a very general and powerful approach which is discussed thoroughly in
Chapter 13.

The other isomorphisms involving good covers are proven in Bott and Tu [4] using double
complexes; see Chapter III, §15, Theorem 15.8.
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It should be noted that if the space X is not well-behaved, then singular cohomology and
Čech cohomology may differ. For example, if X is the topologist’s sine curve (a space which
is connected but neither locally connected nor path connected), it can be shown that

H1(X;Z) = (0)

Ȟ1(X;Z) = Z;

see Munkres [48] (Chapter 8, §73).

9.4 Problems

Problem 9.1. Prove Proposition 9.2.

Hint . For help, see Serre FAC [55] (Chapter 1, §3, Subsection 20).

Problem 9.2. Provide the details of the proof of Proposition 9.3.

Hint . For help, see Serre FAC [55] (Chapter 1, §3, Subsection 20).

Problem 9.3. Provide the details of the induction step in the proof of (2) in Theorem 9.5.

Problem 9.4. Provide the details of the proof of (2) in Theorem 9.6.

Problem 9.5. Provide the details of the proof of (3) in Theorem 9.6.

Problem 9.6. Prove that if a smooth manifold M has a finite good cover, then its Čech coho-
mology is finite-dimensional, and thus its de Rham cohomologyH∗dR(M) is finite-dimensional.
Deduce that if M is compact, then its de Rham cohomology H∗dR(M) is finite-dimensional.
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Chapter 10

Presheaves and Sheaves; A Deeper
Look

One of the main goals of this chapter is to define the notion of exact sequence of sheaves

· · · // F ϕ // G ψ //H // · · ·

where ϕ and ψ are maps of sheaves. The obvious definition is Imϕ = Kerψ, and this requires
defining the kernel and the image of a map of sheaves.

The notion of kernel Kerϕ and image Imϕ of a presheaf or sheaf map ϕ : F → G is easily
defined. The presheaf Kerϕ is defined by (Kerϕ)(U) = KerϕU , and the presheaf Im ϕ is
defined by (Im ϕ)(U) = Im ϕU . In the case or presheaves, they are also presheaves, but in
the case of sheaves, the kernel Kerϕ is indeed a sheaf, but the image Im ϕ is not a sheaf in
general.

This failure of the image of a sheaf map to be a sheaf is a problem that causes significant
technical complications. In particular, it is not clear what it means for a sheaf map to be
surjective, and a “good” definition of the notion of an exact sequence of sheaves is also
unclear.

Fortunately, there is a procedure for converting a presheaf F into a sheaf F̃ which is
reasonably well-behaved. This procedure is called sheafification. There is a sheaf map
ηF : F → F̃ which is generally not injective.

The sheafification process is universal in the sense that given any presheaf F and any
sheaf G, for any presheaf map ϕ : F → G, there is a unique sheaf map ϕ̂ : F̃ → G such that

ϕ = ϕ̂ ◦ ηF
as illustrated by the following commutative diagram

F ηF //

ϕ
��

F̃
ϕ̂

��
G;

319
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see Theorem 10.12.

The sheafification process involves constructing a topological space SF from the presheaf
F that we call the stalk space of F . Godement calls it the espace étalé. The stalk space
is the disjoint union of sets (modules) Fx called stalks . Each stalk Fx is the direct limit
lim−→(F(U))U3x of the family of modules F(U) for all “small” open sets U containing x (see
Definition 10.1). There is a surjective map p : SF → X which, under the topology given
to SF , is a local homeomorphism, which means that for every y ∈ SF , there is some open
subset V of SF containing y such that the restriction of p to V is a homeomorphism. The
sheaf F̃ consists of the continuous sections of p, that is, the continuous functions s : U → SF
such that p ◦ s = idU , for any open subset U of X. This construction is presented in detail
in Section 10.1, Section 10.2, and Section 10.4.

The construction of the pair (SF , p) from a presheaf F suggests another definition of a
sheaf as a pair (E, p), where E is a topological space and p : E → X is a surjective local
homeomorphism onto another space X. Such a pair (E, p) is often called a sheaf space,
but we prefer to call it a stalk space. This is the definition that was given by H. Cartan
and M. Lazard around 1950. The sheaf ΓE associated with the stalk space (E, p) is defined
as follows: for any open subset U or X, the sections of ΓE are the continuous sections
s : U → E, that is, the continuous functions such that p◦s = id. We can also define a notion
of map between two stalk spaces. Stalk spaces are discussed in Section 10.3.

As this stage, given a topological space X we have three categories:

(1) The category Psh(X) of presheaves and their morphisms.

(2) The category Sh(X) of sheaves and their morphisms.

(3) The category StalkS(X) of stalk spaces and their morphisms.

There is also a functor

S : PSh(X)→ StalkS(X)

from the category PSh(X) to the category StalkS(X) given by the construction of a stalk
space SF from a presheaf F , and a functor

Γ: StalkS(X)→ Sh(X)

from the category StalkS(X) to the category Sh(X), given by the sheaf ΓE of continuous
sections of E. Here, we are using the term functor in an informal way. A more precise
definition is given in Section 10.10.

Note that every sheaf F is also a presheaf, and that every map ϕ : F → G of sheaves is
also a map of presheaves. Therefore, we have an inclusion map

i : Sh(X)→ PSh(X),
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which is a functor. As a consequence, S restricts to an operation (functor)

S : Sh(X)→ StalkS(X).

There is also a map η which maps a presheaf F to the sheaf ΓS(F) = F̃ . This map η is
a natural isomorphism between the functors id (the identity functor) and ΓS from Sh(X)
to itself.

We can also define a map ε which takes a stalk space (E, p) and makes the stalk space
SΓE. The map ε is a natural isomorphism between the functors id (the identity functor)
and SΓ from StalkS(X) to itself.

Then we see that the two operations (functors)

S : Sh(X)→ StalkS(X) and Γ: StalkS(X)→ Sh(X)

are almost mutual inverses, in the sense that there is a natural isomorphism η between ΓS
and id and a natural isomorphism ε between SΓ and id. In such a situation, we say that the
classes (categories) Sh(X) and StalkS(X) are equivalent . The upshot is that it is basically
a matter of taste (or convenience) whether we decide to work with sheaves or stalk spaces.
All this is explained in Sections 10.3 and 10.4. We also discuss stalk spaces of rings and
modules in Section 10.5.

We still need to define the image of a sheaf map in such a way that the notion of exact
sequence of sheaves makes sense. Recall that if f : A → B is a homomorphism of modules,
the cokernel Coker f of f is defined by B/Im f . It is a measure of the surjectivity of f . We
also have the projection map coker(f) : B → Coker f , and observe that

Im f = Ker coker(f).

The above suggests defining notions of cokernels of presheaf maps and sheaf maps. For a
presheaf map ϕ : F → G this is easy, and we can define the presheaf cokernel PCoker(ϕ). It
comes with a presheaf map pcoker(ϕ) : G → PCoker(ϕ).

If F and G are sheaves, we define the sheaf cokernel SCoker(ϕ) as the sheafification of
PCoker(ϕ). It also comes with a presheaf map scoker(ϕ) : G → SCoker(ϕ).

Then it can be shown that if ϕ : F → G is a sheaf map, SCoker(ϕ) = (0) iff the stalk
maps ϕx : Fx → Gx are surjective for all x ∈ X; see Proposition 10.19.

It follows that the “correct” definition for the image SIm ϕ of a sheaf map ϕ : F → G is

SIm ϕ = Ker scoker(ϕ).

With this definition, a sequence of sheaves

F ϕ // G ψ //H
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is said to be exact if SIm ϕ = Kerψ. Then it can be shown that

F ϕ // G ψ //H

is an exact sequence of sheaves iff the sequence

Fx
ϕx // Gx

ψx //Hx

is an exact sequence of R-modules (or rings) for all x ∈ X; see Proposition 10.24. This
second characterization of exactness (for sheaves) is usually much more convenient than the
first condition.

The definitions of cokernels and images of presheaves and sheaves as well as the notion
of exact sequences of presheaves and sheaves are discussed in Sections 10.6, 10.7, 10.8, 10.9,
10.10, and 10.11.

In Section 10.12 we introduce ring spaces which generalize significantly the notion of
manifold.

10.1 Stalks and Maps of Stalks

In the case where F is a presheaf on a topological space X and x is any given point in X,
the direct limit lim−→(F(U))U3x of the direct mapping family (F(U))U3x plays an important
role (where U is any open subset of X). In particular, these limits, called stalks, can be used

to construct a sheaf F̃ from a presheaf F ; furthermore, the sheaf F̃ is the “smallest” sheaf
extending F , in a technical sense that will be explained later. If F is already a sheaf, then
F̃ is isomorphic to F .

Definition 10.1. If F is a presheaf on a topological space X and x is any given point in
X, the direct limit lim−→(F(U))U3x of the direct mapping family (F(U))U3x, as defined in
Example 8.4 (2), is called the stalk of F at x, and is denoted by Fx. For every open subset
U such that x ∈ U , we have a projection map ρU,x : F(U) → Fx, and we write sx = ρU,x(s)
for every s ∈ F(U). One calls sx the germ of s at x. See Figure 10.1.

If F is the presheaf (actually a sheaf) of continuous functions given by F(U) = C0(U),
the set of continuous functions defined on an open subset U containing x, then Fx is just
the set of germs of locally defined functions near x. Indeed, two locally defined functions
f ∈ C0(U) and g ∈ C0(V ) near x are equivalent iff their restrictions to U ∩ V agree. In
general the stalks are characterized as follows.

Definition 10.2. For an arbitrary presheaf F on a topological space X, for any x ∈ X, the
stalk Fx is the set of equivalence classes defined such that for any two open subsets U and
V both containing x, the “local” sections f ∈ F(U) and g ∈ F(V ) are equivalent, written
f ∼F g or simply f ∼ g, iff there is some open subset W containing x such that W ⊆ U ∩V
and ρUW (f) = ρVW (g).
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Figure 10.1: A schematic representation of Fx for x ∈ R2. We illustrate the direct limit
construction for two germs, sx and tx. Elements of the presheaf F are the spherical balloons.
Since U4 ⊆ U3 ⊆ U2 ⊆ U1, the presheaf restriction maps imply that all images of s are
equivalent to the image of s in U4, and all the images of t are equivalent to the image of
t in U4. By continuing this process, we form the equivalence classes sx and tx, which we
illustrate as little disks centered on the radial stalk extending from x ∈ R2.

So we can also think of the elements of Fx are “abstract germs” of local sections near x.
Observe that any element γ of the stalk Fx is the equivalence class of some section s ∈ F(U)
for some open subset U of X containing x, namely γ = sx, where sx is the germ of s at x.
For any smaller open subset V ⊆ U containing x, the sections s ∈ F(U) and ρUV (s) ∈ F(V )
are obviously equivalent, so we also have γ = (ρUV (s))x. We will use this fact all the time.

For a constant presheaf GX on X with values in G, we have GX,x = G for all x ∈ X.
Beware that for some pathological presheaves F (for example, of abelian groups), it is possible
that Fx = (0) for all x ∈ X, even though F is not the constant presheaf with value 0. An
example is given by the following presheaf from Example 8.3. Let X be any topological
space with at least two points (for example, X = {0, 1}), and let F1 be the presheaf given
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by

F1(U) =

{
Z if U = X

(0) if U 6= X is an open subset,

with all ρUV equal to the zero map except if U = V = X (in which case it is the identity). It
is easy to check that F1,x = (0) for all x ∈ X.

The following result will be needed in Section 10.6.

Proposition 10.1. Let F be a presheaf on a topological space X. If F satisfies Condition
(M), then for any open subset U of X, for any sections s, t ∈ F(U), we have

s = t iff sx = tx for all x ∈ U.

Proof. Obviously if s = t, then sx = tx for all x ∈ U . Conversely, if sx = tx for all x ∈ U , then
for each x ∈ U there is some open subset Ux ⊆ U containing x such that ρUUx(s) = ρUUx(t),
and since the family (Ux)x∈U is an open cover of U , Condition (M) implies that s = t.

A map ϕ : F → G between two presheaves F and G on a topological space X induces
maps of stalks ϕx : Fx → Gx for all x ∈ X. When F and G are sheaves, these maps carry a
lot of information about ϕ.

To define ϕx : Fx → Gx we proceed as follows. Any element γ ∈ Fx is an equivalence
class γ = sx for some section s ∈ F(U) and some open subset U of X containing x. Let

ϕx(sx) = (ϕU(s))x,

where ϕU : F(U)→ G(U) is the map defining ϕ on U . We need to prove that this definition
does not depend on the choice of the representative in the equivalence class γ. If t ∈ F(V )
is another section such that s ∼F t, then there is some open subset W such that W ⊆ U ∩V
and (ρF)UW (s) = (ρF)VW (t). Since ϕ is a map of presheaves, the following diagrams commute

F(U)
ϕU //

(ρF )UW
��

G(U)

(ρG)UW
��

F(W ) ϕW
// G(W )

F(V )
ϕV //

(ρF )VW
��

G(V )

(ρG)VW
��

F(W ) ϕW
// G(W ),

and we get

(ρG)
U
W (ϕU(s)) = ϕW ((ρF)UW (s)) = ϕW ((ρF)VW (t)) = (ρG)

V
W (ϕV (t)),

which shows that ϕU(s) ∼G ϕV (t), thus (ϕU(s))x = (ϕV (t))x. Therefore, ϕx is well defined
and suggests the following definition of a map of stalks, which a special instance of Definition
8.12.
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Definition 10.3. A map ϕ : F → G between two presheaves F and G on a topological space
X induces maps of stalks ϕx : Fx → Gx for all x ∈ X defined as follows: for every γ ∈ Fx, if
γ = sx for some section s ∈ F(U) and some open subset U of X containing x, set

ϕx(sx) = (ϕU(s))x.

See Figure 10.2. By the above argument this definition does not depend on the choice of the
representative chosen in the equivalence class γ.

x

sx

Fx U

U

φ

φ

( s )( ) x

φ
x( sx )

φx

UF ( U )

Gx

G ( U )

s φU s )(

Figure 10.2: A schematic representation of ϕx : Fx → Gx which maps the dark purple “stick”
onto the plum “stick”. The result of this stalk mapping is the same as first mapping the
presheaf element F(U) onto G(U) and then using the direct limiting procedure to compute
the stalk of ϕU(s) where s ∈ F(U).

If ϕ : F → G and ψ : G → H are two maps of presheaves, it is immediately verified that

(ψ ◦ ϕ)x = ψx ◦ ϕx

and
(idF)x = idFx ,

for all x ∈ X (where idF denotes the identity map of the presheaf F).

Proposition 10.2. Let F and G be two presheaves on a topological space X, and let ϕ : F →
G and ψ : F → G be two maps of presheaves. If G satisfies Condition (M) (in particular, if
G is a sheaf) and if ϕx = ψx for all x ∈ X, then ϕ = ψ.
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Proof. We need to prove that ϕU(s) = ψU(s) for any open subset U of X and any s ∈ F(U).
Since ϕx = ψx for every x ∈ X, for every x ∈ U we have

ϕx(sx) = ψx(sx),

that is,
(ϕU(s))x = (ψU(s))x.

The above equations means that there is some open subset Ux of X such that Ux ⊆ U and

(ρG)
U
Ux(ϕU(s)) = (ρG)

U
Ux(ψU(s)).

Since the family (Ux)x∈U is an open cover of U , Condition (M) implies that ϕU(s) = ψU(s),
and so ϕ = ψ.

Proposition 10.2 has the following corollary.

Corollary 10.3. If ϕ : F → G is a map of sheaves, then ϕ is uniquely determined by the
family of stalk maps ϕx : Fx → Gx.

Next, given a presheaf F on X, we construct a sheaf F̃ and a presheaf map η : F → F̃
such that F satisfies Condition (M) iff η is injective, and F is a sheaf iff η is an isomorphism.

10.2 Sheafification of a Presheaf

We follow Godement’s exposition [24] (Chapter II, Section 1.2), which we find to be one of
the most lucid.

The key idea is to make the disjoint union
∐

x∈X Fx of all the stalks into a topological

space denoted SF , with a projection function p : SF → X, and to let F̃ be the sheaf Γ[SF , p]
of continuous sections of p, as in Example 8.2(1). See Figures 10.3 and 10.4.

If we let SF =
∐

x∈X Fx be the disjoint union of all the stalks, we denote by p the
function p : SF → X given by p(γ) = x for all γ ∈ Fx. For every (nonempty) open subset U
of X, we view each “abstract” section s ∈ F(U) as the actual function s̃ : U → SF given by

s̃(x) = sx, x ∈ U.

By definition, s̃ is a section of p. The final step is to give SF the coarsest topology (the
topology with the least amount of open sets) which makes all the functions s̃ continuous.
Consequently, a subset Ω of SF is open iff for every open subset U of X and every s ∈ F(U),
the subset

{x ∈ U | s̃(x) ∈ Ω}

is open in X.
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Figure 10.3: A schematic representation of
∐

x∈X Fx for X = R2. The top picture illustrates
five “stalks” before taking the disjoint union. Once the disjoint union is formed, the “stalks”
are lined up in parallel planes.

Definition 10.4. The space SF endowed with the above topology is called the stalk space
of the presheaf F , and we let F̃ be the sheaf Γ[SF , p] of continuous sections of p. See Figure
10.4.

We claim that s̃(U) is open in SF for every open subset U and every s ∈ F(U).

Proof. We need to prove that for every open subset V and every t ∈ F(V ) the set

{y ∈ V | t̃(y) ∈ s̃(U)}

is open. See Figure 10.5.
We have

{y ∈ V | t̃(y) ∈ s̃(U)} =
⋃

x∈U
{y ∈ V | t̃(y) = s̃(x)}

= {x ∈ U ∩ V | sx = tx},

since s̃(x) = sx, t̃(y) = ty, and the stalks are pairwise disjoint. It suffices to show that the
subset {x ∈ U ∩ V | sx = tx} is open in X. However, sx = tx means that there is some
open subset W ⊆ U ∩ V containing x such that ρUW (s) = ρVW (t) on W , which means that
{x ∈ U ∩ V | sx = tx} is indeed open in X.
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Figure 10.4: A schematic representation of the region around the “first plane” in SF where
X = R2. The top picture illustrates two sections s̃1 and s̃2. The bottom picture illustrates the
relationship between Ω, an open “spherical” set of SF , and U , an open set of X containing
x. Both s̃1(U) and s̃2(U) are open sets in SF .

We now show that the function p is continuous. As in the previous argument it suffices
to prove that for any open subset V and any t ∈ F(V ), the set

{y ∈ V | t̃(y) ∈ p−1(U)}

is open for any open subset U . We have

{y ∈ V | t̃(y) ∈ p−1(U)} =
⋃

W⊆U
s∈F(W )
x∈W

{y ∈ V | t̃(y) = sx}

=
⋃

W⊆U
s∈F(W )

{x ∈ V ∩W | sx = tx}.

By the previous argument, {x ∈ V ∩W | sx = tx} is open in X, so we are done.

Any element of Fx is of the form sx for some open subset U of X containing x and some
s ∈ F(U). Observe that s̃ is the inverse of the restriction of p to s̃(U), and since Ω = s̃(U) is
open, the map p is a homeomorphism from Ω to U . Therefore p is a local homeomorphism.
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U

V

s(U)~

t(V)
~ where s(U) and t(V) agree~ ~

{ x є U h V | s    =  t   }x x

Figure 10.5: A schematic illustration of s̃(U) in SF when X = R2. The overlap between the
sections s̃(U) and s̃(V ) is the open purple rhombus in R2.

Consider any open subset Ω of SF and pick any sx ∈ Ω. As above we may assume that
sx is the germ of some section s ∈ F(U) for some open subset U containing x. Since p is a
local homeomorphism, there is an open subset Ω1 containing sx such that the restriction of
p to Ω1 is a homeomorphism. Consequently p is homeomorphism from Ω∩Ω1 to some some
open subset V of X containing x. But then ρUU∩V (s) being a section in F(U ∩ V ), we know

that ˜ρUU∩V (s)(U ∩ V ) is an open subset of Ω containing sx.

Therefore Ω is the union of open subsets of the form t̃(W ) with t ∈ F(W ), where W is
some open subset of X. It is a standard fact of topology that this condition implies that the
sets of form s̃(U) with s ∈ F(U) form a basis of the topology.

In summary, we proved the following proposition.

Proposition 10.4. Let F be a presheaf on a topological space X. The stalk space SF
together with the coarsest topology that makes all the maps s̃ : U → SF continuous has a
basis for its topology consisting of the subsets of the form s̃(U), for all open subsets U of X
and all s ∈ F(U). Furthermore, the projection map p : SF → X is a local homeomorphism.

It should be noted that the topology of SF is not assumed to be Hausdorff. In fact,
in many interesting examples it is not. We called the space SF the stalk space of F . In
Godement [24] and most of the French literature, the space SF is called “espace étalé.” A
rough translation is “spread over space” or “laid over space.”



330 CHAPTER 10. PRESHEAVES AND SHEAVES; A DEEPER LOOK

Definition 10.5. Given any presheaf F on a topological space X, the map η : F → F̃ is
defined such that for every open subset U of X, for every s ∈ F(U),

ηU(s) = s̃.

If we need to very precise, we use the notation ηF instead of η.

It is easily checked that η = (ηU) is indeed a map of presheaves. We now take a closer

look at the map η : F → F̃ .

Proposition 10.5. Let F be a presheaf on a topological space X. The presheaf F satisfies
Condition (M) iff the presheaf map η : F → F̃ is injective

Proof. We follow Serre’s proof in FAC [55] (Chapter I, Section 3). First assume that F
satisfies Condition (M). First we prove that η is injective. We have to prove that for every
open subset U of X, for any two elements s, t ∈ F , if s̃ = t̃, then s = t. Now, s̃ = t̃ iff sx = tx
for all x ∈ U , which means that there is some open subset Ux of U containing x such that

ρUUx(s) = ρUUx(t).

Since the family (Ux)x∈U is an open cover of U , by Condition (M) we must have s = t.

Conversely, assume that ηU : F(U) → F̃(U) is injective. Pick any s, t ∈ F(U), and
assume there is some open cover (Ui)i∈I of U such that ρUUi(s) = ρUUi(t) for all i ∈ I. By
definition of a direct limit, for any x ∈ U ,

s̃(x) = sx = (ρUUi(s))x and t̃(x) = tx = (ρUUi(t))x,

so if ρUUi(s) = ρUUi(t) then s̃(x) = t̃(x) for all x ∈ U ; that is, s̃ = t̃. Since ηU is injective, we
conclude that s = t, which means that Condition (M) holds.

The next proposition characterizes when η is an isomorphism.

Proposition 10.6. Let F be a presheaf on a topological space X and assume that F satisfies
Condition (M). The presheaf map η : F → F̃ is surjective iff Condition (G) holds. As a
consequence, η is an isomorphism iff F is a sheaf.

Proof. Again, we follow Serre’s proof in FAC [55] (Chapter I, Section 3). By Proposition
10.5 Condition (M) holds iff η is injective, so we may assume that η is injective.

First assume that F satisfies Condition (G). We wish to prove that ηU is surjective for
every open subset U . For any open subset U of X, for any continuous section f : U → SF ,
for any x ∈ U , we claim that there is some open subset Ux of U containing x and some
sx ∈ F(Ux) such that the restriction of f to Ux agrees with s̃x.

Since f(x) ∈ Fx, there is some open subset Ux of U containing x and some sx ∈ F(Ux)
such that f(x) = (sx)x. Since s̃x and f both invert p on Ux, the restriction of f to Ux agrees
with s̃x.
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The same argument holds for any y ∈ U so there is some open subset Uy of U containing
y and some sy ∈ F(Uy) such that the restriction of f to Uy agrees with s̃y. It follows
that (ρUUx∩Uy(s

x))z = (ρUUx∩Uy(s
y))z = f(z) for all x, y ∈ U and all z ∈ Ux ∩ Uy, that is,

˜ρUUx∩Uy(s
x) = ˜ρUUx∩Uy(s

y). Since η is injective, we get

ρUUx∩Uy(s
x) = ρUUx∩Uy(s

y).

But then, by Condition (G), the sx patch to some s ∈ F(U) such that ρUUx(s) = sx, thus
ηU(s) = s̃ agrees with s̃x = f |Ux on each Ux, which means that ηU(s) = f . See Figure 10.6.
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Figure 10.6: A schematic representation of the proof that a presheaf F which satisfies Con-
ditions (M) and (G) implies η is surjective. The top two diagrams are related to F while

the bottom diagram is related to F̃ . Note that X is R.

Conversely, assume that ηU is surjective (and injective) for every open subset U of X.
Let (Ui)i∈I be some open cover of U and let (si)i∈I be a family of elements si ∈ F(Ui) such
that

ρUUi∩Uj(si) = ρUUi∩Uj(sj)

for all i, j. It follows that the sections fi = s̃i and fj = s̃j agree on Ui ∩Uj, so they patch to
a continuous section f : U → SF which agrees with fi on each Ui. Since ηU is assumed to
be surjective, there is some s ∈ F(U) such that ηU(s) = f . Then, if we write s′i = ρUUi(s), we

see that s̃′i = fi. Since fi = s̃i = s̃′i for all i and since η is injective, we conclude that si = s′i;
that is, ρUUi(s) = si, which shows that Condition (G) holds.
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Propositions 10.5 and 10.6 show that the Conditions (M) and (G) in the definition of a
sheaf (Definition 8.5) are not as arbitrary as they might seem. They are just the conditions
needed to ensure that a sheaf is isomorphic to a sheaf of sections of a certain space.

Remark: We proved earlier that for any open subset U of X, for any two continuous sections
f and g in Γ(U, SF), the subset W = {x ∈ U | f(x) = g(x)} is open. If the stalk space
SF is Hausdorff, then W is also closed (because the diagonal {(γ, γ) | γ ∈ SF} is closed).
In this case it follows that if U is a connected open subset of X, if two continuous sections
f and g in Γ(U, SF) agree at some point, then f = g. In other words, the principle of
analytic continuation holds. If F is the sheaf of continuous functions on Rn, the principle of
analytic continuation fails so SF is not Hausdorff. However, if F is the sheaf of holomorphic
functions on a complex analytic manifold, then SF is Hausdorff.

If we examine more closely the construction of the sheaf F̃ from a presheaf F , we see
that we actually used two constructions:

(1) Given a presheaf F , we constructed the stalk space SF and we gave it a topology that
made the projection p : SF → X into a local homeomorphism. This is the construction
S (“stalkification”), which constructs the stalk space (SF , p) from a presheaf F .

(2) Given a pair (E, p), where p : E → X is a local homeomorphism, we constructed the
sheaf Γ[E, p] (abbreviated as ΓE) of continuous sections of p.

Observe that the construction F 7→ F̃ is the composition of S and Γ, that is, F̃ = ΓSF ,
and Proposition 10.6 shows that if F is a sheaf, then ΓSF is isomorphic to F .

Remark: If F is a presheaf on a space X, we define the presheaf F (+) as follows: for every
open subset U of X,

F (+)(U) = Ȟ0(U,F|U),

where Ȟ0(U,F|U) is a Čech cohomology groups defined in Section 9.1. Then it can be shown

that F (+) satisfies Condition (M), and that F (+)(+) is isomorphic to the sheafification F̃ of
F .

It is natural to take a closer look at the properties of a pair (E, p), where p : E → X is a
local homeomorphism, and to ask what is the effect of applying the operations Γ and S to
the space E. We will see that the stalk space S ΓE is isomorphic to the original space E.

The upshot of all this is that the constructions S and Γ are essentially inverse of each
other, modulo some isomorphisms. To make this more precise we need to define what kind
of objects are in the domain of Γ, and what are the maps between such objects.1

1Actually, S and Γ are functors between certain categories.
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10.3 Stalk Spaces (or Sheaf Spaces)

As we just explained, given a presheaf F , the construction of the stalk space SF yields a
pair (SF , p), where p : SF → X is the projection, and by Proposition 10.4 the map p is a
local homeomorphism. This suggests the following definition.

Definition 10.6. A pair (E, p) where E is a topological space and p : E → X is a surjective
local homeomorphism is called a stalk space (or sheaf space2). A map (or morphism) of stalk
spaces (E1, p1) and (E2, p2) is a continuous map ϕ : E1 → E2 such that the following diagram
commutes:

E1
ϕ //

p1 !!

E2

p2}}
X.

See Figure 10.7.

X

E2

x

p  (x
)

2-1

E1

p 
 (x

)
-1 1

φ

Figure 10.7: A schematic representation of two stalk spaces E1 and E2, along with the map
ϕ : E1 → E2 which maps the fibres of E1 to the fibres of E2.

Observe that the commutativity of the diagram implies that ϕ maps fibres of E1 to fibres
of E2.

The main construction on a stalk space (E, p) is the construction Γ described in Example
8.2(1), which yields the sheaf Γ[E, p] (abbreviated ΓE) of continuous sections of p, with

Γ[E, p](U) = Γ(U,Γ[E, p]) = {s : U → E | p ◦ s = id and s is continuous}

for any open subset U of X. This construction also applies to maps of stalk spaces (it is
functorial).

2The terminology “sheaf space” is used by Tennison [60]. Godement uses the terminology “espace étalé.”
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Definition 10.7. Given a map ϕ : E1 → E2 of stalk spaces (E1, p1) and (E2, p2) we obtain
a map of sheaves Γϕ : ΓE1 → ΓE2 defined as follows: for every open subset U of X, the map
(Γϕ)U : Γ(U,E1)→ Γ(U,E2) is given by

(Γϕ)U(f) = ϕ ◦ f,

as illustrated by the diagram below:

E1
ϕ //

p1 !!

E2

p2}}
U

f
>>

� � // X.

See Figure 10.8.

X

E2
E1

φ

U

f

φ    f

Figure 10.8: A schematic representation of two stalk spaces E1 and E2, along with the sheaf
map (Γϕ)U : Γ(U,E1)→ Γ(U,E2) which maps the ochre section of E1 to the blue section of
E2.

It is immediately checked that Γϕ is a map of sheaves. Also, if ϕ : E1 → E2 and ψ : E2 →
E3 are two maps of stalk spaces, then

Γ(ψ ◦ ϕ) = Γψ ◦ Γϕ,

and ΓidE = idΓE. This means that the construction Γ is functorial.

Here are a few useful properties of stalk spaces. In particular, we will see that the fibres
of a stalk space are isomorphic to the stalks of the sheaf ΓE of continuous sections.

Proposition 10.7. Let (E, p) be a stalk space. Then the following properties hold:
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(a) The map p is an open map.

(b) For any open subset U of X and any continuous section f ∈ Γ(U,E), the subset f(U)
is open in E; such open subsets form a basis for the topology of E.

(c) For any commutative diagram

E1
ϕ //

p1   

E2

p2~~
X

where (E1, p2) and (E2, p2) are stalk spaces, the map ϕ is continuous iff it is an open
map iff it is a local homeomorphism.

Proof. (a) Let V be any nonempty open subset in E. For any x ∈ p(V ) let e ∈ E be any
point in E such that p(e) = x. Since p is a local homeomorphism, there is some open subset
W of E containing e such that p(W ) is open in X. Then p(W ) is some open subset of p(V )
containing x, so p(V ) is open. See Figure 10.9.

E

X

p

V

p(V)

x

e

= p(e)

W

p(W)

Figure 10.9: A schematic representation of the stalk space (E, p) where E is the rectangle
and X its red edge. The open set V may be thought of as a section f ∈ Γ(p(V ), E).

(b) For any e ∈ f(U), since p is a local homeomorphism there is some open subset W of
E containing e such that p(W ) is open in X and p maps W homeomorphically onto p(W ).
It follows that p maps f(U) ∩W homeomorphically onto U ∩ V , where V = p(W ) (since f
is a section of p). Since U ∩ V is open in X and p is a homeomorphism between f(U) ∩W
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and U ∩ V , the subset f(U) ∩W is an open subset of f(U) containing e, which shows that
f(U) is open. Using (a), it is easy to see that open subsets of the form f(U) form a basis
for the topology of E.

(c) A proof can be found in Tennison [60] (see Chapter 2, Lemma 3.5).

The construction of the stalk space SF (and of the sheaf F̃) from a presheaf F is functorial
in the following sense.

Proposition 10.8. Given any map of preshaves ϕ : F → G, there is a map of stalk spaces
Sϕ : SF → SG induced by the stalk maps ϕx : Fx → Gx for all x ∈ X, and a map of sheaves
ϕ̃ : F̃ → G̃.

Proof. Since SF is the disjoint union of the stalks Fx of F and SG is the disjoint union of
the stalks Gx of G, the stalk maps ϕx : Fx → Gx define a map Sϕ : SF → SG given by

Sϕ(γ) = ϕx(γ), γ ∈ Fx, x ∈ X.

It is immediately verified that the following diagram commutes

SF Sϕ //

p1 !!

SG

p2}}
X

and that Sϕ is continuous using Proposition 10.7(c). The map ϕ̃ : F̃ → G̃ is obtained from
Sϕ : SF → SG by applying Γ as in Definition 10.7

It is easy to check that if ϕ : F → G and ψ : G → H are maps of presheaves, then

S(ψ ◦ ϕ) = Sψ ◦ Sϕ and SidF = idSF . Similarly ψ̃ ◦ ϕ = ψ̃ ◦ ϕ̃ and ĩdF = idF̃ .

Strictly speaking the map η : F → F̃ depend on F , so it should really be denoted by
ηF : F → F̃ . It is easy to check that the family η of maps ηF is natural in the following
sense: given any presheaf map ϕ : F → G, the following diagram commutes:

F ηF //

ϕ

��

F̃
ϕ̃

��

G ηG
// G̃.

The next proposition tells us that the fibres of a stalk space are stalks of the sheaf ΓE.

Proposition 10.9. Let (E, p) be a stalk space. For any x ∈ X, the stalk (ΓE)x of the sheaf
ΓE of continuous sections of p is isomorphic to the fibre p−1(x) at x. Furthermore, as a
subspace of E, the fibre p−1(x) has the discrete topology.
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Proof. Pick any x ∈ X. For any open subset U of X with x ∈ U we have a map
EvalU,x : Γ(U,E)→ p−1(x) given by

EvalU,x(f) = f(x)

for any continuous section f : U → E of p. For any open subset V such that V ⊆ U and
x ∈ V the following diagram commutes

Γ(U,E)
θUV //

EvalU,x %%

Γ(V,E)

EvalV,xyy
p−1(x),

where the map θUV : Γ(U,E) → Γ(V,E) is the restriction map. We use Proposition 8.1 to
prove that (p−1(x),EvalU,x) is a direct limit. By the universal mapping property, p−1(x) is
isomorphic to the direct limit (ΓE)x of the direct mapping family ((Γ(U,E))U , (θ

U
V )).

(a) We need to show that for every e ∈ p−1(x), there is some open subset U of X and
some section f ∈ Γ(U,E) such that f(x) = e. Since p is a local homeomorphism,
there is some open subset W of E such that e ∈ W and the restriction p|W maps W
homeomorphically onto an open subset U = p(W ) of X. Then the inverse f of p|W is
a continuous section in Γ(U,E) such that f(x) = e. Observe that p−1(x) ∩W = {e},
which shows that the fibre p−1(x) has the discrete topology.

(b) For any x ∈ X, suppose that EvalU,x(f) = f(x) = g(x) = EvalV,x(g) where f ∈ Γ(U,E)
and g ∈ Γ(V,E), with x ∈ U ∩ V . Then by Proposition 10.7 both f(U) and g(V ) are
open in E so W = f(U) ∩ g(U) is open and f and g agree on p(W ) (since they are
both the inverse of p on U ∩ V ), which by Proposition 10.7 is open. This means that

θUp(W )(f) = θUp(W )(g),

which shows that Condition (b) of Proposition 8.1 is also satisfied.

Therefore, the stalk (ΓE)x of the sheaf ΓE is isomorphic to the fibre p−1(x) at x.

Proposition 10.9, when combined with Definition 10.5, has the following corollaries.

Proposition 10.10. For any presheaf F on a space X, the map η : F → F̃ induces isomor-
phisms of stalks ηx : Fx → F̃x for all x ∈ X.

Proof. By construction the stalk Fx of F at x is equal to the fibre p−1(x) of the stalk space

SF , and F̃ = ΓSF , the sheaf of continuous sections of p, so F̃x = (ΓSF)x. By Proposition

10.9, we have Fx ∼= F̃x. It remains to show that ηx is a stalk isomorphism. The stalk map
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ηx : Fx → F̃x as given by Definition 8.12 is the unique map that makes the following diagram
commute

F(U)
ηU //

ρU,x

��

Γ(U, SF)

ρ̃U,x

��

Fx ηx
// F̃x

for all open subsets U of X with x ∈ U . Since p−1(x) = Fx, by Proposition 10.9, there

are isomorphisms θx : F̃x → p−1(x) and thus θx : F̃x → Fx such that the following diagram
commutes:

Γ(U, SF)

ρ̃U,x

{{

EvalU,x

##
F̃x θx

// Fx.

Consequently, the diagrams

F(U)
ηU //

ρU,x

��

Γ(U, SF)

ρ̃U,x

{{

EvalU,x

##
Fx ηx

// F̃x θx
// Fx

all commute. However, for all s ∈ F(U), we have

ρU,x(s) = sx = s̃(x) = EvalU,x(ηU(s)) = (EvalU,x ◦ ηU)(s),

so the diagrams

F(U)
ηU //

ρU,x

��

Γ(U, SF)

EvalU,x

��
Fx id

// Fx

also commute, and by uniqueness of the bottom map making all these diagrams commute,
we must have

θx ◦ ηx = id.

Since θx is an isomorphism, so must be ηx.

Proposition 10.11. For any stalk space (E, p), there is a stalk space isomorphism ε : E →
S ΓE.
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Proof sketch. For every x ∈ X, by Proposition 10.9 there are isomorphisms εx : p−1(x) →
(ΓE)x. Since the fibre of S ΓE at x is equal to (ΓE)x, the bijections εx define a bijection
ε : E → S ΓE defined by

ε(e) = εx(e), e ∈ p−1(x), x ∈ X,
such that p = Γp ◦ ε, where Γp : S ΓE → X is the projection associated with the stalk space
S ΓE, as illustrated in the following diagram

E
ε //

p
  

S ΓE

Γp{{
X.

It remains to check that ε is continuous, which is shown in Tennison [60] (Chapter II, Theorem
3.10).

Strictly speaking the map ε : E → S ΓE depends on E, so it should really be denoted by
εE.

Definition 10.8. Given a stalk space (E, p), the stalk map εE : E → S ΓE is defined by

εE(e) = εx(e), e ∈ p−1(x), x ∈ X,

where the map εx : p−1(x)→ (ΓE)x (an isomorphism) is given by Proposition 10.9.

It can be shown that the family ε of maps εE is natural in the following sense: for every
map ϕ : E1 → E2 of stalk spaces (E1, p1) and (E2, p2), the following diagram commutes:

E1

εE1 //

ϕ

��

S ΓE1

SΓϕ

��
E2 εE2

// S ΓE2.

The results of the previous sections can be put together to show that the construction
F 7→ F̃ = ΓSF of a sheaf from a presheaf (the sheafification of F) is universal, and that the
constructions S and Γ are essentially mutual inverses.

10.4 The Equivalence of Sheaves and Stalk Spaces

The following theorem shows the universality of the sheafification construction F 7→ F̃ .

Theorem 10.12. Given any presheaf F and any sheaf G, for any presheaf map ϕ : F → G,
there is a unique sheaf map ϕ̂ : F̃ → G such that

ϕ = ϕ̂ ◦ ηF
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as illustrated by the following commutative diagram

F ηF //

ϕ
��

F̃
ϕ̂

��
G.

Proof. First we prove that if ϕ̂ : F̃ → G exists, then it is unique. Since ϕ = ϕ̂ ◦ ηF , for every
x ∈ X, by considering the stalk maps we must have

ϕx = ϕ̂x ◦ ηx.

However, by Proposition 10.10, the map ηx is an isomorphism, which shows that ϕ̂x = ϕx◦η−1
x

is uniquely defined. Since G is a sheaf, by Proposition 10.2 the map ϕ̂ is uniquely determined.

We now show the existence of the map ϕ̂. By Proposition 10.8, the presheaf map ϕ : F →
G yields the sheaf map ϕ̃ : F̃ → G̃. Furthermore, since G is a sheaf, by Proposition 10.6, the
map ηG : G → G̃ is an isomorphism. Therefore, we get the sheaf map ϕ̂ = η̃−1

G ◦ ϕ̃ from F̃ to
G as illustrated in the following diagram.

F ηF //

ϕ

��

F̃

ϕ̃

��

ϕ̂

��
G

ηG // G̃.
η−1
G

oo

Using the naturality of η we see that ϕ = η̃−1
G ◦ ϕ̃ ◦ ηF = ϕ̂ ◦ ηF .

We now go back to the constructions S and Γ to make the equivalence of sheaves and
stalk spaces more precise. The “right” framework to do so is category theory, but we prefer
to remain more informal.

The situation is that we have three kinds of objects and maps between these objects
(categories):

(1) The class (category) PSh(X) whose objects are presheaves over a topological space X
and whose maps (morphisms) are maps of presheaves.

(2) The class (category) Sh(X) whose objects are sheaves over a topological space X and
whose maps (morphisms) are maps of sheaves.

(3) The class (category) StalkS(X) whose objects are stalk spaces over a topological space
X and whose maps (morphisms) are maps of stalk spaces.
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Definition 10.3 implies that the operation S maps an object F of PSh(X) to an object
(SF , p : SF → X) of StalkS(X), and a map ϕ : F → G between objects of PSh(X) to a map
Sϕ : SF → SG between objects in StalkS(X), in such that a way that S(ψ ◦ ϕ) = Sψ ◦ Sϕ
and SidF = idSF . In sophisticated terms,

S : PSh(X)→ StalkS(X)

is a functor from the category PSh(X) to the category StalkS(X).

Definition 10.7 implies that the operation Γ maps an object (E, p) from StalkS(X) to
an object ΓE in Sh(X), and a map ϕ : E1 → E2 between two objects (E1, p1) and (E2, p2)
in StalkS(X) to a map Γϕ : ΓE1 → ΓE2 between objects in Sh(X), in such a way that
Γ(ψ ◦ ϕ) = Γψ ◦ Γϕ and ΓidE = idΓE. In sophisticated terms,

Γ: StalkS(X)→ Sh(X)

is a functor from the category StalkS(X) to the category Sh(X).

Note that every sheaf F is also a presheaf, and that every map ϕ : F → G of sheaves is
also a map of presheaves. Therefore, we have an inclusion map

i : Sh(X)→ PSh(X),

which is a functor. As a consequence, S restricts to an operation (functor)

S : Sh(X)→ StalkS(X).

We also defined the map η which maps a presheaf F to the sheaf ΓS(F) = F̃ , and showed
in Proposition 10.6 that this map is an isomorphism iff F is a sheaf. We also showed that
η is natural. This can be restated as saying that η is a natural isomorphism between the
functors id (the identity functor) and ΓS from Sh(X) to itself.

We also defined the map ε which takes a stalk space (E, p) and makes the stalk space
S ΓE, and proved in Proposition 10.11 that ε : E → S ΓE is an isomorphism. This can
be restated as saying that ε is a natural isomorphism between the functors id (the identity
functor) and S Γ from StalkS(X) to itself. Then, we see that the two operations (functors)

S : Sh(X)→ StalkS(X) and Γ: StalkS(X)→ Sh(X)

are almost mutual inverses, in the sense that there is a natural isomorphism η between ΓS
and id and a natural isomorphism ε between S Γ and id. In such a situation, we say that the
classes (categories) Sh(X) and StalkS(X) are equivalent . The upshot is that it is basically
a matter of taste (or convenience) whether we decide to work with sheaves or stalk spaces.3

3Actually, if we deal with sheaves of modules or rings, it turns out that stalk spaces have a better behavior
when it comes to images of morphisms, or quotients.
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We also have the operator (functor)

ΓS : PSh(X)→ Sh(X)

which “sheafifies” a presheaf F into the sheaf F̃ . Theorem 10.12 can be restated as saying
that there is an isomorphism

HomPSh(X)(F , i(G)) ∼= HomSh(X)(F̃ ,G),

between the set (category) of maps between the presheaves F and i(G) and the set (category)

of maps between the sheaves F̃ and G. In fact, such an isomorphism is natural, so in
categorical terms i and ˜= ΓS are adjoint functors . This is as far as we will go with our
excursion into category theory. The reader should consult Tennison [60] for a comprehensive
treatment of a preshaves and sheaves in the framework of abelian categories .

10.5 Stalk Spaces of Modules or Rings

In Sections 10.3 and 10.4 we have considered presheaves and sheaves of sets. If F is a sheaf
of R-modules, then it is immediately verified that for every x ∈ X the stalk Fx at x is an
R-module, and similarly if F is a sheaf of rings, then Fx is a ring.

Minor modifications need to be made to the notion of a stalk space to extend the equiva-
lence between sheaves of R-modules, rings, etc. and stalk spaces. We simply need to assume
that every fibre p−1(x) (with x ∈ X) is a R-module, ring, etc., and that the R- module
operations, ring operations, etc., are continuous.

More precisely, we have the following definitions taken from Serre [55] (Chapter I, Sections
1 and 6).

Definition 10.9. A stalk space of R-modules is a pair (E, p : E → X) where p is a surjective
local homeomorphism, and the following conditions hold:

(1) Every fibre p−1(x) (with x ∈ X) is an R-module.

(2) There is a continuous function ·R : R × E → E such that for all λ ∈ R and all e ∈ E,
λ ·R e = λ · e, where · is scalar multiplication in the fibre p−1(p(e)).

(3) There is a continuous function −E : E → E such that for all e ∈ E, −Ee = −e, where
−e is the additive inverse of e in the fibre p−1(p(e)).

(4) If we set E u E = {(e1, e2) ∈ E × E | p(e1) = p(e2)}, then there is a continuous
function +E : E uE → E such that e1 +E e2 = e1 + e2, where + is addition in the fibre
p−1(p(e1)) (= p−1(p(e2))).

Definition 10.10. A map of stalk spaces of R-modules (E1, p1) and (E2, p2) is a map
ϕ : (E1, p1) → (E2, p2) of stalk spaces such that for every x ∈ X, the restriction of ϕ to the
fibre p−1

1 (x) is a R-linear map between p−1
1 (x) and p−1

2 (x).
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Here is the definition of a stalk space when the fibres are commutative rings.

Definition 10.11. A stalk space of commutative rings is a pair (E, p : E → X) where p is
a surjective local homeomorphism, and the following conditions hold:

(1) Every fibre p−1(x) (with x ∈ X) is a commutative ring.

(2) There is a continuous function −E : E → E such that for all e ∈ E, −Ee = −e, where
−e is the additive inverse of e in the fibre p−1(p(e)).

(3) If we set E u E = {(e1, e2) ∈ E × E | p(e1) = p(e2)}, then there is a continuous
function +E : E uE → E such that e1 +E e2 = e1 + e2, where + is addition in the fibre
p−1(p(e1)) (= p−1(p(e2))).

(4) There is a continuous function ∗E : E uE → E such that e1 ∗E e2 = e1 ∗ e2, where ∗ is
multiplication in the fibre p−1(p(e1)) (= p−1(p(e2))).

Definition 10.12. A map of stalk spaces of rings (E1, p1) and (E2, p2) is a map ϕ : (E1, p1)→
(E2, p2) of stalk spaces such that for every x ∈ X, the restriction of ϕ to the fibre p−1

1 (x) is
a ring homomorphism between p−1

1 (x) and p−1
2 (x).

Having the notion of stalk space of commutativer rings we can generalize the notion of
stalk space of R-modules to allow the ring R to vary. This notion plays an important role
in algebraic geometry. In the following definition, if (A, pA : A → X) is a stalk space of
commutative rings, the fibre p−1

A (x) above x ∈ X (a commutative ring) is denoted Ax.

Definition 10.13. Given a stalk space of commutative rings (A, pA : A → X), a stalk space
of A-modules is a pair (E, p : E → X) where p is a surjective local homeomorphism, and the
following conditions hold:

(1) Every fibre p−1(x) (with x ∈ X) is an Ax-module.

(2) If we set A u E = {(λ, e) ∈ A × E | pA(λ) = p(e)}, then there is a continuous
function ·E : A u E → E such that λ ·E e = λ · e, where · is the scalar multiplication
on Ap(e) × p−1(p(e)).

(3) There is a continuous function −E : E → E such that for all e ∈ E, −Ee = −e, where
−e is the additive inverse of e in the fibre p−1(p(e)).

(4) If we set E u E = {(e1, e2) ∈ E × E | p(e1) = p(e2)}, then there is a continuous
function +E : E uE → E such that e1 +E e2 = e1 + e2, where + is addition in the fibre
p−1(p(e1)) (= p−1(p(e2))).

Definition 10.10 is modified in the obvious way. That is, a map of stalk spaces of A-
modules (E1, p1) and (E2, p2) is a map ϕ : (E1, p1) → (E2, p2) of stalk spaces such that for
every x ∈ X, the restriction of ϕ to the fibre p−1

1 (x) is an Ax-linear map between p−1
1 (x) and

p−1
2 (x).

Finally, the restriction of a stalk space to a subspace is defined as follows.
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Definition 10.14. Given a stalk space of R-modules (or rings) (E, p) over a space X, for
every subset Y of X, we define the restriction (E, p)|Y of (E, p) to Y as the stalk space
(p−1(Y ), p|p−1(Y )).

The reader is referred to Tennison [60] for more details on the equivalence between sheaves
with an algebraic structure and stalk spaces with the same algebraic structure on the fibres.

10.6 Kernels of Presheaves and Sheaves

If f : A → B is a homomorphism between two R-modules A and B, recall that the kernel
Ker (f) of f is defined by

Ker (f) = {u ∈ A | f(u) = 0},

the image Im(f) of f is defined by

Im(f) = {v ∈ B | (∃u ∈ A)(v = f(u))},

the cokernel Coker(f) of f is defined by

Coker(f) = B/Im(f),

and the coimage Coim(f) of f is defined by

Coim(f) = A/Ker (f).

Furthermore, f is injective iff Ker (f) = (0), f is surjective iff Coker(f) = (0), and there is
an isomorphism Coim(f) ∼= Im(f). A sequence of R-modules

A
f // B

g // C

is exact at B if Im(f) = Ker (g).

We would like to generalize the above notions to maps of presheaves and sheaves of R-
modules or commutative rings. In the case of presheaves, everything works perfectly, but in
the case of sheaves, there are two problems:

(1) In general, the presheaf image of a sheaf is not a sheaf.

(2) In general, the presheaf quotient of two sheaves is not a sheaf.

A way to fix these problems is to apply the sheafification process to the presheaf, but
in the case of the image of a sheaf morphism ϕ : F → G, this has the slightly unpleasant

consequence that Ĩm(ϕ) is a not a subsheaf of G. This small problem can be avoided by
defining the image of a sheaf morphism as the kernel of its cokernel map (as this would be
the case in an abelian category).
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From now on in this section we assume that we are dealing with presheaves and sheaves
of R-modules or commutative rings. We follow closely Tennison [60], so many proof are
omitted.

We begin with kernels. If ϕ : F → G is a map of presheaves on a space X, then for every
open subset U of X, define (Kerϕ)U by

(Kerϕ)U = KerϕU = {s ∈ F(U) | ϕU(s) = 0}.

If V is some open subset of U , the commutativity of the diagram

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V )

implies that if s ∈ (Kerϕ)U , that is, ϕU(s) = 0, then

ϕV ((ρF)UV (s)) = (ρG)
U
V (ϕU(s)) = (ρG)

U
V (0) = 0,

so (ρF)UV (s) ∈ (Kerϕ)V . This shows that the (Kerϕ)U together with the restriction functions
ρUV (as a function from (Kerϕ)U to (Kerϕ)V ) is a presheaf on X.

Definition 10.15. If ϕ : F → G is a map of presheaves on a space X, then for every open
subset U of X, define (Kerϕ)U by

(Kerϕ)U = KerϕU = {s ∈ F(U) | ϕU(s) = 0}.

Then the (Kerϕ)U together with the restriction functions ρUV (as a function from (Kerϕ)U
to (Kerϕ)V ) is a presheaf called the presheaf kernel of ϕ and denoted Kerϕ.

If F and G are sheaves, then Kerϕ is a sheaf.

Proposition 10.13. If F is a sheaf and G satisfies Condition (M), then Kerϕ is a sheaf.
In particular, if F and G are sheaves, then Kerϕ is a sheaf.

Proof. We need to check Conditions (M) and (G). Since F is a sheaf, it satisfies Condition
(M), and it is easy to show that Kerϕ also satisfies Condition (M).

To check Condition (G), let U be any open subset of X, let (Ui)i∈I be any open cover of U ,
and let (si)i∈I be a family of sections si ∈ (Kerϕ)Ui such that (ρF)UUi∩Uj(si) = (ρF)UUi∩Uj(sj)

for all i, j. Since F is a sheaf, there is some s ∈ F(U) such that (ρF)UUi(s) = si for all i ∈ I.
Since ϕUi(si) = 0, the commutativity of the diagram

F(U)
ϕU //

(ρF )UUi
��

G(U)

(ρG)UUi
��

F(Ui) ϕUi
// G(Ui)
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implies that
0 = ϕUi(si) = ϕUi((ρF)UUi(s)) = (ρG)

U
Ui

(ϕU(s))

for all i ∈ I. Since G satisfies Condition (M) (as formulated in Remark 4 after Definition
8.5), ϕU(s) = 0, which means that s ∈ (Kerϕ)U .

The next proposition generalizes the property that a module or (ring) map f : A→ B is
injective iff Ker f = (0).

Proposition 10.14. Let ϕ : F → G be a map of presheaves. Conditions (i) and (ii) are
equivalent.

(i) Kerϕ = (0) (the trivial zero sheaf).

(ii) ϕU is injective for all open subsets U of X.

(iii) If (ii) (equivalently (i)) holds, then ϕx is injective for all x ∈ X. If ϕx is injective for
all x ∈ X and if F satisfies Condition (M), then (ii) (equivalently (i)) holds.

Proof. The equivalence of (i) and (ii) is immediate by definition of (Kerϕ)U .

Assume that (ii) holds, and suppose that ϕx(γ) = 0 for some γ ∈ Fx (with x ∈ X). This
means that there is some open subset U of X containing x and some s ∈ F(U) such that
sx = γ and since by Definition 10.3, ϕx(γ) = ϕx(sx) = (ϕU(s))x, that (ϕU(s))x = 0, which
in turn means that there is some open subset V ⊆ U containing x such that

(ρG)
U
V (ϕU(s)) = 0.

Since ϕ is a map of presheaves,

(ρG)
U
V (ϕU(s)) = ϕV ((ρF)UV (s)),

we get ϕV ((ρF)UV (s)) = 0, and since ϕV is injective, (ρF)UV (s) = 0. But (ρF)UV (s) = 0 implies
that γ = ((ρF)UV (s))x = 0, so ϕx is injective.

Conversely, assume that ϕx is injective for all x ∈ X and that F satisfies Condition (M).
Suppose ϕU(s) = 0 for some s ∈ F(U) (where U is any open subset of X). We need to prove
that s = 0. Then by Definition 10.3,

ϕx(sx) = (ϕU(s))x = 0

for all x ∈ U , and since ϕx is injective for all x, we deduce that sx = 0 for all x ∈ U . Since
F satisfies Condition (M), by Proposition 10.1 (with t = 0), we conclude that s = 0, which
shows that ϕU is injective.

Definition 10.16. A map of presheaves ϕ : F → G is injective if any of the Conditions (i)
and (ii) of Proposition 10.14 holds. A map of sheaves ϕ : F → G is injective if any of the
Conditions (i)–(iii) of Proposition 10.14 holds.
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Remark: A presheaf or sheaf map ϕ : F → G is said to a monic if for every presheaf H any
two presheaf maps ψ1, ψ2 : H → F , if ϕ ◦ ψ1 = ϕ ◦ ψ2, then ψ1 = ψ2. It can be shown that
being a monic is equivalent to any of the conditions of Proposition 10.14; see Tennison [60]
(Chapter III, Theorem 3.5).

The following two propositions are stated without proof; see Tennison [60] (Chapter III)
for details.

Proposition 10.15. If ϕ : F → G is a map of presheaves, then

(Kerϕ)x = Kerϕx

for all x ∈ X.

Proposition 10.16. If ϕ : (E1, p1)→ (E2, p2) is a map of stalk spaces, then Γϕ : ΓE1 → ΓE2

is an injective map of sheaves iff ϕ is injective iff ϕ is a homeomorphism onto an open
subspace of E2.

10.7 Cokernels of Presheaves and Sheaves

The notions of subpresheaves and subsheaves are defined as follows.

Definition 10.17. Given two presheaves F and G on a space X, we say that F is a sub-
presheaf of G if for every open subset U of X, the R-module (resp. ring) F(U) is a submodule
(resp. subring) of G(U), and the restriction functions of F are induced by the restriction
functions of G ((ρF)UV is the restriction of (ρG)UV for any two open subsets V ⊆ U). If F and
G are sheaves and the above condition hold, we say that F is a subsheaf of G.

Remark: In terms of stalk spaces, in view of Proposition 10.16, we say that (E1, p1) is a
substalk space of (E2, p2) if E1 is an open subset of E2, p1 is the restriction of p2 to E1, and
the fibre p−1

1 (x) is a submodule (resp. subring) of the fibre p−1
2 (x) for all x ∈ X.

The following proposition will be needed.

Proposition 10.17. Let G be a sheaf and assume that F and F ′ are two subsheaves of G.
Then F = F ′ iff Fx = F ′x for all x ∈ X (as submodules or subrings).

Proof. First we prove that if Fx ⊆ F ′x for all x ∈ X (as submodules or subrings) then F is
a subsheaf of F ′. We claim that for any open subset U for X, for any section s ∈ F(U),
there is a unique section t ∈ F ′(U) such that sx = tx for all x ∈ U . Since Fx ⊆ F ′x for all
x ∈ U , there is an open cover (Ux)x∈U of U and a family of sections tx ∈ F ′(Ux) such that

(ρF)UUx(s) = (ρF ′)UUx(t
x) for all x ∈ U . It follows that (ρF ′)

Ux
Ux∩Uy(t

x) = (ρF ′)
Uy
Ux∩Uy(t

y) for all

x, y and since F ′ is a sheaf there is a unique section t ∈ F ′(U) such that (ρF ′)UUx(t) = tx for
all x ∈ U . Observe that (ρF)UUx(s) = (ρF ′)UUx(t

x) and (ρF ′)UUx(t) = tx imply that sx = txx = tx.
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Now the construction of t depends on the open cover (Ux), but since F ′ is a sheaf, by
Proposition 10.1, there is a unique section t ∈ F ′(U) with prescribed germs sx for all x ∈ U .
Therefore, we obtain a map ϕU : F(U) → F ′(U) by setting ϕU(s) = t, and it is easy to see
that these maps define a sheaf map ϕ : F → F ′. At first glance it is not obvious that ϕ is an
inclusion map, but it is as the following argument shows. Recall that sx = tx for all x ∈ U .
But by Definition 10.3, we also have ϕx(sx) = (ϕU(s))x = tx, so the composition i′ ◦ϕ where
i′ is the inclusion of F ′ in G agrees on stalks with the inclusion i of F in G. By Proposition
10.2, we have i′ ◦ ϕ = i, so ϕ is an inclusion.

Now, if Fx = F ′x for all x ∈ X, by the above F is a subsheaf of F ′ and F ′ is a subsheaf
of F so F = F ′.

If F = F ′, then obviously Fx = F ′x for all x ∈ X.

Let us now consider cokernels and images. Let ϕ : F → G be a map of presheaves. For
every open subset U of X, define PCokerU by

PCokerU = G(U)/ϕU(F(U)) = G(U)/Im ϕU ,

the quotient module (resp. quotient ring) of G(U) modulo ϕU(F(U)), which is well defined
since ϕU(F(U)) is a submodule (resp. subring) of G(U) because ϕU is a homomorphism.

For any open subset V ⊆ U , the commutativity of the diagram

F(U)
ϕU //

(ρF )UV
��

G(U)

(ρG)UV
��

F(V ) ϕV
// G(V )

implies that for any s ∈ F(U), we have

(ρG)
U
V (ϕU(s)) = ϕV ((ρF)UV (s)),

which shows that (ρG)UV (ϕU(s)) ∈ Im(ϕV ), that is, (ρG)UV (Im(ϕU)) ⊆ Im(ϕV ). If we let
pcokerU : G(U) → G(U)/Im(ϕU) be the projection map, then pcokerV ◦ (ρG)UV : G(U) →
G(V )/Im(ϕV ) vanishes on Im(ϕU), which implies that there is a unique map
(ρG)

U
V : G(U)/Im(ϕU)→ G(V )/Im(ϕV ) making the following diagram commute

G(U)

(ρG)UV

��

pcokerU // G(U)/Im(ϕU)

(ρG)UV

��
G(V )

pcokerV

// G(V )/Im(ϕV ).

Therefore, the PcokerU together with the restriction functions (ρG)
U
V define a presheaf on X.
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Definition 10.18. If ϕ : F → G is a map of presheaves on a space X, then for every open
subset U of X, define PCokerU by

PCokerU = G(U)/ϕU(F(U)) = G(U)/Im ϕU .

Then the PCokerU together with the restriction functions (ρG)
U
V define a presheaf called the

presheaf cokernel of ϕ, and denoted PCoker(ϕ). The projection maps pcokerU : G(U) →
G(U)/Im(ϕU) define a presheaf map pcoker(ϕ) : G → PCoker(ϕ).

Obviously, pcoker(ϕ) ◦ ϕ = 0 as illustrated in the diagram below

F ϕ // G pcoker(ϕ) // PCoker(ϕ).

In fact, pcoker(ϕ) is characterized by a universal property of this kind; see Tennison [60]
(Chapter III) for details.

If ϕ : F → G is a map of sheaves, in general the presheaf cokernel PCoker(ϕ) is not a
sheaf. To obtain a sheaf, we sheafify it.

Definition 10.19. If ϕ : F → G is a map of sheaves on a space X, then the sheaf cokernel

of ϕ, denoted SCoker(ϕ), is the sheafification ˜PCoker(ϕ) of the presheaf cokernel PCoker(ϕ)
of ϕ. The presheaf map scoker(ϕ) : G → SCoker(ϕ) is defined as the composition

G pcoker(ϕ) // PCoker(ϕ)
ηPCoker(ϕ) // ˜PCoker(ϕ) = SCoker(ϕ),

where ηPCoker(ϕ) : PCoker(ϕ)→ ˜PCoker(ϕ) is the canonical map of Definition 10.5.

Again, scoker(ϕ) ◦ ϕ = 0 as illustrated in the diagram below

F ϕ // G scoker(ϕ) // SCoker(ϕ).

In fact, scoker(ϕ) is characterized by a universal property of this kind; see Tennison [60]
(Chapter III) for details.

The following propositions generalize the characterization of the surjectivity of a module
(resp. ring) homomorphism f : A→ B in terms of its cokernel to presheaves and sheaves.

Proposition 10.18. Let ϕ : F → G be a map of presheaves on a space X. Then the following
conditions are equivalent:

(i) PCoker(ϕ) = (0).

(ii) For every open subset U of X, the map ϕU is surjective.

Proof. The equivalence of (i) and (ii) follows immediately from the definitions.
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Proposition 10.19. Let ϕ : F → G be a map of sheaves on a space X. Then the following
conditions are equivalent:

(i) SCoker(ϕ) = (0).

(ii) For every x ∈ X, (PCoker(ϕ))x = (0).

(iii) For every x ∈ X, ϕx is surjective.

(iv) For every open subset U of X, for every t ∈ G(U), there is some open cover (Ui)i∈I
of U and a family (si)i∈I of sections si ∈ F(Ui) such that ϕUi(si) = (ρG)UUi(t) for all
i ∈ I.

Any of the conditions of Proposition 10.18 implies the above conditions.

Proof. The equivalence of (i) and (ii) goes as follows. Since SCoker(ϕ) is a sheaf, by Propo-
sition 10.2 (with ψ the zero map), SCoker(ϕ) = (0) iff (SCoker(ϕ))x = (0) for all x ∈ X.
But by Proposition 10.10 the stalks (SCoker(ϕ))x and (PCoker(ϕ))x are isomorphic, so
(SCoker(ϕ))x = (0) iff (PCoker(ϕ))x = (0) for all x ∈ X.

To prove the equivalence of (ii) and (iii) we need to unwind the definitions. We have
(PCoker(ϕ))x = (0) iff for every open subset U of containing x and any s ∈ PCoker(ϕ)(U) =
PCokerU there is some open subset V ⊆ U containing x such that (ρG)

U
V (s) = 0 iff (since

(ρG)
U
V (s) ∈ PCokerV and PCokerV = G(V )/ϕU(F(V ))) for every open subset U of con-

taining x and any t ∈ G(U) there is some open subset V ⊆ U containing x such that
(ρG)UV (t) ∈ ϕV (F(V )) iff there is some s1 ∈ F(V ) such that ϕV (s1) = (ρG)UV (t) (so ϕx((s1)x) =
((ϕV (s1))x = tx) iff ϕx is surjective.

Next we prove that (iii) =⇒ (iv). Assume (iii) holds. For any open subset U of X and
for any t ∈ G(U), for any x ∈ U , since ϕx is surjective, there is some α ∈ Fx such that
ϕx(α) = tx. If α is represented by some fx ∈ F(Vx) for some open subset Vx of U containing
x, to say that ϕx(α) = tx means that there is some open subset Ux of Vx containing x such
that (ρG)

Vx
Ux

(ϕVx(f
x)) = (ρG)UUx(t). However, the commutativity of the diagram

F(Vx)
ϕVx //

(ρF )VxUx
��

G(Vx)

(ρG)VxUx
��

F(Ux) ϕUx
// G(Ux)

shows that (ρG)
Vx
Ux

(ϕVx(f
x)) = ϕUx((ρF)VxUx(f

x)), and thus

ϕUx((ρF)VxUx(f
x)) = (ρG)

U
Ux(t).

If we let sx = (ρF)VxUx(f
x), then we have a family (sx)x∈U of sections sx ∈ F(Ux) such that

the Ux form an open cover of U and ϕUx(s
x) = (ρG)UUx(t) for all x ∈ U , which is (iv).
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The implication (iv) =⇒ (iii) is immediate. Indeed, any γ ∈ Gx is represented by some
section t ∈ G(U) for some open subset U containing x, and by (iv), we have ϕx((si)x) =
(ϕUi(si))x = tx for any of the si ∈ F(Ui) given by (iv) since ϕUi(si) = (ρG)UUi(t) for all
i ∈ I.

It is important to note that in the case of a map of sheaves ϕ : F → G, unlike the case of
presheaves, Condition (i) (SCoker(ϕ) = (0)) does not imply that the maps ϕU are surjective
for all open subsets U . We can only assert a local version of the surjectivity of the ϕU , as in
Condition (iv).

An example of the failure of surjectivity of the ϕU is provided by X = C (the complex
numbers), the sheaf of holomorphic functions F = Cω, and ϕ = d, the differentiation operator
on F (here, G = F). For any x ∈ C, locally near x a holomorphic function f can be integrated
as a holomorphic function g such that d/dz(g) = f , but if U is not simply connected there are
holomorphic functions which cannot be expressed as d/dz(g) for some holomorphic function
g, for example f = 1/z on U = {z ∈ C | z 6= 0}.

Definition 10.20. A map of presheaves ϕ : F → G is surjective if any of the Conditions (i)
and (ii) of Proposition 10.18 holds. A map of sheaves ϕ : F → G is surjective if any of the
Conditions (i)–(iv) of Proposition 10.19 holds.

Remark: A presheaf map ϕ : F → G is said to be an epic if for every presheaf H any two
presheaf maps ψ1, ψ2 : G → H, if ψ1 ◦ ϕ = ψ2 ◦ ϕ, then ψ1 = ψ2. Similarly, a sheaf map
ϕ : F → G is said to be an epic if for every sheaf H any two sheaf maps ψ1, ψ2 : G → H,
if ψ1 ◦ ϕ = ψ2 ◦ ϕ, then ψ1 = ψ2. It can be shown that being a presheaf epic is equivalent
to any of the conditions of Proposition 10.18, and being a sheaf epic is equivalent to any
of the conditions of Proposition 10.19; see Tennison [60] (Chapter III, Theorems 4.7 and
4.8). Technically, Definition 10.20 defines the notions of presheaf epic and sheaf epic. A
presheaf morphism is surjective on sections (i.e. all ϕU are surjective). The failure of a sheaf
morphism to be a surjection on sections is closely related to sheaf cohomology.

10.8 Presheaf and Sheaf Isomorphisms

We can combine Propositions 10.14, 10.18, and 10.19 to obtain the following criteria for a
map of presheaves or a map of sheaves to be an isomorphism.

Proposition 10.20. Let ϕ : F → G be a map of presheaves on a space X. Then the following
conditions are equivalent:

(i) ϕ is an isomorphism.

(ii) For every open subset U of X, ϕU is bijective.

If F and G are sheaves, then we have the further equivalent condition:
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(iii) ϕx is bijective for all x ∈ X.

Proof. By definition ϕ is a presheaf isomorphism iff there is some presheaf morphism ψ : G →
F such that ψ◦ϕ = idF and ϕ◦ψ = idG iff there is some ψ : G → F such that ψU ◦ϕU = idF(U)

and ϕU ◦ψU = idG(U) for all open subsets U iff ϕU is an isomorphism for all open subsets U .
It remains to check that the inverses ψU : G(U)→ F(U) are compatible with the restriction
functions, which is easy to do. This proves that (i) and (ii) are equivalent.

It is clear that (i) implies (iii). Now assume that F and G are sheaves and that the ϕx
are bijective. Since each ϕx is injective, we know from Proposition 10.14 that ϕU is injective
for every open subset U . We now prove that because the ϕx are surjective, each ϕU is also
surjective.

By Proposition 10.19(iv), for every open subset U of X, for every t ∈ G(U), there is
some open cover (Ui)i∈I of U and a family (si)i∈I of sections si ∈ F(Ui) such that ϕUi(si) =
(ρG)UUi(t) for all i ∈ I. By applying ρUiUi∩Uj to both sides of the equation ϕUi(si) = (ρG)UUi(t)

and ρ
Uj
Ui∩Uj to both sides of the equation ϕUj(sj) = (ρG)UUj(t) and using the fact that

(ρG)
Ui
Ui∩Uj(ϕUi(si)) = ϕUi∩Uj((ρF)UiUi∩Uj(si))

(ρG)
Uj
Ui∩Uj(ϕUj(sj)) = ϕUi∩Uj((ρF)

Uj
Ui∩Uj(sj))

as shown by the commutativity of the diagrams

F(Ui)
ϕUi //

(ρF )
Ui
Ui∩Uj

��

G(Ui)

(ρG)
Ui
Ui∩Uj

��
F(Ui ∩ Uj) ϕUi∩Uj

// G(Ui ∩ Uj)

F(Uj)
ϕUj //

(ρF )
Uj
Ui∩Uj

��

G(Uj)

(ρG)
Uj
Ui∩Uj

��
F(Ui ∩ Uj) ϕUi∩Uj

// G(Ui ∩ Uj),

we get
ϕUi∩Uj((ρF)UiUi∩Uj(si)) = ϕUi∩Uj((ρF)

Uj
Ui∩Uj(sj)) = (ρG)

U
Ui∩Uj(t),

and since ϕUi∩Uj is injective, we conclude that

(ρF)UiUi∩Uj(si) = (ρF)
Uj
Ui∩Uj(sj)

for all i, j. Since F is a sheaf, by Condition (G), there is some s ∈ F(U) such that (ρF)UUi(s) =
si for all i. We claim that ϕU(s) = t. For this, observe that

(ρG)
U
Ui

(ϕU(s)) = ϕUi((ρF)UUi(s)) = ϕUi(si) = (ρG)
U
Ui

(t)

for all i, and since G is a sheaf, by Condition (M) we get

ϕU(s) = t,

as claimed. Therefore, ϕU is surjective.
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We also have the following result that we state without proof. The proof consists in
unwinding the definitions; see Tennison [60] (Chapter III, Proposition 4.11).

Proposition 10.21. Let ϕ : F → G be a map of presheaves on a space X. Then

(PCoker ϕ)x = Coker ϕx = Gx/Im ϕx

for all x ∈ X. If F and G are sheaves, then

(SCoker ϕ)x = Coker ϕx

for all x ∈ X.

In general, if ϕ : F → G is a presheaf morphism, even if ϕ is surjective and F is a sheaf
G need not be a sheaf. However, it is under the following conditions.

Proposition 10.22. Let F be a sheaf and G be a presheaf. If ϕ : F → G is a presheaf
isomorphism, then G is a sheaf.

Proof. Let ψ : G → F be the inverse of ϕ. For any open subset U of X and any open cover
(Ui)i∈I of U , let s, t ∈ G(U) be such that (ρG)UUi(s) = (ρG)UUi(t) for all i. Since ψ is a presheaf
map, the commutativity of the diagram

G(U)
ψU //

(ρG)UUi
��

F(U)

(ρF )UUi
��

G(Ui) ψUi

// F(Ui)

yields

ψUi((ρG)
U
Ui

(s)) = (ρF)UUi(ψU(s))

ψUi((ρG)
U
Ui

(t)) = (ρF)UUi(ψU(t)),

and since (ρG)UUi(s) = (ρG)UUi(t), we get

(ρF)UUi(ψU(s)) = (ρF)UUi(ψU(t))

for all i. Since F is a sheaf, by Condition (M), we must have ψU(s) = ψU(t). Since ψU is
injective, s = t; that is, G satisfies Condition (M).

Next let (ti)∈I be a family with ti ∈ G(Ui) such that (ρG)
Ui
Ui∩Uj(ti) = (ρG)

Uj
Ui∩Uj(tj) for all

i, j. Since ψ is a presheaf map, the commutativity of the diagrams

G(Ui)
ψUi //

(ρG)
Ui
Ui∩Uj

��

F(Ui)

(ρF )
Ui
Ui∩Uj

��
G(Ui ∩ Uj) ψUi∩Uj

// F(Ui ∩ Uj)

G(Uj)
ψUj //

(ρG)
Uj
Ui∩Uj

��

F(Uj)

(ρF )
Uj
Ui∩Uj

��
G(Ui ∩ Uj) ψUi∩Uj

// F(Ui ∩ Uj)



354 CHAPTER 10. PRESHEAVES AND SHEAVES; A DEEPER LOOK

yields

ψUi∩Uj((ρG)
Ui
Ui∩Uj(ti)) = (ρF)UiUi∩Uj(ψUi(ti))

ψUi∩Uj((ρG)
Uj
Ui∩Uj(tj)) = (ρF)

Uj
Ui∩Uj(ψUj(tj)),

and since (ρG)
Ui
Ui∩Uj(ti) = (ρG)

Uj
Ui∩Uj(tj), we get

(ρF)UiUi∩Uj(ψUi(ti)) = (ρF)
Uj
Ui∩Uj(ψUj(tj))

for all i, j. Since F is a sheaf, by Condition (G), there is some s ∈ F(U) such that

(ρF)UUi(s) = ψUi(ti)

for all i ∈ I. Now since ϕUi and ψUi are mutual inverses, we get

(ρG)
U
Ui

(ϕU(s)) = ϕUi((ρF)UUi(s)) = ϕUi(ψUi(ti)) = ti

for all i ∈ I, which shows that Condition (G) holds with ϕU(s) ∈ G(U). Therefore, G is a
sheaf.

Remark: The notions of image and quotient of a map of stalk spaces do not present the
difficulties encountered with sheaves. If ϕ : (E1, p1) → (E2, p2) is a map of stalk spaces,
because ϕ is a local homeomorphism (see Proposition 10.7(c)), the subspace ϕ(E1) is open
in E2, and so it is a substalk space of (E2, p2). Similarly, if (E1, p1) is a substalk space of
(E2, p2), then for every x ∈ X we can form the quotient Hx = p−1

2 (x)/p−1
1 (x) and make the

disjoint union of the Hx into a stalk space by giving it the quotient topology of the topology
of E2. This is what Serre does in FAC [55] (Chapter 1, Section 7.1).

10.9 Exact Sequences of Presheaves and Sheaves

The key to the “correct” definition of an exact sequence of sheaves is the appropriate notion
of image of a sheaf morphism.

Definition 10.21. If ϕ : F → G is map of presheaves on a space X, then the (presheaf)
image of ϕ, denoted PImϕ, is the kernel Ker pcoker(ϕ) of the cokernel map pcoker(ϕ) : G →
PCoker(ϕ) (with PCokerU = G(U)/ϕU(F(U))). If ϕ : F → G is map of sheaves on a space
X, then the (sheaf) image of ϕ, denoted SIm ϕ, is the kernel Ker scoker(ϕ) of the cokernel
map scoker(ϕ) : G → SCoker(ϕ).

It is not hard to check that if ϕ : F → G is a map of presheaves, then (PImϕ)(U) = ImϕU ,
while if ϕ : F → G is map of sheaves, then (SIm ϕ)x = Im ϕx for all x ∈ X.
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Remark: The image Imϕ of a map of sheaves ϕ : F → G is often defined as the sheafification

P̃Im ϕ of the presheaf PIm ϕ. The small problem with this approach is that this sheaf is

not a subsheaf of G. There is an injective morphism from P̃Im ϕ into G so the image of ϕ

should really be the image of P̃Im ϕ by that morphism. It seems to us that using SIm ϕ for
the image of ϕ is a cleaner approach (which agrees with the definition of image in an abelian
category).

If ϕ : F → G is map of sheaves and PIm ϕ is a sheaf, then SIm ϕ = PIm ϕ. Indeed, both
are subsheaves of G and their stalks are equal to Im ϕx for all x, so by Proposition 10.17
they are equal. As a consequence, we obtain the following result.

Proposition 10.23. If ϕ : F → G is an injective map of sheaves, then SIm ϕ = PIm ϕ.

Proof. Indeed, since ϕ is injective there is a presheaf isomorphism from F to PIm ϕ, and
by Proposition 10.22 we conclude that PIm ϕ is sheaf, so by the fact stated just before this
proposition SIm ϕ = PIm ϕ.

Definition 10.22. Let

· · · // F ϕ // G ψ //H // · · ·

be a sequence of maps of preshaves (over a space X). We say that the sequence is exact at
G as a sequence of presheaves if

PIm ϕ = Kerψ.

We say that it is an exact sequence of presheaves if it is exact at each point where it makes
sense.

If the sequence consists of sheaves, then we say that it is exact at G as a sequence of
sheaves if

SIm ϕ = Kerψ.

It is an exact sequence of sheaves if it is exact at each point where it makes sense.

We have the following result stating more convenient conditions for checking that a
sequence is an exact sequence of presheaves or an exact sequence of sheaves.

Proposition 10.24. The following facts hold:

(i) If the sequence

F ϕ // G ψ //H

is an exact sequence of presheaves, then for every open subset U of X

F(U)
ϕU // G(U)

ψU //H(U)

is an exact sequence of R-modules (or rings).
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(ii) The sequence

F ϕ // G ψ //H

is an exact sequence of sheaves iff the sequence

Fx
ϕx // Gx

ψx //Hx

is an exact sequence of R-modules (or rings) for all x ∈ X.

(iii) If the sequence of sheaves

F ϕ // G ψ //H

is exact as a sequence of presheaves, then it is exact as a sequence of sheaves.

Proof. A complete proof is given in Tennison [60] (Chapter III, Theorem 6.5). We only give
the proof of (ii). By definition, the sequence is exact iff SIm ϕ = Kerψ iff by Proposition
10.17

(SIm ϕ)x = (Kerψ)x

for all x ∈ X. But by definition

(SIm ϕ)x = (Ker (scokerϕ))x

= Ker ((scokerϕ)x : Gx −→ (SCoker ϕ)x) by Proposition 10.15

= Ker ((scokerϕ)x : Gx −→ (Gx/Im ϕx)) by Proposition 10.21

= Im ϕx.

Therefore, SImϕ = Kerψ iff (by Proposition 10.15) Imϕx = (Kerψ)x = Kerψx, as claimed.

As a corollary of Proposition 10.24, we have the following result.

Proposition 10.25. The following facts hold as sequences of preseaves or sheaves.

(i) The sequence

0 // F ϕ // G

is exact iff ϕ is injective (a monic); see Proposition 10.14 and Definition 10.16.

(ii) The sequence

F ϕ // G // 0

is exact iff ϕ is surjective (an epic; see Proposition 10.18, Proposition 10.19, and
Definition 10.20.
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(iii) For any map ϕ : F → G of preshaves the sequence

0 // Kerϕ // F ϕ // G // PCoker ϕ // 0

is exact, and for any map ϕ : F → G of sheaves the sequence

0 // Kerϕ // F ϕ // G // SCoker ϕ // 0

is exact.

10.10 Categories, Functors, Additive Categories

We now want to discuss the preservation of exactness by various operations (functors). Some
examples of these operations are:

1. The inclusion map i : Sh(X) → PSh(X) which maps a sheaf to the corresponding
presheaf, and a morphism ϕ : F → G to the corresponding presheaf morphism.

2. The sheafification operation ΓS : PSh(X) → Sh(X) which maps a presheaf F to its

sheafification F̃ , and a map of preshaves ϕ : F → G to the map of sheaves ϕ̃ : F̃ → G̃
(see Proposition 10.8).

3. For every open subset U of X, for every presheaf F ∈ PSh(X), we have the operation
Γ(U,−), “sections over U ,” given by

Γ(U,F) = F(U),

which yields an R-module (or a ring). Any presheaf morphism ϕ : F → G is mapped
to the R-module (or ring) homomorphism ϕU : F(U)→ G(U).

4. For every open subset U of X, for every sheaf F ∈ Sh(X), we have the operation
Γ(U,−), “sections over U ,” given by

Γ(U,F) = F(U),

which yields an R-module (or a ring). Any sheaf morphism ϕ : F → G is mapped to
the R-module (or ring) homomorphism ϕU : F(U) → G(U). This functor is crucial in
sheaf cohomology.

All the concepts we have discussed so far, R-modules, (commutative) rings, abelian
groups, presheaves, sheaves, share a common abstract structure, that of a category. We
have used the term category informally many times, and we finally define it precisely.

Definition 10.23. A category C consists of

(1) A class ObC of objects .
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(2) A family ArC of pairwise disjoint sets HomC(A,B) of elements called morphisms (or
arrows), for any pair (A,B) of objects A,B ∈ ObC. Each set HomC(A,B) is called
a Hom-set . To simplify notation, a morphism f ∈ HomC(A,B) is also denoted by

A
f // B or f : A→ B. The object A is called the domain of f and the object B is

called the range (or codomain) of f . A morphism f : A→ B is also called a map.

(3) For any triple of objects A,B,C ∈ ObC, an operation

◦A,B,C : HomC(B,C)× HomC(A,B)→ HomC(A,C)

called composition, which assigns a morphism g ◦A,B,C f to any pair of morphisms
f ∈ HomC(A,B) and g ∈ HomC(B,C).

(4) A function which assigns to each object A ∈ ObC a morphism idA ∈ HomC(A,A).

The above data satisfies the following axioms:

(i) (Associativity) For all objects A,B,C,D ∈ ObC, for all morphisms f : A→ B, g : B →
C, h : C → D,

h ◦A,C,D (g ◦A,B,C f) = (h ◦B,C,D g) ◦A,B,D f.

(ii) (Identity) For any two objects A,B ∈ ObC, for any morphism f : A→ B,

f ◦A,A,B idA = f = idB ◦A,B,B f.

Informally, we can think of a category as a graph with vertices A ∈ ObC and all mor-
phisms f ∈ HomC(A,B) as “parallel” edges between A and B. There is also a way of
composing the edges which makes a category into a kind of generalized monoid. Since the
amount of notation is quite formidable, we often abuse it. For example, we drop the sub-
scripts in the composition operations ◦A,B,C and simply write ◦. We also write A ∈ C instead
of A ∈ ObC and Hom(A,B) instead of HomC(A,B).

The notion of isomorphism in a category is the obvious one.

Definition 10.24. Given a category C, a morphism α : A → B is an isomorphism (some
authors say an equivalence) if there is a morphism β : B → A such that β ◦ α = idA and
α ◦ β = idB.

The common thread between the previous examples is that we have two categories C
and D, and we have a transformation T (a functor) which works as follows:

(i) Each object A of C is mapped to some object T (A) of D.

(ii) Each map A
f // B between two objects A and B in C is mapped to some map

T (A)
T (f) // T (B) between the objects T (A) and T (B) in D in such a way that the

following properties hold:
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(a) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (A)
T (f) // T (B)

T (g) // T (C) makes sense in D, and

T (g ◦ f) = T (g) ◦ T (f).

(b) If A
idA // A is the identity map of the object A in C, then T (A)

T (idA)// T (A) is the

identity map of T (A) in D; that is,

T (idA) = idT (A).

Definition 10.25. Whenever a transformation T : C → D satisfies the Properties (i), (ii)
(a), (b), we call it a (covariant) functor from C to D.

If T : C → D satisfies Properties (i), (b), and if Properties (ii) and (a) are replaced by
the Properties (ii’) and (a’) below

(ii’) Each map A
f // B between two objects A and B in C is mapped to some map

T (B)
T (f) // T (A) between the objects T (B) and T (A) in D in such a way that the

following properties hold:

(a’) Given any two maps A
f // B and B

g // C between objects A,B,C in C such

that the composition A
g◦f // C = A

f // B
g // C makes sense, the composition

T (C)
T (g) // T (B)

T (f) // T (A) makes sense in D, and

T (g ◦ f) = T (f) ◦ T (g),

then T is called a contravariant functor .

Definition 10.26. Whenever a transformation T : C → D satisfies the Properties (i), (ii’)
(a’), (b), we call it a contravariant functor from C to D.

Example 10.1. The four functors defined at the beginning of this section are covariant
functors. Another example of a covariant functor is the functor Hom(A,−) (for a fixed
R-module A) from the category of R-modules to itself (the category of abelian groups if
R is not commutative) which maps a module B to the module Hom(A,B) and a module
homomorphism f : B → C to the module homomorphism Hom(A, f) from Hom(A,B) to
Hom(A,C) given by

Hom(A, f)(ϕ) = f ◦ ϕ for all ϕ ∈ Hom(A,B);

see Section 2.4.

The tensor product −⊗R B is another example of covariant functor; see Example 10.5.
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Example 10.2. An example of a contravariant functor is the functor Hom(−, A) (for a
fixed R-module A) from the category of R-modules to itself (the category of abelian groups
if R is not commutative) which maps a module B to the module Hom(B,A) and a module
homomorphism f : B → C to the module homomorphism Hom(f, A) from Hom(C,A) to
Hom(B,A) given by

Hom(f, A)(ϕ) = ϕ ◦ f for all ϕ ∈ Hom(C,A);

see Section 2.4.

Let us not forget that our main goal is to generalize the notion of exact sequence to
structures more general than R-modules. This means generalizing notions such as

1. Injectivity and surjectivity.

2. Kernels of maps.

3. Images of maps.

It is also desirable to define quotient objects and direct sums. Since in a category objects
may not possess members, we have to define the above concepts in terms of maps. For
injectivity and surjectivity, this is achieved as follows.

Definition 10.27. Given any catgeory C, a map ϕ : A→ B is a monic if for any two maps
ψ1, ψ2 : C → A, if ϕ ◦ ψ1 = ϕ ◦ ψ2, then ψ1 = ψ2.4 A map ϕ : A→ B is an an epic if for any
two maps ψ1, ψ2 : B → C, if ψ1 ◦ ϕ = ψ2 ◦ ϕ, then ψ1 = ψ2.5

We leave it as an exercise to check that for sets and functions, for R-modules and R-
linear maps, and for commutative rings and ring homomorphisms, a map is injective iff it is
monic and a map is surjective iff it is epic. However, in the category of sheaves, epic is not
equivalent to surjective.

In order to define kernels and images, we need to impose more structure on our category.
In particular, we need the notion of a zero. To achieve this we give the Hom-sets HomC(A,B)
the additional structure of an abelian group. This way, we have a zero map 0A,B between
any two objects A and B, and maps f ∈ HomC(A,B) can be added or subtracted, as if they
were linear maps.

Given a category C, recall that for notational convenience we use the notations f ∈
HomC(A,B) and f : A→ B interchangeably.

4Some authors use the terminology monomorphism. However, the term monomorphism refers to an
injective homomorphism. The notion of monic is more general. In the category of R-modules or commutative
rings, the notions of monomorphism and monic are equivalent.

5Some authors use the terminology epimorphism. However, the term epimorphism refers to a surjective
homomorphism. The notion of epic is more general. In the category of R-modules or commutative rings,
the notions of epimorphism and epic are equivalent.
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Definition 10.28. A category C is an Ab-category (or a pre-additive category) if for all
A,B ∈ C the set of maps HomC(A,B) is an abelian group (with addition operation +A,B

and a zero map 0A,B), and if the following distributivity axioms hold: for all A,B,C,D ∈ C,
for all maps f ∈ HomC(A,B), g1, g2 ∈ HomC(B,C), and h ∈ HomC(C,D),

h ◦ (g1 + g2) = h ◦ g1 + h ◦ g2

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f.

If C and D are two Ab-categories, a functor T : C→ D is additive if for all A,B ∈ C and
all f, g ∈ HomC(A,B),

T (f + g) = T (f) + T (g).

Observe that if T is an additive functor, then T (0A,B) = 0T (A),T (B).

Proposition 10.26. In an Ab-category we have 0B,C ◦ f = 0A,C for all f : A → B and
g ◦ 0A,B = 0A,C for all g : B → C.

Proof. This is because by distributivity,

0B,C ◦ f = (0B,C + 0B,C) ◦ f = 0B,C ◦ f + 0B,C ◦ f,

and similarly,

g ◦ 0A,B = g ◦ (0A,B + 0A,B) = g ◦ 0A,B + g ◦ 0A,B.

For simplicity of notation we usually drop the subscript A,B in +A,B and 0A,B.

Example 10.3. The category of R-modules is an Ab-category. The category of sheaves
(or presheaves) of R-modules or rings is also an Ab-category. The functors HomR(A,−),
HomR(−, A), −⊗B, and Γ(U,−) are additive.

As in the case of R-modules, in an Ab-category, there is a nicer way to characterize
monics and epics.

Proposition 10.27. In an Ab-category, a map ϕ : A→ B is a monic iff for every ψ : C →
A, ϕ ◦ ψ = 0 implies that ψ = 0. Similarly, a map ϕ : A → B is an epic iff for every
ψ : B → C, ψ ◦ ϕ = 0 implies that ψ = 0.

Proof. Indeed, if ϕ is monic, since by Proposition 10.26, ϕ ◦ 0C,A = 0C,B, if ϕ ◦ ψ = 0C,B,
then ψ = 0C,A.

Conversely, if ϕ◦ψ1 = ϕ◦ψ2, then ϕ◦ (ψ2−ψ1) = 0C,B, and by hypothesis we must have
ψ2 − ψ1 = 0C,A, that is, ψ1 = ψ2, and ϕ is monic.

The statement about epic maps is left as an exercise.

The question of determining when a zero map 0A,B is monic or epic arises naturally.
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Proposition 10.28. Let C be an Ab-category. If the zero map 0A,B : A → B is monic,
then Hom(A,A) = {0A,A} and idA = 0A,A. If the zero map 0A,B : A → B is epic, then
Hom(B,B) = {0B,B} and idB = 0B,B.

Proof. If the zero map 0A,B : A → B is monic, since by Proposition 10.26, 0A,B ◦ ψ = 0C,B
for any ψ : C → A, for C = A and ψ = idA, we should have idA = 0A,A, which implies that
Hom(A,A) = {0A,A}.

The proof that if the zero map 0A,B : A → B is epic, then Hom(B,B) = {0B,B} and
idB = 0B,B is dual to the previous proof.

An object such that Hom(A,A) = {0A,A} is called a zero object. As we just saw, in
order to deal with monics and epics as we would in the case of R-modules, it is desirable to
assume their existence. Although we will not use them in this section, direct sums are also
desirable. This suggests the following definition.

Definition 10.29. Let C be an Ab-category. An object A ∈ C is called a zero object if
Hom(A,A) = {0A,A = idA}, a one-element group. An Ab-category C is an additive category
if there is a zero object 0 in C and if the notion of direct sum makes sense for any two objects
A,B ∈ C. More precisely, this means that for any two objects A1, A2 ∈ C, there is an object
A1 ⊕A2 ∈ C and four morphisms i1 : A1 → A1 ⊕A2, i2 : A2 → A1 ⊕A2, π1 : A1 ⊕A2 → A1,
and π2 : A1 ⊕ A2 → A2 as in the following diagram

A1

i1
��

A1 ⊕ A2

π2

��

π1

[[

A2,

i2

CC

such that

π1 ◦ i1 = idA1 π2 ◦ i2 = idA2 i1 ◦ π1 + i2 ◦ π2 = idA1⊕A2 .

For any object A ∈ C and any zero object 0, since

f = id0 ◦ f = 00,0 ◦ f = 0A,0

for all f : A → 0, we deduce that Hom(A,0) = {0A,0}, a one-element group. Similarly, for
any object B ∈ C, since

g = g ◦ id0 = g ◦ 00,0 = 00,B

for all g : 0→ B, we deduce that Hom(0, B) = {00,B}, a one-element group. We record the
above facts as the following proposition.
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Proposition 10.29. Let C be an Ab-category with a zero object 0. For any object A ∈ C,
we have Hom(A,0) = {0A,0}, and for any object B ∈ C, we have Hom(0, B) = {00,B}.

Proposition 10.28 can be sharpened as as follows,

Proposition 10.30. Let C be an Ab-category with a zero object. The zero map 0A,B : A→
B is monic iff A is a zero object. The zero map 0A,B : A→ B is epic iff B is a zero object.

Proof. One direction of the proposition was proven in Proposition 10.28. For the other
direction, if A is a zero object, by Proposition 10.29 we have Hom(C,A) = {0C,A}, a one
element group, so the zero map 0A,B : A→ B is monic.

Dually, if B is a zero object, then Hom(B,C) = {0B,C}, so the zero map 0A,B : A→ B is
epic.

Let us now consider direct sums. The equations

π1 ◦ i1 = idA1 π2 ◦ i2 = idA2 i1 ◦ π1 + i2 ◦ π2 = idA1⊕A2

imply that

π1 ◦ i2 = π1 ◦ (i1 ◦ π1 + i2 ◦ π2) ◦ i2
= π1 ◦ i1 ◦ π1 ◦ i2 + π1 ◦ i2 ◦ π2 ◦ i2
= idA1 ◦ π1 ◦ i2 + π1 ◦ i2 ◦ idA2 = π1 ◦ i2 + π1 ◦ i2,

so we deduce that π1 ◦ i2 = 0. Similarly, we have π2 ◦ i1 = 0. The equations π1 ◦ i1 = idA1

and π2 ◦ i2 = idA2 imply that i1, i2 are monic and π1, π2 are epic.

Suppose we have two maps f : A1 → C and g : A2 → C. Let h : A1 ⊕ A2 → C be the
map defined by

h = f ◦ π1 + g ◦ π2.

We have

h ◦ i1 = (f ◦ π1 + g ◦ π2) ◦ i1 = f ◦ π1 ◦ i1 + g ◦ π2 ◦ i1 = f

h ◦ i2 = (f ◦ π1 + g ◦ π2) ◦ i2 = f ◦ π1 ◦ i2 + g ◦ π2 ◦ i2 = g.

If h′ is any other map such that f = h′ ◦ i1 and g = h′ ◦ i2, then

h′ = h′ ◦ (i1 ◦ π1 + i2 ◦ π2) = h′ ◦ i1 ◦ π1 + h′ ◦ i2 ◦ π2 = f ◦ π1 + g ◦ π2 = h.

Therefore, we proved that h = f ◦ π1 + g ◦ π2 is the unique map such that f = h ◦ i1 and
g = h ◦ i2, as illustrated in the diagram below

A1

i1
��

f

##
A1 ⊕ A2

h // C

A2,

i2

OO

g

;;
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which expresses that (A1 ⊕ A2, i1, i2) is a coproduct (in the sense of category theory). We
showed that the map h 7→ h◦ i1 +h◦ i2 with inverse f +g 7→ f ◦π1 +g ◦π2 is an isomorphism

Hom(A1 ⊕ A2, C) ∼= Hom(A1, C)⊕ Hom(A2, C).

Dually, given any two maps f : C → A1 and g : C → A2, the map h : C → A1 ⊕ A2

defined by
h = i1 ◦ f + i2 ◦ g

is the unique map such that f = π1 ◦ h and g = π2 ◦ h, as illustrated in the diagram below

A1

C

f
;;

g
##

h // A1 ⊕ A2

π1

OO

π2

��
A2.

The proof of the above fact is left as an exercise. This fact shows that (A1 ⊕ A2, π1, π2)
is a product (in the sense of category theory). The map h 7→ π1 ◦ h + π2 ◦ h with inverse
f + g 7→ i1 ◦ f + i2 ◦ g is an isomorphism

Hom(C,A1 ⊕ A2) ∼= Hom(C,A1)⊕ Hom(C,A2).

Arbitrary finite direct sums and finite products are readily defined. The fact that in any
additive category (finite) direct sums and products are isomorphic generalizes a well-known
fact about R-modules. For more on products and coproducts in additive categories, see Mac
Lane [37] (Chapter IX, Section 1).

Having zero maps and zero objects we can define kernels and cokernels. Cokernels will
play the role of quotient modules. Also, note that the existence of direct sum is not needed.

Definition 10.30. Let C be additive category and let α ∈ HomC(A,B) be any map.

(1) A map k : K → A is a kernel of α if k is a monic such that for any map ϕ : C → A,

α ◦ k = 0, and α ◦ ϕ = 0 implies ϕ = k ◦ ϕ′

for some unique map ϕ′ : C → K, as illustrated in the following commutative diagram:

C

ϕ

  

ϕ′

��

0

��
K

k //

0

55A
α // B.

We write k ∈ ker(α) or k ∈ kerα, where kerα denotes the set of kernels of α.
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(2) A map σ : B → C is a cokernel of α if σ is an epic such that for any map ψ : B → D,

σ ◦ α = 0, and ψ ◦ α = 0 implies ψ = ψ′ ◦ σ

for some unique map ψ′ : C → D, as illustrated in the following commutative diagram:

D

A
α //

0

55

0

11

B
σ //

ψ

>>

C.

ψ′

OO

We write σ ∈ coker(α) or σ ∈ cokerα, where cokerα denotes the set of cokernels of α.

We see immediately from the definitions that if k1 : K1 → A and k2 : K2 → A are two
kernels for α : A → B, then there are two (unique) maps k′1 : K1 → K2 and k′2 : K2 → K1

such that k′2 ◦ k′1 = idK1 , k′1 ◦ k′2 = idK2 , k2 = k1 ◦ k′2, and k1 = k2 ◦ k′1.

K1

k1

  
k′1

��

0

  
A

α // B.

K2

k2

>>k′2

OO

0

??

In other words, there is an isomorphism (unique) k′2 : K2 → K1 such that k2 = k1 ◦ k′2.

Definition 10.31. Given any category C, the relation defined on maps β1 : K1 → A and
β2 : K2 → A by requiring that there is an isomorphism β′2 : K2 → K1 such that β2 = β1 ◦ β′2
is an equivalence relation on maps with range A called right equivalence.

It is immediately verified that right equivalence is indeed an equivalence relation.

If α is a monic, then its right equivalence class consists of monics. This fact shows that
any two kernels of α are right equivalent, and that the equivalence class of any kernel of α
under right equivalence is ker α.

In particular, if 0K,A ∈ ker α for some zero object K, then the maps right equivalent
to 0K,A are all the zero maps with domain a zero object and range A, so ker α is the right
equivalence class of zero maps with domain a zero object and range A. By abuse of notation
we write ker α = 0.

The (right) equivalence class of a monic β with range A is called a subobject of A. If
kerα 6= ∅, then the (right) equivalence class kerα of all kernels of α is a subobject of A.
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Similarly, if σ1 : B → C1 and σ2 : B → C2 are two cokernels for α : A→ B, then there are
two (unique) maps σ′1 : C2 → C1 and σ′2 : C1 → C2 such that σ′2 ◦ σ′1 = idC2 , σ′1 ◦ σ′2 = idC1 ,
σ2 = σ′2 ◦ σ1, and σ1 = σ′1 ◦ σ2.

C1

σ′2

��

A

0
--

α //

0

11

B

σ1

>>

σ2

  
C2.

σ′1

OO

In other words, there is an isomorphism (unique) σ′2 : C1 → C2 such that σ2 = σ′2 ◦ σ1.

Definition 10.32. Given any category C, the relation defined on maps β1 : B → C1 and
β2 : B → C2 by requiring that there is an isomorphism β′2 : C1 → C2 such that β2 = β′2 ◦ β1

is an equivalence relation on maps with domain B called left equivalence.

It is immediately verified that left equivalence is indeed an equivalence relation.

If α is an epic, then its left equivalence class consists of epics. This fact shows that any
two cokernels of α are left equivalent, and that the equivalence class of any cokernel of α
under left equivalence is cokerα.

In particular, if 0B,C ∈ cokerα for some zero object C, then the maps left equivalent to
0B,C are all the the zero maps with domain B and range a zero object, so cokerα is the left
equivalence class of zero maps with domain B and range a zero object. By abuse of notation
we write cokerα = 0.

The (left) equivalence class of an epic β with domain B is called a quotient object of B.
If cokerα 6= ∅, then the (left) equivalence class cokerα of all cokernels of α is a quotient
object of B.

The above definitions have been designed so that the following desirable facts hold. See
Mac Lane [37] (Chapter IX, Sections 1 and 2).

Proposition 10.31. Let C be an additive category.

(1) A map α : A→ B is a monic iff kerα = 0, and an epic iff cokerα = 0.

(2) For any maps α : A → B, β : B → C and σ : D → A if β : B → C is monic and
σ : D → A is epic, then

ker (β ◦ α) = ker α, coker (α ◦ σ) = cokerα.
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Sketch of proof. (1) Suppose 0K,A ∈ ker α for some zero object K. To prove that α is monic
it suffices to show that for any ψ : C → A, if α ◦ψ = 0, then ψ = 0C,A. Since 0K,A is a kernel
of α and α ◦ ψ = 0, there is a unique map ψ′ : C → K such that ψ = 0K,A ◦ ψ′ = 0C,A, as
claimed.

Conversely, assume α is monic. If k : K → A is a kernel of α, we have α ◦ k = 0, but
since α is monic, k = 0K,A, and so 0K,A ∈ ker α (this also implies that K is a zero object).
The statement about epics is left as an exercise.

(2) Assume that k : K → A is a kernel of α : A→ B. We have α◦k = 0, so (β◦α)◦k = 0.
If β ◦ α ◦ ψ = 0 for some ψ : K2 → A, since β is monic, we have α ◦ ψ = 0, and since k is a
kernel of α, there is an isomorphism ψ′ such that ψ = k ◦ ψ′. This shows that k is a kernel
of β ◦ α.

Conversely, let k be a kernel of β ◦α. We have β ◦α ◦ k = 0. Since β is monic, α ◦ k = 0.
If α ◦ ψ = 0 for some ψ : K2 → A, then β ◦ α ◦ ψ = 0, and since k is a kernel of β ◦ α, there
is an isomorphism ψ′ such that ψ = k ◦ ψ′. This shows that k is a kernel of α.

The proof in the cokernel case is dual and left to the reader.

Intuitively speaking an abelian category is an additive category in which the notion of
kernel and cokernel of a map makes sense. Then we can define the notion of image of a map
f as the kernel of the cokernel of f , so the notion of exact sequence makes sense.

10.11 Abelian Categories and Exactness

Definition 10.33. An abelian category C is an additive category such that the following
three properties hold:

1. Every map α ∈ HomC(A,B) has a kernel and a cokernel.

2. For any monic k and any epic σ, we have k ∈ ker(σ) iff σ ∈ coker(k).

3. Every map α ∈ HomC(A,B) can be factored as α = λ ◦ σ, with λ monic and σ epic.

Let σ1 : B → C1 and σ2 : B → C2 be two cokernels for α : A→ B. Consequently there is
an isomorphism (unique) σ′2 : C1 → C2 (with inverse σ′1) such that σ2 = σ′2 ◦ σ1. If follows
that for any map k : K → B we have σ1 ◦ k = 0 iff σ2 ◦ k = 0.

C1

σ′2

��

K

0
--

k //

0

11

B

σ1

>>

σ2

  
C2.

σ′1

OO
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Therefore, kerσ1 = ker σ2 (as right equivalence classes), and the notation ker cokerα makes
sense. It is the (right) equivalence class of kernels of any cokernel of α.

Similarly, if k1 : K1 → A and k2 : K2 → A are two kernels for α : A → B, there is an
isomorphism (unique) k′2 : K2 → K1 (with inverse k′1) such that k2 = k1 ◦ k′2. Consequently,
for any map σ : A→ C we have σ ◦ k1 = 0 iff σ ◦ k2 = 0.

K1

k1

  
k′1

��

0

��
A σ // C.

K2

k2

>>k′2

OO

0

??

Therefore, coker k1 = coker k2 (as left equivalence classes), and the notation coker kerα
makes sense. It is the (left) equivalence class of cokernels of any kernels of α.

Definition 10.34. Let C be an abelian category. The image imα of a map α : A → B, is
defined as imα = ker(coker(α)), the (right) equivalence class of kernels of any cokernel of
α. The coimage coimα of a map α : A→ B, is defined as coimα = coker(ker(α)), the (left)
equivalence class of cokernels of any kernel of α.

Observe that imα consists of monics and is a subobject B and coimα consists of epics
and is a quotient object of A

Using Definition 10.34 we define exactness as follows.

Definition 10.35. Given two maps α : A → B and β : C → D in an abelian category, the
sequence

A
α // B

β // C

is exact if imα = ker β (as right equivalence classes), which means that some kernel of
cokerα is a kernel of β. The sequence

0 // A
α // B

β // C // 0

is short exact sequence if α is a monic, β is an epic, and α ∈ ker β (equivalently β ∈ cokerα).

By Axiom (2) of an abelian category, α ∈ ker β if β ∈ cokerα, and we leave it as an
exercise to prove that in a short exact sequence, imα = ker β. In other words, a short exact
sequence is exact at B, as it should be.
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Proposition 10.32. Given any map α : A → B, there are maps k : K → A, σ : A → C,
λ : C → B, τ : B → D, with k, λ monic, σ, τ epic, α = λ ◦ σ, k ∈ kerα, σ ∈ coimα,
λ ∈ imα, and τ ∈ cokerα, as illustrated in the following diagram in which the horizontal
row and the vertical row are exact.

0

��
0 // K k // A σ //

α
  

C //

λ
��

0

B

τ

��
D

��
0.

If σ1 : A→ C1 and λ1 : C1 → B are maps such that α = λ1 ◦ σ1, with σ1 epic and λ1 monic,
then there is an isomorphism η : C → C1 such that σ1 = η ◦ σ and λ1 = λ ◦ η−1.

Proof. Using Axiom (3) of abelian categories, there is an epic σ : A → C and a monic
λ : C → B such that α = λ ◦ σ. By Axiom (1), there is some monic k : K → A in ker α and
some epic τ : B → D in cokerα. Since λ is monic, by Proposition 10.31(2), ker α = ker σ, and
since τ is epic, cokerα = cokerλ. By Axiom (2), k ∈ ker σ iff σ ∈ coker k, and τ ∈ cokerλ
iff λ ∈ ker τ . Since k ∈ ker α and σ ∈ coker k, we have σ ∈ coker(ker(α)) = coimα, and
since λ ∈ ker τ and τ ∈ cokerα, we have λ ∈ ker(coker(α)) = imα.

Assume that α = λ ◦ σ = λ1 ◦ σ1, with λ, λ1 monic and σ, σ1 epic. Since λ and λ1 are
monic, by Proposition 10.31(2),

ker α = ker σ = ker σ1.

It follows that there is some monic β such that β ∈ ker σ and β ∈ ker σ1, but by Axiom (2)
of abelian categories, we have σ ∈ coker β and σ1 ∈ coker β, so σ and σ1 are left equivalent,
which means that there is an isomorphism η : C → C1 such that σ1 = η ◦ σ. Then we have

α = λ ◦ σ = λ1 ◦ σ1 = λ1 ◦ η ◦ σ,

and since σ is epic, we deduce that λ = λ1 ◦ η, or equivalently λ1 = λ ◦ η−1.

The diagram of Proposition 10.32 is called an analysis of α and the factorization α = λ◦σ
a standard factorization of α. The maps λ and σ are unique up to an isomorphism, in the
sense that any other standard factorization of α consists of maps λ ◦ η−1 and η ◦ σ for some
isomorphism η. The right equivalence class of λ is imα and the left equivalence class of σ is
coimα.
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In the category of R-modules, if α : A → B is an R-linear map, recall that Cokerα =
B/Imα and Coimα = A/Kerα. We have the maps k : Kerα → A (the inclusion map),
p : A → A/Kerα (the projection onto the quotient), i : Imα → B (the inclusion map), and
τ : B → B/Imα (the projection onto the quotient). By the first isomorphism theorem,
there is an isomorphism α : Coimα → Imα (recall that Coimα = A/Kerα), and we have
α = i ◦ α ◦ p.

The correspondence with the previous proposition is that K = Kerα and D = B/Imα =
Cokerα, but there are two possible choices for C.

(1) Pick C = Imα and then σ = α ◦ p and λ = i, obtaining the following diagram

0

��

0 // Kerα k // A
p //

α

%%

σ

**

A/Kerα
α

&&
Imα

i
��

// 0

B

τ

��
B/Imα

��
0.

(2) Pick C = A/Kerα = Coimα, and then σ = p and λ = i ◦ α, obtaining the following
diagram

0

��
0 // Kerα k // A

p //

α

%%

A/Kerα
α

&&

//

λ

��

0

Imα

i
��
B

τ

��
B/Imα

��
0.
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There are some useful identities relating ker, coker, im and coim. For example,

kerα = ker(coimα)

cokerα = coker(imα).

Using the above equations we find that the condition imα = ker β for exactness of (α, β)
(see Definition 10.35) is equivalent to coim β = cokerα.

A thorough treatment can be found in Mac Lane [37] (Chapter IX). Proving that the five
lemma holds in any abelian category is an informative exercise.

There is an aspect of abelian categories which is puzzling, not to say disturbing. Even
though all the abelian categories that we will encounter (R-modules, presheaves, sheaves)
have objects with members, the definition of an abelian category is so general that it allows
categories where an object A many not have members, and maps α : A→ B are not linear.
The whole idea still is to generalize the algebra of modules. Many arguments are indeed
purely arrow-theoretic (do not refer to members of objects), but some are not, so how are
we supposed to carry them out?

Fortunately, there is a deep theorem due to Freyd and Mitchell that asserts that every
abelian category is“ equivalent” to some category of R-modules over some suitable ring R.
To make this precise, we need to define the notion of full and faithful functor.

Definition 10.36. Given two categories C and D, let F : C→ D be functor. We say that
the functor F is faithful if the map f 7→ F (f) from HomC(A,B) to HomD(F (A), F (B))
is injective. We say that the functor F is full if the map f 7→ F (f) from HomC(A,B)
to HomD(F (A), F (B)) is surjective. A functor F which is full and faithful is called fully
faithful .

Here is the precise statement of the Freyd–Mitchell embedding theorem (1964).

Theorem 10.33. (Freyd–Mitchell embedding theorem) If C is a small 6 abelian category,
then there is a (generally noncommutative) ring R (with multiplicative unit) and a fully
faithful and exact functor F from C into the (abelian) category of R-modules.

Note that the ring R is not commutative in general. Thus technically we have to deal
with left R-modules and we need to be more careful (for example, when taking tensors and
Hom). The good news is that each object A ∈ C can be viewed as an R-modules F (A),
and that the set of maps HomC(A,B) can be viewed as the space of all linear maps from
F (A) to F (B). The Freyd–Mitchell embedding theorem allows us to prove theorems about
abelian categories using standard methods of linear algebra (for R-modules).

For more details about abelian categories, see Weibel [63], Rotman [52] and Mac Lane [37].
For our purposes it is enough to think of an abelian category as a category of modules over
a suitable ring. The categories of R-modules and the categories of sheaves (or presheaves)
are abelian categories.

6This means that the class of objects of C is actually a set. This is a technical condition needed to avoid
set-theoretic paradoxes.
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Definition 10.37. Given two abelian categories C and D, an additive functor T : C → D
is said to be exact if whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (A) // T (B) // T (C) // 0

is exact in D; left exact if whenever the sequence

0 // A // B // C

is exact in C, then the sequence

0 // T (A) // T (B) // T (C)

is exact; right exact if whenever the sequence

A // B // C // 0

is exact in C, then the sequence

T (A) // T (B) // T (C) // 0

is exact. If T : C → D is a contravariant additive functor, then T is said to be exact if
whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A) // 0

is exact in D; left exact if whenever the sequence

A // B // C // 0

is exact in C, then the sequence

0 // T (C) // T (B) // T (A)

is exact; right exact if if whenever the sequence

0 // A // B // C

is exact in C, then the sequence

T (C) // T (B) // T (A) // 0

is exact.
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Example 10.4. For example, the (contravariant) functor Hom(−, A) is left-exact but not
exact in general. The proof that Hom(−, A) is left-exact is identical to the proof of Propo-
sition 2.7 except that R is replaced by any R-module A and f> is replaced by Hom(f, A).
Similarly, the functor Hom(A,−) is left-exact but not exact in general.

Modules for which the functor Hom(A,−) is exact play an important role. They are
called projective modules . Similarly, modules for which the functor Hom(−, A) is exact are
called injective modules .

Another important functor is given by the tensor product of modules.

Example 10.5. Given a fixed R-module M , we have a functor T from R-modules to R-
modules such that T (A) = A ⊗R M for any R-module A, and T (f) = f ⊗R idM for any
R-linear map f : A → B. This functor usually denoted − ⊗R M is right-exact; see Section
2.4.

Modules M for which the functor −⊗RM is exact are called flat .

Here is a result giving us more exact or left exact functors.

Proposition 10.34. The following results hold:

(1) The inclusion functor i : Sh(X)→ PSh(X) is left-exact.

(2) The sheafification functor ΓS : PSh(X) → Sh(X) which maps a presheaf F to its

sheafification F̃ , is exact.

(3) For every open subset U of X, the functor Γ(U,−) (sections over U) from PSh(X) to
abelian groups is exact.

(4) For every open subset U of X, the functor Γ(U,−), (sections over U) from Sh(X) to
abelian groups is left-exact.

Proof. A proof of Proposition 10.34 can be found in Tennison [60] (Chapter III, Theorem
6.9). We simply indicate how to prove (1) and (4).

(1) If

0 // F ϕ // G ψ //H // 0

is exact as sheaves, then by Proposition 10.25 ϕ is injective. It follows from Proposition
10.23 that PIm ϕ = SIm ϕ, and then exactness at G (in the sense of sheaves) means that

PIm ϕ = SIm ϕ = Kerψ,

which is exactness in the sense of presheaves.

(4) By (1), if

0 // F ϕ // G ψ //H // 0
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is exact as sheaves, then

0 // F ϕ // G ψ //H

is exact as presheaves. By Proposition 10.24 we deduce that the sequence

0 // F(U)
ϕU // G(U)

ψU //H(U)

is exact for all open subsets of X.

One of the most useful applications of sheaves is that they can be used to generalize the
notion of manifold. In the next section we sketch this approach.

10.12 Ringed Spaces

The notion of a manifold X captures the intuition that many spaces look locally like familiar
spaces, such as Rn (which means that for every point x ∈ X there is some open subset U
containing x which “looks” like Rn, more precisely U is homeomorphic to Rn), and that
certain types of functions can be defined on them; for example continuous functions, smooth
functions, analytic functions, etc. The notion of a ringed space provides an abstract way of
specifying which are the “nice” functions on a space.

Definition 10.38. A ringed space is a pair (X,OX) where X is a topological space and OX
is a sheaf of commutative rings called the structure sheaf .

The next step is to define the notion of map between two ringed spaces (X,OX) and
(Y,OY ). The basic idea is that such a map f is a continuous map between the underlying
spaces X and Y that pulls back the sheaf of functions on Y to the sheaf of functions on X.
For simplicity, let us first assume that OX and OY are both sheaves of functions respectively
on X and Y . Let f : X → Y be a continuous function. Given any function h ∈ OY (V )
(where V is some open subset of Y ), denote the restriction of h ◦ f to f−1(V ) by f ∗h. Then
f should be a map of ringed spaces if the following condition holds: for every open subset
V of Y ,

if h ∈ OY (V ) then f ∗h ∈ OX(f−1(V )).

See Figure 10.10.

Observe that the assignment h 7→ f ∗h defines a map

f ∗V : OY (V )→ OX(f−1(V ))

which is a ring homomorphism. Thus, to define the notion of map of ringed spaces, it seems
natural to require that there is a map of sheaves between OY and some sheaf over the base
space Y whose sections over any open subset V of Y come from sections of OX over f−1(V ).
Such a sheaf corresponds to the notion of direct image of a sheaf.
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Figure 10.10: A schematic illustration of f ∗h where X = R2 and Y = R. The green plane
in the peach balloon is the pull back of the section h ∈ OY (V ).

Definition 10.39. Given any continuous function f : X → Y between two topological spaces
X and Y , for any sheaf F on X, define the presheaf f∗F on Y by

f∗F(V ) = F(f−1(V ))

for all open subsets V of Y . It is easily verified that f∗F is a sheaf on Y called the direct
image of F under f .

We can now define the notion of morphism of ringed spaces (X,OX) and (Y,OY ) even if
OX and OY are not sheaves of functions.

Definition 10.40. A map (or morphism) between two ringed spaces (X,OX) and (Y,OY )
is a pair (f, g), where f : X → Y is a continuous function and g : OY → f∗OX is a map of
sheaves, with each gV : OY (V ) → f∗OX(V ) a ring homomorphism for every open subset V
of Y .

Given two maps of ringed spaces (f1, g1) : (X,OX) → (Y,OY ) and (f2, g2) : (Y,OY ) →
(Z,OZ), their composition is the ring space map (f2, g2) ◦ (f1, g1) : (X,OX)→ (Z,OZ) given
by the pair of maps

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1).

Definition 10.41. A map of ringed spaces (f, g) : (X,OX)→ (Y,OY ) is an isomorphism iff
there is some ring map (f ′, g′) : (Y,OY ) → (X,OX) such that (f, g) ◦ (f ′, g′) = (id, id) and
(f ′, g′) ◦ (f, g) = (id, id).
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Given a ringed space (X,OX), for every open subset U of X it is clear that (U,OX |U) is
a ringed space on U .

We can now use the above notions to define a far reaching definition of the notion of a
manifold. The idea is that a ringed space (X,OX) is a certain type of manifold (also called
a variety in the algebraic case) if it is locally isomorphic to some other ringed space of the
required type. The sheaf OX specifies the “nice” functions on X.

Definition 10.42. Given two ringed spaces (X,OX) and (Y,OY ), we say that (X,OX) is
locally isomorphic to (Y,OY ) if for every x ∈ X there is some open subset U of X containing
x and some open subset V of Y such that the ringed spaces (U,OX |U) and (V,OY |V ) are
isomorphic.

Here are some examples illustrating that familiar types of manifolds can be cast in the
framework of ringed spaces.

Example 10.6.

1. A topological (or continuous) manifold M is a ringed space which is locally isomor-
phic to (Rn, C(Rn)), where C(Rn) is the sheaf of algebras of continuous (real-valued)
functions on Rn.

2. A smooth manifold M is a ringed space which is locally isomorphic to (Rn, C∞(Rn)),
where C∞(Rn) is the sheaf of algebras of smooth (real-valued) functions on Rn.

3. A complex analytic manifold M is a ringed space which is locally isomorphic to
(Cn,Hol(Cn)), where Hol(Cn) is the sheaf of smooth (complex-valued) functions on
Cn.

To illustrate the power of the notion of ringed space, if we had defined the notion of affine
variety (where the functions are given by ratios of polynomials), then an algebraic variety is
a ringed space which is locally isomorphic to an affine variety.

More generally, in algebraic geometry the central notion is that of a scheme, which is a
ringed space locally isomorphic to an affine scheme (an affine scheme is a ringed space locally
isomorphic to the “spectrum” of a ring, whatever that is). Ambitious readers are referred to
Hartshorne [30] for an advanced treatment of algebraic geometry based on schemes.

10.13 Problems

Problem 10.1. Check that the map η : F → F̃ of Definition 10.5 is indeed a map of
presheaves, where F is a presheaf on a topological space X.

Problem 10.2. Prove Part (c) of Proposition 10.7.
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Problem 10.3. Check that the family η of maps ηF is natural in the following sense: given
any presheaf map ϕ : F → G, the following diagram commutes:

F ηF //

ϕ

��

F̃
ϕ̃

��

G ηG
// G̃.

Problem 10.4. Prove that the stalk map εE : E → S ΓE given in Definition 10.8 is contin-
uous.

Problem 10.5. Prove that the family ε of maps εE is natural in the following sense: for
every map ϕ : E1 → E2 of stalk spaces (E1, p1) and (E2, p2), the following diagram commutes:

E1

εE1 //

ϕ

��

S ΓE1

SΓϕ

��
E2 εE2

// S ΓE2.

Problem 10.6. Prove Proposition 10.15.

Problem 10.7. Prove Proposition 10.16.

Problem 10.8. Prove Proposition 10.21.

Problem 10.9. Prove (i) and (iii) of Proposition 10.24.

Problem 10.10. Prove the characterization of epics given in Proposition 10.27.

Problem 10.11. Given any two maps f : C → A1 and g : C → A2, prove that the map
h : C → A1 ⊕ A2 defined by

h = i1 ◦ f + i2 ◦ g

is the unique map such that f = π1 ◦ h and g = π2 ◦ h, as illustrated in the diagram below

A1

C

f
;;

g
##

h // A1 ⊕ A2

π1

OO

π2

��
A2.

Problem 10.12. Check that right-equivalence (see Definition 10.31) is indeed an equivalence
relation.
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Problem 10.13. Check that left-equivalence (see Definition 10.32) is indeed an equivalence
relation.

Problem 10.14. Check the identity

coker (α ◦ σ) = cokerα

from Proposition 10.27.

Problem 10.15. Prove (2) and (3) of Proposition 10.34.

Problem 10.16. Check that the presheaf f∗F of Definition 10.39 is indeed a sheaf.



Chapter 11

Derived Functors, δ-Functors, and
∂-Functors

The main goal of this chapter is to define the notions of derived functors, δ-functors, and
∂-functors. This machinery plays a crucial role in the definition of sheaf cohomology, an
indispensable tool in advanced algebraic geometry (based on schemes) and algebraic topology.

Roughly speaking, derived functors provide a way of “measuring” how much a functor
fails to be exact by computing certain homology and cohomology groups.

Recall that a functor T : C → D (where C and D are abelian categories) is said to be
exact if whenever the sequence

0 // A // B // C // 0

is exact in C, then the sequence

0 // T (A) // T (B) // T (C) // 0

is exact in D, left exact if whenever the sequence

0 // A // B // C

is exact in C, then the sequence

0 // T (A) // T (B) // T (C)

is exact, right exact if whenever the sequence

A // B // C // 0

is exact in C, then the sequence

T (A) // T (B) // T (C) // 0

379
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is exact. A similar definition can be given for a contravariant functor but some of the arrows
are turned around.

For example, the functor Hom(−, A) is left-exact but not exact in general (see Section
2.1). Similarly, the functor Hom(A,−) is left-exact but not exact in general (see Section
2.4).

Modules for which the functor Hom(A,−) is exact play an important role. They are
called projective modules . Similarly, modules for which the functor Hom(−, A) is exact are
called injective modules .

The functor − ⊗R M is right-exact but not exact in general (see Section 2.4). Modules
M for which the functor −⊗RM is exact are called flat .

A good deal of homological algebra has to do with understanding how much a module
fails to be projective or injective (or flat). As we will see in Section 11.1, injective and
projective modules are also characterized by extension properties.

Injective modules were introduced by Baer in 1940 and projective modules by Cartan
and Eilenberg in the early 1950s. Every free module is projective. Injective modules are
more elusive. If the ring R is a PID an R-module M is injective iff it is divisible (which
means that for every nonzero λ ∈ R, the map given by u 7→ λu for u ∈M is surjective).

One of the most useful properties of projective modules is that every module M is the
image of some projective (even free) module P , which means that there is a surjective
homomorphism ρ : P → M . Similarly, every module M can be embedded in an injective
module I, which means that there is an injective homomorphism i : M → I. This second
fact is harder to prove (see Baer’s embedding theorem, Theorem 11.6).

The above properties can be used to construct inductively projective and injective res-
olutions of a module M , a process that is the key to the definition of derived functors.
Intuitively, projective resolutions measure how much a module deviates from being projec-
tive, and injective resolutions measure how much a module deviates from being injective.

Given any R-module A, a projective resolution of A is any exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 // A // 0 (∗1)

in which every Pn is a projective module. The exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

obtained by truncating the projective resolution of A after P0 is denoted by PA, and the
projective resolution (∗1) is denoted by

PA p0 // A // 0.
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Given any R-module A, an injective resolution of A is any exact sequence

0 // A
i0 // I0 d0

// I1 d1
// · · · // In

dn // In+1 // · · · (∗∗1)

in which every In is an injective module. The exact sequence

I0 d0
// I1 d1

// · · · // In dn // In+1 // · · ·

obtained by truncating the injective resolution of A before I0 is denoted by IA, and the
injective resolution (∗∗1) is denoted by

0 // A
i0 // IA.

Now suppose that we have a functor T : C→ D, where C is the category of R-modules
and D is the category of abelian groups. If we apply T to PA we obtain the chain complex

0 T (P0)oo T (P1)
T (d1)oo · · ·T (d2)oo T (Pn−1)oo T (Pn)

T (dn)oo · · · ,oo (Lp)

denoted T (PA). The above is no longer exact in general but it defines homology groups
Hp(T (PA)).

Similarly If we apply T to IA we obtain the cochain complex

0 // T (I0)
T (d0) // T (I1)

T (d1) // · · · // T (In)
T (dn) // T (In+1) // · · · , (Ri)

denoted T (IA). The above is no longer exact in general but it defines cohomology groups
Hp(T (IA)).

The reason why projective resolutions are so special is that even though the homology
groups Hp(T (PA)) appear to depend on the projective resolution PA, in fact they don’t; the
groups Hp(T (PA)) only depend on A and T . This is proven in Theorem 11.28.

Similarly, the reason why injective resolutions are so special is that even though the
cohomology groups Hp(T (IA)) appear to depend on the injective resolution IA, in fact they
don’t; the groups Hp(T (IA)) only depend on A and T . This is proven in Theorem 11.27.

Proving the above facts takes some work; we make use of the comparison theorems ; see
Section 11.2, Theorem 11.17 and Theorem 11.21. In view of the above results, given a functor
T as above, Cartan and Eilenberg were led to define the left derived functors LnT of T by

LnT (A) = Hn(T (PA)),

for any projective resolution PA of A, and the right derived functors RnT of T by

RnT (A) = Hn(T (IA)),
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for any injective resolution IA of A. The functors LnT and RnT can also be defined on maps.
If T is right-exact, then L0T is isomorphic to T (as a functor), and if T is left-exact, then
R0T is isomorphic to T (as a functor).

For example, the left derived functors of the right-exact functor TB(A) = A ⊗ B (with
B fixed) are the “Tor” functors. We have TorR0 (A,B) ∼= A⊗B, and the functor TorR1 (−, G)
plays an important role in comparing the homology of a chain complex C and the homology
of the complex C ⊗R G; see Chapter 12. Čech introduced the functor TorR1 (−, G) in 1935
in terms of generators and relations. It is only after Whitney defined tensor products of
arbitrary Z-modules in 1938 that the definition of Tor was expressed in the intrinsic form
that we are now familar with.

There are also versions of left and right derived functors for contravariant functors.
For example, the right derived functors of the contravariant left-exact functor TB(A) =
HomR(A,B) (with B fixed) are the “Ext” functors. We have Ext0

R(A,B) ∼= HomR(A,B),
and the functor Ext1

R(−, G) plays an important role in comparing the homology of a chain
complex C and the cohomology of the complex HomR(C,G); see Chapter 12. The Ext
functors were introduced in the context of algebraic topology by Eilenberg and Mac Lane
(1942).

Everything we discussed so far is presented in Cartan and Eilenberg’s groundbreaking
book, Homological Algebra [10], published in 1956. It is in this book that the name homo-
logical algebra is introduced. Mac Lane [37] (1975) and Rotman [50, 52] give more “gentle”
presentations (see also Weibel [63] and Eisenbud [16]).

Derived functors can be defined for functors T : C→ D where C or D is a more general
category than the category of R-modules or the category of abelian groups. For example, in
sheaf cohomology, the category C is the category of sheaves of rings. In general, it suffices
that C and D are abelian categories.

We say that C has enough projectives if every object in C is the image of some projec-
tive object in C, and that C has enough injectives if every object in C can be embedded
(injectively) into some injective object in C.

The most important property of derived functors is that short exact sequences yield
long exact sequences of homology or cohomology. This property was proven by Cartan and
Eilenberg, but Grothendieck realized how crucial it was and this led him to the fundamental
concept of a universal δ-functor . Since we will be using right derived functors much more
than left derived functors we state the existence of the long exact sequences of cohomology
for right derived functors.

Theorem Assume the abelian category C has enough injectives, let 0 −→ A′ −→ A −→
A′′ −→ 0 be an exact sequence in C, and let T : C→ D be a left-exact (additive) functor.

(1) Then for every n ≥ 0, there is a map

(RnT )(A′′)
δn−→ (Rn+1T )(A′),
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and the sequence

0 // T (A′) // T (A) // T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (RnT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · ·

is exact. This property is similar to the property of the zig-zag lemma from Section 1.2.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T (A′)

��

// T (A)

��

// T (A′′)

��

δ0
A //

0 // T (B′) // T (B) // T (B′′)
δ0
B

//

and continuing with

· · · // RnT (A′)

��

// RnT (A)

��

// RnT (A′′)

��

δnA // (Rn+1T )(A′)

��

// · · ·

· · · // RnT (B′) // RnT (B) // RnT (B′′)
δnB

// (Rn+1T )(B′) // · · ·

is also commutative.

The proof of this result (Theorem 11.31) is fairly involved and makes use of the horseshoe
lemma (Theorem 11.25).

The previous theorem suggests the definition of families of functors originally proposed by
Cartan and Eilenberg [10] and then investigated by Grothendieck in his legendary “Tohoku”
paper [27] (1957).
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A δ-functors consists of a countable family T = (T n)n≥0 of functors T n : C → D that
satisfy the two conditions of the previous theorem. There is a notion of map, also called
morphism, between δ-functors.

Given two δ-functors S = (Sn)n≥0 and T = (T n)n≥0, a morphism η : S → T between S
and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → T n such that a certain
diagram commutes; see Definition 11.21.

Grothendieck also introduced the key notion of universal δ-functor; see Grothendieck [27]
(Chapter II, Section 2.2) and Definition 11.22.

A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn)n≥0 and every natural
transformation ϕ : T 0 → S0 there is a unique morphism η : T → S such that η0 = ϕ; we say
that η lifts ϕ;

The reason why universal δ-functors are important is a kind of uniqueness property
that shows that a universal δ-functor is completely determined by the component T 0; see
Proposition 11.38.

One might wonder whether (universal) δ-functors exist. Indeed there are plenty of them;
see Theorem 11.39.

Theorem Assume the abelian category C has enough injectives. For every additive left-
exact functor T : C→ D, the family (RnT )n≥0 of right derived functors of T is a δ-functor.
Furthermore T is isomorphic to R0T .

In fact, the δ-functors (RnT )n≥0 are universal.

Grothendieck came up with an ingenious sufficient condition for a δ-functor to be uni-
versal: the notion of an erasable functor. Since Grothendieck’s paper is written in French,
this notion defined in Section 2.2 (Page 141) of [27] is called effaçable, and many books and
paper use it. Since the English translation of “effaçable” is “erasable,” as advocated by Lang
we will use the the English word.

A functor T : C → D is erasable (or effaçable) (see Definition 11.26) if for every object
A ∈ C there is some object MA and an injection u : A → MA such that T (u) = 0. In
particular this will be the case if T (MA) is the zero object of D. If the category C has
enough injectives, it can be shown that T is erasable iff T (I) = (0) for all injectives I.

Our favorite functors, namely the right derived functors RnT , are erasable by injectives
for all n ≥ 1. The following result due to Grothendieck is crucial: see Theorem 11.46.

Theorem Assume the abelian category C has enough injectives. Let T = (T n)n≥0 be a
δ-functor between two abelian categories C and D. If T n(I) = (0) for every injective I, for
all n ≥ 1, then T is a universal δ-functor.

Actually, using the notion of injective erasing (see Definition 11.27), Grothendieck proved
a more general result; see Theorem 11.44.

Finally, by combining the previous results, we obtain the most important theorem about
universal δ-functors: see Theorem 11.47.
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Theorem Assume the abelian category C has enough injectives. For every left-exact func-
tor T : C→ D, the right derived functors (RnT )n≥0 form a universal δ-functor such that T
is isomorphic to R0T . Conversely, every universal δ-functor T = (T n)n≥0 is isomorphic to
the right derived δ-functor (RnT 0)n≥0.

After all, the mysterious universal δ-functors are just the right derived functors of left-
exact functors. As an example, the functors ExtnR(A,−) constitute a universal δ-functor (for
any fixed R-module A).

The machinery of universal δ-functors can be used to prove that different kinds of co-
homology theories yield isomorphic groups. If two cohomology theories (Hn

S (−))n≥0 and
(Hn

T (−))n≥0 defined for objects in a category C (say, topological spaces) are given by univer-
sal δ-functors S and T in the sense that the cohomology groups Hn

S (A) and Hn
T (A) are given

by Hn
S (A) = Sn(A) and Hn

T (A) = T n(A) for all objects A ∈ C, and if H0
S(A) and H0

T (A)
are isomorphic, then Hn

S (A) and Hn
T (A) are isomorphic for all n ≥ 0. This technique will

be used in Chapter 13 to prove that sheaf cohomology and Čech cohomology are isomorphic
for paracompact spaces.

Later we will see how the machinery of right derived functors can be used to define sheaf
cohomology (where the category C is the category of sheaves of R-modules, the category D
is the catgeory of abelian groups, and T is the “global section functor”).

11.1 Projective, Injective, and Flat Modules

We saw in Section 2.4 that the functors Hom(M,−) and Hom(−,M) are left-exact but not
exact in general, and that the functor −⊗M is right-exact but not exact in general. Thus
it is natural to take a closer look at the modules for which these functors are exact.

Definition 11.1. An R-module M is projective if the functor Hom(M,−) is exact, injective
if the functor Hom(−,M) is exact, and flat if the functor −⊗M is exact.

Observe that the trivial module (0) is injective, projective, and flat. The above definition
does not tell us what kind of animals these modules are. The propositions of this section give
somewhat more illuminating characterizations. Recall that for any linear map h : A → B,
we have Hom(M,h)(ϕ) = h ◦ ϕ for all ϕ ∈ Hom(M,A); see Definition 2.6.

Proposition 11.1. Let P be an R-module. Then the following properties are equivalent:

(1) P is projective.

(2) For any surjective linear map h : A→ B and any linear map f : P → B, there is some

linear map f̂ : P → A lifting f : P → B in the sense that f = h ◦ f̂ , as in the following
commutative diagram:

P

f

��

f̂

��
A

h
// B // 0.
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(3) Any exact sequence
0 // A // B // P //// 0

splits.

(4) There is a free module F and some other module Q such that F ∼= P ⊕Q.

Proof. This is a standard result of commutative algebra. Proofs can be found in Dummit
and Foote [14], Rotman [50, 52], Mac Lane [37], Cartan–Eilenberg [10], and Weibel [63],
among others. We only show that (1) is equivalent to (2) and that (2) implies (3).

Since Hom(P,−) is left exact, to say that it is exact means that if

A h // B // 0

is exact, then the sequence

Hom(P,A)
Hom(P,h) // Hom(P,B) // 0

is also exact. This is equivalent to saying that if h : A → B is surjective, then the map
Hom(P, h) : Hom(P,A)→ Hom(P,B) is surjective, which by definition of Hom(P, h) means

that for any linear map f ∈ Hom(P,B) there is some f̂ ∈ Hom(P,A) such that f = h ◦ f̂ as
in

P

f

��

f̂

��
A

h
// B // 0,

which is exactly (2).

Suppose

0 // A
f // B

g // P //// 0

is an exact sequence. We have the diagram

P
j

��
B g

// P // 0

and since P is projective the lifting property gives a map j : P → B such that g ◦ j = idP ,
which by Proposition 2.2(3) shows that (3) holds.

Proposition 11.1(4) shows that projective modules are almost free, in the sense that they
are a summand of a free module. It also shows that free modules are projective, an invaluable
fact.

Another fact that we will need later is that every module is the image of some projective
module.
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Proposition 11.2. For every R-module M , there is some projective (in fact, free) module
P and a surjective homomorphism ρ : P →M .

Proof. Pick any set S of generators for M (possibly M itself) and let P = R(S) be the free
R-module generated by S. The inclusion map i : S →M extends to a surjective linear map
ρ : P →M .

The notion of projective module is generalized to abelian categories as follows (see Mac
Lane [37], Chapter IX, Section 4).

Definition 11.2. Let C be an abelian category. An object P ∈ C is a projective object if for
any epic h : A→ B and any map f : P → B, there is some map f̂ : P → A lifting f : P → B
in the sense that f = h ◦ f̂ , as in the following commutative diagram:

P

f

��

f̂

��
A

h
// B // 0.

Parts (1), (2), (3) of Proposition 11.1 generalize to abelian categories; see Mac Lane [37]
(Chapter IX, Section 4, Proposition 4.2).

Injective modules are more elusive, although the diagram in Proposition 11.1(2) dual-
izes. The simplest characterization of injective modules is probably the condition given by
Theorem 11.10, namely that an R-module E is injective iff every injection f : E →M has a
retraction r : M → E (that is, r ◦ f = idE).

Recall that for any linear map h : A → B, we have Hom(h,M)(ϕ) = ϕ ◦ h for all
ϕ ∈ Hom(B,M); see Definition 2.5.

Proposition 11.3. Let I be an R-module. Then the following properties are equivalent:

(1) I is injective.

(2) For any injective linear map h : A → B and any linear map f : A → I, there is some

linear map f̂ : B → I extending f : A → I in the sense that f = f̂ ◦ h, as in the
following commutative diagram:

0 // A

f
��

h // B

f̂~~
I.

(3) Any exact sequence
0 // I // B // C //// 0

splits.
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Proof. This is also a standard result of commutative algebra. Proofs can be found in Dummit
and Foote [14], Rotman [50, 52], Mac Lane [37], Cartan–Eilenberg [10], and Weibel [63],
among others. We only show that (1) is equivalent to (2) and that (2) implies (3). Since
Hom(−, I) is left exact, to say that it is exact means that if

0 // A
h // B

is exact, then the sequence

Hom(B, I)
Hom(h,I) // Hom(A, I) // 0

is also exact. This is equivalent to saying that if h : A → B is injective, then the map
Hom(h, I) : Hom(B, I) → Hom(A, I) is surjective, which by definition of Hom(h, I) means

that for any linear map f ∈ Hom(A, I) there is some f̂ ∈ Hom(B, I) such that f = f̂ ◦ h as
in

0 // A

f

��

h // B

f̂��
I,

which is exactly (2).

Suppose

0 // I
f // B

g // C //// 0

is an exact sequence. We have the diagram

0 // I
f // B

p
��

I

and since I is injective the lifting property gives a map p : B → I such that p ◦ f = idI ,
which by Proposition 2.2(2) is (3).

The notion of injective module being dual to the notion of projective module is generalized
to abelian categories as follows (see Mac Lane [37], Chapter IX, Section 4).

Definition 11.3. Let C be an abelian category. An object I ∈ C is an injective object if
for any monic h : A → B and any map f : A → I, there is some map f̂ : B → I extending
f : A→ I in the sense that f = f̂ ◦ h, as in the following commutative diagram:

0 // A

f

��

h // B

f̂~~
I.
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Proposition 11.3 also generalizes to abelian categories.

The following theorem due to Baer shows that to test whether a module is injective it is
enough to check the extension property (Proposition 11.3(2)) for sequences 0 // A // R
for all ideals A of the ring R.

Theorem 11.4. (Baer Representation Theorem) An R-module I is injective iff it has the
extension property with respect to all sequences 0 // A // R where A is an ideal of the
ring R.

The proof is a gem. Versions of the proof can be found in Dummit and Foote [14],
Rotman [50, 52], Mac Lane [37], Cartan–Eilenberg [10], and Weibel [63], among others.

Proof. We follow Rotman. If I is injective, the extension property w.r.t. sequences of the
form 0 // A // R is a special case of the condition for being injective.

Conversely, assume that the extension property holds for sequences 0 // A // R ,
where A is an ideal in R. What does this mean? We have the diagram

0 // A //

ϕ

��

R

ϕ̂��
I

in which ϕ̂ extends ϕ. So for all ξ ∈ A, we have ϕ(ξ) = (ϕ̂ � A)(ξ). In particular, ϕ̂(1) ∈ I
exists, say q = ϕ̂(1). Since ξ · 1 = ξ for all ξ ∈ A, we have

ϕ(ξ) = ϕ̂(ξ) = ξϕ̂(1) = ξq.

Define S by

S =

{
(N,ψ)

∣∣∣∣
(1)N is a submodule of B, (2) A ⊆ N,
(3) ψ : N → I extends ϕ to N.

}
,

as illustrated in the following diagram

0 // A //

ϕ

��

N

ψ~~

// B

I.

Partially order S by inclusion and agreement of extensions. Then we easily check that S
is inductive (which means that every totally ordered subset of S has an upper bound). By
Zorn’s lemma, there is a maximal element (N0, ψ0) in S. We claim that N0 = B.

If N0 6= B, there is some m ∈ B −N0, and let A be the ideal given by

A = {ρ ∈ R | ρm ∈ N0}.
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Observe that 0 ∈ A.

Remark: If you know some algebra, A = (m −→ N0) is the transporter of m into N0.

Define the R-module map θ : A→ I by

θ(ρ) = ψ0(ρm).

Since we have the diagram
0 // A //

θ
��

R

θ̂��
I

in which the top row is exact, by hypothesis, there is a map θ̂ : R→ I extending θ.

Consider the module N0 + Rm, which strictly contains N0. If z ∈ N0 + Rm, then
z = z0 + ρm for some z0 ∈ N0 and some ρ ∈ R. Set

ψ(z) = ψ0(z0) + ρq, z = z0 + ρm ∈ N0 +Rm,

where q = θ̂(1). We must prove that ψ : N0 + Rm → I is a well-defined map, that is, if
z = z0 + ρm = z̃0 + ρ̃m, then

ψ0(z0) + ρq = ψ0(z̃0) + ρ̃q.

Now if we can prove that ψ : N0 +Rm→ I is indeed well-defined, then it is an extension
of ψ0 to the new module N0 + Rm strictly containing N0, contradicting the maximality of
N0. Therefore, N0 = B, and we are done.

If z = z0 + ρm = z̃0 + ρ̃m, then z0 − z̃0 = (ρ̃− ρ)m; so ρ̃− ρ ∈ A. Consequently,

θ(ρ̃− ρ) = ψ0((ρ̃− ρ)m).

Yet,
θ(ρ̃− ρ) = θ̂(ρ̃− ρ) = (ρ̃− ρ)θ̂(1) = (ρ̃− ρ)q,

and so we get
ψ0(z0 − z̃0) = ψ0((ρ̃− ρ)m) = θ(ρ̃− ρ) = (ρ̃− ρ)q.

Therefore, we deduce that
ψ0(z0) + ρq = ψ0(z̃0) + ρ̃q,

establishing that ψ is well-defined.

As a corollary of Theorem 11.4, it is possible to characterize injective modules when the
ring R is a PID.

Definition 11.4. An R-module M is divisible if for every nonzero λ ∈ R, the multiplication
map given by u 7→ λu for all u ∈M is surjective.
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Proposition 11.5. If the ring R has no zero divisors, then any injective module is divisible.
Furthermore, if R is a PID, then a module is injective iff it is divisible.

Proof. Assume I is an injective R-module and pick any nonzero λ ∈ R. We wish to prove
that the map u 7→ λu (u ∈ I) from I to itself is surjective. This means that for any element
m ∈ I, we can find some u ∈ I such that m = λu. Since R has no zero divisors, the
map α 7→ αλ from R to itself is injective, so the map f : Rλ → I given by f(αλ) = αm is
well-defined. Obviously Rλ is an ideal in R so we have the diagram

0 // Rλ //

f

��

R

f̂~~
I,

and since I is injective, there is a map f̂ : R→ I extending f . Then we have

m = f(λ) = f̂(λ) = λf̂(1),

with f̂(1) ∈ I, which shows that the map u 7→ λu (u ∈ I) is surjective. Therefore, I is
divisible.

Now assume that R is a PID and that I is divisible. By Theorem 11.4, to prove that I
is injective it suffices to prove that the extension property holds for sequences of the form
0 // A // R , where A is an ideal in R. Since R is a PID, any (left) ideal A in R is of
the form Rλ for some λ ∈ R. Consider any linear map f : Rλ→ I. We wish to extend f to
R. The case λ = 0 is trivial, so assume λ 6= 0. Since I is divisible, there is some m ∈ I such
that

f(λ) = λm.

Define the map f̂ : R→ I by

f̂(α) = αm, α ∈ R.

Since for any β ∈ R,

f̂(βλ) = βλm = βf(λ) = f(βλ),

we see that f̂ : R→ I extends f : Rλ→ I, as desired.

The reader should check that the Z-module Q/Z is injective. More generally, if R is a
PID and if K is the fraction field of R, then K/R is an injective R-module.

A result dual to the statement of Proposition 11.2 holds for injective modules but is
harder to prove.

Theorem 11.6. (Baer Embedding Theorem) For every R-module M , there is some injective
module I and an injection i : M → I.
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A particularly short proof of Theorem 11.6 can be found in Godement [24]. It uses the
fact that if M is a projective Z-module, then HomZ(M,Q/Z) is an injective Z-module. We
have to make HomZ(M,Q/Z) into an R-module but we will deal with this technical issue
later. Observe that an R-module is automatically a Z-module (since it is an abelian group).

The first step is to show that any Z-module M can be embedded into MDD, where
MD = HomZ(M,Q/Z). Given a Z-module M , we define a natural Z-linear map m 7→ m̂
from M to MDD in the usual way: for every m ∈M and every f ∈ HomZ(M,Q/Z),

m̂(f) = f(m).

It is clear that such a map is Z-linear.

Proposition 11.7. For every Z-module M , the natural map M −→MDD is injective.

Proof. It is enough to show that m 6= 0 implies that m̂ 6= 0, i.e., there is some f ∈ MD =
HomZ(M,Q/Z) so that f(m) 6= 0.

Consider the cyclic subgroup Zm of M generated by m. If m has finite order n ≥ 1,
then Zm ∼= Z/nZ. The Z-linear map f : Z/nZ → Q/Z given by f(1) = 1/n (mod Z) is
obviously an injection. Since 0 −→ Z/nZ −→ M is exact and Q/Z is injective, the map

f : Z/nZ→ Q/Z extends to a Z-linear map f̂ : M → Q/Z with f̂(m) 6= 0, as claimed.

If Zm is infinite (m has infinite order), then we have the Z-linear surjection g : Zm →
Z/2Z given by g(m) = 1 (mod 2). We also have the injective Z-linear map f2 : Z/2Z→ Q/Z
given by f2(1) = 1/2(modZ), and since Q/Z is injective, the Z-linear map f2 : Z/2Z→ Q/Z
extends to a Z-linear map f̂2 : M → Q/Z, with f̂2(1) 6= 0. Then the composition f̂ = f̂2 ◦ g
is a Z-linear map f̂ : M → Q/Z such that f̂(m) = f̂2(g(m)) = f̂2(1) 6= 0.

Remark: Godement [24] claims that an infinite cyclic group Zm embeds in Q/Z (see Page
7). This is false, but this also does not matter since the crucial point is that there is a
surjection of Zm onto Z/2Z. This fact is used in the proof given in Bourbaki [5] (Section,
No. 8, Proposition 12).

As constructed, HomZ(M,Q/Z) is a Z-module but we need to make it into an R-module.
Theorem 11.6 is actually valid for modules over a noncommutative ring but we need to be
careful how we define the action of the ring R. Since R is not necessarily commutative, if
M is an R-module, it turns out that R acts on HomZ(M,Q/Z) on the right, or equivalently
that the ring Rop (see below) acts on HomZ(M,Q/Z) (on the left).

Recall that given a ring R, the ring Rop is the ring with the same underlying set R, the
same adddition operation +, and the multiplication operation ∗op given by λ ∗op µ = µ ∗ λ
for all λ, µ ∈ R. If M is an R-module and N is any Z-module, then we can define a map
from R× HomZ(M,N) to HomZ(M,N) as follows: for all α ∈ R and all f ∈ HomZ(M,N),

(αf)(m) = f(αm), for all m ∈M . (∗R)
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Since α ∗op β = β ∗ α, we have

(α(βf))(m) = (βf)(αm) = f(β(αm)) = f((β ∗ α)m) = ((β ∗ α)f)(m) = ((α ∗op β)f)(m).

The equation
(α(βf))(m) = f(β(αm)) = ((α ∗op β)f)(m)

shows that (∗R) defines a left action of Rop on HomZ(M,N) which makes HomZ(M,N) into
a Rop-module.

Similarly, if M is an Rop-module and N is any Z-module, then (∗R) defines a left action
of R on HomZ(M,N) which makes HomZ(M,N) into an R-module, since

(α(βf))(m) = (βf)(αm) = f(β(αm)) = f((β ∗op α)m) = f((α ∗ β)m) = ((α ∗ β)f)(m).

Then MD = HomZ(M,Q/Z) is an Rop-module if M is an R-module (resp. an R-module
if M is an Rop-module). Furthermore, the Z-injection, M −→MDD, is an R-injection. The
crux of Godement’s proof is the following proposition.

Proposition 11.8. If M is a projective Rop-module, then MD is an injective R-module.

Proof. Consider the diagram
0 // X //

ϕ

��

X ′

ϕ′||
MD

where the upper row is exact. To prove that MD is injective, we need to prove that ϕ
extends to a map ϕ′ : X ′ → MD. By applying HomZ(−,Q/Z) to ϕ we obtain the map
HomZ(ϕ,Q/Z) : HomZ(MD,Q/Z) −→ HomZ(X,Q/Z), i.e., a map MDD −→ XD, and since
we have an injection M −→ MDD, by composition we get a map θ : M → XD. Now since
Q/Z is injective, HomZ(−,Q/Z) maps the exact sequence

0 −→ X −→ X ′

to the exact sequence

HomZ(X ′,Q/Z) −→ HomZ(X,Q/Z) −→ 0,

i.e., X
′D −→ XD −→ 0. So we have the diagram

M

θ
��

θ′

||
X
′D // XD // 0,

where the lower row is exact, and since M is projective, the map θ lifts to a map θ′ : M →
X
′D. Consequently, by applying HomZ(−,Q/Z) we get a map X

′DD −→MD, and since we
have an injection X ′ −→ X

′DD, by composition we get a map X ′ −→ MD extending ϕ, as
desired. Therefore, MD is injective.
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We can now prove Theorem 11.6.

Proof of Theorem 11.6. Consider the Rop-module MD. By Proposition 11.2 we know that
there is a free Rop-module F such that

F −→MD −→ 0 is exact.

But F being free is projective, and since HomZ(−,Q/Z) is left-exact, we get the exact
sequence

0 −→MDD −→ FD.

By Proposition 11.8, the module FD is injective. Composing the natural injection M −→
MDD with the injection MDD −→ FD, we obtain our injection M −→ FD of M into an
injective.

Theorem 11.6 can be used to give an interesting characterization of injective modules.
The following auxiliary result is needed.

Proposition 11.9. Let I be an injective R-module. If C is any R-module such that there
are R-linear maps i : C → I and p : I → C such that p ◦ i = idC (so C is a retract of I),
then C is also injective.

Proof. Let h : A → B be any injection and let f : A → C be any linear map. We need to
show that f extends to a map f̂ : B → C such that f = f̂ ◦h. We have the map i◦f : A→ I,
and since I is injective, there is some linear map g : B → I such that i ◦ f = g ◦ h, as shown
in the diagram below.

0 // A h //

f

��

B

g

��

f̂

��
C

i
// I

poo

If we let f̂ = p ◦ g, then since i ◦ f = g ◦ h and p ◦ i = idD, we have

f̂ ◦ h = p ◦ g ◦ h = p ◦ i ◦ f = idD ◦ f = f,

so f̂ is the required extension of f .

The hypothesis of Proposition 11.9 is equivalent to I = i(C)⊕D with D = Ker p. As a
corollary, if I is an injective module and if I = C ⊕D, then C and D are injective.

The following theorem provides an interesting characterization of injective modules.

Theorem 11.10. An R-module E is injective iff every injection f : E →M has a retraction
r : M → E, that is, r ◦ f = idE (both f and r are R-linear maps).
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Sketch of proof. We leave it as an exercise to prove that if E is injective, then every injection
f : E →M has a retraction.

Conversely, by Theorem 11.6, there is some injective module I and some injection i : E →
I. By hypothesis, there is a retraction r : I → E such that r ◦ i = idE, and by Proposition
11.9, E is injective.

Finally, we come to flat modules.

Proposition 11.11. Let M and N be any two R-modules. If M ⊕ N is flat, then M and
N are flat. Every projective module is flat. Direct sums of flat modules are flat.

A proof of Proposition 11.11 can be found in Rotman [51, 52]. The following result gives
us a precise idea of what a flat module is when the ring R is a PID.

Proposition 11.12. If the ring R has nonzero divisors, then any flat module is torsion-free.
Furthermore, if R is a PID then a module is a flat module iff it is torsion-free.

A proof of Proposition 11.12 can be found in Weibel [63] (Chapter 3, Section 3.2), Bour-
baki [6] (Chapter I, §2, Section 4, Proposition 3), and as a exercise in Dummit and Foote
[14]. In particular, Q is a flat Z-module.

More generally, if R is an integral domain and if K is its fraction field, then K is a
flat R-module; see Atiyah and MacDonald [3] (Chapter 3, Corollary 3.6) or Bourbaki [6]
(Chapter II, §2, Section 4, Theorem 1). This last result has an interesting application.

If M is a finitely generated R-module where R is an integral domain, recall that the rank
rankM of M is the largest number of linearly independent vectors in M . Since the fraction
field K of R is a field, the tensor product M ⊗R K is a vector space, and it is easy to see
that the dimension of the vector space M ⊗R K is equal to the rank of M ; see Matsumura
[42] (Chapter 4, Section 11, Page 84).

Proposition 11.13. Let R be an integral domain. For any finitely generated R-module
A,B,C, if there is a short exact sequence

0 // A // B // C // 0,

then

rankB = rankA+ rankC.

Proof. Since the fraction field K of R is a flat R-module, if we tensor with K we get the
short exact sequence

0 // A⊗R K // B ⊗R K // C ⊗R K // 0,
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in which all the modules involved are vector spaces over K. But then this is a split exact
sequence and we have

dimB ⊗R K = dimA⊗R K + dimC ⊗R K.

By a previous remark, rankA = dimA⊗R K and similarly with B and C, so we obtain

rankB = rankA+ rankC,

as claimed.

In the special case where R = Z and A,B,C are finitely generated abelian groups, the
equation of Proposition 11.13 is obtained by tensoring with Q. Another proof of this formula
(for abelian groups) is given in Greenberg and Harper [25] (Chapter 20, Lemma 20.7 and
Lemma 20.8).

This is an equation which is used in proving the Euler–Poincaré formula; see Theorem
6.11.

It can be shown that Q/Z is an injective Z-module which is not flat and the Z-module
Q⊕ Z is flat but neither projective nor injective. See Figure 11.1.

flat projective

free
Q 4 Z  

injective

(Z-module)
(Z-module)

Q/Z

Figure 11.1: A Venn diagram representing the containment structure of free, flat, projective,
and injective modules.

We are now ready to discuss (projective and injective) resolutions, one of the most im-
portant technical tools in homological algebra.

11.2 Projective and Injective Resolutions

We saw in Section 11.1 that in general there are modules that are not projective or not
injective (or neither). Then it is natural to ask whether it is possible to quantify how much a
module deviates from being projective or injective. Let us first consider the projective case.
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We know from Proposition 11.2 that given any module M , there is some projective (in
fact, free) module P0 and a surjection p0 : P0 → M . It follows that M is isomorphic to
P0/Ker p0, but the module K0 = Ker p0 may not be projective, so we repeat the process.
There is some projective module P1 and a surjection p1 : P1 → K0. Again K0 is isomorphic
to P1/Ker p1, but K1 = Ker p1 may not be projective. We repeat the process.

By induction, we we obtain exact sequences

0 // Kn
in // Pn

pn // Kn−1
// 0

with Pn projective, Kn = Ker pn, and in the inclusion map for all n ≥ 1, and the starting
sequence

0 // K0
i0 // P0

p0 //M // 0,

as illustrated by the following diagram.

· · · // P3
d3 //

p3   

P2
d2 //

p2   

P1
d1 //

p1   

P0
p0 //M // 0

· · · K2

i2

>>

!!

K1

i1

>>

!!

K0

i0

>>

!!
· · · 0

==

0

==

0

==

0

If we define dn : Pn → Pn−1 by

dn = in−1 ◦ pn (n ≥ 1),

then since in−1 is injective we have

Ker dn = Ker pn = Kn,

and since pn is surjective we have

Im dn = Im in−1 = Kn−1.

Therefore, Im dn+1 = Ker dn for all n ≥ 1. See Figure 11.2.

We also have Im d1 = K0 = Ker p0 and p0 is surjective, therefore the top row is an exact
sequence. In summary, we proved the following result.

Proposition 11.14. For every R-module M , there is some exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 //M // 0

in which every Pn is a projective module. Furthermore, we may assume that the Pn are free.
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Pn

pn

projective module

surjective

K  = Ker p nn

K     y  P  /  Kn nn-1

i

i n-1

injective

i       (K      )n-1 n-1

Pn-1
projective module

surjectivep

K     y  P     /  Kn-1 n-1n-2

n-1

n-1d    = i           p nn

Figure 11.2: A schematic illustration of the map dn = in−1 ◦ pn used for the construction of
a projective resolution.

Exact sequences of the above from are called resolutions.

Definition 11.5. Given any R-module M , a projective (resp. free, resp. flat) resolution of
M is any exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

p0 //M // 0 (∗)

in which every Pn is a projective (resp. free, resp. flat) module. The exact sequence

· · · // Pn
dn // Pn−1

dn−1 // · · · // P1
d1 // P0

obtained by truncating the projective resolution of M after P0 is denoted by PM or P•, and
the projective resolution (∗) is denoted by

PM p0 //M // 0.

An exact sequence (∗) where the Pi are not necessarily projective (nor free, nor flat) is called
a left acyclic resolution of M .



11.2. PROJECTIVE AND INJECTIVE RESOLUTIONS 399

Remark: Following the convention for writing complexes with lower indices discussed in
Section 2.5, the exact sequence (∗) of Definition 11.5 can also be written as

0 Moo P0
p0oo P1

d1oo · · ·oo Pn−1
dn−1oo Pn

dnoo · · ·oo (∗∗)

and the truncated sequence

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

is still denoted by PM or P•. The projective resolution (∗∗) is denoted by

0 Moo PM .
p0oo

Proposition 11.14 shows that every module has some projective (resp. free, resp. flat)
resolution. A projective resolution may stop after finitely many steps, which means that
there is some m such that Pn = (0) for all n ≥ m. For example, if the ring R is a PID,
since every submodule of a free module is free, every R-module has a free resolution with
two steps:

0 // P1
d1 // P0

p0 //M // 0,

with P1 = K0 = Ker p0, a free submodule of the free module P0.

If we apply the functor Hom(−, B) to the exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from a projective resolution of a module A by dropping the term A, exactness is
usually lost but we still obtain the chain complex Hom(PA, B) given by

0 // Hom(P0, B) // · · · // Hom(Pn−1, B) // Hom(Pn, B) // · · · ,

with the maps Hom(Pn−1, B)
Hom(dn,B) // Hom(Pn, B).

Consequently, we have the cohomology groups Hp(Hom(PA, B)) of the cohomology com-
plex Hom(PA, B).

These cohomology modules seem to depend of the choice of the projective resolution
PA. However, the remarkable fact about projective resolutions is that these cohomology
groups are independent of the projective resolution chosen. This is what makes projective
resolutions so special. In our case where we applied the functor Hom(−, B), the cohomology
groups are denoted by ExtnR(A,B) (the “Ext” groups).
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Definition 11.6. For any two R-modules A and B, the cohomology groups ExtnR(A,B), the
Ext groups , are the cohomology groups obtained by applying the functor Hom(−, B) to the
exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from any projective resolution of a module A by dropping the term A.

Since Hom(−, B), is left exact, the exact sequence

P1
d1 // P0

p0 // A // 0

yields the exact sequence

0 // Hom(A,B)
Hom(p0,B) // Hom(P0, B)

Hom(d1,B) // Hom(P1, B).

This implies that Hom(A,B) is isomorphic to Ker Hom(d1, B) = H0(Hom(PA, B)) that is,

Ext0
R(A,B) ∼= Hom(A,B).

If A is a projective module, then we have the trivial resolution 0 // A
id // A // 0 , and

ExtnR(A,B) = (0) for all n ≥ 1.

If the ring R is a PID, then every module A has a free resolution

0 // P1
d1 // P0

p0 // A // 0 ,

so ExtnR(A,B) = (0) for all n ≥ 2. The group Ext1
R(A,B) plays a a crucial role in the

universal coefficient theorem for cohomology which expresses the cohomology groups of a
complex in terms of its cohomology. The cohomology complex is obtained from the homology
complex by applying the functor Hom(−, R).

If we apply the functor −⊗B to the exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from a projective resolution of a module A by dropping the term A, exactness is
usually lost but we still obtain the chain complex PA ⊗B given by

0 P0 ⊗Boo · · ·oo Pn−1 ⊗Boo Pn ⊗Boo · · ·oo

with maps Pn ⊗B
dn⊗idB // Pn−1 ⊗B.

This time we have the homology groups Hp(P
A ⊗B) of the homology complex PA ⊗B.

As before, these homology groups are independent of the resolution chosen. These ho-
mology groups are denoted by TorRn (A,B) (the “Tor” groups).
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Definition 11.7. For any two R-modules A and B, the homology groups TorRn (A,B), called
the Tor groups , are the homology groups obtained by applying the functor − ⊗ B to the
exact sequence PA

P0 P1
d1oo · · ·oo Pn−1

dn−1oo Pn
dnoo · · ·oo

obtained from any projective resolution of a module A by dropping the term A.

Because −⊗B is right-exact, we have an isomorphism

TorR0 (A,B) ∼= A⊗B.

If the ring R is a PID, then TorR0 (A,B) = (0) for all n ≥ 2. The group TorR1 (A,B) plays
a crucial role in the universal coefficient theorem that expresses the homology groups with
coefficients in an R-module B in terms of the homology groups with coefficients in R.

Using Theorem 11.6, we can dualize the construction of Proposition 11.14 to show that
every module has an injective resolution, a notion defined below.

Definition 11.8. Given any R-module M , an injective resolution of M is any exact sequence

0 //M
i0 // I0 d0

// I1 d1
// · · · // In dn // In+1 // · · · (∗)

in which every In is an injective module. The exact sequence

I0 d0
// I1 d1

// · · · // In
dn // In+1 // · · ·

obtained by truncating the injective resolution of M before I0 is denoted by IM or I•, and
the injective resolution (∗) is denoted by

0 //M
i0 // IM .

An exact sequence (∗) where the I i are not necessarily injective is called a right acyclic
resolution of M .

Proposition 11.15. Every R-module M has some injective resolution.

Proof. Using Theorem 11.6 we can find an injective module I0 and an injection i0 : M → I0.
Let C1 = Coker i0 be the cokernel of i0. If C1 is not injective then by Theorem 11.6 we can
find an injective module I1 and an injection i1 : C1 → I1. Let C2 = Coker i1. If C2 is not
injective we repeat the process. By induction we obtain exact sequences

0 // Cn in // In
pn // Cn+1 // 0,

where Cn+1 = Coker in = In/Im in and pn is the projection map for all n ≥ 0, starting with

0 //M i0 // I0 p0
// C1 // 0,
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as illustrated by the following diagram.

0 //M i0 // I0 d0
//

p0   

I1 d1
//

p1   

I2 d2
//

p2   

I3 // · · ·

C1

i1

>>

  

C2

i2

>>

  

C3

i3

>>

  

· · ·

0

>>

0

>>

0

>>

0 · · ·

If we define dn : In → In+1 by

dn = in+1 ◦ pn (n ≥ 0),

then we immediately check Ker dn = Ker pn = Im in and Im dn = Im in+1, so the top row is
exact; that is, it is an injective resolution of M . See Figure 11.3.

In
injective module

C   y  I     /  C     
n n-1 n-1

injective
i n

i   (C   )n n

C     y  I     /  C     
n+1 n n

i      (C      )n+1   n+1

i
n+1

injective

I n+1

pn

surjective

injective module

surjective

C     y  I     /  C     
n+1 n+1n+2

pn+1

d   =   i             p  n n+1 n

Figure 11.3: A schematic illustration of the map dn = in+1 ◦ pn used for the construction of
an injective resolution.
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If we apply the functor Hom(A,−) to the exact sequence

I0 d0
// I1 d1

// · · · // In
dn // In+1 // · · ·

obtained by truncating the injective resolution of B before I0 we obtain the complex

Hom(A, I0) // Hom(A, I1) // · · · // Hom(A, In) // Hom(A, In+1) // · · ·

with maps Hom(A, In)
Hom(A,dn) // Hom(A, In+1) .

We have the cohomology groups Hp(Hom(A, IB)) of the complex Hom(A, IB). Remark-
ably, as in the case of projective resolutions, these cohomology groups are independent of the
injective resolution chosen. This is what makes injective resolutions so special. In our case
where we applied the functor Hom(A,−) we obtain some cohomology modules Ext′pR(A,B).

Definition 11.9. For any two R-modules A and B, the cohomology groups Ext′nR (A,B), the
Ext′ groups , are the cohomology groups obtained by applying the functor Hom(A,−) to the
exact sequence IA

I0 d0
// I1 d1

// · · · // In dn // In+1 // · · ·

obtained by truncating any injective resolution of B before I0.

It is natural to ask whether the modules Ext′pR(A,B) are related to the cohomology
modules ExtpR(A,B) induced by the functor Hom(−, B) and defined in terms of projective
resolutions. The answer is that they are isomorphic; see Rotman [51, 52] or Weibel [63] for
a thorough exposition.

11.3 Comparison Theorems for Resolutions

We now return to the fundamental property of projective and injective resolutions, a kind
of quasi-uniqueness. To be more precise, there is a chain homotopy equivalence between
the complexes PA and P′A arising from any two projective resolutions of a module A (a
similar result holds for injective resolutions). To understand this, let us review the notions
of chain map and chain homotopy from Section 2.6 in the context of projective and injective
resolutions.

Definition 11.10. Let A and B be two R-modules, let

PA ε // A // 0 (∗)

and

P′B ε′ // B // 0 (∗∗)
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be two complexes, and let f : A → B be a map of R-modules. A map (or morphism) from
PA to P′B over f (or lifting f) is a family g = (gn)n≥0 of maps gn : Pn → P ′n such that the
following diagram commutes for all n ≥ 1:

Pn

gn

��

dPn // Pn−1

gn−1

��
P ′n

dP
′

n

// P ′n−1

P0

g0

��

ε // A

f

��
P ′0 ε′

// B.

Given two morphisms g and h from PA to P′B over f , a chain homotopy between g and h
is a family s = (sn)n≥0 of maps sn : Pn → P ′n+1 for n ≥ 0, such that

gn − hn = sn−1 ◦ dPn + dP
′

n+1 ◦ sn, n ≥ 1

and
g0 − h0 = dP

′
1 ◦ s0,

as illustrated in the diagrams

· · · // Pn+1

dPn+1 //

∆n+1

��

Pn
dPn //

∆n

��
sn

}}

Pn−1

dPn−1 //

∆n−1

��
sn−1

}}

· · ·

· · · // P ′n+1
dP
′

n+1

// P ′n
dP
′

n

// P ′n−1
dP
′

n−1

// · · · ,

and

· · · // P1

dP1 //

∆1

��

P0

∆0

��
s0

~~
· · · // P ′1

dP
′

1

// P ′0,

where ∆n = gn − hn.

In particular, a special case of Definition 11.10 is the case where (∗) and (∗∗) are projective
resolutions. Dually, we have a definition that specializes to injective resolutions.

Definition 11.11. Let A and B be two R-modules, let

0 // A
ε // IA (∗)

and

0 // B
ε′ // I′B (∗∗)
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be two complexes, and let f : A → B be a map of R-modules. A map (or morphism) from
IA to I′B over f (or lifting f) is a family g = (gn)n≥0 of maps gn : In → I

′n such that the
following diagram commutes for all n ≥ 0:

A

f

��

ε // I0

g0

��
B

ε′
// I
′0

In

gn

��

dnI // In+1

gn+1

��
I
′n

dn
I′
// I
′n+1.

Given two morphisms g and h from IA to I′B over f , a chain homotopy between g and h is
a family s = (sn)n≥1 of maps sn : In → I ′n−1 for n ≥ 1, such that

gn − hn = sn+1 ◦ dnI + dn−1
I′ ◦ s

n, n ≥ 1

and
g0 − h0 = s1 ◦ d0

I ,

as illustrated in the diagrams

I0
d0
I //

∆0

��

I1

s1

~~

//

∆1

��

· · ·

I ′0
d0
I′
// I ′1 // · · · ,

and

· · · // In−1

dn−1
I //

∆n−1

��

In
dnI //

∆n

��
sn

}}

In+1
dn+1
I //

∆n+1

��
sn+1

}}

· · ·

· · · // I ′n−1

dn−1
I′

// I ′n
dn
I′
// I ′n+1

dn+1
I′

// · · · ,

where ∆n = gn − hn.

We now come to the small miracle about projective resolutions. We begin with a crucial
observation.

Proposition 11.16. If we have a diagram

P
θ

~~
f
��

0

  
A ϕ

// B
ψ
// C

in which
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(1) P is projective.

(2) The lower sequence is exact (i.e., Im ϕ = Kerψ).

(3) ψ ◦ f = 0,

then there is a map θ : P → A lifting f (as shown by the dotted arrow above).

Proof. Indeed, ψ ◦ f = 0 implies that Im f ⊆ Kerψ = Im ϕ; so, we have Im f ⊆ Im ϕ, and
we are reduced to the usual diagram

P
θ

||
f
��

A ϕ
// Im ϕ // 0

where ϕ is surjective.

Theorem 11.17. (Comparison Theorem, Projective Case) Let A and B be R-modules. If

PA ε // A // 0 is a chain complex with all Pn in PA projective and if XB ε′ // B // 0
is an exact sequence (a left resolution of B), then any R-linear map f : A → B lifts to a
morphism g from PA to XB as illustrated by the following commutative diagram:

· · · // P2

g2

��

dP2 // P1

g1

��

dP1 // P0

g0

��

ε // A

f

��

// 0

· · · // X2
dX2

// X1
dX1

// X0
ε′
// B // 0.

Any two morphisms from PA to XB lifting f are chain homotopic.

Proof. Here is a slightly expanded version of the classical proof from Cartan–Eilenberg [10]
(Chapter V, Proposition 1.1).

We begin by proving the existence of the lift, stepwise, by induction. Since we have
morphisms ε : P0 → A and f : A → B, we get a morphism f ◦ ε : P0 → B and we have the
diagram

P0

f◦ε
��

g0

}}
X0

ε′
// B // 0.

As P0 is projective, the map g0 : P0 → X0 exists and makes the diagram commute. Assume
the lift exists up to level n. We have the diagram

Pn+1

dPn+1 // Pn
dPn //

gn

��

Pn−1

gn−1

��

// · · ·

Xn+1
dXn+1

// Xn
dXn

// Xn−1
// · · · ,

(†)
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so we get a map gn ◦ dPn+1 : Pn+1 → Xn and a diagram

Pn+1

gn◦dPn+1

��

gn+1

{{
Xn+1

dXn+1

// Xn
dXn

// Xn−1.

But, by commutativity in (†), we get

dXn ◦ gn ◦ dPn+1 = gn−1 ◦ dPn ◦ dPn+1 = 0.

Observe that in the above step we only use the fact that the first sequence is a chain complex.
Now Pn+1 is projective and the lower row in the above diagram is exact, so by Proposition
11.16, there is a lifting gn+1 : Pn+1 → Xn+1, as required.

Say we have two lifts g = (gn) and h = (hn). We construct the chain homotopy (sn), by
induction on n ≥ 0.

For the base case, we have the diagram

P0
ε //

s0

}}
h0

��
g0

��

A //

f
��

0

X1
dX1

// X0
ε′
// B // 0.

As ε′(g0 − h0) = (f − f)ε = 0, the lower row is exact and P0 is projective, we get our lifting
s0 : P0 → X1 with g0 − h0 = dX1 ◦ s0.

Assume, for the induction step, that we already have s0, . . . , sn−1. Write ∆n = gn − hn,
then we get the diagram

Pn
dPn //

∆n

��

Pn−1
//

∆n−1

��

sn−1

{{

Pn−2
//

∆n−2

��

· · ·

Xn+1
// Xn

dXn

// Xn−1
// Xn−2

// · · · .
(††)

There results a map ∆n − sn−1 ◦ dPn : Pn −→ Xn and a diagram

Pn

∆n−sn−1◦dPn
��

Xn+1
dXn+1

// Xn
dXn

// Xn−1.
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As usual, if we show that dXn ◦ (∆n− sn−1 ◦ dPn ) = 0, then there will be a lift sn : Pn → Xn+1

making the diagram
Pn

∆n−sn−1◦dPn
��

sn

{{
Xn+1

dXn+1

// Xn
dXn

// Xn−1

commute. Now by the commutativity of (††), we have dXn ◦∆n = ∆n−1 ◦ dPn ; so

dXn ◦ (∆n − sn−1 ◦ dPn ) = ∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn .

By the induction hypothesis, ∆n−1 = gn−1 − hn−1 = sn−2 ◦ dPn−1 + dXn ◦ sn−1, and therefore

∆n−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = sn−2 ◦ dPn−1 ◦ dPn + dXn ◦ sn−1 ◦ dPn − dXn ◦ sn−1 ◦ dPn = 0.

Hence, by Proposition 11.16, sn exists and we are done.

Note that Theorem 11.17 holds under hypotheses weaker than the assumption that both

If PA ε // A // 0 and XB ε′ // B // 0 are projective resolutions. It suffices that the
first sequence is a chain complex with all Pn projective and that the second sequence is exact
(with arbitrary Xn).

There are two important corollaries of the comparison theorem.

Proposition 11.18. Given any R-linear map f : A→ B between some R-modules A and B,

if PA ε // A // 0 and P′B ε′ // B // 0 are any two projective resolutions of A and
B, then f has a lift g from PA to P′B. Furthermore, any two lifts of f are chain homotopic.

Recall that a homotopy equivalence between two chain complexes C and D consists of a
pair (g, h) of chain maps g : C → D and h : D → C such that h ◦ g is chain homotopic to
idC and g ◦ h is chain homotopic to idD.

We have the following important result which plays a key role in showing that the notion
of derived functor does not depend on the choice of a projective resolution.

Theorem 11.19. Given any R-module A, if PA ε // A // 0 and P′A ε′ // A // 0 are
any two projective resolutions of A, then PA and P′A are homotopy equivalent.

Proof. By Proposition 11.18, the identity map idA : A → A has a lift g from PA and P′A

and a lift h from P′A and PA. Then h ◦ g is a lift of idA from PA to PA, and since the
identity map idP of the complex PA is also a lift of idA, by Proposition 11.18 there is a chain
homotopy from h ◦ g to idPA . Similarly, g ◦ h is a lift of idA from P′A to P′A, and since
the identity map idP′ of the complex P′A is also a lift of idA, by Proposition 11.18 there is
a chain homotopy from g ◦ h to idP′A . Therefore, g and h define a homotopy equivalence
between PA and P′A.
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Since the definition of an injective module is obtained from the definition of a projective
module by changing the direction of the arrows it is not unreasonable to expect that a version
of Theorem 11.17 holds for injective resolutions. The proof is basically obtained by changing
the direction of the arrows, but it takes a little more than that. Indeed, some quotients show
up in the proof. Paraphrazing Lang [35]: “The books on homological algebra that I know of
in fact carry out the projective case, and leave the injective case to the reader.”

We begin with a crucial observation dual to the crucial observation in Proposition 11.16.

Proposition 11.20. If we have a diagram

A
ψ //

0 ��

B

f
��

ϕ // C

θ��
I

in which

(1) I is injective.

(2) The upper sequence is exact (i.e., Im ψ = Kerϕ).

(3) f ◦ ψ = 0,

then there is a map θ : C → I lifting f (as shown by the dotted arrow above).

Proof. Indeed, f ◦ ψ = 0 implies that Im ψ ⊆ Ker f ; so we have Kerϕ = Im ψ ⊆ Ker f ,
that is Kerϕ ⊆ Ker f . It follows that there is a unique map f : B/Kerϕ→ I such that the
following diagram commutes:

B π //

f
$$

B/Kerϕ

f
��
I.

The map ϕ : B → C factors through the quotient map ϕ : B/Kerϕ→ C as ϕ = ϕ ◦ π so we
have the commutative diagram

B

π

��

ϕ

$$
0 // B/Kerϕ

f
��

ϕ // C

θ
zz

I

and since I is injective there is a map θ : C → I lifting f as shown in the diagram above.
Since f = f ◦ π, the commutativity of the above diagram yields f = f ◦ π = θ ◦ ϕ, which
shows that θ lifts f , as claimed.
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Theorem 11.21. (Comparison Theorem, Injective Case) Let A and B be R-modules. If

0 // A
ε //XA is an exact sequence (a right resolution of A) and if 0 // B

ε′ // IB
is a chain complex with all In in IB injective, then any R-linear map f : A → B lifts to a
morphism g from XA to IB as illustrated by the following commutative diagram:

0 // A

f

��

ε // X0

g0

��

d0
X // X1

g1

��

d1
X // X2

g2

��

d2
X // · · ·

0 // B
ε′
// I0

d0
I

// I1

d1
I

// I2

d2
I

// · · · .

Any two morphisms from XA to IB lifting f are chain homotopic.

Proof. Using Proposition 11.20, the proof of the theorem proceeds by induction and is very
similar to the proof of Theorem 11.17. Lang [35] gives most of the details.

Note that Theorem 11.21 holds under hypotheses weaker than the assumption that both

0 // A
ε //XA and 0 // B

ε′ // IB are injective resolutions. It suffices that the first
sequence is exact (with arbitrary Xn) and that the second sequence is a chain complex with
all In injective.

Analogously to the projective case we have the following important corollaries.

Proposition 11.22. Given any R-linear map f : A → B between some R-modules A and

B, if 0 // A ε // IA and 0 // B ε′ // I′B are any two injective resolutions of A and

B, then f has a lift g from IA to I′B. Furthermore, any two lifts of f are chain homotopic.

The following result plays a key role in showing that the notion of derived functor does
not depend on the choice of an injective resolution.

Theorem 11.23. Given any R-module A, if 0 // A
ε // IA and 0 // A

ε′ // I′A are

any two injective resolutions of A, then IA and I′A are homotopy equivalent.

At this stage we are ready to define the central concept of this chapter, the notion of
derived functor. A key observation is that the existence of projective resolutions or injective
resolutions depends only on the fact that for every object A there is some projective object
P and a surjection ρ : P → A, and there is some injective object I and an injection ε : A→ I.

If C is an abelian category then the notions of projective and injective objects make
sense since they are defined purely in terms of conditions on maps; see Definition 11.2
and Definition 11.3. The notions of projective and injective resolutions are also defined by
replacing projective modules by projective objects and injective modules by injective objects.
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Definition 11.12. Given an abelian category C, we say that C has enough injectives if for
every object A ∈ C there is some injective object I ∈ C and a monic ε : A → I (which
means that ker ε = 0) (resp. enough projectives if for every A ∈ C there is some projective
object P ∈ C and an epic ρ : P → A (which means that coker ρ = 0)).

If can be shown that if an abelian category C has enough projectives, then the results of
this section (in particular Propositions 11.16, 11.18, and Theorem 11.19) hold. Similarly, if
an abelian category C has enough injectives, then the results of this section (in particular
Propositions 11.20, 11.22, and Theorem 11.23) hold.

As we saw, the category of R-modules has enough injectives and projectives. Now it
turns out that the category of sheaves (which is abelian) has enough injectives, but does not
have enough projectives (as we saw, cokernels and quotients are problematic).

Derived functors have the property that any short exact sequence yields a long coho-
mology (or homology) exact sequence, and that it is so naturally (as in Theorem 2.22 and
Proposition 2.23). To prove these facts requires some rather technical propositions involving
projective and injective resolutions. We content ourselves with stating these results. Futher-
more, since our ultimate goal is to apply derived functors to the category of sheaves to obtain
sheaf cohomology, and since the category of sheaves does not have enough projectives but
has enough injectives, we will focus our attention on results involving injectives.

We need to define what we mean by an exact sequence of chain complexes.

Definition 11.13. If A = (A, dA), B = (B, dB) and C = (C, dC) are three chain complexes
and f : A→ B and g : B→ C are two chain maps with f = (fn) and g = (gn), we say that
the the sequence of complexes

0 // A
f //B

g // C // 0

is exact iff the sequence

0 // An
fn // Bn gn // Cn // 0

is exact for every n.

Proposition 11.24. (Horseshoe Lemma, Projective Case) Consider the diagram (in some
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abelian category C)
...

��

...

��
P ′1

��

P ′′1

��
P ′0

ε′
��

P ′′0

ε′′
��

0 // A′
ϕ //

��

A
ψ // A′′ //

��

0

0 0,

where the left column is a projective resolution P′ : PA′ ε′ // A′ // 0 of A′, the right

column P′′ : PA′′ ε′′ // A′′ // 0 is a projective resolution of A′′, and the row is an exact

sequence. Then there is a projective resolution P : PA ε // A // 0 of A and chain maps
f : P′ → P and g : P→ P′′ such that the sequence

0 // P′
f // P

g // P′′ // 0

is exact.

A proof of Proposition 11.24 can be found in Rotman [50, 52] (Chapter 6, Lemma 6.20).

Proposition 11.25. (Horseshoe Lemma, Injective Case) Consider the diagram (in some
abelian category C)

...
...

I ′1

OO

I ′′1

OO

I ′0

OO

I ′′0

OO

0 // A′

ε′

OO

ϕ // A
ψ // A′′

ε′′

OO

// 0

0

OO

0,

OO

where the left column is an injective resolution I′ : 0 // A′ ε′ // IA′ of A′, the right column

I′′ : 0 // A′′ ε′′ // IA′′ is an injective resolution of A′′, and the row is an exact sequence.
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Then there is an injective resolution I : 0 // A ε // IA of A and chain maps f : I′ → I
and g : I→ I′′ such that the sequence

0 // I′
f // I

g // I′′ // 0

is exact.

We will also need a generalization of the Horseshoe Lemma for chain maps of exact
sequences.

Proposition 11.26. Suppose we have a map of exact sequences (in some abelian category
C)

0 // A′

f ′

��

ϕ // A
ψ //

f

��

A′′

f ′′

��

// 0

0 // B′
ϕ′

// B
ψ′

// B′′ // 0

and that we have some injective resolutions 0 // A′ εA
′
// IA′ , 0 // A′′ εA

′′
// IA′′ ,

0 // B′ εB
′
// IB′ and 0 // B′′ εB

′′
// IB′′ of the corners A′, A′′, B′, B′′, and chain maps

F ′ : IA′ → IB′ over f ′ and F ′′ : IA′′ → IB′′ over f ′′. Then there exist injective resolutions

0 // A εA // IA of A and 0 // B εB // IB of B and a chain map F : IA → IB over f
such that the following diagram commmutes

0 // IA′

F ′

��

// IA

F

��

// IA′′

F ′′

��

// 0

0 // IB′ // IB // IB′′ // 0

and has exact rows.

There is also a version of Proposition 11.26 for projective resolutions; see Rotman [50, 52]
(Chapter 6, Lemma 6.24). The reader should enjoy the use of three-dimensional diagrams
involving cubes.

11.4 Left and Right Derived Functors

Let C and D be two abelian categories, and let T : C→ D be an additive functor. Actually,
in all our examples C is either the category of R-modules, the category of presheaves, or the
category or sheaves, and D is either the category of R-modules or the catgeory of abelian
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groups, so the reader may assume this if the abstract nature of abelian categories makes
her/him uncomfortable.

Assume that C has enough injectives. For any A ∈ C, if 0 // A ε // IA is an injective
resolution of A, then if we apply T to IA we obtain the cochain complex

0 // T (I0)
T (d0) // T (I1)

T (d1) // · · · // T (In)
T (dn) // T (In+1) // · · · , (Ri)

denoted T (IA). If T : C → D is a contravariant functor and if we apply T to IA we obtain
the chain complex

0 T (I0)oo T (I1)
T (d0)oo · · ·T (d1)oo T (In)oo T (In+1)

T (dn)oo · · · ,oo (Li)

also denoted T (IA).

Now assume that C has enough projectives. For any A ∈ C, if PA ε // A // 0 is a
projective resolution of A, then if we apply T to PA we obtain the chain complex

0 T (P0)oo T (P1)
T (d1)oo · · ·T (d2)oo T (Pn−1)oo T (Pn)

T (dn)oo · · · ,oo (Lp)

denoted T (PA). If T : C→ D is a contravariant functor and if we apply T to PA we obtain
the cochain complex

0 // T (P0)
T (d1) // T (P1)

T (d2) // · · · // T (Pn−1)
T (dn) // T (Pn) // · · · , (Rp)

also denoted T (PA). The above four complexes have (co)homology that defines the left and
right derived functors of T .

Definition 11.14. Let C and D be two abelian categories, and let T : C→ D be an additive
functor.

(Ri) Assume that C has enough injectives. For any A ∈ C, if 0 // A
ε // IA is an

injective resolution of A, then the cohomology groups of the complex T (IA) are denoted
by

RnT (IA) = Hn(T (IA)), n ≥ 0.

(Li) If T : C → D is a contravariant functor, then the homology groups of the complex
T (IA) are denoted by

LnT (IA) = Hn(T (IA)), n ≥ 0.

(Lp) Now assume that C has enough projectives. For any A ∈ C, if PA ε // A // 0
is a projective resolution of A, then the homology groups of the complex T (PA) are
denoted by

LnT (PA) = Hn(T (PA)), n ≥ 0.
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(Rp) If T : C → D is a contravariant functor, then the cohomology groups of the complex
T (PA) are denoted by

RnT (PA) = Hn(T (PA)), n ≥ 0.

The reason for using RnT or LnT is that the chain complexes T (IA) in (Ri) and T (PA)
in (Rp) have arrows going to the right since they are cohomology complexes so the corre-
sponding functors are RnT , and the chain complexes T (IA) in (Li) and T (PA) in (Lp) have
arrows going to the left since they are homology complexes so the corresponding functors
are LnT . We also follow the (almost) universally adopted convention that superscripts are
used for denoting objects involving cohomology and subscripts are used for denoting objects
involving homology.

In the rest of this chapter we always assume that C and D are abelian categories and
that C has enough injectives or projectives, as needed.

All the operators introduced in Definition 11.14 are actually functors so let us clarify what
are the categories involved. In Cases (Li) and (Ri) the domain category is the set of all in-

jective resolutions 0 // A
ε // IA for all A ∈ C, and a morphism from 0 // A

ε // IA

to 0 // B
ε′ // I′B is simply a map f : A → B. To be absolutely precise RnT (IA) and

LnT (IA) should be denoted RnT ( 0 // A
ε // IA ) and LnT ( 0 // A

ε // IA ) but for
the sake of notational simplicity we use the former notation.

In Cases (Lp) and (Rp) the domain category is the set of all projective resolutions

PA ε // A // 0 (A ∈ C), and a morphism from PA ε // A // 0 to P′B ε′ // B // 0
is simply a map f : A→ B. Again, to be absolutely precise LnT (PA) and RnT (PA) should be

denoted LnT ( PA ε // A // 0 ) RnT ( PA ε // A // 0 ) but we use the simpler notation.

In both cases the codomain category is D. Definition 11.14 describes how RnT and LnT
act on objects. We also have to explain how they act on maps f : A → B. First consider
Case (Ri).

If 0 // A
ε // IA is any injective resolution of A and 0 // B

ε′ // I′B is any injective

resolution of B, then by Proposition 11.22 the map f has a lift g from IA to I′B as illustrated
by the following commutative diagram

0 // A

f

��

ε // I0

g0

��

d0
I // I1

g1

��

d1
I // I2

g2

��

d2
I // · · ·

0 // B
ε′

// I ′0
d0
I′
// I ′1

d1
I′
// I ′2

d2
I′
// · · · .
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Since T is a functor, T (g) is a chain map from T (IA) to T (I′B) lifting T (f) as illustrated by
the following commutative diagram

0 // T (A)

T (f)

��

T (ε) // T (I0)

T (g0)

��

T (d0
I)
// T (I1)

T (g1)

��

T (d1
I)
// T (I2)

T (g2)

��

T (d2
I)
// · · ·

0 // T (B)
T (ε′)

// T (I ′0)
T (d0

I′ )
// T (I ′1)

T (d1
I′ )
// T (I ′2)

T (d2
I′ )
// · · · .

By Proposition 2.19, T (g) induces a homomorphism of cohomology T (gn)∗ : Hn(T (IA)) →
Hn(T (I′B)) for all n ≥ 0. Furthermore, if h is another lift of f , since by Proposition 11.22 any
two lifts of f are chain homotopic say by the chain homotopy (sn)n≥0, since T is additive,
by applying T to the equations

gn − hn = sn+1 ◦ dnI + dn−1
I′ ◦ s

n

we obtain
T (gn)− T (hn) = T (sn+1) ◦ T (dnI ) + T (dn−1

I′ ) ◦ T (sn),

which shows that (T (sn))n≥0 is a chain homotopy between T (g) and T (h), and by Proposi-
tion 2.20 we have T (gn)∗ = T (hn)∗. Therefore, the homomorphism T (gn)∗ : Hn(T (IA)) →
Hn(T (I′B)) is independent of the lift g of f , and we define RnT (IA, I

′
B)(f) : RnT (IA) →

RnT (I′B) by
RnT (IA, I

′
B)(f) = T (gn)∗.

In Case (Li), since T is a contravariant functor, a lift g of f induces a chain map T (g)
between the homology complexes T (I′B) and T (IA) lifting T (f) as illustrated by the following
commutative diagram

0 T (B)oo

T (f)

��

T (I ′0)
T (ε′)oo

T (g0)

��

T (I ′1)
T (d0

I′ )oo

T (g1)

��

T (I ′2)
T (d1

I′ )oo

T (g2)

��

· · ·
T (d2

I′ )oo

0 T (A)oo T (I0)
T (ε)

oo T (I1)
T (d0

I)
oo T (I2)

T (d1
I)

oo · · · .
T (d2

I)
oo

The map T (gn)∗ : Hn(T (I′B))→ Hn(T (IA)) is a homomorphism of homology and we obtain
a well-defined map LnT (I′B, IA)(f) : LnT (I′B)→ LnT (IA) (independent of the lifting g) given
by

LnT (I′B, IA)(f) = T (gn)∗.

In Case (Lp) we use projective resolutions PA ε // A // 0 and P′B ε′ // B // 0 .
By Proposition 11.18, the map f has a lift g from PA to P′B as illustrated by the following
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commutative diagram

0 Aoo

f

��

P0
εoo

g0

��

P1

dP0oo

g1

��

P 2
dP1oo

g2

��

· · ·
dP2oo

0 Boo P ′0ε′
oo P ′1

dP
′

0

oo P ′2
dP
′

1

oo · · · .
dP
′

2

oo

Since T is a functor, T (g) is a chain map from T (PA) to T (P′B) lifting T (f) as illustrated
by the following commutative diagram

0 T (A)oo

T (f)

��

T (P0)
T (ε)oo

T (g0)

��

T (P1)
T (dP0 )
oo

T (g1)

��

T (P 2)
T (dP1 )
oo

T (g2)

��

· · ·
T (dP2 )
oo

0 T (B)oo T (P ′0)
T (ε′)
oo T (P ′1)

T (dP
′

0 )

oo T (P ′2)
T (dP

′
1 )

oo · · · .
T (dP

′
2 )

oo

Then T (g) is a chain map of homology from T (PA) to T (P′B), and T (gn)∗ : Hn(T (PA)) →
Hn(T (P′B)) is the induced map of homology. We obtain a well-defined map of homology
(independent of the lifting g) LnT (PA,P′B)(f) : LnT (PA)→ LnT (P′B) given by

LnT (PA,P′
B

)(f) = T (gn)∗.

In Case (Rp), we use projective resolutions and Proposition 11.18. Since T is a con-
travariant functor, T (g) is a chain map from T (P′B) to T (PA) lifting T (f) as illustrated by
the following commutative diagram

0 // T (B)

T (f)

��

T (ε′) // T (P ′0)

T (g0)

��

T (dP
′

0 )
// T (P ′1)

T (g1)

��

T (dP
′

1 )
// T (P ′2)

T (g2)

��

T (dP
′

2 )
// · · ·

0 // T (A)
T (ε)

// T (P0)
T (dP0 )

// T (P1)
T (dP1 )

// T (P2)
T (dP2 )

// · · · .

Then T (g) is a chain map of cohomology from T (P′B) to T (PA) and T (gn)∗ : Hn(T (P′B))→
Hn(T (PA)) is the induced map of cohomology. We obtain a well-defined map of cohomology
(independent of the lifting g) RnT (P′B,PA)(f) : RnT (P′B)→ RnT (PA) given by

RnT (P′
B
,PA)(f) = T (gn)∗.

In summary we make the following definition.

Definition 11.15. Let A,B ∈ C be objects in C and let f : A→ B be any map.
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(Ri) If 0 // A ε // IA is any injective resolution of A and 0 // B ε′ // I′B is any

injective resolution of B, then we define RnT (IA, I
′
B)(f) : RnT (IA)→ RnT (I′B) by

RnT (IA, I
′
B)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (IA)) → Hn(T (I′B)) is independent of the
lift g.

(Li) We define LnT (I′B, IA)(f) : LnT (I′B)→ LnT (IA) by

LnT (I′B, IA)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (I′B)) → Hn(T (IA)) is independent of the
lift g.

(Lp) If PA ε // A // 0 is any projective resolution of A and P′B ε′ // B // 0 is any
projective resolution of B, then we define LnT (PA,P′B)(f) : LnT (PA) → LnT (P′B)
by

LnT (PA,P′
B

)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (PA))→ Hn(T (P′B)) is independent of the
lift g.

(Rp) We define RnT (P′B,PA)(f) : RnT (P′B)→ RnT (PA) by

RnT (P′
B
,PA)(f) = T (gn)∗

for any lift g of f . The map T (gn)∗ : Hn(T (P′B))→ Hn(T (PA)) is independent of the
lift g.

It is an easy exercise to check that RnT and LnT are additive functors, contravariant in
Cases (Li) and (Rp).

The next two theorems are absolutely crucial results. Indeed, they show that even though
the objects RnT (IA) (and LnT (IA)) depend on the injective resolution IA chosen for A, this
dependency is inessential because any other resolution I′A for A yields an object RnT (I′A)
isomorphic to RnT (IA). Similarly if PA and P′A are two different resolutions for A then
LnT (PA) and LnT (P′A) are isomorphic. The key to these isomorphisms are the comparison
theorems. These isomorphisms are actually isomorphisms of functors known as natural
transformations that we now define. A natural transformation is a simple generalization of
the notion of morphism of presheaves.

Definition 11.16. Given two categories C and D and two functors F,G : C→ D between
them, a natural transformation η : F → G is a family η = (ηA)A∈C of maps ηA : F (A)→ G(A)
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in D such that the following diagram commutes for all maps f : A → B between objects
A,B ∈ C:

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (B) ηB

// G(B).

We are now ready to state and prove our crucial theorems.

Theorem 11.27. Let 0 // A
εA // IA and 0 // A

ε′A // I′A be any two injective resolu-
tions for any A ∈ C. If T : C→ D is any additive functor, then there are isomorphisms

ηnA : RnT (IA)→ RnT (I′A)

for all n ≥ 0 that depend only on A and T . Furthermore, for any map f : A → B, for any

injective resolutions 0 // B
εB // IB and 0 // B

ε′B // I′B of B the following diagram

RnT (IA)
ηnA //

RnT (IA,IB)(f)

��

RnT (I′A)

RnT (I′A,I
′
B)(f)

��
RnT (IB)

ηnB

// RnT (I′B)

commutes for all n ≥ 0.

If T : C→ D is a contravariant additive functor, then there are isomorphisms

ηAn : LnT (IA)→ LnT (I′A)

for all n ≥ 0 that depend only on A and T . Furthermore, the following diagram

LnT (IB)
ηBn //

LnT (IB ,IA)(f)

��

LnT (I′B)

LnT (I′B ,I
′
A)(f)

��
LnT (IA)

ηAn

// LnT (I′A)

commutes for all n ≥ 0.

Proof. By Theorem 11.23 the complexes IA and I′A are homotopy equivalent, which means
that there are chain maps g : IA → I′A and h : I′A → IA both lifting idA such that h◦g is chain
homotopic to idIA and g ◦ h is chain homotopic to idI′A

. Since T is additive, T (h) ◦ T (g) is
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chain homotopic to idT (IA) and T (g) ◦ T (h) is chain homotopic to idT (I′A). These chain maps
induce cohomology homomorphisms for all n ≥ 0 and by Proposition 2.20, we obtain

T (hn)∗ ◦ T (gn)∗ = idT (IA)

T (gn)∗ ◦ T (hn)∗ = idT (I′A).

Therefore, T (gn)∗ : Hn(T (IA))→ Hn(T (I′A)) is an isomorphism of cohomology.

We still have to show that this map depends only on T and A. This is because by
Proposition 11.22, any two lifts g and g′ of idA are chain homotopic, so T (g) and T (g′) are
chain homotopic, and by Proposition 2.20 we have T (gn)∗ = T (g′n)∗. As a consequence, it
is legitimate to set ηnA = T (gn)∗, a well-defined isomorphism ηnA : RnT (IA)→ RnT (I′A).

Finally, we need to check that the ηnA yield a natural transformation. For any map
f : A→ B we need to show that the following diagram commutes:

RnT (IA)
ηnA //

RnT (IA,IB)(f)

��

RnT (I′A)

RnT (I′A,I
′
B)(f)

��
RnT (IB)

ηnB

// RnT (I′B).

The map ηnA is given by a lifting gA of idA from IA to I′A, and the map RnT (I′A, I
′
B)(f) is

given by a lifting h′ of f from I′A to I′B. Thus h′ ◦ gA is a lifting of f ◦ idA = f from IA to
I′B, as illustrated in the following commutative diagram

0 // A

idA

��

// I0
A

g0
A
��

// I1
A

g1
A
��

// I2
A

g2
A
��

// I3
A

g3
A
��

// · · ·

0 // A

f

��

// I ′0A

h′0

��

// I ′1A

h′1

��

// I ′2A

h′2

��

// I ′3A

h′3

��

// · · ·

0 // B // I ′0B // I ′1B // I ′2B // I ′3B // · · · .

Similarly the map ηnB is given by a lifting gB of idB from IB to I′B, and the map
RnT (IA, IB)(f) is given by a lifting h of f from IA to IB. Thus gB ◦ h is a lifting of
idB ◦ f = f from IA to I′B, as illustrated in the following commutative diagram

0 // A

f

��

// I0
A

h0

��

// I1
A

h1

��

// I2
A

h2

��

// I3
A

h3

��

// · · ·

0 // B

idB

��

// I0
B

g0
B
��

// I1
B

g1
B
��

// I2
B

g2
B
��

// I3
B

g3
B
��

// · · ·

0 // B // I ′0B // I ′1B // I ′2B // I ′3B // · · · .
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Since T is a functor, T (h′)◦T (gA) and T (gB)◦T (h) both lift T (f), and by Proposition 11.22
they are chain homotopic, so

T (h′n)∗ ◦ T (gnA)∗ = T (gnB)∗ ◦ T (hn)∗

or equivalently
RnT (I′A, I

′
B)(f) ◦ ηnA = ηnB ◦RnT (IA, IB)(f)

as desired. The proof in the case of a contravariant functor is similar.

We have a similar theorem for projective resolutions using Proposition 11.18 and Theorem
11.19 instead of Proposition 11.22 and Theorem 11.23.

Theorem 11.28. Let PA εA // A // 0 and P′A ε′A // A // 0 be any two projective res-
olutions for any A ∈ C. If T : C→ D is any additive functor, then there are isomorphisms

ηAn : LnT (PA)→ LnT (P′
A

)

for all n ≥ 0 that depend only on A and T . Furthermore, for any map f : A → B, for

any projective resolutions PB εB // B // 0 and P′B ε′B // B // 0 of B, the following
diagram

LnT (PA)
ηAn //

LnT (PA,PB)(f)

��

LnT (P′A)

LnT (P′A,P′B)(f)

��

LnT (PB)
ηBn

// LnT (P′B)

commutes for all n ≥ 0.

If T : C→ D is a contravariant additive functor, then there are isomorphisms

ηnA : RnT (PA)→ RnT (P′
A

)

for all n ≥ 0 that depend only on A and T . Furthermore, the following diagram

RnT (PB)
ηnB //

RnT (PB ,PA)(f)

��

RnT (P′B)

RnT (P′B ,P′A)(f)

��

RnT (PA)
ηnA

// RnT (P′A)

commutes for all n ≥ 0.

Theorem 11.27 and Theorem 11.28 suggest defining RnT and LnT as functors with do-
main C rather than projective or injective resolutions.
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Definition 11.17. Let C and D be two abelian categories, and let T : C→ D be an additive
functor.

(Ri) Assume that C has enough injectives and for every object A in C choose (once and for

all) some injective resolution 0 // A
ε // IA . The right derived functors RnT of T

are defined for every A ∈ C by

RnT (A) = RnT (IA) = Hn(T (IA)), n ≥ 0,

and for every map f : A→ B, by

RnT (f) = RnT (IA, I
′
B)(f), n ≥ 0.

(Li) If T : C → D is a contravariant functor, then the left derived functors LnT of T are
defined for every A ∈ C by

LnT (A) = LnT (IA) = Hn(T (IA)), n ≥ 0,

and for every map f : A→ B, by

LnT (f) = LnT (I′B, IA)(f), n ≥ 0.

(Lp) Now assume that C has enough projectives and for every object A in C choose (once

and for all) some projective resolution PA ε // A // 0 . The left derived functors
LnT of T are defined

for every A ∈ C by

LnT (A) = LnT (PA) = Hn(T (PA)), n ≥ 0,

and for every map f : A→ B, by

LnT (f) = LnT (PA,P′
B

)(f), n ≥ 0.

(Rp) If T : C→ D is a contravariant functor, then the right derived functors RnT of T are
defined for every A ∈ C by

RnT (A) = RnT (PA) = Hn(T (PA)), n ≥ 0,

and for every map f : A→ B, by

RnT (f) = RnT (P′
B
,PA)(f), n ≥ 0.
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Observe that in (Li) and (Rp) the derived functors are contravariant. Any other choice of

injective resolutions or projective resolutions yields derived functors (R̂nT )n≥0 and (L̂nT )n≥0

that are naturally isomorphic to the derived functors (RnT )n≥0 and (LnT )n≥0 associated
to the original fixed choice of resolutions (in the sense that the (ηnA)A∈C and (ηAn )A∈C in
Theorems 11.27 and 11.28 are natural transformations with all ηnA and all ηAn isomorphisms).
For example, in Case (Ri), for all maps f : A→ B, we have the commutative diagram

RnT (A)
ηnA //

RnT (f)

��

R̂nT (A)

R̂nT (f)

��

RnT (B)
ηnB

// R̂nT (B)

for every n ≥ 0.

11.5 Left-Exact and Right-Exact Derived Functors

One of the main reasons for defining the derived functors (RnT )n≥0 and (LnT )n≥0 is to
investigate properties of T , in particular how much does T preserve exactness. For T fixed,
the objects RnT (A) (or LnT (A)) (groups if D is the category of abelian goups) are important
invariants of the object A.

It turns out that more useful information is obtained if either R0T is isomorphic to T
or L0T is isomorphic to T . The following proposition gives sufficient conditions for this to
happen.

Proposition 11.29. Let C and D be two abelian categories, and let T : C → D be an
additive functor.

(1) If T is left-exact then R0T is naturally isomorphic to T . If T is right-exact and con-
travariant then L0T is naturally isomorphic to T .

(2) If T is right-exact then L0T is naturally isomorphic to T . If T is left-exact and con-
travariant then R0T is naturally isomorphic to T .

Proof. (1) Let 0 // A ε // IA be an injective resolution of A. Since T is left-exact we
have the exact sequence

0 // T (A)
T (ε) // T (I0)

T (d0) // T (I1).

Since T (ε) is injective, it follows that T (A) is isomorphic to ImT (ε) = KerT (d0). The chain
complex T (IA) given by

0 // T (I0)
T (d0) // T (I1)

T (d1) // T (I2) // · · ·
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yields R0T (A) = H0(T (IA)) = KerT (d0), so T (A) is isomorphic to R0T (A). We leave it as
an exercise to show that these isomorphisms constitute a natural transformation. The case
where T is right-exact and contravariant is left as an exercise.

(2) Let PA ε // A // 0 be a projective resolution of A. Since T is right-exact we have
the exact sequence

0 T (A)oo T (P 0)
T (ε)oo T (P 1).

T (d1)oo

Since T (ε) is surjective T (A) is isomorphic to T (P 0)/KerT (ε) = T (P 0)/ImT (d1). The chain
complex T (PA) given by

0 T (P 0)oo T (P 1)
T (d1)oo T (P 2)

T (d2)oo · · ·oo

yields L0T (A) = H0(T (PA)) = T (P 0)/ImT (d1), so T (A) is isomorphic to L0T (A). We leave
it as an exercise to show that these isomorphisms constitute a natural transformation. The
case where T is left-exact and contravariant is also left as an exercise.

Remark: We will show later that in Case (Ri) R0T is left-exact, in Case (Li) L0T is right-
exact, in Case (Lp) L0T is right-exact, and in Case (Rp) R0T is left-exact. These properties
also proven in Rotman [50, 52]. As a consequence, the conditions of Proposition 11.29 are
necessary and sufficient.

Example 11.1. We know that the contravariant functor TB(A) = Hom(A,B) with B fixed
is left-exact. Its right derived functors are the “Ext” functors (see Definition 11.6)

ExtnR(A,B) = (RnTB)(A),

with
Ext0

R(A,B) ∼= Hom(A,B).

This corresponds to Case (Rp).

We also know that the functor T ′A(B) = Hom(A,B) with A fixed is left-exact. Its right
derived functors are also “Ext” functors (see Definition 11.9)

Ext′R
n(A,B) = (RnT ′A)(B),

with
Ext′R

0(A,B) ∼= Hom(A,B).

This corresponds to Case (Ri). It turns out that ExtnR(A,B) and Ext′R
n(A,B) are isomorphic;

see Rotman [50, 52] (Chapter 7, Theorem 7.8).

The functor TB(A) = A⊗B with B fixed is right-exact. Its left derived functors are the
“Tor” functors (see Definition 11.7)

TorRn (A,B) = (LnTB)(A),
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with
TorR0 (A,B) ∼= A⊗B.

This corresponds to Case (Lp).

Similarly the functor TA(B) = A⊗B with A fixed is right-exact. Its left derived functors
are also the “Tor” functors

Tor′n
R(A,B) = (LnTA)(B),

with
Tor′0

R(A,B) ∼= A⊗B.

This also corresponds to Case (Lp). It turns out that TorRn (A,B) and Tor′n
R(A,B) are

isomorphic; see Rotman [50, 52] (Chapter 7, Theorem 7.9). It can be shown that for all R-
modules A and B, the R-module TorRn (A,B) is a torsion module for all n ≥ 1; see Rotman
[50, 52] (Chapter 8, Theorem 8.21).

Since Hom is not right-exact, its left derived functors convey no obvious information
about Hom. Similarly, since ⊗ is not left-exact, its right derived functors convey no obvious
information about it.

Although quite trivial the following proposition has significant implications, namely that
the family of right derived functors (RnT )n≥0 are universal δ-functors, and that the family
of left derived functors (LnT )n≥0 are universal ∂-functors; See Section 11.8.

Proposition 11.30. Let C and D be two abelian categories, and let T : C → D be an
additive functor.

(1) For every injective object I, we have RnT (I) = (0) for all n ≥ 1, and T (I) is isomorphic
to R0T (I). If T is contravariant we have LnT (I) = (0) for all n ≥ 1, and T (I) is
isomorphic to L0T (I).

(2) For every projective object P , we have LnT (P ) = (0) for all n ≥ 1, and T (P ) is
isomorphic to L0T (P ). If T is contravariant we have RnT (P ) = (0) for all n ≥ 1, and
T (P ) is isomorphic to R0T (P ).

Proof. (1) if I is injective we can pick the resolution

0 // I
id // I // 0,

which yields the complex T (I) given by

0 // T (I) // 0,

and obviously R0T (I) = H0(T (I)) = T (I) and Hn(T (I)) = (0) for all n ≥ 1. The proof for
the other cases is similar and left as an exercise.
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It should also be noted that if T is an exact functor then RnT = (0) and LnT = (0) for
all n ≥ 1.

Proposition 11.30 implies that if A or B is a projective R-module (in particular, a free
module), then

TorRn (A,B) = (0) for all n ≥ 1.

It can also be shown that the above property holds if A or B is a flat R-module; see Rotman
[50, 52] (Chapter 8, Theorem 8.7). Proposition 11.30 also implies that if A is a projective
R-module (in particular, a free module) or if B is an injective R-module then

ExtnR(A,B) = (0) for all n ≥ 1.

11.6 Long Exact Sequences Induced by Derived

Functors

We now come to the most important properties of derived functors, that short-exact se-
quences yield long exact sequences of cohomology or homology.

Theorem 11.31. (Long exact sequence, Case (Ri)) Assume the abelian category C has
enough injectives, let 0 −→ A′ −→ A −→ A′′ −→ 0 be an exact sequence in C, and let
T : C→ D be an additive left-exact functor.

(1) Then for every n ≥ 0, there is a map

(RnT )(A′′)
δn−→ (Rn+1T )(A′),

and the sequence

0 // T (A′) // T (A) // T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (RnT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · ·

is exact.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,
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then the induced diagram beginning with

0 // T (A′)

��

// T (A)

��

// T (A′′)

��

δ0
A //

0 // T (B′) // T (B) // T (B′′)
δ0
B

//

and continuing with

· · · // RnT (A′)

��

// RnT (A)

��

// RnT (A′′)

��

δnA // (Rn+1T )(A′)

��

// · · ·

· · · // RnT (B′) // RnT (B) // RnT (B′′)
δnB

// (Rn+1T )(B′) // · · ·

is also commutative.

Proof. We have injective resolutions (from the collection of resolutions picked once and for

all) 0 // A′ ε′ // IA′ and 0 // A′′ ε′′ // IA′′ for A′ and A′′. We are in the situation where
we can apply the horseshose lemma (Proposition 11.25) to obtain an injective resolution

0 // A
ε // ÎA for A as illustrated in the following diagram in which all rows and columns

are exact

...
...

...

0 // I ′1

OO

// Î1

OO

// I ′′1

OO

// 0

0 // I ′0

OO

// Î0

OO

// I ′′0

OO

// 0

0 // A′

ε′

OO

// A //

ε

OO

A′′

ε′′

OO

// 0

0

OO

0

OO

0

OO

.
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Since all the rows are exact we obtain an exact sequence of complexes

...
...

...

0 // I ′2

OO

// Î2 //

OO

I ′′2

OO

// 0

0 // I ′1

OO

// Î1

OO

// I ′′1

OO

// 0

0 // I ′0

OO

// Î0

OO

// I ′′0

OO

// 0

0

OO

0

OO

0

OO

,

denoted by

0 // IA′ // ÎA // IA′′ // 0

Observe that the injective resolution ÎA for A given by the Horseshoe Lemma may not be
the original resolution that was picked originally and this is why it is denoted with hats. In
the end, we will see that Theorem 11.27 implies that this does not matter.

If we apply T to this complex we obtain another sequence of complexes

0 // T (IA′) // T (̂IA) // T (IA′′) // 0

as illustrated below

...
...

...

0 // T (I ′2)

OO

// T (Î2) //

OO

T (I ′′2)

OO

// 0

0 // T (I ′1)

OO

// T (Î1)

OO

// T (I ′′1)

OO

// 0

0 // T (I ′0)

OO

// T (Î0)

OO

// T (I ′′0)

OO

// 0

0

OO

0

OO

0

OO

.

Because the I ′n are injective and the rows

0 // I ′n // În // I ′′n // 0
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are exact, by Proposition 11.3 these sequence split and since T is an additive functor the
sequences

0 // T (I ′n) // T (În) // T (I ′′n) // 0

also split and thus are exact. Therefore the sequence

0 // T (IA′) // T (̂IA) // T (IA′′) // 0

is a short exact sequence, so our fundamental theorem applies (the zig-zag lemma for coho-
molohgy, Theorem 2.22) and we obtain a long exact sequence of cohomology

0 // H0(T (IA′)) // H0(T (̂IA)) // H0(T (IA′′))
δ0

// H1(T (IA′)) // · · · // · · ·

// Hn(T (IA′)) // Hn(T (̂IA)) // Hn(T (IA′′))
δn

// Hn+1(T (IA′)) // · · · // · · · // · · · ,

namely the following long exact sequence

0 // R0T (A′) // R̂0T (A) // R0T (A′′)
δ0

// (R1T )(A′) // · · · // · · ·

// (RnT )(A′) // (R̂nT )(A) // (RnT )(A′′)
δn

// (Rn+1T )(A′) // · · · // · · · // · · · .

The right derived functors R̂nT may not be those corresponding to the original choice of
injective resolutions but we can use Theorem 11.27 to replace it by the isomorphic derived
functors RnT corresponding to the original choice of injective resolutions and adjust the
isomorphisms. Since T is left-exact, by Proposition 11.29 we may also replace the R0T
terms (as well as the R̂0T terms) by T and adjust the isomorphisms. After all this, we do
obtain the promised long exact sequence.
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To prove naturality we use Proposition 11.26. Assume we have a commutative diagram

0 // A′

f ′

��

// A

f

��

// A′′

f ′′

��

// 0

0 // B′ // B // B′′ // 0

with exact rows. We have injective resolutions 0 // A′ εA
′
// IA′ , 0 // A′′ εA

′′
// IA′′ ,

0 // B′ εB
′
// IB′ and 0 // B′′ εB

′′
// IB′′ of the corners A′, A′′, B′, B′′, and chain maps

F ′ : IA′ → IB′ over f ′ and F ′′ : IB′′ → IB′′ over f ′′. Then there exist injective resolutions

0 // A
εA // ÎA of A and 0 // B

εB // ÎB of B and a chain map F : ÎA → ÎB over f
such that the following diagram commutes

0 // IA′

F ′

��

// ÎA

F

��

// IA′′

F ′′

��

// 0

0 // IB′ // ÎB // IB′′ // 0.

Since the InA′ and the InB′ are injective, every row of the diagram above splits, thus after
applying T we obtain a commutative diagram with exact rows

0 // T (IA′)

T (F ′)

��

// T (̂IA)

T (F )

��

// T (IA′)

T (F ′′)

��

// 0

0 // T (IB′) // T (̂IB) // T (IB′′) // 0.

We now conclude by applying Proposition 2.23 and replacing the terms R̂nT by RnT as we
did before.

Remark: If T is not left-exact, the proof of Theorem 11.31 shows that R0T is left-exact.

A similar theorem holds for the left derived functors LnT of a (right-exact) functor; we
obtain a long exact sequence of homology type involving the LnT applied to A′, A,A′′, and
L0T is right-exact.

Theorem 11.32. (Long exact sequence, Case (Lp)) Assume the abelian category C has
enough projectives, let 0 −→ A′ −→ A −→ A′′ −→ 0 be an exact sequence in C, and let
T : C→ D be an additive right-exact functor.

(1) Then for every n ≥ 1, there is a map

(LnT )(A′′)
∂n−→ (Ln−1T )(A′),
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and the sequence

· · · // LnT (A′) // LnT (A) // LnT (A′′)
∂n

// Ln−1T (A′) // · · · · · ·

// · · · · · · // L1T (A′′)
∂1

// T (A′) // T (A) // T (A′′) // 0

is exact.

(2) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram

· · · // (LnT )(A′) //

��

(LnT )(A) //

��

(LnT )(A′′)
∂An //

��

(Ln−1T )(A′) //

��

· · ·

· · · // (LnT )(B′) // (LnT )(B) // (LnT )(B′′)
∂Bn

// (Ln−1T )(B′) // · · ·

and ending with

· · · // L1T (A′′)

��

∂A1 // T (A′) //

��

T (A) //

��

T (A′′) //

��

0

· · · // L1T (B′′)
∂B1

// T (B′) // T (B) //// T (B′′) // 0

is also commutative.

Remark: If T is not right-exact, the proof of Theorem 11.32 shows that L0T is right-exact.

If C has enough injectives and T is a contravariant (right-exact) functor, we have a version
of Theorem 11.32 showing that there is a long-exact sequence of homology type involving the
LnT applied to A′, A,A′′, with the terms A′, A,A′′ appearing in reverse order (Case (Li)).
As a consequence, L0T is right-exact. This case does not seem to arise in practice.
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If C has enough projectives and T is a contravariant (left-exact) functor, we have a
version of Theorem 11.31 showing that there is a long-exact sequence of cohomology type
involving the RnT applied to A′, A,A′′ with the terms A′, A,A′′ appearing in reverse order
(Case (Rp)). As a consequence, R0T is left-exact.

Remember: Right derived functors go with left-exact functors; left derived functors go
with right-exact functors .

11.7 T -Acyclic Resolutions

There are situations (for example, when dealing with sheaves) where it is useful to know
that right derived functors can be computed by resolutions involving objects that are not
necessarily injective, but T -acyclic, as defined below. Assume that C is an abelian category
that has enough injectives.

Definition 11.18. Given an additive left-exact functor T : C → D, an object J ∈ C is
(right) T -acyclic if RnT (J) = (0) for all n ≥ 1 (see Definition 11.17, Case (Ri)).

The following proposition shows that right derived functors can be computed using T -
acyclic resolutions. The following auxiliary result is needed.

Proposition 11.33. If the sequence

0 // A
f // B

g // C

is exact and if T is left-exact, then KerT (g) ∼= T (Ker g).

Proof. Since the above is exact

A ∼= Im f = Ker g,

and as T is a functor

T (A) ∼= T (Ker g).

Since T is left-exact we obtain the exact sequence

0 // T (A)
T (f) // T (B)

T (g) // T (C),

so

T (A) ∼= Im T (f) = KerT (g),

and thus

KerT (g) ∼= T (A) ∼= T (Ker g),

as claimed.
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Proposition 11.34. Given an additive left-exact functor T : C→ D, for any A ∈ C suppose
there is an exact sequence

0 // A ε // J0 d0
// J1 d1

// J2 d2
// · · · (†)

in which every Jn is right T -acyclic (a right T -acyclic resolution JA). Then for every n ≥
0 we have an isomorphism between RnT (A) and Hn(T (JA)), where T (JA) is the cochain
complex

0 // T (J0)
T (d0) // T (J1)

T (d1) // T (J2)
T (d2) // · · · .

Proof. The proof is a good illustration of the use of the long exact sequence given by Theorem
11.31. Since (†) is exact and T is left-exact we obtain the exact sequence

0 // T (A)
T (ε) // T (J0)

T (d0) // T (J1),

which (see the proof of Proposition 11.29(1)) implies that

R0T (A) ∼= T (A) ∼= KerT (d0) = H0(T (JA)).

Let Kn = Ker dn for all n ≥ 1. The exact sequence (†) implies that Imdn = Ker dn+1 = Kn+1

and the surjection pn : Jn → Kn+1 has kernel Kn so we have the short exact sequence

0 // Kn // Jn
pn // Kn+1 // 0 (∗)

for all n ≥ 1. We also have the short exact sequence

0 // A // J0 p0
// K1 // 0. (∗∗)

If we denote the injection of Kn+1 into Jn+1 by εn+1, then we can factor dn as

dn = εn+1 ◦ pn.

We have the following commutative diagram

0 // A
ε // J0 d0

//

p0 !!

J1 d1
//

p1 !!

J2 d2
//

p2 !!

J3 // · · ·

K1

ε1

==

!!

K2

ε2

==

!!

K3

ε3

==

!!

· · ·

0

==

0

==

0

==

0 · · · .

If we apply T we get
T (dn) = T (εn+1) ◦ T (pn).
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Since εn+1 is injective, the sequence 0 // Kn+1 εn+1
// Jn+1 dn+1

// Jn+2 is exact, and since

T is left exact we see that 0 // T (Kn+1)
T (εn+1) // T (Jn+1)

T (dn+1) // T (Jn+2) is also

exact, so T (εn+1) is injective. It follows that the restriction of T (εn+1) to Im T (pn) is an
isomorphism onto the image of T (dn), which implies that

Im T (dn) ∼= Im T (pn), n ≥ 0.

By definition of Kn = Ker dn, we have the exact sequence

0 // Kn // Jn
dn // Jn+1,

so by Proposition 11.33 we get

KerT (dn) ∼= T (Ker dn). (∗Ker)

If we apply Theorem 11.31 to (∗∗), the long exact sequence begins with

0 // T (A) // T (J0)
T (p0) // T (K1) // R1T (A) // R1T (J0) = (0),

which yields

R1T (A) ∼= T (K1)/Im T (p0) = T (Ker d1)/Im T (p0) ∼= KerT (d1)/Im T (d0) = H1(T (JA)).

So far, we proved that R0T (A) ∼= H0(T (JA)) and R1T (A) ∼= H1(T (JA)). To prove that
RnT (A) ∼= Hn(T (JA)) for n ≥ 2 again we use the long exact sequence applied to (∗∗), which
gives

Rn−1T (J0) // Rn−1T (K1) // RnT (A) // RnT (J0),

and since J0 is T -acyclic Rn−1T (J0) = RnT (J0) = (0) for n ≥ 2, so we obtain isomorphisms

Rn−1T (K1) ∼= RnT (A), n ≥ 2.

The long exact sequence applied to (∗) yields

Rn−i−1T (J i) // Rn−i−1T (Ki+1) // Rn−iT (Ki) // Rn−iT (J i),

and since J i is T -acyclic Rn−i−1T (J i) = Rn−iT (J i) = (0) so we have the isomorphisms

Rn−i−1T (Ki+1) ∼= Rn−iT (Ki), 1 ≤ i ≤ n− 2.

By induction we obtain

Rn−1T (K1) ∼= R1T (Kn−1), n ≥ 2.
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However, we showed that Rn−1T (K1) ∼= RnT (A), so we obtain

RnT (A) ∼= Rn−1T (K1) ∼= R1T (Kn−1).

The long exact sequence applied to (∗) yields

T (Jn−1)
T (pn−1) // T (Kn) // R1T (Kn−1) // R1T (Jn−1) = (0)

which by (∗Ker) and the first isomorphism theorem implies that

RnT (A) ∼= R1T (Kn−1)
∼= T (Kn)/Im T (pn−1)

= T (Ker dn)/Im T (pn−1)
∼= KerT (dn)/Im T (dn−1) = Hn(T (JA)).

Therefore we proved that RnT (A) ∼= Hn(T (JA)) for all n ≥ 0, as claimed.

Another proof of Proposition 11.34 can be found in Lang [35] (Chapter XX, §6, Theorem
6.2). Actually, Lang proves a stronger result. This result is that for any injective resolution

0 // A
ε′ // IA, the morphism from the complex JA to the complex IA lifting idA given

by Proposition 11.21 induces isomorphisms Hn(T (JA)) ∼= RnT (A) for all n ≥ 0. Lang’s
proof makes use of a result of independent interest that we discuss below.

Proposition 11.35. Let T : C→ D be an additive left-exact functor. For any exact sequence

0 // X0 d0
// X1 d1

// X2 d2
// X3 d3

// · · · , (†)

if the X i are T -acyclic for all i ≥ 0, then

0 // T (X0)
T (d0) // T (X1)

T (d1) // T (X2)
T (d2) // T (X3)

T (d3) // · · ·

is also an exact sequence.

Proof. The proof uses an inductive process involving the cokernels Cn = Im dn (n ≥ 1).
Since Im dn = Ker dn+1, by the first isomorphism theorem

Cn = Im dn ∼= Xn/Ker dn ∼= Xn/Im dn−1 = Coker dn−1, n ≥ 1,

so Cn = Im dn is indeed isomorphic to the cokernel of dn−1. We can factor dn : Xn → Xn+1

as
dn = εn ◦ pn,

where pn : Xn → Cn is a surjection and εn : Cn → Xn+1 is an injection. It follows that
Ker pn+1 = Ker dn+1 = Im dn = Im εn and Im εn = Im dn = Ker dn+1 for all n ≥ 1, so we have
the exact sequences

0 // Cn εn // Xn+1 pn+1
// Cn+1 // 0 (†n)
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and

0 // Cn εn // Xn+1 dn+1
// Xn+2. (††n)

We wish to prove by induction on n that exactness holds up to T (Xn+2) and that Cn+1 is
T -acyclic.

Let us consider the case n = 0 (base step). Since T is left exact, we have an exact
sequence

0 // T (X0)
T (d0) // T (X1)

T (d1) // T (X2),

which shows that we have exactness at T (X0) and T (X1). We prove that we also have
exactness at T (X2).

If we let C1 = Im d1, since Ker p1 = Ker d1, we have the exact sequence

0 // X0 d0
// X1 p1

// C1 // 0. (†0)

If we apply Theorem 11.31 to the above exact sequence, the long exact sequence begins with

0 // T (X0)
T (d0) // T (X1)

T (p1) // T (C1) // RT 1(X0),

but since X1 is T -acyclic, RT 1(X0) = (0), so we have the exact sequence

0 // T (X0)
T (d0) // T (X1)

T (p1) // T (C1) // 0. (∗1)

As we just showed, we have an exact sequence

0 // C1 ε1 // X2 d2
// X3. (††1)

Since T is left exact, we obtain the exact sequence

0 // T (C1)
T (ε1) // T (X2)

T (d2) // T (X3). (∗2)

We can splice the sequences (∗1) and (∗2) to obtain the sequence

0 // T (X0)
T (d0) // T (X1)

T (p1) // T (C1)
T (ε1) // T (X2)

T (d2) // T (X3)

which is exact except at T 1(C), but since d1 = ε1 ◦ p1 and T (p1) is surjective,

ImT (d1) = ImT (ε1) ◦ T (p1) = ImT (ε1) = KerT (d2),

the sequence

0 // T (X0)
T (d0) // T (X1)

T (d1) // T (X2)
T (d2) // T (X3)
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is exact at T (X2).

We prove that C1 is T -acyclic as follows. If we apply Theorem 11.31 to the exact sequence

0 // X0 d0
// X1 p1

// C1 // 0, (†0)

we obtain the piece of exact sequence

RpT (X1) // RpT (C1) // Rp+1T (X0),

and since X0 and X1 are acyclic, RpT (X1) = Rp+1T (X0) = (0) for all p ≥ 1, so RpT (C1) =
(0) for all p ≥ 1.

The induction step is to prove that exactness holds at T (Xn+2) and that Cn+1 is T -acyclic
for n ≥ 1, assuming that Cn and Xn+1 are T -acyclic.

We have the exact sequence

0 // Cn εn // Xn+1 pn+1
// Cn+1 // 0, (†n)

where Cn, Xn+1 are T -acyclic, and the exact sequence

0 // Cn+1 εn+1
// Xn+2 dn+2

// Xn+3, (††n+1)

so we can repeat the argument used for the exact sequences

0 // X0 d0
// X1 p1

// C1 // 0

and

0 // C1 ε1 // X2 d2
// X3

to prove that exactness holds at X2 to prove that exactness holds at Xn+2 and that Cn+1 is
T -acyclic, which establishes the induction step.

A proposition analogous to Proposition 11.34 holds for left T -acyclic resolutions and the
left derived functors LnT . This time we assume that the abelian category C has enough
projectives.

Definition 11.19. Given an additive left-exact functor T : C→ D, an object J ∈ C is (left)
T -acyclic if LnT (J) = (0) for all n ≥ 1 (see Definition 11.17, Case (Lp)).

Proposition 11.36. Given an additive left-exact functor T : C→ D, for any A ∈ C suppose
there is an exact sequence

0 Aoo P0
εoo P1

d0oo P2
d1oo · · ·d2oo (†)

in which every P n is left T -acyclic (a left T -acyclic resolution PA). Then for every n ≥ 0 we
have an isomorphism between LnT (A) and Hn(T (PA)), where T (PA) is the chain complex

0 T (P0)oo T (P1)
T (d0)oo T (P2)

T (d1)oo · · ·T (d2)oo
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Proposition 11.34 has an interesting application to de Rham cohomology. Say M is a
smooth manifold. Recall that for every p ≥ 0 we have the sheaf ApM of differential forms on
M (where for every open subset U of M , ApM(U) = Ap(U) is the vector space of smooth
p-forms on U).

Proposition 11.37. If R̃M denotes the sheaf of locally constant real-valued functions on a
smooth manifold M , then

0 // R̃M
ε // A0

M
d // A1

M
d // · · · d // ApM

d // Ap+1
M

d // · · ·

is a resolution of R̃M , where ε is the inclusion map.

Proof. The above fact is proved using Proposition 10.24(ii) by showing that for every x ∈M ,
the stalk complex

0 // R // A0
M,x

// A1
M,x

// · · · // ApM,x
// Ap+1

M,x
// · · ·

is exact. Since M is a smooth manifold, we may assume that M is an open subset of Rn, and
use a fundamental system of convex open neighborhoods of x to compute the direct limit
ApM,x = lim−→(Ap(U))U3x. If U is convex, the complex

0 // R // A0(U) // A1(U) // · · · // Ap(U) // Ap+1(U) // · · ·

is exact by the Poincaré lemma (Proposition 3.2). Since a direct limit of exact sequences is
exact, we conclude that

0 // R // A0
M,x

// A1
M,x

// · · · // ApM,x
// Ap+1

M,x
// · · ·

is exact. For details, see Brylinski [9] (Section 1.4, Proposition 1.4.3).

If Γ(M,−) is the global section functor with Γ(M,ApM) = Ap(M), then it can also be
shown that the sheaves ApM are Γ(M,−)-acyclic. This is because the sheaves ApM are soft,
and soft sheaves on a paracompact space are Γ(M,−)-acyclic; see Godement [24] (Chapter 3,
Section 3.9), or Brylinski [9] (Section 1.4, Theorem 1.4.6 and Proposition 1.4.9), or Section
13.5.

Now, it is also true that sheaves have enough injectives (we will see this in Chapter

13). Therefore, we conclude that the cohomology groups RpΓ(M,−)(R̃M) and the de Rham

cohomology groups Hp
dR(M) are isomorphic. The groups RpΓ(M,−)(R̃M) are called the

sheaf cohomology groups of the sheaf R̃M and are denoted by Hp(M, R̃M). We will also
show in the next chapter that for a paracompact space M , the Čech cohomology groups
Ȟp(M,F) and the sheaf cohomology groups Hp(M,F) = RpΓ(M,−)(F) are isomorphic
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(where Γ(M,−) is the global section functor, Γ(M,F) = F(M)); thus, for smooth manifolds
we have isomorphisms

Hp(M, R̃M) ∼= Ȟp(M, R̃M) ∼= Hp
dR(M),

proving part of Theorem 9.4.

Theorems 11.31 and 11.32 suggest the definition of families of functors originally pro-
posed by Cartan and Eilenberg [10] and then investigated by Grothendieck in his legendary
“Tohoku” paper [27] (1957).

11.8 Universal δ-Functors and ∂-Functors

In his famous Tohoku paper [27] Grothendieck introduced the terminology “∂-functor” and
“∂∗-functor;” see Chapter II, Section 2.1. The notion of ∂-functor is a slight generalization
of the notion of “connected sequence of functors” introduced earlier by Cartan and Eilenberg
[10] (Chapter 3). Since ∂-functor have a cohomological flavor and ∂∗-functor have a homo-
logical flavor, everybody now appears to use the terminology δ-functor instead of ∂-functor
and ∂-functor for ∂∗-functor.

Definition 11.20. Given two abelian categories C and D, a δ-functor consists of a countable
family T = (T n)n≥0 of additive functors T n : C → D, and for every short exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 in the abelian category C and every n ≥ 0 of a map

T n(A′′)
δn−→ T n+1(A′)

such that the following two properties hold:

(i) The sequence

0 // T 0(A′) // T 0(A) // T 0(A′′)
δ0

// T 1(A′) // · · · // · · ·

// T n(A′) // T n(A) // T n(A′′)
δn

// T n+1(A′) // · · · // · · · // · · ·

is exact (a long exact sequence).
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(ii) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram beginning with

0 // T 0(A′)

��

// T 0(A)

��

// T 0(A′′)

��

δ0
A //

0 // T 0(B′) // T 0(B) // T 0(B′′)
δ0
B

//

and continuing with

· · · // T n(A′)

��

// T n(A)

��

// T n(A′′)

��

δnA // T n+1(A′)

��

// · · ·

· · · // T n(B′) // T n(B) // T n(B′′)
δnB

// T n+1(B′) // · · ·

is also commutative.

In particular, T 0 is left-exact.

The notion of morphism of δ-functors is defined as follows.

Definition 11.21. Given two δ-functors S = (Sn)n≥0 and T = (T n)n≥0, a morphism η : S →
T between S and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → T n such
that the following diagram commutes

Sn(A′′)
δnS //

(ηn)A′′
��

Sn+1(A′)

(ηn+1)A′
��

T n(A′′)
δnT

// T n+1(A′)

for all n ≥ 0 and for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0.

Morphisms of δ-functors are composed in the obvious way. The notion of isomorphism
is also obvious (each ηn is an an isomorphism).

Grothendieck introduced the important notion of universal δ-functor; see Grothendieck
[27] (Chapter II, Section 2.2).



11.8. UNIVERSAL δ-FUNCTORS AND ∂-FUNCTORS 441

Definition 11.22. A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn)n≥0

and every natural transformation ϕ : T 0 → S0 there is a unique morphism η : T → S such
that η0 = ϕ for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0, as illustrated in
the commutative diagram below.

· · · // T 0(A′′)
δ0
T //

ϕA′′

��

T 1(A′)

η1
A′

��

// T 1(A)

η1
A

��

// T 1(A′′)

η1
A′′

��

δ1
T // T 2(A′)

η2
A′

��

// · · ·

· · · // S0(A′′)
δ0
S

// S1(A′) // S1(A) // S1(A′′)
δ1
S

// S2(A′) // · · · .

We say that η lifts ϕ.

Proposition 11.38. Suppose S = (Sn)n≥0 and T = (T n)n≥0 are both universal δ-functors
and there is an isomorphism ϕ : S0 → T 0 (a natural transformation ϕ which is an isomor-
phism). Then there is a unique isomorphism η : S → T lifting ϕ.

Proof. Since ϕ is an isomorphism, it has an inverse ψ : T 0 → S0, that is, we have ψ◦ϕ = idS0

and ϕ ◦ ψ = idT 0 . Since S is universal there is a unique lift η : S → T of ϕ and since T is
universal there is a unique lift θ : T → S of ψ. But θ ◦ η lifts ψ ◦ ϕ = idS0 and η ◦ θ lifts
ϕ ◦ ψ = idT 0 . However, idS is a lift of idS0 and idT is a lift of idT 0 , so by uniqueness of lifts
we must have θ ◦ η = idS and η ◦ θ = idT , which shows that η is an isomorphism.

Proposition 11.38 shows a significant property of a universal δ-functor T : it is completely
determined by the component T 0.

One might wonder whether (universal) δ-functors exist. Indeed there are plenty of them.

Theorem 11.39. Assume the abelian category C has enough injectives. For every additive
left-exact functor T : C → D, the family (RnT )n≥0 of right derived functors of T is a δ-
functor. Furthermore T is isomorphic to R0T .

Proof. Now that we have done all the hard work the proof is short: apply Theorem 11.31.
The second property follows from Proposition 11.29.

In fact, the δ-functors (RnT )n≥0 are universal. Before explaining the technique due to
Grothendieck for proving this fact, let us take a quick look at ∂-functors.

Definition 11.23. Given two abelian categories C and D, a ∂-functor consists of a countable
family T = (Tn)n≥0 of additive functors Tn : C → D, and for every short exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 in the abelian category C and every n ≥ 1 of a map

Tn(A′′)
∂n−→ Tn−1(A′)

such that the following two properties hold:
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(i) The sequence

· · · // Tn(A′) // Tn(A) // Tn(A′′)
∂n

// Tn−1(A′) // · · · · · ·

// · · · · · · // T1(A′′)
∂1

// T (A′) // T (A) // T (A′′) // 0

is exact.

(ii) If 0 −→ B′ −→ B −→ B′′ −→ 0 is another exact sequence in C, and if there is a
commutative diagram

0 // A′

��

// A

��

// A′′

��

// 0

0 // B′ // B // B′′ // 0,

then the induced diagram

· · · // Tn(A′) //

��

Tn(A) //

��

Tn(A′′)
∂An //

��

Tn−1(A′) //

��

· · ·

· · · // Tn(B′) // Tn(B) // Tn(B′′)
∂Bn

// Tn−1(B′) // · · ·

and ending with

· · · // T1(A′′)

��

∂A1 // T (A′) //

��

T (A) //

��

T (A′′) //

��

0

· · · // T1(B′′)
∂B1

// T (B′) // T (B) //// T (B′′) // 0

is also commutative.

In particular, T0 is right-exact.

Definition 11.24. Given two ∂-functors S = (Sn)n≥0 and T = (Tn)n≥0, a morphism η : S →
T between S and T is a family η = (ηn)n≥0 of natural transformations ηn : Sn → Tn such
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that the following diagram commutes

Sn(A′′)
∂Sn //

(ηn)A′′
��

Sn−1(A′)

(ηn−1)A′
��

Tn(A′′)
∂Tn

// Tn−1(A′)

for all n ≥ 1 and for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0.

Morphisms of ∂-functors are composed in the obvious way. The notion of isomorphism
is clear (each ηn is an an isomorphism).

Grothendieck introduced the important notion of universal ∂-functor; see Grothendieck
[27] (Chapter II, Section 2.2).

Definition 11.25. A ∂-functor T = (Tn)n≥0 is universal if for every ∂-functor S = (Sn)n≥0

and every natural transformation ϕ : S0 → T0 there is a unique morphism η : S → T such
that η0 = ϕ for every short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0, as illustrated in
the commutative diagram below.

· · · // T2(A′′)
∂T2 //

η2
A′′

��

T1(A′)

η1
A′

��

// T1(A)

η1
A

��

// T1(A′′)

η1
A′′

��

∂T1 // T0(A′)

ϕA′

��

// · · ·

· · · // S2(A′′)
∂S2

// S1(A′) // S1(A) // S1(A′′)
∂S1

// S0(A′) // · · · .

We say that η lifts ϕ.

Proposition 11.40. Suppose S = (Sn)n≥0 and T = (Tn)n≥0 are both universal ∂-functors
and there is an isomorphism ϕ : S0 → T0 (a natural transformation ϕ which is an isomor-
phism). Then there is a unique isomorphism η : S → T lifting ϕ.

The proof of Proposition 11.40 is the same as the proof of Proposition 11.38. Proposition
11.40 shows a significant property of a universal ∂-functor T : it is completely determined by
the component T0.

There are plenty of (universal) ∂-functors.

Theorem 11.41. Assume the abelian category C has enough projectives. For every additive
right-exact functor T : C → D, the family (LnT )n≥0 of left derived functors of T is a ∂-
functor. Furthermore T is isomorphic to L0T .

Proof. Now that we have done all the hard work the proof is short: apply Theorem 11.32.
The second property follows from Proposition 11.29.
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Grothendieck came up with an ingenious sufficient condition for a δ-functor to be uni-
versal: the notion of an erasable functor. Since Grothendieck’s paper is written in French,
this notion defined in Section 2.2 (Page 141) of [27] is called effaçable, and many books and
paper use it. Since the English translation of “effaçable” is “erasable,” as advocated by Lang
we will use the the English word.

Definition 11.26. An additive functor T : C → D is erasable (or effaçable) if for every
object A ∈ C there is some object MA ∈ C and a monic u : A→MA such that T (u) = 0. In
particular this will be the case if T (MA) is the zero object of D. We say that T coerasable (or
coeffaçable) if for every object A ∈ C there is some object MA ∈ C and an epic u : MA → A
such that T (u) = 0.

In many cases T is erasable by injectives (which means that MA can be chosen to be
injective) and T is coerasable by projectives (which means that MA can be chosen to be
projective). However, this is not always desirable.

The following proposition shows that our favorite functors, namely right derived functors,
are erasable functors (and left derived functors are coerasable by projectives).

Proposition 11.42. Assume the abelian category C has enough injectives. For every addi-
tive (left-exact) functor T : C→ D, the right derived functors RnT are erasable by injectives
for all n ≥ 1. Assume the abelian category C has enough projectives. For every additive
(right-exact) functor T : C→ D, the left derived functors LnT are coerasable by projectives
for all n ≥ 1.

Proof. For every A ∈ C there is a monic u : A→ I into some injective I. Applying RnT we
get a map RnT (u) : RnT (A)→ RnT (I), but by Proposition 11.30 we have RnT (I) = (0) for
all n ≥ 1. The proof in the projective case is similar and left as an exercise.

In order to state Grothendieck’s theorem (Theorem 11.44), we need the notion of injective
erasing of an object, due to Grothendieck; see Grothendieck’s Tohoku [27], Section 1.10.

Definition 11.27. Let C be an abelian category. For any object A ∈ C, an injective erasing
of A is a monic u : A → M such that for every monic g : B → C and any map f : B → A,
there is some map f̃ : C →M making the following diagram commute

0 // B
g //

f
��

C

f̃
��

0 // A u
//M.

If C has enough injectives, then any monic u : A→ I where I is injective is an injective
erasing. Definition 11.27 allows more general kinds of erasing.

The following proposition reveals some relationships between the notion of erasability
and the notion of injective erasing.
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Proposition 11.43. Suppose that T is an additive functor from C to some other abelian
category D.

(1) If T is erasable, then for any injective erasing u : A→M , we have T (u) = 0.

(2) If every object A ∈ C has an injective erasing, then T is erasable iff T (u) = (0) for
every injective erasing u : A→M .

(3) If T is erasable, then T (I) = (0) for every injective object I.

(4) If C has enough injectives, then T is erasable iff T (I) = (0) for every injective object
I.

Proof. (1) Suppose that A is erased by some (monic) map v : A → MA (T (v) = 0). Since
u : A→M is an injective erasing, we have the following commutative diagram

0 // A
v //

id

��

MA

ĩd
��

0 // A u
//M,

and if apply the functor T we get the following commutative diagram

T (A)
T (v) //

T (id)

��

T (MA)

T (ĩd)
��

T (A)
T (u)

// T (M),

and since T (v) = 0 and T (id) = idT (A), we obtain

T (u) = T (u) ◦ idT (A) = T (ĩd) ◦ 0 = 0.

(2) Assume that every object A ∈ C has an injective erasing u : A → M . If T (u) = (0)
for every such injective erasing, then A is erased by u : A → M , so T is erasable. The
converse is given by (1).

(3) Assume that T is erasable and let I be some injective object. Since T is erasable,
we have monic v : I → MI such that T (v) = 0. Since I is injective, we have the following
commutative diagram:

0 // I v //

id
��

MI

ĩd
��

0 // I
id
// I.
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If we apply T to the above diagram, since T (v) = 0 we get the commutative diagram

T (I) 0 //

T (id)

��

T (MI)

T (ĩd)
��

T (I)
T (id)

// T (I),

so we get
idT (I) = T (id) = T (ĩd) ◦ 0 = 0,

which implies T (I) = (0).

(4) Assume C has enough injectives. First assume that T (I) = (0) for every injective
I. For any object A there is a monic u : A → I with I injective, so by applying T there is
a map T (u) : T (A) → T (I). Since I is injective, T (I) = (0), so T (u) = 0 and u erases A.
Therefore, T is erasable. The converse has been proven in (3).

The following theorem shows the significance of the seemingly strange notion of injective
erasability.

Theorem 11.44. (Grothendieck) Let T = (T n)n≥0 be a δ-functor between two abelian cat-
egories C and D. If every object A ∈ C has an injective erasing v : A → MA such that
T n(v) = 0 for all n ≥ 1, then T is a universal δ-functor.

Proof. Theorem 11.44 is essentially Proposition 2.2.1 on Page 141 of Grothendieck’s Tohoku
[27], with the slightly stronger hypothesis of injective erasability because the proof is simpler.
Grothendieck’s version requiring only erasability will be discussed after the proof of this
theorem.

The proof takes two thirds of a page. Even if you read French, you are likely to be
frustrated. All the pieces are there but as Grothendieck says

“Des raisonnements standarts montrent que le morphisme ainsi défini ne dépend pas
du choix particulier de la suite exacte 0 // A //M // A′ // 0 , puis le fait que ce
morphisme est fonctoriel, et permute à ∂.”

Roughly translated, the above says that the details constitute “standard reasoning.” No
doubt that experts in the field will have no trouble supplying the details but for the rest of
us, where is a complete proof?

The proof that we present consists of four steps. It is essentially due to Steve Shatz,
except that we use injective erasings, which makes it a little more general.

Let us begin by explaining the main construction in the proof. The proof is by induction
on n; we shall treat only the case n = 1; the other cases are very similar.

Step 1 . Construction of the lift map u1.
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Let S = (Sn)n≥0 be another δ-functor and let u0 : T 0 → S0 be a given map of functors.
If A is an object of C, injective erasability of A for T 1 shows that there is an exact sequence

0 // A v //MA
p // A′′ // 0, (†)

with A′′ = Coker(v), such that the map δ0
T 0 in the induced sequence

T 0(MA)
T 0(p) // T 0(A′′)

δ0
T0 // T 1(A) 0 // T 1(MA)

is surjective (since T 1(v) = 0). Since T is a δ-functor we have the commutative diagram

T 0(MA)
T 0(p) //

u0(MA)
��

T 0(A′′)
δ0
T0 //

u0(A′′)
��

T 1(A) 0 //

u1

��

T 1(MA)

S0(MA)
S0(p)

// S0(A′′)
δ0
S0

// S1(A).

Since Ker δ0
T 0 = Im T 0(p), since the left square commutes

u0(A′′) ◦ T 0(p) = S0(p) ◦ u0(MA),

and since the bottom row is exact, we get

δ0
S0 ◦ u0(A′′) ◦ T 0(p) = δ0

S0 ◦ S0(p) ◦ u0(MA) = 0,

which proves that
Ker δ0

T 0 ⊆ Ker (δ0
S0 ◦ u0(A′′)).

Since δ0
T 0 is surjective we define u1 : T 1(A)→ S1(A) as follows: for any a ∈ T 1(A), pick any

b ∈ T 0(A′′) such that a = δ0
T 0(b), and set

u1(a) = (δ0
S0 ◦ u0(A′′))(b). (∗)

This map is well-defined, because if a = δ0
T 0(b′) for some other b′ ∈ T 0(A′′), then δ0

T 0(b) =
δ0
T 0(b′), so δ0

T 0(b′ − b) = 0, that is b′ − b = c for some c ∈ Ker δ0
T 0 , and since Ker δ0

T 0 ⊆
Ker (δ0

S0 ◦ u0(A′′)), we have b′ = b+ c with c ∈ Ker (δ0
S0 ◦ u0(A′′)), which implies that

(δ0
S0 ◦ u0(A′′))(b′) = (δ0

S0 ◦ u0(A′′))(b+ c)

= (δ0
S0 ◦ u0(A′′))(b) + (δ0

S0 ◦ u0(A′′))(c)

= (δ0
S0 ◦ u0(A′′))(b) + 0 = (δ0

S0 ◦ u0(A′′))(b).

Therefore the map u1 : T 1(A) → S1(A) making the second square commute is uniquely
defined. It remains to check that u1 has the required properties and that it does not depend
on the choice of the exact sequence (†). Lang [35] actually spells out most of the details but
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leaves out the verification that the argument does not depend on the choice of the short exact
sequence defining MA; see Chapter XX, §7, Theorem 7.1. This is where the assumption that
injective earasings exist is needed.

Step 2 . The proof of independence from the choice of the injective erasing A v //MA

is a nice illustration of the extension property of injective erasings. Suppose we have another
exact sequence

0 // Ã
ṽ // M̃A

p̃ // Ã′′ // 0,

where ṽ : Ã → M̃A is an injective erasing of Ã (which exists, by hypothesis), with Ã′′ =

Coker(ṽ). By hypothesis, we have T 1(ṽ) = 0. Assume we have a map g : A → Ã. Since

ṽ : Ã→ M̃A is an injective erasing and v is a monic, there is a map θ extending ṽ ◦ g making
the following diagram commute:

0 // A
v //

g
��

MA
p //

θ
��

A′′ // 0

0 // Ã
ṽ
// M̃A p̃

// Ã′′ // 0.

Now the diagram

A v //

g
��

MA
p //

θ
��

A′′ //

θ��

0

Ã
ṽ
// M̃A p̃

// Ã′′

is similar to the commutative diagram used in the construction of u1 in Step 1, and it has
exact rows, so the same argument shows that there is a map θ making the diagram

0 // A v //

g
��

MA
p //

θ
��

A′′

θ
��

// 0

0 // Ã
ṽ
// M̃A p̃

// Ã′′ // 0

commute.

Theorem 11.31 applied to the above diagram with T and S yields the two commutative
diagrams

T 0(MA) //

��

T 0(A′′)

��

// T 1(A)

T 1(g)
��

// 0

T 0(M̃A) // T 0(Ã′′) // T 1(Ã) // 0,
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since T 1(v) = 0 and T 1(ṽ) = 0, and

S0(MA) //

��

S0(A′′)

��

// S1(A)

S1(g)
��

S0(M̃A) // S0(Ã′′) // S1(Ã),

and the two commutative diagrams involved in the construction of u1 and ũ1 in Step 1,

T 0(MA) //

u0(MA)
��

T 0(A′′) //

u0(A′′)
��

T 1(A) 0 //

u1

��

0

S0(MA) // S0(A′′) // S1(A)

and

T 0(M̃A) //

u0(M̃A)
��

T 0(Ã′′) //

u0(Ã′′)
��

T 1(Ã) 0 //

ũ1

��

0

S0(M̃A) // S0(Ã′′) // S1(Ã).

We can combine these four diagrams into the following diagram.

T 0(MA) T 0(A′′) T 1(A) 0

T 0(M̃A) T 0(Ã′′) T 1(Ã) 0

S0(MA) S0(A′′) S1(A)

S0(M̃A) S0(Ã′′) S1(Ã)

δ0
T 0(A′′)

δ0

T 0(Ã′′)

δ0
S0(A′′)

δ0

S0(Ã′′)

u0(MA) u0(A
′′) u1

u0(M̃A) u0(Ã′′) ũ1

T 0(θ) T 1(g)

S0(θ)
S1(g)

All squares at top, bottom, front, and back commute, and the two left hand vertical
squares also commute (by naturality of u0). Since δ0

T 0(A′′) : T 0(A′′)→ T 1(A) is surjective, if
we prove that

ũ1 ◦ T 1(g) ◦ δ0
T 0(A′′) = S1(g) ◦ u1 ◦ δ0

T 0(A′′),

then we can conclude that

ũ1 ◦ T 1(g) = S1(g) ◦ u1,



450 CHAPTER 11. DERIVED FUNCTORS, δ-FUNCTORS, AND ∂-FUNCTORS

which is the commutativity of the righthand vertical square. For this we use the commuta-
tivity of the other five faces of the rightmost cube, in the order

top, front, left, bottom, back.

The details are left as an exercise.

If we set A = Ã and g = id (perhaps for different MA and M̃A), we see that

ũ1 = u1,

so u1 is independent of MA.

Step 3 . To prove that the construction of u1 given in Step 1 is functorial, we need to
show that for any map g : A → Ã, if u1 and ũ1 are obtained using the construction in
Step 1 involving the two diagrams just before the big diagram, then the following diagram
commutes

T 1(A)
T 1(g) //

u1

��

T 1(Ã)

ũ1
��

S1(A)
S1(g)

// S1(Ã).

However, this is just the diagram corresponding to the right face of the right cube, and we
just proved that the construction makes it commute.

Step 4 . Finally, we need to prove that for any short exact sequence

0 // A′
ϕ // A

ψ // A′′ // 0,

the diagram

T 0(A′′)
δ0
T0 //

u0(A′′)
��

T 1(A′)

u1

��
S0(A′′)

δ0
S0

// S1(A′)

commutes, where u1 is constructed in Step 1 (see Definition 11.22). Here we have to be
careful because ψ is not necessarily erased, so the previous construction does not work.
However, there is an injective erasing

0 // A′ v //MA′
p // X // 0,

and as before we obtain a commutative diagram

0 // A′
ϕ //

idA′
��

A
ψ //

θ
��

A′′

θ
��

// 0

0 // A′ v
// MA′ p

// X // 0.
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Since T is a δ-functor, we obtain the commutative diagram

T 0(A′′)
δ0
T0(A′′)//

T 0(θ)
��

T 1(A′)

id
��

T 0(X)
δ0
T0(X)

// T 1(A′).

Similarly, since S is a δ-functor, we obtain the commutative diagram

S0(A′′)
δ0
S0(A′′)//

S0(θ)
��

S1(A′)

id
��

S0(X)
δ0
S0(X)

// S1(A′).

Since u0 is a natural transformation, we have the commutative diagram

T 0(A′′)
T 0(θ) //

u0(A′′)
��

T 0(X)

u0(X)
��

S0(A′′)
S0(θ)

// S0(X).

The construction of u1 in Step 1 (with X instead of A′′ and A′ instead of A) yields the
following commutative diagram

T 0(X)
δ0
T0 //

u0(X)
��

T 0(A′)

u1

��
S0(X)

δ0
S0

// S0(A′).

We leave it as an exercise to put the four diagrams above as four faces of a prism whose
top and bottom faces are the triangles corresponding to the first two diagrams (because of
the edge id, the vertices corresponding to T 1(A′) can be merged and similarly the vertices
corresponding to S1(A′) can be merged), the left-hand square face corresponds to the third
diagram, and the front square face corresponds to the fourth diagram. They all commute,
and one can deduce that the right-hand square face also commutes, which is the desired
commutative diagram that we are seeking. To prove that

u1 ◦ δ0
T 0 = δ0

S0 ◦ u0(A′′),

one should use commutations in the order

top triangular face, front face, left face, bottom triangular face.
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Observe that Theorem 11.44 does not require that C has enough injectives. The hy-
pothesis of the theorem relies on the condition of erasability of the functors T n given by
Proposition 11.43(3).

Actually, the weaker hypothesis that the functors T n are erasable for all n ≥ 1 is enough
to prove that the functors (T n) constitute a universal δ-functor. We thank Steve Shatz for
communicating the following clever argument.

Observe that if

0 // A // M̃A
// Ã′′ // 0

is another exact sequence, and if this sequence dominates the former in the sense that there
is a commutative diagram

0 // A

��

//MA

��

// A′′

��

// 0

0 // A // M̃A
// Ã′′ // 0,

then the proof of Step 2 shows that the maps u1 and ũ1 induced by these sequences are the
same. From this it follows that given two sequences

0 // A //MA
// A′′ // 0 and 0 // A // M̃A

// Ã′′ // 0,

we need only find a common dominant. If ξ is the composed map A //MA
//MA ⊕ M̃A

and η is the composed map A // M̃A
//MA ⊕ M̃A , then ξ− η is an injection of A into

MA ⊕ M̃A. Let M be the cokernel of ξ − η, then we leave it as an exercise to prove that the
exact sequence

0 // A //M // A′′ ⊕ Ã′′ // 0,

is the required dominant. Therefore we have the following theorem as stated by Grothendieck
in [27] (Section 2.2, Proposition 2.2.1).

Theorem 11.45. (Grothendieck) Let T = (T n)n≥0 be a δ-functor between two abelian cat-
egories C and D. If the functors T n are erasable for all n ≥ 1, then T is a universal
δ-functor.

If C has enough injectives, then by Proposition 11.43(4), the functors T n are erasable
iff T n(I) = (0) for all injective objects I, for every n ≥ 1. This is the situation generally
encountered. In this case we have the following corollary.

Theorem 11.46. (Grothendieck) Let T = (T n)n≥0 be a δ-functor between two abelian cate-
gories C and D. Suppose C has enough injectives. If T n(I) = (0) for all injective I, for all
n ≥ 1, then T is a universal δ-functor.
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There is also a version of Theorem 11.44 for a contravariant ∂-functor which is erasable.

Combining Theorem 11.44 and Theorem 11.39 we obtain the most important result of
this chapter.

Theorem 11.47. Assume the abelian category C has enough injectives. For every additive
left-exact functor T : C→ D, the right derived functors (RnT )n≥0 form a universal δ-functor
such that T is isomorphic to R0T . Conversely, every universal δ-functor T = (T n)n≥0 is
isomorphic to the right derived δ-functor (RnT 0)n≥0.

Proof. The first statement is obtained by combining Theorem 11.44, Proposition 11.42, and
Theorem 11.39. Conversely, if T = (T n)n≥0 is a universal δ-functor, then T 0 is left-exact, so
by the first part of the theorem applied to T 0, (RnT 0)n≥0 is a universal δ-functor with R0T 0

isomorphic to T 0, thus T and (RnT 0)n≥0 are isomorphic by Proposition 11.38.

After all, the mysterious universal δ-functors are just the right derived functors of left-
exact functors. As an example, the functors ExtnR(A,−) constitute a universal δ-functor (for
any fixedR-module A). For every sheaf F on a topological spaceX, the global section functor
Γ(X,−) is left-exact, so its right derived functors RpΓ(X,−) form a universal δ-functor.
The corresponding cohomology groups RpΓ(X,−)(F), denoted Hp(X,F), are called the
cohomology groups of the sheaf F . The cohomology of sheaves will be thoroughly investigated
in Chapter 13. It is one of the most sophisticated (and poweful) tools discussed in this book.

Of course there is a version of Theorem 11.44 for coerasable ∂-functors. We leave to
reader the task of stating the dual notion of Definition 11.27, which should be called pro-
jective coerasing , and to formulate the dual of Proposition 11.43. We state a version using
coerasability by projectives.

Theorem 11.48. (Grothendieck) Let T = (Tn)n≥0 be a ∂-functor between two abelian cat-
egories C and D. If Tn is coerasable by projectives for all n ≥ 1, then T is a universal
∂-functor.

Remark: As the case of δ-functors, there are versions of Theorem 11.48 using coerasability
criteria not requiring coerasabilty by projectives.

There is a version of Theorem 11.48 for a contravariant δ-functor which is coerasable.

Combining Theorem 11.48 and Theorem 11.41 we obtain the other most important result
of this section.

Theorem 11.49. Assume the abelian category C has enough projectives. For every additive
right-exact functor T : C→ D the left derived functors (LnT )n≥0 form a universal ∂-functor
such that T is isomorphic to L0T . Conversely, every universal ∂-functor T = (Tn)n≥0 is
isomorphic to the left derived ∂-functor (LnT0)n≥0.
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After all, the mysterious universal ∂-functors are just the left derived functors of right-
exact functors. For example, the functors TorRn (A,−) and TorRn (−, B) constitute universal
∂-functors.

Remark: Theorem 11.47 corresponds to Case (Ri). If C has enough injectives there is also
a version of Theorem 11.47 for a contravariant right-exact functor T saying that (LnT )n≥0

is a contravariant universal ∂-functor (Case (Li)). There doesn’t seem to be any practical
example of this case.

Theorem 11.49 corresponds to Case (Lp). If C has enough projectives there is a version of
Theorem 11.49 for a contravariant left-exact functor T saying that (RnT )n≥0 is a contravari-
ant universal δ-functor (Case (Rp)). As an example, the functors ExtnR(−, B) constitute a
contravariant universal δ-functor (for any fixed R-module B).

11.9 Problems

Problem 11.1. In Proposition 11.1, prove that (1) (P is projective) is equivalent to (3) and
also equivalent to (4).

Problem 11.2. Check that in the direct sum Z/6Z ∼= Z/2Z⊕Z/3Z, the Z/6Z-module Z/2Z
is projective but not free.

Problem 11.3. Prove that an R-module M is projective iff there is some family (ui)i∈I of
elements of M and a family of R-linear forms (ϕi : M → R)i∈I such that:

(1) For every x ∈M , we have ϕi(x) = 0 for all but finitely many i ∈ I.

(2) For every x ∈M , we have x =
∑

i∈I(ϕi(x))ui.

Furthermore, M is spanned by (ui)i∈I .

Problem 11.4. In Proposition 11.3, prove that (1) (I is injective) is equivalent to (3).

Problem 11.5. In Theorem 11.10, prove that if E is injective, then every injection f : E →
M has a retraction.

Problem 11.6. Prove that if R is a PID and if K is the fraction field of R, then K/R is an
injective R-module.

Problem 11.7. For any commutative ring R with a unit element, prove that R is a flat
R-module.

Problem 11.8. For any commutative ring R with a unit element, prove that for any family
(Mi)i∈I of R-modules,

⊕
i∈IMi is flat iff each Mi is flat. Prove that every projective module

is flat.
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Problem 11.9. Prove Proposition 11.12.

Problem 11.10. Prove that if R is an integral domain and if K is its fraction field, then K
is a flat R-module.

Problem 11.11. Prove that Q/Z is an injective Z-module which is not flat and the Z-module
Q⊕ Z is flat but neither projective nor injective.

Problem 11.12. Provide a detailed proof of Theorem 11.21. Use Proposition 11.20 and
proceed by induction mimicking the proof of Theorem 11.17.

Problem 11.13. Prove the remaining cases of Proposition 11.30.

Problem 11.14. In the proof of Theorem 11.44, complete the verification of Step 2, namely
that the righthand vertical square of the cube commutes.

Problem 11.15. In the proof of Theorem 11.44, complete the verification of Step 4, namely
that the righthand square face of the prism commutes.

Problem 11.16. Prove that given two sequences

0 // A //MA
// A′′ // 0 and 0 // A // M̃A

// Ã′′ // 0,

the sequence

0 // A //M // A′′ ⊕ Ã′′ // 0

is a common dominant (where M is defined in the paragraph just before Theorem 11.45).
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Chapter 12

Universal Coefficient Theorems

Suppose we have a homology chain complex

0 C0
d0oo C1

d1oo · · ·oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

where the Ci are R-modules over some commutative ring R with a multiplicative identity
element (recall that di ◦ di+1 = 0 for all i ≥ 0). Given another R-module G we can form the
homology complex

0 C0 ⊗R G
d0⊗idoo C1 ⊗R G

d1⊗idoo · · ·oo Cp ⊗R G
dp⊗idoo · · · ,oo

obtained by tensoring with G, denoted C ⊗R G, and the cohomology complex

0
HomR(d0,G) // HomR(C0, G) // · · · // HomR(Cp, G)

HomR(dp+1,G)// HomR(Cp+1, G) // · · ·

obtained by applying HomR(−, G), and denoted HomR(C,G).

The question is: what is the relationship between the homology groups Hp(C ⊗RG) and
the original homology groups Hp(C) in the first case, and what is the relationship between
the cohomology groups Hp(HomR(C,G)) and the original homology groups Hp(C) in the
second case?

The ideal situation would be that

Hp(C ⊗R G) ∼= Hp(C)⊗R G and Hp(HomR(C,G)) ∼= HomR(Hp(C), G),

but this is generally not the case. If the ring R is nice enough and if the modules Cp are nice
enough, then Hp(C ⊗RG) can be expressed in terms of Hp(C)⊗RG and TorR1 (Hp−1(C), G),
where TorR1 (−, G) is a one of the left-derived functors of − ⊗R G, and Hp(HomR(C,G))
can be expressed in terms of HomR(Hp(C), G)) and Ext1

R(Hp−1(C), G), where Ext1
R(−, G)

is one of the right-derived functors of HomR(−, G); both derived functors are defined in
Section 11.2 and further discussed in Example 11.1. These formulae are known as universal
coefficient theorems.

457
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12.1 Universal Coefficient Theorems for Homology

Following Rotman [51, 52] (Chapter 8), we give universal coefficients formulae that are gen-
eral enough to cover all the cases of interest in singular homology and singular cohomology,
for (commutative) rings that are hereditary and modules that are projective.

Definition 12.1. A commutative ring R (with an identity element) is hereditary if every
ideal in R is a projective module.

Every PID is hereditary (and every semisimple ring is hereditary). The reason why
hereditary rings are interesting is that if R is hereditary, then every submodule of a projective
R-module is also projective. In fact, a theorem of Cartan and Eilenberg states that a ring
is hereditary iff every submodule of a projective R-module is also projective; see Rotman
[51, 52] (Chapter 4, Theorem 4.23).

The next theorem is a universal coefficient theorem for homology.

Theorem 12.1. (Universal Coefficient Theorem for Homology) Let R be a commutative
hereditary ring, G be any R-module, and let C be a chain complex of projective R-modules.
Then there is a split exact sequence

0 // Hn(C)⊗R G
µ // Hn(C ⊗R G)

p // TorR1 (Hn−1(C), G) // 0

for all n ≥ 0. (It is assumed that Hn(C) = (0) for all n < 0.) Thus, we have an isomorphism

Hn(C ⊗R G) ∼= (Hn(C)⊗R G)⊕ TorR1 (Hn−1(C), G)

for all n ≥ 0. Furthermore, the maps involved in the exact sequence of the theorem are
natural, which means that for any chain map ϕ : C → C ′ between two chain complexes C
and C ′ the following diagram commutes:

0 // Hn(C)⊗R G
µ //

ϕ∗⊗id

��

Hn(C ⊗R G)
p //

(ϕ⊗id)∗
��

TorR1 (Hn−1(C), G) //

TorR1 (ϕ∗)
��

0

0 // Hn(C ′)⊗R G
µ′
// Hn(C ′ ⊗R G)

p′
// TorR1 (Hn−1(C ′), G) // 0.

(†)

Theorem 12.1 is proven in Rotman [51, 52], and we follow this proof (Chapter 8, Theorem
8.22). We warn the reader that in all the proofs that we are aware of (including Rotman’s
proof), the details involved in verifying that the maps µ and p are natural are omitted (or
sketched). We decided to provide complete details (with a little help from Spanier [59]),
which makes the proof quite long. The reader is advised to skip such details upon first
reading.

Before launching into the detailed proof we provide an outline.
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Proof outline. There are two parts to the theorem.

(A) Derive the desired split exact sequence.

(B) Prove the naturality of the exact sequence.

Part A: Derive the split exact sequence

0 // Hn(C)⊗R G
µ // Hn(C ⊗R G)

p // TorR1 (Hn−1(C), G) // 0.

Step A1: The first challenge in deriving this sequence is to get a grip on the term
TorR1 (Hn−1(C), G). By definition, this means we must develop a projective resolution for
Hn−1(C). The desired projective resolution, namely

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

is obtained by splicing together two short exact sequences

0 // Zn(C)
in // Cn

dBn // Bn−1(C) // 0 (∗)

and
0 // Bn−1(C) // Zn−1(C) // Hn−1(C) // 0. (†)

These sequences are “pictured” below in Figure 12.1, Figure 12.2, and Figure 12.3, where
Zn = Ker dn, Bn = Im dn+1 and Hn = Zn/Bn. Note that we drop the argument (C) in
Zn(C), Bn(C), Hn(C) since it is clear from the context.

C

Z

n

n

B n-1

C n-1

in

dn
B

Figure 12.1: A schematic representation of the exact sequence (∗).
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C n-1

Zn-1

Bn-1

Figure 12.2: A schematic representation of the exact sequence (†).

C

Z

n

n

in

dn

B n-1

Zn-1

~

Figure 12.3: A schematic representation of the projective resolution (∗∗).

We use the projective resolution to calculate TorR1 (Hn−1(C), G) by tensoring with G to
form the homology chain complex

0 // Zn ⊗G
in⊗id // Cn ⊗G

d̃n⊗id // Zn−1 ⊗G // 0 ,

and discover that

TorR1 (Hn−1, G) = Ker (d̃n⊗id)/Im(in⊗id) ∼= Ker (d̃n⊗id)/(Zn⊗G) ∼= Ker (dn⊗id)/(Zn⊗G).
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Step A2: Actually obtaining the short exact sequence of the theorem. First we verify
that

Im(dn+1 ⊗ id) ⊆ Zn ⊗G ⊆ Ker (dn ⊗ id) ⊆ Cn ⊗G.

See Figure 12.4. Then we apply the third isomorphism theorem to the containment identity,

C

Z

B

n

n

n

C

d n+1

C

B n-1

n-1

dn

C

n+1

5n+1 G

C n5 G

Ker (d       id)n5

Z       Gn5

B      G

n5

n5

B         G5n-1

C n-15 G

5 idd n+1

dn5 id

Figure 12.4: A schematic representation of the containment identity of Step A2.

and the result directly follows after we observe that

Im(dn+1 ⊗ id) = {dn+1(c)⊗ g ∈ Cn ⊗G | c ∈ Cn+1, g ∈ G} = Bn ⊗G.

Step A3: Showing that the short exact sequence of Step A2 actually splits. This follows
from the fact that the exact sequence (∗) used to build the projective resolution is in fact a
short split exact sequence.

Part B: Prove the naturality of the exact sequence

Step B1: Show that the left square commutes. The slightly tricky part is we don’t have
a “nice” closed form for Ker (dn ⊗ id), but since

Hn(C)⊗G ∼= (Zn ⊗G)/(Bn ⊗G), and Hn(C ⊗G) ∼= (Ker (dn ⊗ id))/(Bn ⊗G),
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and since we have the correct containment Zn⊗G ⊆ Ker (dn⊗ id), the diagram chasing goes
through.

Step B2: Show that the right square commutes. Here the tricky part is to define the
map Tor1(ϕ∗). To define the existence of Tor1(ϕ∗) we form a lift of the projective resolution
of Hn−1, and then tensor this lift appropriately to define the correct push down of homology
classes. Then we use the fact that

Hn(C ⊗G) ∼= (Ker (dn ⊗ id))/(Bn ⊗G), and TorR1 (Hn−1, G) ∼= (Ker (dn ⊗ id))/(Zn ⊗G)

to define the map p as a “modified” inclusion (you have to take equivalence classes over
Bn ⊗G instead of Zn ⊗G). Then commutativity follows as desired.

Proof of Theorem 12.1. We begin by observing that we have some exact sequences

0 // Zn(C)
in // Cn

dBn // Bn−1(C) // 0 (∗)

and
0 // Bn−1(C)

ιn−1 // Zn−1(C) // Hn−1(C) // 0. (∗′)

The first sequence (∗) is exact by definition of Zn(C) as Zn(C) = Ker dn and Bn−1(C) as
Bn−1(C) = Im dn, where the map dBn : Cn → Bn−1(C) is the corestriction of dn : Cn → Cn−1

to Bn−1(C). The second sequence (∗′) is exact by definition of Hn−1(C), as Hn−1(C) =
Zn−1(C)/Bn−1(C) = Ker dn−1/Im dn. From now on, to simplify notation we drop the ar-
gument (C) in Zn(C), Bn(C), Hn(C). These can be spliced using the diagram of exact
sequences

0 // Zn
in // Cn

dBn ""

d̃n // Zn−1
// Hn−1

// 0

Bn−1

ιn−1

;;

$$
0

<<

0

to form an exact sequence

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

Here ιn−1 is the inclusion map of Bn−1 into Zn−1 and d̃n : Cn → Zn−1 is the corestriction of
dn : Cn → Cn−1 to Zn−1. Since every Cn is projective and R is hereditary, the submodules
Zn−1 and Bn−1 of Cn−1 are also projective. This implies that the short exact sequence (∗)
splits (by Proposition 11.1 (3)) and that the exact sequence (∗∗) is a projective resolution
of Hn−1. If we tensor (∗∗) with G and drop the term Hn−1 we obtain the homology chain
complex

0 // Zn ⊗G
in⊗id // Cn ⊗G

d̃n⊗id // Zn−1 ⊗G // 0 (L)
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denoted L, and by definition of TorR(−, G), we have

TorRj (Hn−1, G) = Hj(L), j ≥ 0.

Because (∗) is a split exact sequence, the sequence obtained by tensoring (∗) with G is also
exact, so in ⊗ id is injective. This implies that TorR2 (Hn−1, G) = (0). We can compute
TorRj (Hn−1, G) for j = 0, 1 as follows:

TorR1 (Hn−1, G) = H1(L) = Ker (d̃n ⊗ id)/Im(in ⊗ id) ∼= Ker (dn ⊗ id)/(Zn ⊗G)

Hn−1 ⊗G ∼= TorR0 (Hn−1, G) = H0(L) = (Zn−1 ⊗G)/Im(d̃n ⊗ id)
∼= (Zn−1 ⊗G)/(Bn−1 ⊗G).

These equations are justified as follows. The maps dn and d̃n only differ in their codomain
so they have the same value on all c ∈ Cn, and we have

Im(dn ⊗ id) = Im(d̃n ⊗ id) = {dn(c)⊗ g ∈ Cn−1 ⊗G | c ∈ Cn, g ∈ G} = Bn−1 ⊗G,

which justifies the equation (Zn−1 ⊗ G)/Im(d̃n ⊗ id) = (Zn−1 ⊗ G)/(Bn−1 ⊗ G). Since

dn = in−1 ◦ d̃n, with dn : Cn → Cn−1, d̃n : Cn → Zn−1, and in−1 : Zn−1 → Cn−1, we have

dn ⊗ id = (in−1 ◦ d̃n)⊗ id = (in−1 ⊗ id) ◦ (d̃n ⊗ id),

and since in−1 ⊗ id is injective, Ker (dn ⊗ id) = Ker (d̃n ⊗ id), which implies that

TorR1 (Hn−1, G) = Ker (d̃n ⊗ id)/Im(in ⊗ id) ∼= Ker (dn ⊗ id)/(Zn ⊗G),

which justifies the last equation on the first line. In summary,

TorR1 (Hn−1, G) ∼= Ker (dn ⊗ id)/(Zn ⊗G) (T)

Hn−1 ⊗G ∼= (Zn−1 ⊗G)/Im(dn ⊗ id) = (Zn−1 ⊗G)/(Bn−1 ⊗G). (H)

Now look at the sequence

Cn+1
dn+1 // Cn

dn // Cn−1

and tensor it with G to obtain the sequence

Cn+1 ⊗G
dn+1⊗id // Cn ⊗G

dn⊗id // Cn−1 ⊗G.

One verifies that

Im(dn+1 ⊗ id) = Bn ⊗G ⊆ Zn ⊗G ⊆ Ker (dn ⊗ id) ⊆ Cn ⊗G.
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By the third isomorphism theorem, we have

(Ker (dn ⊗ id)/Im(dn+1 ⊗ id))/[(Zn ⊗G)/Im(dn+1 ⊗ id)] ∼= Ker (dn ⊗ id)/(Zn ⊗G),

which may be rewritten as an exact sequence

0 −→ (Zn ⊗G)/Im(dn+1 ⊗ id) −→ Ker (dn ⊗ id)/Im(dn+1 ⊗ id) −→
Ker (dn ⊗ id)/(Zn ⊗G) −→ 0.

The middle term is just Hn(C ⊗G), while by (H) the first term is isomorphic to Hn(C)⊗G
and by (T) the third term is equal to TorR1 (Hn−1, G), so we obtain the exact sequence of the
theorem.

It remains to prove that this sequence splits. Since (∗) splits, we have an isomorphism

Cn ∼= Zn ⊕Bn−1

and by tensoring with G we obtain

Cn ⊗G ∼= (Zn ⊗G)⊕ (Bn−1 ⊗G).

The reader should check that this implies that Zn ⊗ G is a summand of Ker (dn ⊗ id). It
follows from this that (Zn ⊗G)/(Bn ⊗G) is a summand of Ker (dn ⊗ id)/(Bn ⊗G), and the
sequence of the theorem splits.

Suppose we have a chain map ϕ : C → C ′ between two chain complexes C and C ′. First
we prove that the left square of the diagram (†) commutes, that is the following diagram
commutes:

Hn(C)⊗R G
µ //

ϕ∗⊗id
��

Hn(C ⊗R G)

(ϕ⊗id)∗
��

Hn(C ′)⊗R G
µ′
// Hn(C ′ ⊗R G).

Since by (H) (with n instead of n− 1)

Hn(C)⊗G ∼= (Zn ⊗G)/(Bn ⊗G)

and
Hn(C ⊗R G) = Ker (dn ⊗ id)/Im(dn+1 ⊗ id) = Ker (dn ⊗ id)/(Bn ⊗G),

the commutativity of the above diagram is equivalent to the commutativity of the following
diagram:

(Zn ⊗R G)/(Bn ⊗R G)
µ //

ϕ∗⊗id
��

Ker (dn ⊗ id)/(Bn ⊗G)

(ϕ⊗id)∗
��

(Z ′n ⊗R G)/(B′n ⊗R G)
µ′
// Ker (d′n ⊗ id)/(B′n ⊗G).

(†1)
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Since

Hn(C)⊗G ∼= (Zn ⊗G)/(Bn ⊗G),

the linear map ϕ∗ ⊗ id : Hn ⊗G→ H ′n ⊗G is given by

(ϕ∗ ⊗ id)([c⊗ g]Bn⊗G) = [ϕ(c)⊗ g]B′n⊗G, (∗1)

where [c⊗ g]Bn⊗G is the equivalence class of c⊗ g ∈ Zn⊗G modulo Bn⊗G and [ϕ(c)⊗ g]B′n⊗G
is the equivalence class of ϕ(c) ⊗ g ∈ Z ′n ⊗ G modulo B′n ⊗ G. Since ϕ is a chain map,
ϕ(Bn) ⊆ B′n and ϕ(Zn) ⊆ Z ′n, so for any d⊗ g′ ∈ Bn ⊗G we have

(ϕ∗ ⊗ id)([c⊗ g + d⊗ g′]Bn⊗G) = [ϕ(c)⊗ g]B′n⊗G + [ϕ(d)⊗ g′]B′n⊗G = [ϕ(c)⊗ g]B′n⊗G,

since ϕ(d)⊗ g′ ∈ B′n ⊗G, and ϕ(c)⊗ g ∈ Z ′n ⊗G. Thus, the map ϕ∗ ⊗ id is well defined.

Since

Hn(C ⊗R G) = Ker (dn ⊗ id)/(Bn ⊗G)

and

Hn(C)⊗G ∼= (Zn ⊗G)/(Bn ⊗G),

the linear map µ : Hn(C)⊗R G→ Hn(C ⊗R G) is given by

µ([c⊗ g]Bn⊗G) = [c⊗ g]Bn⊗G, (∗2)

where c ∈ Zn is a cycle and g is any element in G, with Zn ⊗ G ⊆ Ker (dn ⊗ id) and
where equivalence classes are taken modulo Bn ⊗G. If c ∈ Zn is a cycle, then dn(c) = 0 so
(dn⊗ id)(c⊗ g) = dn(c)⊗ g = 0, which implies that c⊗ g ∈ Ker (dn⊗ id). If d⊗ g′ ∈ Bn⊗G,
then

µ([c⊗ g + d⊗ g′]Bn⊗G) = [c⊗ g]Bn⊗G + [d⊗ g′]Bn⊗G = [c⊗ g]Bn⊗G

because d ⊗ g′ ∈ Bn ⊗ G, so the map µ is well defined. The map µ′ : Hn(C ′) ⊗R G →
Hn(C ′ ⊗R G) is given by

µ′([c′ ⊗ g]B′n⊗G) = [c′ ⊗ g]B′n⊗G, (∗3)

where c′ ∈ Z ′n is a cycle and g is any element in G, and where the equivalence classes are
taken modulo B′n ⊗G.

The linear map (ϕ⊗ id)∗ : Hn(C ⊗G)→ Hn(C ′ ⊗G) is given by

(ϕ⊗ id)∗([c⊗ g]Bn⊗G) = [ϕ(c)⊗ g]B′n⊗G, (∗4)

where [c ⊗ g]Bn⊗G is the equivalence class of c ⊗ g ∈ Ker (dn ⊗ id) modulo Bn ⊗ G and
[ϕ(c) ⊗ g]B′n⊗G ∈ Ker (d′n ⊗ id) is the equivalence class of ϕ(c) ⊗ g ∈ Ker (d′n ⊗ id) modulo
B′n ⊗G. Since ϕ is a chain map, we have ϕ ◦ dn = d′n ◦ ϕ, so

(d′n ⊗ id)(ϕ(c)⊗ g) = d′n(ϕ(c))⊗ g = ϕ(dn(c))⊗ g = (ϕ⊗ id)((dn ⊗ id)(c⊗ g)) = 0
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so ϕ(c)⊗ g ∈ Ker (d′n⊗ id). Since ϕ is a chain map ϕ(Bn) ⊆ B′n, and for any d⊗ g′ ∈ Bn⊗G

(ϕ⊗ id)∗([c⊗ g + d⊗ g′]Bn⊗G) = [ϕ(c)⊗ g]B′n⊗G + [ϕ(d)⊗ g′]B′n⊗G = [ϕ(c)⊗ g]B′n⊗G

since ϕ(d)⊗ g′ ∈ B′n ⊗G. Therefore, (ϕ⊗ id)∗ is well defined. Then we have

(ϕ⊗ id)∗(µ([c⊗ g]Bn⊗G)) = (ϕ⊗ id)∗([c⊗ g]Bn⊗G), by (∗2)

= [ϕ(c)⊗ g]B′n⊗G, by (∗4)

= µ′([ϕ(c)⊗ g]B′n⊗G), by (∗3)

= µ′((ϕ∗ ⊗ id)([c⊗ g]Bn⊗G)), by (∗1),

which shows that
(ϕ⊗ id)∗ ◦ µ = µ′ ◦ (ϕ∗ ⊗ id),

so the left square of the diagram (†) commutes.

Next we prove that the right square of the diagram (†) commutes, that is, the following
diagram commutes:

Hn(C ⊗R G)
p //

(ϕ⊗id)∗
��

TorR1 (Hn−1(C), G)

TorR1 (ϕ∗)
��

Hn(C ′ ⊗R G)
p′
// TorR1 (Hn−1(C ′), G).

Since
Hn(C ⊗R G) = Ker (dn ⊗ id)/(Bn ⊗G)

and
TorR1 (Hn−1, G) ∼= Ker (dn ⊗ id)/(Zn ⊗G),

the commutativity of the above diagram is equivalent to the commutativity of the following
diagram:

Ker (dn ⊗R id)/(Bn ⊗R G)
p //

(ϕ⊗id)∗
��

Ker (dn ⊗ id)/(Zn ⊗G)

TorR1 (ϕ∗)
��

Ker (d′n ⊗R id)/(B′n ⊗R G)
p′
// Ker (d′n ⊗ id)/(Z ′n ⊗G).

(†2)

To figure out what Tor1(ϕ∗) is we go back to the projective resolution (∗∗) of Hn−1

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

If ϕ : Cn → C ′n is a chain map, we claim that the following diagram commutes:

Zn
in //

ϕ|Zn
��

Cn
d̃n //

ϕ

��

Zn−1
//

ϕ|Zn−1

��

Hn−1

ϕ∗
��

Z ′n i′n
// C ′n

d̃′n

// Z ′n−1
// H ′n−1.

(∗∗1)



12.1. UNIVERSAL COEFFICIENT THEOREMS FOR HOMOLOGY 467

The leftmost square commutes because in and i′n are inclusions, the middle square commutes
because ϕ is a chain map, and the rightmost square commutes because Hn−1 = Zn−1/Bn−1

and H ′n−1 = Z ′n−1/B
′
n−1 and by the definition of ϕ∗ : Hn−1 → H ′n−1, namely ϕ∗([c]) = [ϕ(c)],

for any c ∈ Zn. Therefore we obtain a lifting of ϕ∗ between two projective resolutions of
Hn−1 and H ′n−1, so by applying −⊗G we obtain

Zn ⊗G
in⊗id //

(ϕ|Zn)⊗id

��

Cn ⊗G
d̃n⊗id //

ϕ⊗id

��

Zn−1 ⊗G
(ϕ|Zn−1)⊗id

��

// 0

Z ′n ⊗G i′n⊗id
// C ′n ⊗G

d̃′n⊗id

// Z ′n−1 ⊗G // 0,

(∗∗2)

and if we denote the upper row by C and the lower row by C ′, as explained just after
Definition 11.14, the maps TorRj (ϕ∗) : TorRj (Hn−1, G) → TorRj (H ′n−1, G) are the maps of

homology TorRj (ϕ∗) : Hj(C) → Hj(C ′) induced by the chain map of the diagram (∗∗2) and
are independent of the lifting of ϕ∗ in (∗∗1). Since

TorR1 (Hn−1(C), G) ∼= Ker (dn ⊗ id)/(Zn ⊗G)

and

TorR1 (Hn−1(C ′), G) ∼= Ker (d′n ⊗ id)/(Z ′n ⊗G),

the map TorR1 (ϕ∗) : TorR1 (Hn−1(C), G)→ TorR1 (Hn−1(C ′), G) is the unique linear map given
by

TorR1 (ϕ∗)([c⊗ g]Zn⊗G) = [ϕ(c)⊗ g]Z′n⊗G (∗5)

for any c ∈ Cn and any g ∈ G such that c⊗g ∈ Ker (dn⊗ id). The subscript Zn⊗G indicates
that the equivalence class is taken modulo Zn ⊗G and the subscript Z ′n ⊗G indicates that
the equivalence class is taken modulo Z ′n⊗G. If (dn⊗ id)(c⊗ g) = 0, that is, dn(c)⊗ g = 0,
since ϕ is a chain map

(d′n ⊗ id)(ϕ(c)⊗ id) = d′n(ϕ(c))⊗ g = ϕ(dn(c))⊗ g = (ϕ⊗ id)(dn(c)⊗ g) = 0.

Also, for any d⊗ g′ ∈ Zn ⊗G, since ϕ is a chain map ϕ(Zn) ⊆ Z ′n, and we have

TorR1 (ϕ∗)([c⊗ g + d⊗ g′]Zn⊗G) = [ϕ(c)⊗ g]Z′n⊗G + [ϕ(d)⊗ g′]Z′n⊗G = [ϕ(c)⊗ g]Z′n⊗G,

so TorR1 (ϕ∗) is well defined. Since

Hn(C ⊗R G) = Ker (dn ⊗ id)/(Bn ⊗G)

the map p : Hn(C ⊗R G)→ TorR1 (Hn−1(C), G) is given by

p([c⊗ g]Bn⊗G) = [c⊗ g]Zn⊗G (∗6)
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for any c ⊗ g ∈ Ker (dn ⊗ id). Since Bn ⊗ G ⊆ Zn ⊗ G, this map is well defined. Similarly,
the map p′ : Hn(C ′ ⊗R G)→ TorR1 (Hn−1(C ′), G) is given by

p′([c′ ⊗ g]B′n⊗G) = [c′ ⊗ g]Z′n⊗G (∗7)

for any c′ ⊗ g ∈ Ker (d′n ⊗ id). Then we have

TorR1 (ϕ∗)(p([c⊗ g]Bn⊗G)) = TorR1 (ϕ∗)([c⊗ g]Zn⊗G), by (∗6),

= [ϕ(c)⊗ g]Z′n⊗G, by (∗5),

and

p′((ϕ⊗ id)∗([c⊗ g]Bn⊗G)) = p′([ϕ(c)⊗ g]B′n⊗G), by (∗1),

= [ϕ(c)⊗ g]Z′n⊗G, by (∗7).

Therefore

TorR1 (ϕ∗) ◦ p = p′ ◦ (ϕ⊗ id)∗,

which proves that the second square of the diagram (†) commutes.

However, the splitting is not natural. This means that a splitting of the upper row may
not map to a splitting of the lower row. Also, the theorem holds if the Cn are flat; what is
needed is that if R is hereditary, then any submodule of a flat R-module is flat (see Rotman
[51, 52], Theorem 9.25 and Theorem 11.31).

A weaker version of Theorem 12.1 is proven in Munkres for R = Z and where the Cn are
free abelian groups; see Munkres [48] (Chapter 7, Theorem 55.1). This version of Theorem
12.1 is also proved in Hatcher; see Hatcher [31] (Chapter 3, Appendix 3.A, Theorem 3.A.3).
Theorem 12.1 is proven in Spanier for free modules over a PID; see Spanier [59] (Chapter 5,
Section 2, Theorem 8).

Remark: The injective map µ : Hn(C)⊗G→ Hn(C ⊗G) is given by µ([c⊗ g]) = [c⊗ g] if
we view Hn(C) as isomorphic to (Zn ⊗ G)/(Bn ⊗ G), or by µ([c] ⊗ g) = [c ⊗ g] if we don’t
use this isomorphism; see Spanier [59] (Chapter 5, Section 1, Page 214).

Whenever TorR1 (Hn−1(C), G) vanishes we obtain the “ideal result.” This happens in the
following two cases.

Proposition 12.2. If C is a complex of vector spaces and if V is a vector space over the
same field K, then we have

Hn(C ⊗K V ) ∼= Hn(C)⊗K V

for all n ≥ 0.
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Proposition 12.3. If C is a complex of free abelian groups, G is an abelian group, and if
either Hn−1(C) or G is torsion-free, then we have

Hn(C ⊗Z G) ∼= Hn(C)⊗Z G

for all n ≥ 0.

As a corollary of Theorem 12.1, we obtain the following result about singular homology,
since Z is a PID, and the abelian groups in the complex S∗(X,A;Z) are free.

Theorem 12.4. If X is a topological space, A is a subset of X, and G is any abelian group,
then we have the following isomorphism of relative singular homology:

Hn(X,A;G) ∼= (Hn(X,A;Z)⊗Z G)⊕ TorZ1 (Hn−1(X,A;Z), G)

for all n ≥ 0.

Proof. By definition Hn(X,A;Z) = Hn(S∗(X,A;Z)) and Hn(X,A;G) = Hn(S∗(X,A;G)).
But by definition S∗(X,A;G) ∼= S∗(X,A;Z) ⊗Z G, and the Sn(X,A;Z) are free abelian
groups, and thus projective.

Theorem 12.4 shows that the singular homology groups with coefficients in an abelian
group G are determined by the singular homology groups with integer coefficients.

Since the modules in the relative chain complex S∗(X,A;R) are free, and thus projective,
and a PID is hereditary, Theorem 12.1 has the following corollary.

Theorem 12.5. If X is a topological space, A is a subset of X, R is a PID, and G is any
R-module, then we have the following isomorphism of relative singular homology:

Hn(X,A;G) ∼= (Hn(X,A;R)⊗R G)⊕ TorR1 (Hn−1(X,A;R), G)

for all n ≥ 0.

Theorem 12.5 is also proven in Spanier [59] (Chapter 5, Section 2, Theorem 8). The
reader should be warned that the assumption that R is a PID is missing in the statement of
his Theorem 8. This is because Spanier reminds the reader earlier on Page 220 that R is a
PID. Spanier also proves a more general theorem similar to Theorem 12.1 but applying to a
chain complex C such that C ⊗ G is acyclic and with R a PID; see Theorem 14 in Spanier
[59] (Chapter 5, Section 2).



470 CHAPTER 12. UNIVERSAL COEFFICIENT THEOREMS

12.2 Computing Tor

If G is a finitely generated abelian group and A is any abelian group, then TorZ1 (A,G) can
be computed recursively using some simple rules. It is customary to drop the subscript 1 in
TorR1 (−,−).

The main rules that allow us to use a recursive method are

TorR
(⊕

i∈I
Ai, B

)
∼=
⊕

i∈I
TorR(Ai, B)

TorR
(
A,
⊕

i∈I
Bi

)
∼=
⊕

i∈I
TorR(A,Bi)

TorR(A,B) ∼= TorR(B,A)

TorR(A,B) ∼= (0) if A or B is flat (in particular, projective, or free),

which hold for any commutative ring R (with an identity element) any R-modules, and any
index set I; see Munkres [48] (Chapter 7, Section 54) and Rotman [51, 52] (Chapter 8).
When R = Z, we also have

TorZ(Z, A) = (0)

and

TorZ(Z/mZ, A) ∼= Ker (A
m−→ A),

where A is an abelian group and the map A
m−→ A is multiplication by m. The proof of this

last equation involves a clever use of a free resolution.

Proof. It is immediately checked that the sequence

0 // Z m // Z // Z/mZ // 0

is exact, and since Z is a free abelian group, the above sequence is a free resolution of Z/mZ.
Then since TorZ(−, A) is the left derived functor of −⊗A, we deduce that TorZj (Z/mZ, A) =
(0) for all j ≥ 2, and the long exact sequence given by Theorem 11.32 yields the exact
sequence

0 // TorZ1 (Z/mZ, A) // Z⊗Z A
m⊗id // Z⊗Z A // (Z/mZ)⊗Z A // 0

But Z⊗Z A ∼= A, so we obtain an exact sequence

0 // TorZ1 (Z/mZ, A)
j // A

m // A // (Z/mZ)⊗Z A // 0,

and since j is injective and Im j = Kerm, we get TorZ(Z/mZ, A) ∼= Ker (A
m−→ A), as

claimed.
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We also use the following identities about tensor products:
(⊕

i∈I
Ai

)
⊗R B ∼=

⊕

i∈I
Ai ⊗R B

A⊗R B ∼= B ⊗R A
R⊗R A ∼= A,

which hold for any commutative ring R (with an identity element), any R-modules and any
index set I; see Rotman [51, 52] (Theorems 1.12, 1.13 and 2.8) and Munkres [48] (Chapter
6, Section 50). When R = Z, we also have

Z/mZ⊗Z A ∼= A/mA

where A is an abelian group; see Munkres [48] (Chapter 6, Corollary 50.5). These rules
imply that

TorZ(Z/mZ,Z) = (0)

and
Z/mZ⊗Z Z/nZ ∼= TorZ(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z.

For details, see Munkres [48] (Chapter 7, Section 54), Rotman [51, 52] (Chapter 8), and
Hatcher [31] (Chapter 3, Appendix 3.A, Proposition 3.A.5).

12.3 Universal Coefficient Theorems for Cohomology

Regarding the cohomology complex obtained by using HomR(−, G), we have the following
theorem.

Theorem 12.6. (Universal Coefficient Theorem for Cohomology) Let R be a commutative
hereditary ring, G be any R-module, and let C be a chain complex of projective R-modules.
Then there is a split exact sequence

0 // Ext1
R(Hn−1(C), G)

j // Hn(HomR(C,G)) h // HomR(Hn(C), G) // 0

for all n ≥ 0. (It is assumed that Hn(C) = (0) for all n < 0.) Thus, we have an isomorphism

Hn(HomR(C,G)) ∼= HomR(Hn(C), G)⊕ Ext1
R(Hn−1(C), G)

for all n ≥ 0. Furthermore, the maps in the exact sequence of the theorem are natural, which
means that for any chain map θ : C → C ′ between two chain complexes C and C ′ we have
the following commutative diagram

0 // Ext1
R(Hn−1(C ′), G)

j′ //

Ext1
R(θ∗)

��

Hn(HomR(C ′, G)) h′ //

(HomR(θ,id))∗

��

HomR(Hn(C ′), G) //

HomR(θ∗,id)

��

0

0 // Ext1
R(Hn−1(C), G)

j
// Hn(HomR(C,G))

h
// HomR(Hn(C), G) // 0.



472 CHAPTER 12. UNIVERSAL COEFFICIENT THEOREMS

Theorem 12.6 is proven by modifying the proof of Theorem 12.1 by replacing the functor
− ⊗R G by the functor HomR(−, G). Again, we warn the reader that in all the proofs
that we are aware of (Rotman leaves the entire proof to the reader), the details involved
in verifying that the maps j and h are natural are omitted (or sketched). The dualization
process (applying Hom(−, G)) also causes technical complications that do not come up when
tensoring with G. In particular it is no longer obvious how to identify Hom(Hn(C), G), and
some auxiliary proposition is needed (Proposition 2.9). We decided to provide complete
details (with a little help from Spanier [59]), which makes the proof quite long. The reader
is advised to skip such details upon first reading. We begin with an outline of the proof.

Proof outline. There are two parts to the proof.

(A) Derive the desired split exact sequence.

(B) Prove the naturality of the exact sequence.

Part A: Derive the split exact sequence

0 // Ext1
R(Hn−1(C), G)

j // Hn(HomR(C,G)) h // HomR(Hn(C), G) // 0.

In the above sequence, there are two terms that need to be “properly” understood (defined
in a concrete manner), namely Ext1

R(Hn−1(C), G and HomR(Hn(C), G).

Step A1: Calculating Ext1
R(Hn−1(C), G).

By definition this requires calculating a projective resolution for Hn−1(C). Fortunately
we can use the projective resolution we derived for Theorem 12.1, namely

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

If we apply Hom(−, G) to (∗∗), we find that

Ext1
R(Hn−1, G) = H1(C) = (Ker Hom(in, id))/(Im Hom(d̃n, id))

= (Ker Hom(in, id))/(Im Hom(dn, id)).

Step A2: Verifying the containment identity

Im Hom(dn, id) ⊆ Ker Hom(in, id) ⊆ Ker Hom(dn+1, id). (∗5)

which when combined with the third isomorphism theorem gives desired exact sequence of
the theorem.

To actually derive (∗5) and to help prove naturality part of Theorem 12.6, we write the
expressions which appear in the numerators and denominators as follows

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Zn}

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Bn}.
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Figure 12.5: A schematic representation of the containment identity (∗5).

See Figures 12.5 and 12.6

Then we apply the third isomorphism theorem to (∗5) to obtain the following exact
sequence

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Ker Hom(dn+1, id)/Ker Hom(in, id) // 0. (†)

Step A3: Show that Ker Hom(dn+1, id)/Ker Hom(in, id) ∼= Hom(Hn(C), G). This is where
we use the the set theoretic descriptions of Ker Hom(in, id) and Ker Hom(dn+1, id) from Part
A2 along with Proposition 2.9. Once this is complete, the exact sequence of (†) becomes the
desired exact sequence.

Step A4: Show that (†) is a split exact sequence.

When doing this calculation we use the fact that (∗) is a split exact sequence, find that

Ext1
R(Hn−1, G) = Hom(Bn−1, G)/Im Hom(dn, id), (∗8)

and apply Proposition 2.10. Note that (∗8) is not used again.

Step B: Verifying the naturality part of the theorem.
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Figure 12.6: A “close up” view of the containment identity (∗5).

Step B1: Showing that the right square commutes. For this we need the auxiliary result

Hom(Hn, G) = Hom(Zn/Bn, G) ∼= Ker Hom(γn, id), (∗11)

where γn : Bn → Zn is the inclusion map illustrated by Figure 12.7.
Since

Ker Hom(γn, id) = {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0},

an application of Proposition 2.10 provides the desired isomorphism of (∗11). This means we
can rewrite the right hand square as

Ker Hom(d′n+1, id)/Im Hom(d′n, id)

(Hom(θ,id))∗

��

h′ // Ker Hom(γ′n, id)

Hom(θ∗,id)

��
Ker Hom(dn+1, id)/Im Hom(dn, id)

h
// Ker Hom(γn, id).

(†2)

Then intuitively (Hom(θ, id))∗ (after precomposition with the chain map) pushes down a
cohomology class, Hom(θ∗, id) pushes down a restricted domain version of map, and h′s shift
across a cohomology class with domain restricted to Zn. When the aforementioned maps are
rigorously defined, it is easy to show the commutativity of (†2).

Step 2B: Show the commutativity of the left square.

The minor issue in this situation is to figure out the meaning of Ext1
R(θ∗). To show the

existence of Ext1
R(θ∗), we use the same lift of (∗) we developed for Theorem 12.1 and then

apply Hom(−, G) to this lift. We find that Ext1
R(θ∗) is once again (after precomposition with
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Figure 12.7: Expanding Figure 12.5 to include (∗11).

the chain map) a push down of a cohomology class while the j′s are a modified inclusion
maps, all of which make the right square commute as desired.

Proof of Theorem 12.6. Recall from the beginning of the proof of Theorem 12.1 that we have
the split short exact sequence

0 // Zn(C)
in // Cn

dBn // Bn−1(C) // 0 (∗)

and the exact sequence

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0 (∗∗)

where d̃n : Cn → Zn−1 is the corestriction of dn : Cn → Cn−1 to Zn−1 and dBn : Cn → Bn−1(C)
is the corestriction of dn : Cn → Cn−1 to Bn−1(C). Since every Cn is projective and R is
hereditary, the exact sequence (∗∗) is a projective resolution of Hn−1. If we apply Hom(−, G)
to (∗∗) and drop the term Hn−1 we obtain the cohomology chain complex

0 // Hom(Zn−1, G)
Hom(d̃n,id) // Hom(Cn, G)

Hom(in,id) // Hom(Zn, G) // 0
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denoted C, and by definition of ExtjR(−, G), we have

ExtjR(Hn−1, G) = Hj(C).

Since the sequence (∗) is a split exact sequence and in is injective, Hom(in, id) is surjective,
and this implies that

Ext2
R(Hn−1, G) = H2(C) = Hom(Zn, G)/Im Hom(in, id) = Hom(Zn, G)/Hom(Zn, G) = (0).

We also have

Ext1
R(Hn−1, G) = H1(C) = Ker Hom(in, id)/Im Hom(d̃n, id).

From the original chain complex

0 C0
d0oo C1

d1oo · · ·oo Cn−1
dn−1oo Cn

dnoo Cn+1
dn+1oo · · ·oo

we have
Hn = Ker dn/Im dn+1 = Zn/Bn, (∗1)

and from the complex

0
HomR(d0,id) // HomR(C0, G) // · · · // HomR(Cn−1, G)

HomR(dn,id) // HomR(Cn, G) // · · ·

we have
Hn(Hom(C,G)) = Ker Hom(dn+1, id)/Im Hom(dn, id). (∗2)

Since dn = in−1 ◦ d̃n, with dn : Cn → Cn−1, d̃n : Cn → Zn−1, and in−1 : Zn−1 → Cn−1 we have

Hom(dn, id) = Hom(d̃n, id) ◦ Hom(in−1, id).

Since Hom(Cn−1, G)
Hom(in−1,G) // Hom(Zn−1, G) is a surjection, we have

Im Hom(d̃n, id) = Im Hom(dn, id). (∗3)

Consequently
Ext1

R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id). (∗4)

We claim that

Im Hom(dn, id) ⊆ Ker Hom(in, id) ⊆ Ker Hom(dn+1, id). (∗5)

Since Hom(dn, id) : Hom(Cn−1, G) → Hom(Cn, G) is given by ϕ 7→ ϕ ◦ dn for all ϕ ∈
Hom(Cn−1, G), we have

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}.
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Also, since Hom(dn+1, id) : Hom(Cn, G) → Hom(Cn+1, G) is given by ϕ 7→ ϕ ◦ dn+1 for
all ϕ ∈ Hom(Cn, G), and Hom(in, id) : Hom(Cn, G) → Hom(Zn, G) is given by ϕ 7→ ϕ ◦ in
for all ϕ ∈ Hom(Cn, G), we see that ϕ ∈ Ker Hom(dn+1, id) iff ϕ ◦ dn+1 = 0 iff ϕ vanishes on
Bn = Im dn+1, and ϕ ∈ Ker Hom(in, id) iff ϕ ◦ in = 0 iff ϕ vanishes on Zn = Im in. Therefore

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Zn}

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Bn}.

The above equations will be used to prove (∗6) below and to prove naturality.

Since Zn = Ker dn, any function ψ◦dn ∈ Im Hom(dn, id) vanishes on Zn, so Im Hom(dn, id)
⊆ Ker Hom(in, id), and since Bn ⊆ Zn, any function ϕ ∈ Hom(Cn, G) that vanishes on Zn
also vanishes on Bn, so Ker Hom(in, id) ⊆ Ker Hom(dn+1, id).

Then we can apply the third isomorphism theorem and we get

(
Ker Hom(dn+1, id)/Im Hom(dn, id)

)
/
(
Ker Hom(in, id)/Im Hom(dn, id)

)

∼= Ker Hom(dn+1, id)/Ker Hom(in, id),

and this can be rewritten as the exact sequence

0 −→ Ker Hom(in, id)/Im Hom(dn, id) −→ Ker Hom(dn+1, id)/Im Hom(dn, id) −→
Ker Hom(dn+1, id)/Ker Hom(in, id) −→ 0.

Since
Ext1

R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id),

the first term in the exact sequence is Ext1
R(Hn−1, G), and the second term isHn(Hom(C,G)),

so our exact sequence can be written as

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Ker Hom(dn+1, id)/Ker Hom(in, id) // 0. (†)

It remains to figure out what is Ker Hom(dn+1, id)/Ker Hom(in, id). We will show that this
term is isomorphic to Hom(Hn, G).

We proved earlier that

Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Zn}
Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ(c) = 0 for all c ∈ Bn},

so

Ker Hom(dn+1, id)/Ker Hom(in, id) =

{ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}/{ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}.
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We use Proposition 2.9 to conclude that

Ker Hom(dn+1, id)/Ker Hom(in, id) =

{ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}/{ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}
= B0

n/Z
0
n
∼= Hom(Zn/Bn, G) = Hom(Hn, G),

where

B0
n = {ϕ ∈ Hom(Cn, G) | ϕ(b) = 0 for all b ∈ Bn}

Z0
n = {ϕ ∈ Hom(Cn, G) | ϕ(z) = 0 for all z ∈ Zn}.

Since the exact sequence (∗) splits, we have Cn = Zn ⊕ Z ′n for some submodule Z ′n of Cn,
and we can apply Proposition 2.9 to M = Cn, Z = Zn, and B = Bn. Therefore, the exact
sequence (†) yields

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Hom(Hn, G) // 0. (††)

We now prove that the exact sequence (††) splits. For this we use the fact that since the
exact sequence (∗) splits we have an isomorphim

Cn ∼= Zn ⊕Bn−1.

Applying Hom(−, G), we get

Hom(Cn, G) ∼= Hom(Zn, G)⊕ Hom(Bn−1, G). (∗6)

Recall that

Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}
Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}.

We deduce from the above that

Ker Hom(in, id) ∼= Hom(Bn−1, G), (∗7)

so by (∗4) we obtain

Ext1
R(Hn−1, G) ∼= Hom(Bn−1, G)/Im Hom(dn, id). (∗8)

Since (∗5) implies that Ker Hom(in, id) ⊆ Ker Hom(dn+1, id), by (∗6) we have

Ker Hom(dn+1, id) ∼= {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} ⊕ Hom(Bn−1, G).

Now by Proposition 2.10 there is an isomorphism

κ : {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} → Hom(Zn/Bn, G), (∗9)
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where κ is given by
(κ(ϕ))([z]) = ϕ(z) for all [z] ∈ Zn/Bn. (∗κ)

Since Zn/Bn = Hn, we obtain

Ker Hom(dn+1, id) ∼= Hom(Hn, G)⊕ Hom(Bn−1, G). (∗10)

We now take the quotient modulo Im Hom(dn, id). Since we showed that Im Hom(dn, id) ⊆
Ker Hom(in, id) ∼= Hom(Bn−1, G), we get

Ker Hom(dn+1, id)/Im Hom(dn, id) ∼= Hom(Hn, G)⊕ (Hom(Bn−1, G)/Im Hom(dn, id)),

and by (∗8) this means that

Hn(Hom(C,G)) ∼= Hom(Hn, G)⊕ Ext1
R(Hn−1, G),

which proves that the exact sequence (††) splits.

To prove naturality of the exact sequence (††) we first give another expression for
Hom(Zn/Bn, G) = Hom(Hn, G) in terms of the inclusion map γn : Bn → Zn as in Spanier
[59] (Chapter 5, Section 5, Theorem 3). We claim that

Hom(Hn, G) = Hom(Zn/Bn, G) ∼= Ker Hom(γn, id). (∗11)

Indeed, since γn : Bn → Zn we have Hom(γn, id) : Hom(Zn, G)→ Hom(Bn, G), and we have
ϕ ∈ Ker Hom(γn, id) iff ϕ ◦ γn = 0 iff ϕ vanishes on Bn, thus

Ker Hom(γn, id) = {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0},

but we know (∗9) that this last term is isomorphic to Hom(Zn/Bn, G) = Hom(Hn, G). We
now prove the naturality of (††).

Let θ : C → C ′ be a chain map. First we prove that the diagram

Hn(HomR(C ′, G)) h′ //

(HomR(θ,id))∗

��

HomR(Hn(C ′), G)

HomR(θ∗,id)
��

Hn(HomR(C,G))
h
// HomR(Hn(C), G)

(†1)

commutes, which in view of (∗2) and (∗11) is equivalent to the commutativity of the following
diagram

Ker Hom(d′n+1, id)/Im Hom(d′n, id)

(Hom(θ,id))∗

��

h′ // Ker Hom(γ′n, id)

Hom(θ∗,id)

��
Ker Hom(dn+1, id)/Im Hom(dn, id)

h
// Ker Hom(γn, id),

(†2)
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where the various maps involved are defined below. Recall that

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}
Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}

Ker Hom(γn, id) = {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0}.

The map (Hom(θ, id))∗ is given by

(Hom(θ, id))∗([ϕ′]) = [ϕ′ ◦ θ] (∗12)

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|B′n ≡ 0. Technically, the above should be written as

(Hom(θ, id))∗([ϕ′]Im Hom(d′n,id)) = [ϕ′ ◦ θ]Im Hom(dn,id),

where the modulus of the equivalence class is indicated as a subscript. But since we used this
kind of notation in our proof of Theorem 12.1, to alleviate notation we omit these subscripts.
The reader should have no difficulty in determining the modulus of the equivalence class.

The map Hom(θ∗, id) is given by

Hom(θ∗, id)(ϕ′) = ϕ′ ◦ (θ|Zn) (∗13)

for any ϕ′ ∈ Hom(Z ′n, G) such that ϕ′|B′n ≡ 0, the map h is given by

h([ϕ]) = ϕ|Zn (∗14)

for any ϕ ∈ Hom(Cn, G) such that ϕ|Bn ≡ 0, and the map h′ is given by

h′([ϕ′]) = ϕ′|Z ′n (∗15)

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|B′n ≡ 0. To be very precise, the equivalence classes
[ϕ′] of maps ϕ′ ∈ Hom(Z ′n, G) such that ϕ′|B′n ≡ 0 should be denoted [ϕ′]Im Hom(d′n,id), but by
now the reader should be used to this kind of notational abuse. The map (Hom(θ, id))∗ is
well defined because θ is a chain map so for any ψ′ ◦ d′n ∈ Im Hom(d′n, id) we have

(Hom(θ, id))∗([ϕ′ + ψ′ ◦ d′n]) = [ϕ′ ◦ θ + ψ′ ◦ d′n ◦ θ] = [ϕ′ ◦ θ + ψ′ ◦ θ ◦ dn] = [ϕ′ ◦ θ].

If ϕ′|B′n ≡ 0, then because θ is a chain map, for any c ∈ Cn+1

(ϕ′ ◦ θ)(dn+1(c)) = ϕ′(d′n+1(θ(c))) = 0,

so (ϕ′ ◦ θ)|Bn ≡ 0. The map Hom(θ∗, id) is well defined because θ(Zn) ⊆ Z ′n since θ is a
chain map, and if ϕ′|B′n ≡ 0 for any ϕ′ ∈ Hom(Z ′n, G), then using the same reasoning as
above (ϕ′ ◦ θ)|Bn ≡ 0. The map h is well defined because if ϕ ∈ Hom(Cn, G) with ϕ|Bn ≡ 0
then ϕ|Zn vanishes on Bn since Bn ⊆ Zn, and for any ψ ◦ dn ∈ Im Hom(dn, id), we have

(ϕ+ ψ ◦ dn)|Zn = ϕ|Zn + (ψ ◦ dn)|Zn = ϕ|Zn,
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since dn|Zn ≡ 0 (Zn = Ker dn). Similarly the map h′ is well defined.

Then by (∗15) an (∗13) we have

Hom(θ∗, id)(h′([ϕ′])) = Hom(θ∗, id)(ϕ′|Z ′n) = (ϕ′|Z ′n) ◦ (θ|Zn),

and by (∗12) and (∗14)

h((Hom(θ, id))∗([ϕ′]) = h([ϕ′ ◦ θ]) = (ϕ′ ◦ θ)|Zn.

Since θ(Zn) ⊆ Z ′n, we have

(ϕ′|Z ′n) ◦ (θ|Zn) = (ϕ′ ◦ θ)|Zn,

which proves that the diagram (†2) commutes.

We now prove that the diagram

Ext1
R(Hn−1(C ′), G)

j′ //

Ext1
R(θ∗)

��

Hn(HomR(C ′, G))

(HomR(θ,id))∗

��
Ext1

R(Hn−1(C), G)
j
// Hn(HomR(C,G))

(†3)

commutes, which in view of (∗2) and (∗4) is equivalent to the commutativity of the following
diagram

Ker Hom(i′n, id)/Im Hom(d′n, id)

Ext1(θ∗)
��

j′ // Ker Hom(d′n+1, id)/Im Hom(d′n, id)

(Hom(θ,id))∗

��
Ker Hom(in, id)/Im Hom(dn, id)

j
// Ker Hom(dn+1, id)/Im Hom(dn, id),

(†4)

where the maps involved (besides the right vertical map) are defined below.

To figure out what Ext1(θ∗) is we go back to the projective resolution (∗∗) of Hn−1

0 // Zn
in // Cn

d̃n // Zn−1
// Hn−1

// 0. (∗∗)

If θ : Cn → C ′n is a chain map, we showed during the proof of Theorem 12.1 that the following
diagram commutes:

Zn
in //

θ|Zn
��

Cn
d̃n //

θ
��

Zn−1
//

θ|Zn−1

��

Hn−1

θ∗
��

Z ′n i′n
// C ′n

d̃′n

// Z ′n−1
// H ′n−1.

(∗∗1)
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Therefore we obtain a lifting of θ∗ between two projective resolutions of Hn−1 and H ′n−1 so
by applying Hom(−, G) we obtain the commutative diagram

0 // Hom(Z ′n−1, G)

Hom(θ|Zn−1,id)
��

Hom(d̃′n,G) // Hom(C ′n, G)

Hom(θ|Cn,id)

��

Hom(i′n,id) // Hom(Z ′n, id)

Hom(θ|Zn,id)

��
0 // Hom(Zn−1, G)

Hom(d̃n,G) // Hom(Cn, G)
Hom(in,id) // Hom(Zn, id),

(∗∗2)

and if we denote the upper row by C ′ and the lower row by C, as explained just after
Definition 11.14, the maps ExtjR(θ∗) : ExtjR(H ′n−1, G) → ExtjR(Hn−1, G) are the maps of

cohomology ExtjR(θ∗) : Hj(C ′)→ Hj(C) induced by the chain map of the diagram (∗∗2) and
are independent of the lifting of θ∗ in (∗∗1).

Recall that

Ker Hom(dn+1, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Bn ≡ 0}
Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Ker Hom(in, id) = {ϕ ∈ Hom(Cn, G) | ϕ|Zn ≡ 0}.

Since by (∗4)

Ext1
R(Hn−1, G) = Ker Hom(in, id)/Im Hom(d̃n, id) = Ker Hom(in, id)/Im Hom(dn, id)

and similarly for Ext1
R(H ′n−1, G), the cohomology map Ext1

R(θ∗) is given by

Ext1
R(θ∗)([ϕ

′]) = [ϕ′ ◦ θ], (∗16)

for all ϕ′ ∈ Hom(C ′n, G) such that ϕ′|Z ′n ≡ 0. It is well defined because θ is a a chain map
and for any ψ′ ◦ d′n ∈ Im Hom(d′n, id) we have

Ext1
R(θ∗)([ϕ

′ + ψ′ ◦ d′n]) = [ϕ′ ◦ θ + ψ′ ◦ d′n ◦ θ] = [ϕ′ ◦ θ + ψ′ ◦ θ ◦ dn] = [ϕ′ ◦ θ].

The map j : Ker Hom(in, id)/Im Hom(dn, id) → Ker Hom(dn+1, id)/Im Hom(dn, id) is the
quotient of the inclusion map Ker Hom(in, id) −→ Ker Hom(dn+1, id) given by

j([ϕ]) = [ϕ], (∗17)

for any ϕ ∈ Hom(Cn, G) such that ϕ|Zn ≡ 0. This map is well defined because for any
ψ ◦ dn ∈ Im Hom(dn, id) we have

j([ϕ+ ψ ◦ dn]) = [ϕ+ ψ ◦ dn] = [ϕ],

because Bn ⊆ Zn and Zn = Ker dn so ψ◦dn vanishes on Bn. The map j′ is defined analogously
as

j′([ϕ′]) = [ϕ′], (∗18)
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for any ϕ′ ∈ Hom(C ′n, G) such that ϕ|Z ′n ≡ 0. By (∗12) and (∗18) we have

(Hom(θ, id))∗(j′([ϕ′]) = (Hom(θ, id))∗([ϕ′]) = [ϕ′ ◦ θ]

for any ϕ′ ∈ Hom(C ′n, G) such that ϕ′|Z ′n ≡ 0, and by (∗16) and (∗17) we have

j(Ext1
R(θ∗)([ϕ

′])) = j([ϕ′ ◦ θ]) = [ϕ′ ◦ θ].

Therefore,
(Hom(θ, id))∗ ◦ j′ = j ◦ Ext1(θ∗),

which proves that (†4) commutes, and finishes the proof of naturality.

As in the case of homology, the splitting is not natural.

Spanier proves a version of Theorem 12.6 for a chain complex C such that ExtR(C,G) is
acyclic and with R a PID; see Theorem 3 in Spanier [59] (Chapter 5, Section 5).

Remarks:

(1) Under the isomorphism κ : {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0} → Hom(Zn/Bn, G), the map

h : Hn(Hom(C,G))→ {ϕ ∈ Hom(Zn, G) | ϕ|Bn ≡ 0}

is given by h([ϕ]) = ϕ|Zn for any [ϕ] ∈ Hn(Hom(C,G)). Composing with the isomor-
phism κ, we obtain the surjection (also denoted h)

h : Hn(Hom(C,G))→ Hom(Hn(C), G)

given by
(h([ϕ]))([z]) = ϕ(z),

for any [ϕ] ∈ Hn(Hom(C,G)) and any [z] ∈ Hn(C); this matches Spanier’s def-
inition; see Spanier [59] (Chapter 5, Section 5, Page 242). In Munkres, the map
h : Hn(Hom(C,G)) → Hom(Hn(C), G) is defined on Page 276 ([48], Section 45), and
called the Kronecker map (it is denoted by κ rather than h).

(2) We can prove that

Ext1
R(Hn−1, G) ∼= Coker Hom(γn−1, id) = Hom(Bn−1, G)/Im Hom(γn−1, id). (∗19)

This will establish a connection with Spanier’s proof of the naturality of the exact
sequence (††); see Spanier [59] (Chapter 5, Section 5).

Recall from (∗4) that Ext1
R(Hn−1, G) = Ker Hom(in, id)/Im Hom(dn, id). We already

showed in (∗7) that Ker Hom(in, id) ∼= Hom(Bn−1, G) so we just have to prove that

Im Hom(dn, id) ∼= Im Hom(γn−1, id). (∗20)
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This is because

Im Hom(dn, id) = {ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
Im Hom(γn−1, id) = {ψ ◦ γn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)}

and since dn : Cn → Bn−1 is a surjection and γn : Bn → Zn is an injection,

{ψ ◦ dn ∈ Hom(Cn, G) | ψ ∈ Hom(Cn−1, G)}
∼= {ψ|Bn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Cn−1, G)}

and

{ψ ◦ γn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)}
∼= {ψ|Bn−1 ∈ Hom(Bn−1, G) | ψ ∈ Hom(Zn−1, G)},

but since Bn−1 ⊆ Zn−1 ⊆ Cn−1, the sets of the right-hand sides of the two equations
above are identical.

Therefore, we proved that the exact sequence

0 // Ext1
R(Hn−1, G) // Hn(Hom(C,G)) // Hom(Hn, G) // 0 (††)

is equivalent to the exact sequence

0 // Coker Hom(γn−1, id) // Hn(Hom(C,G)) // Ker Hom(γn, id) // 0, (††2)

which is the exact sequence found in the middle of Page 243 in Spanier (and others,
such as Munkres and Hatcher); see Spanier [59] (Chapter 5, Section 5). We can now
refer to Spanier’s proof of naturality of this sequence.

Whenever Ext1
R(Hn−1(C), G) vanishes, we obtain the “ideal result.”

Recall form Definition 11.4 that an R-module M is divisible if for every nonzero λ ∈ R,
the multiplication map given by u 7→ λu for all u ∈M is surjective. Here we let R = Z and
M be an abelian group.

Proposition 12.7. If C is a complex of free abelian groups, G is an abelian group, and if
either Hn−1(C) or G is divisible, then we have an isomorphism

Hn(HomZ(C,G)) ∼= HomZ(Hn(C), G)

for all n ≥ 0.

We also have the following generalization of Theorem 4.30 to G-coefficients.
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Proposition 12.8. If R is a PID, G is an R-module, C is a complex of free R-modules,
and if Hn−1(C) is a free R-module or (0), then we have an isomorphism

Hn(HomR(C,G)) ∼= HomR(Hn(C), G)

for all n ≥ 0.

Proposition 12.9. If C is a complex of vector spaces and V is a vector space, both over the
same field K, then we have an isomorphism

Hn(HomK(C, V )) ∼= HomK(Hn(C), V )

for all n ≥ 0. In particular, for V = K, we have isomorphisms

Hn(HomK(C,K)) ∼= HomK(Hn(C), K) = Hn(C)∗,

where Hn(C)∗ is the dual of the vector space Hn(C), for all n ≥ 0.

Since the modules S∗(X,A;Z) are free abelian groups, Theorem 12.6 yields the following
result showing that the singular cohomology groups with coefficients in an abelian group G
are determined by the singular homology groups with coefficients in Z.

Theorem 12.10. If X is a topological space, A is a subset of X, and G is any abelian group,
then there is an isomorphism relative singular cohomology

Hn(X,A;G) ∼= HomZ(Hn(X,A;Z), G)⊕ Ext1
Z(Hn−1(X,A;Z), G)

for all n ≥ 0.

Theorem 12.10 is also proven in Munkres [48] (Chapter 7, Section 53, Theorem 53.1) and
in Hatcher [31] (Chapter 3, Section 3.1, Theorem 3.2).

Since the modules S∗(X,A;R) are free, Theorem 12.6 has the following corollary.

Theorem 12.11. If X is a topological space, A is a subset of X, R is any PID, and G is
any R-module, then there is an isomorphism of relative singular cohomology

Hn(X,A;G) ∼= HomR(Hn(X,A;R), G)⊕ Ext1
R(Hn−1(X,A;R), G)

for all n ≥ 0.
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12.4 Computing Ext

If A is a finitely generated abelian group and G is any abelian group, then Ext1
Z(A,G) can

be computed recursively. It is customary to drop the superscript 1 in Ext1
R(−,−). We have

the identities

ExtR

(⊕

i∈I
Ai, B

)
∼=
∏

i∈I
ExtR(Ai, B)

ExtR

(
A,
∏

i∈I
Bi

)
∼=
∏

i∈I
ExtR(A,Bi)

ExtR(A,B) ∼= (0) if A is projective or B is injective,

for any commutative ring R and any R-modules; see Munkres [48] (Chapter 7, Section 52)
and Rotman [51, 52] (Chapter 7). If the index set I is finite, we can replace

∏
by
⊕

. When
R = Z we also have

ExtZ(Z, G) ∼= (0)

ExtZ(Z/mZ, G) ∼= G/mG,

where G is an abelian group. This last equation is proven as follows.

Proof. We know that the sequence

0 // Z m // Z // Z/mZ // 0

is a free resolution of Z/mZ. Since ExtZ(−, G) is the right derived functor of HomZ(−, G),
we deduce that ExtjZ(Z/mZ, G) = (0) for all j ≥ 2, and the long exact sequence given by
Theorem 11.31 yields the exact sequence

0 // Hom(Z/mZ, G) //Hom(Z, G)
Hom(m,G) //Hom(Z, G) //Ext1

Z(Z/mZ, G) // 0.

Since Hom(Z, G) ∼= G, we obtain an exact sequence

0 // Hom(Z/mZ, G) // G
m // G

p // Ext1
Z(Z/mZ, G) // 0,

and since p is surjective and Imm = Ker p, we have

Ext1
Z(Z/mZ, G) ∼= G/Ker p ∼= G/mG,

as claimed.

We also use the following rules for HomR(−,−):

HomR

(⊕

i∈I
Ai, B

)
∼=
∏

i∈I
HomR(Ai, B)

HomR

(
A,
∏

i∈I
Bi

)
∼=
∏

i∈I
HomR(A,Bi)
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for any commutative ring and any R-modules; see Rotman [51, 52] (Theorem 2.4 and The-
orem 2.6). If the index set I is finite, we can replace

∏
by
⊕

. When R = Z, we also
have

HomZ(Z, G) ∼= G

HomZ(Z/mZ, G) ∼= Ker (G
m−→ G),

where G is an abelian group. The above formula is proven as follows.

Proof. We have the exact sequence

0 // Z m // Z // Z/mZ // 0.

Since HomZ(−, G) is right-exact, we obtain the exact sequence

0 // HomZ(Z/mZ, G) // HomZ(Z, G)
HomZ(m,G) // HomZ(Z, G).

Since Hom(Z, G) ∼= G, we obtain an exact sequence

0 // HomZ(Z/mZ, G) // G
m // G,

which yields HomZ(Z/mZ, G) ∼= Ker (G
m−→ G), as claimed.

These rules imply that
HomZ(Z/mZ,Z) ∼= (0)

and
HomZ(Z/mZ,Z/nZ) ∼= ExtZ(Z/mZ,Z/nZ) ∼= Z/gcd(m,n)Z.

For details, see Munkres [48] (Chapter 7, Section 52), Rotman [51, 52] (Chapter 7), and
Hatcher [31] (Chapter 3, Section 3.1).

If A is a finitely generated abelian group, we know that A can be written (uniquely) as
a direct sum

A = F ⊕ T

where A is a free abelian group and F is a torsion abelian group. Then the above rules
imply the following useful result that allows to compute integral cohomology from integral
homology.

Proposition 12.12. Let C be a chain complex of free abelian groups. If Hn−1(C) and Hn(C)
are finitely generated and if we write Hn(C) = Fn ⊕ Tn where Fn is the free part of Hn(C)
and Tn is the torsion part of Hn(C) (and similarly Hn−1(C) = Fn−1 ⊕ Tn−1), then we have
an isomorphism

Hn(HomZ(C,Z)) ∼= Fn ⊕ Tn−1.
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In particular, the above holds for the singular homology groups Hn(X;Z) and the singular
cohomology groups Hn(X;Z) of a topological space X; that is,

Hn(X;Z) ∼= Fn ⊕ Tn−1

where Hn(X;Z) = Fn ⊕ Tn with Fn free and Tn a torsion abelian group.

Proof. Using the above rules, since Tn is a finitely generated torsion abelian group it is a
direct sum of abelian groups of the form Z/mZ, and since Fn is a finitely generated free
abelian group it is of the form Zn, so we have

HomZ(Hn(C),Z) = HomZ(Fn⊕ Tn,Z) ∼= HomZ(Fn,Z)⊕HomZ(Tn,Z) ∼= HomZ(Fn,Z) ∼= Fn,

and

ExtZ(Hn−1(C),Z) = ExtZ(Fn−1 ⊕ Tn−1,Z) ∼= ExtZ(Fn−1,Z)⊕ ExtZ(Tn−1,Z)
∼= ExtZ(Tn−1,Z) ∼= Tn−1.

By Theorem 12.6, we conclude that Hn(HomZ(C,Z)) ∼= Fn ⊕ Tn−1.

Proposition 12.12 is found in Bott and Tu [4] (Chapter III, Corollary 15.14.1), Hatcher
[31] (Chapter 3, Corollary 3.3), and Spanier [59] (Chapter 5, Section 5, Corollary 4). As
an application of Proposition 12.12, we can compute the cohomology groups of the real
projective spaces RPn and of the complex projective space CPn. Recall from Section 4.3
that the homology groups of CPn and RPn are given by

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =





Z for p = 0 and for p = n odd

Z/2Z for p odd, 0 < p < n

(0) otherwise.

Using Proposition 12.12, we obtain

Hp(CPn;Z) =

{
Z for p = 0, 2, 4, . . . , 2n

(0) otherwise,

and

Hp(RPn;Z) =





Z for p = 0 and for p = n odd

Z/2Z for p even, 0 < p ≤ n

(0) otherwise.

Spanier [59] (Chapter 5, Sections 2 and 5) and Munkres [48] (Chapter 7, Section 56)
discuss other types of universal coefficient theorems.

In the next section we discuss briefly some generalizations of the universal coefficient
theorems known as the Künneth Theorems or Künneth Formulae.
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12.5 Künneth Formulae

In order to state the Künneth formulae we need to generalize the notion of tensor product
and the Hom functor to complexes. Here it is technically important to spell out the index
conventions used to denote chain complexes and cochain complexes and to allow negative
indices. Following Rotman [51, 52], as in Section 2.5, a chain complex C∗ = (Cp)p∈Z is
denoted by

· · · Cp−2
oo Cp−1

dp−1oo Cp
dpoo Cp+1

dp+1oo · · · ,oo

using increasing subscripts, with the arrows going from right to left, and a cochain complex
C∗ = (Cp)p∈Z is denoted by

· · · // Cp−1 dp−1
// Cp dp // Cp+1 dp+1

// Cp+2 // · · · ,

using increasing superscripts, with the arrows going from left to right.

As we explained in Section 2.5, a cochain complex can be converted to a chain complex,
and conversely, by changing Cp to C−p and dp to d−p and changing the direction of the
arrows. The cochain complex

· · · // Cp−1 dp−1
// Cp dp // Cp+1 dp+1

// Cp+2 // · · ·

becomes the chain complex

· · · C−(p+2)
oo C−(p+1)

d−(p+1)oo C−p
d−poo C−(p−1)

d−(p−1)oo · · · .oo

Conversely we get a cochain complex from a chain complex by changing Cp to C−p and dp
to d−p and changing the direction of the arrows. In most cases, given a chain complex C∗
we have Cp = (0) for all p < 0. We call such a complex a positive chain complex . Similarly,
in most cases, given a cochain complex C∗ we have Cp = (0) for all p < 0. We call such a
complex a positive cochain complex . If we convert a positive cochain complex (Cp)p∈N into
a chain complex (C−p)−p∈N, then we obtain a negative chain complex . This trick allows us
to view a positive cochain complex as a negative chain complex. By symmetry, a negative
cochain complex is converted to a positive chain complex.

It is usually more pleasant to avoid negative subscripts in negative chain complexes by
turning them into cochain complexes by switching signs and raising indices but there are
constructions (for example, Hom functors) for which it is more convenient to use complexes
with negative and positive indices. Whether we pick chain complexes or cochain complexes
is a matter of taste. Rotman favors chain complexes, but Weibel favors cochain complexes.
We follow Rotman and use chain complexes.

Our first construction is the tensor product C ⊗D of chain complexes C and D. Then we
will state a formula relating the homology of C ⊗D to the homology of C and the homology
of D. Such a formula is known as Künneth theorem (or Künneth formula).
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Definition 12.2. Given two chain complexes C = (Cp)p∈Z and D = (Dq)q∈Z where the Cp
an Dq are R-modules, the tensor product of the complexes C and D is the chain complex
C ⊗ D = ((C ⊗ D)n)n∈Z defined such that

(C ⊗ D)n =
⊕

p+q=n

Cp ⊗Dq, n ∈ Z,

with differential ∂n : (C ⊗ D)n → (C ⊗ D)n−1 given by

∂n(cp ⊗ dq) = (∂Ccp)⊗ dq + (−1)pcp ⊗ (∂Ddq), cp ∈ Cp, dq ∈ Dq.

Clearly, if C an D are both positive chain complexes or both negative chain complexes,
then there are only finitely many indices p, q such that p+ q = n. In the first case C ⊗ D is
a positive chain complex and in the second case it is a negative chain complex (equivalent
to a positive cochain complex). The following remarkable theorem holds.

Theorem 12.13. (Künneth formula) Let R be a hereditary ring, and let C and D be two
chain complexes with all Cp flat. Then for every n ∈ Z there is natural sequence

0 //
⊕

p+q=n

Hp(C)⊗Hq(D) α // Hn(C ⊗ D) //
⊕

p+q=n

TorR1 (Hp−1(C), Hq(D)) // 0

that splits.

The splitting need not be natural.

Theorem 12.13 is proven in Rotman [51, 52] (Chapter 11, Theorem 11.31). The proof is
hard and long. There is also a more sophisticated proof using spectral sequences.

Theorem 12.13 is very general. It yields the (strong) universal coefficient theorem for
homology (Theorem 12.1) as a corollary with D the chain complex consisting of the single
nonzero module D0 = G and C a positive chain complex whose modules Cp are flat.

When both C and D are positive chain complexes, Theorem 12.13 yields what is usually
known as the Künneth formula for chain complexes ; see Munkres [48] (Chapter 7, Section
58): In this cases, since p, q ≥ 0, the direct sums are finite.

When both C and D are negative chain complexes, in other words, positive cochain
complexes, Theorem 12.13 yields a Künneth formula for cochain complexes . In this case,
since p, q < 0, (C ⊗D)n = (0) for all n > 0, and for each n ≤ 0, there are only finitely many
p, q such that p+ q = n. The homology groups H−k with k ≥ 0 become cohomology groups
Hk, and we obtain the following exact sequences

0 //
⊕

p+q=n

Hp(C)⊗Hq(D) α // Hn(C ⊗ D) //
⊕

p+q=n

TorR1 (Hp+1(C), Hq(D)) // 0,
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that split. When D consists of a single nonzero module D0 = G, we obtain a universal
coefficient theorem for computing the cohomology modules Hn(C ⊗ G) in terms of Hn(C)
and Hn+1(C) (and some Tor module), namely the exact sequence

0 // Hn(C)⊗G // Hn(C ⊗G) // TorR1 (Hn+1(C), G) // 0

splits; see Munkres [48] (Chapter 7, Corollary 56.4).

Another application of Theorem 12.13 is a formula for computing the homology of the
product of two topological spaces. For this we need to state the Eilenberg–Zilber theorem.

Theorem 12.14. (Eilenberg–Zilber theorem) Given any two topological spaces X and Y ,
there are chain homotopies µ : S∗(X)⊗ S∗(Y )→ S∗(X × Y ) and ν : S∗(X × Y )→ S∗(X)⊗
S∗(Y ) (in singular homology with coefficients in Z) that are mutual inverses. These chain
homotopies are natural with respect to chain maps induced by continuous maps.

For a proof of Theorem 12.14, see Munkres [48] (Chapter 7, Sections 59). The Eilenberg–
Zilber theorem immediately implies that

Hm(X × Y ) ∼= Hm(S∗(X)⊗ S∗(Y )), m ≥ 0.

As a corollary we obtain the following result.

Theorem 12.15. (Künneth formula for topological spaces) Given any topological spaces X
and Y , for every n ∈ N there is natural sequence

0 //
⊕

p+q=n

Hp(X)⊗Hq(Y ) α // Hn(X × Y ) //
⊕

p+q=n

TorR1 (Hp−1(X), Hq(Y )) // 0

that splits. Here we are dealing with singular homology with coefficients in Z.

Theorem 12.15 is proven in Munkres [48] (Chapter 7, Section 59). As an application of
Theorem 12.15, it is easy to compute the homology groups Hp(T

n) of the n-torus T n = (S1)n

by induction and to confirm that

Hp(T
n) = Z(np).

We now consider the generalization of Hom to complexes.

Definition 12.3. Given two chain complexes C = (Cp)p∈Z and D = (Dq)q∈Z where the Cp
an Dq are R-modules, the chain complex Hom(C,D) = (Hom(C,D)n)∈Z is defined by

Hom(C,D)n =
∏

p+q=n

Hom(C−p, Dq), n ∈ Z,

with differential ∂n : Hom(C,D)n → Hom(C,D)n−1 given by

∂n =
∏

p+q=n−1

∂p,q,
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with
∂p,q

(
(fij)i+j=n

)
= (−1)p+qfp+1,q ◦ ∂C−p + ∂Dq+1 ◦ fp,q+1, p+ q = n− 1,

where fi,j ∈ Hom(C−i, Dj), i+ j = n.

Observe that

(∂C−p)
∗(fp+1,q) = Hom(∂C−p, id)(fp+1,q) = fp+1,q ◦ ∂C−p

and
(∂Dq+1)∗(fp,q+1) = Hom(id, ∂Dq+1)(fp,q+1) = ∂Dq+1 ◦ fp,q+1,

so we can also write
∂n =

∏

p+q=n−1

(
(−1)p+q(∂C−p)

∗ + (∂Dq+1)∗
)
.

If C is a positive chain complex (Cp) (with Cp = (0) for p < 0) and if D is a negative
chain complex (Dq) (with Dq = (0) for q > 0), then Hom(C−p, Dq) is nonzero only if p ≤ 0
and q ≤ 0, so for n ≤ 0 there are only finitely many p, q ≤ 0 such that p + q = n and we
have

Hom(C,D)n =
⊕

p+q=n,p,q≤0

Hom(C−p, Dq).

If we let p′ = −p, q′ = −q, and n′ = −n, by switching signs and raising the indices, for
n′ ≥ 0 we have

Hom(C,D)n
′
=

⊕

p′+q′=n′,p′,q′≥0

Hom(Cp′ , D
q′).

This is the case that occurs most of the time. For this reason, some authors define Hom(C,D)
directly as a cochain complex.

Remark: As in the case of tensor products of modules, for any three chain complexes
C,D, E , we have an isomorphism

Hom(C ⊗ D, E) ∼= Hom(C,Hom(D, E)).

We have the following Künneth formula for Hom(C,D); see Rotman [51] (Chapter 11,
Theorem 11.32), Rotman [52] (Chapter 10, Theorem 10.85), and Hilton and Stammbach [32]
(Chapter V, Theorem 3.1).

Theorem 12.16. (Künneth formula for Hom) Let R be a hereditary ring, and let C and D
be two chain complexes with all Cp projective. Then for every n ∈ Z there is natural sequence

0 //
∏

p−q=n−1

Ext1
R(Hp(C), Hq(D)) // Hn(Hom(C,D))

//
∏

p−q=n
Hom(Hp(C), Hq(D)) // 0
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that splits. Here the chain complex Hom(C,D) = (Hom(C,D)−n) is turned into a cochain
complex (Hom(C,D)n) as explained earlier so that the cohomology groups are well-defined.

The splitting need not be natural.

In the formula in Rotman [51], Hn should be Hn, and in Rotman [52], p − q should be
p+q. The formula in Hilton and Stammbach [32] is stated with

∏
q−p=n+1 in the first product,∏

q−p=n in the second product, and Hn instead of Hn. This equivalent to the formula in our
statement since q−p = n+1 in the first case and q−p = n in the second case are respectively
equivalent to p− q = −n− 1 and p− q = −n, and we changed −n to n.

We prefer our version for the following reason. If C is a positive chain complex and D is
a negative chain complex (a positive cochain complex), we saw that Hom(C,D) is a negative
chain complex with negative indices −n (with n ≥ 0), so Hom(C,D) is a positive cochain
complex, we have p ≥ 0, q ≤ 0, and the H−q and Hn are cohomology groups. In this special
case, changing q to −q (with q ≥ 0), the Künneth formula says that the exact sequence

0 //
∏

p+q=n−1

Ext1
R(Hp(C), Hq(D)) // Hn(Hom(C,D))

//
∏

p+q=n

Hom(Hp(C), Hq(D)) // 0

splits. See Weibel [63] (Exercise 3.6.1, Page 90).

In the special case where C is a positive chain complex of projectives and D consists of the
single nonzero module D0 = G, we obtain the universal coefficient theorem for cohomology
(Theorem 12.6) as a corollary.

For more on Künneth formulae we refer the reader to Rotman [51, 52], Munkres [48]
(Chapter 7, Sections 58 and 60), Hatcher [31] (Chapter 3, Sections 3.2 and 3.B) and Spanier
[59] (Chapter 5).

12.6 Problems

Problem 12.1. Prove the identities

TorR
(⊕

i∈I
Ai, B

)
∼=
⊕

i∈I
TorR(Ai, B)

TorR
(
A,
⊕

i∈I
Bi

)
∼=
⊕

i∈I
TorR(A,Bi)

TorR(A,B) ∼= TorR(B,A),

where A, Ai, Bi, B are R-modules for a commutative ring R (with an identity element), and
I is an arbitrary index set.
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Problem 12.2. Prove that

TorR(A,B) ∼= (0) if A or B is flat (in particular, projective, or free),

for any commutative ring R.

Problem 12.3. Compute A⊗B and TorZ(A,B) for

A = Z⊕ Z/2Z⊕ Z/4Z⊕ Z/6Z, B = Z⊕ Z⊕ Z/9Z⊕ Z/12Z.

Problem 12.4. Let A and B be two finitely generated abelian groups and let TA and TB
be their torsion groups. Prove that TorR(A,B) ∼= TorR(TA, TB).

Problem 12.5. Prove the identities

ExtR

(⊕

i∈I
Ai, B

)
∼=
∏

i∈I
ExtR(Ai, B)

ExtR

(
A,
∏

i∈I
Bi

)
∼=
∏

i∈I
ExtR(A,Bi),

where A, Ai, Bi, B are R-modules for a commutative ring R (with an identity element), and
I is an arbitrary index set.

Problem 12.6. Prove that

ExtR(A,B) ∼= (0) if A is projective or B is injective,

for any commutative ring R.

Problem 12.7. Compute Hom(A,B) and ExtZ(A,B) for

A = Z⊕ Z/2Z⊕ Z/4Z⊕ Z/6Z, B = Z⊕ Z⊕ Z/9Z⊕ Z/12Z.

Problem 12.8. Consider the spheres Sr and Ss. Prove that

Hm(Sr × Sr;Z) =





Z if m = 0, 2r

Z⊕ Z if m = 2r

(0) otherwise,

and if r 6= s, then

Hm(Sr × Ss;Z) =

{
Z if m = 0, r, s, r + s

(0) otherwise.

Problem 12.9. Check that in Definition 12.2, the formula ∂n : (C⊗D)n → (C⊗D)n−1 given
by

∂n(cp ⊗ dq) = (∂Ccp)⊗ dq + (−1)pcp ⊗ (∂Ddq), cp ∈ Cp, dq ∈ Dq

defines a differential (∂n−1 ◦ ∂n = 0).
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Problem 12.10. Prove using the Künneth formula that the homology groups Hp(T
n) of

the n-torus T n = (S1)n are given by

Hp(T
n) = Z(np).

Problem 12.11. Check that in Definition 12.3, the formula ∂n : Hom(C,D)n → Hom(C,D)n−1

given by

∂n =
∏

p+q=n−1

∂p,q,

with
∂p,q

(
(fij)i+j=n

)
= (−1)p+qfp+1,q ◦ ∂C−p + ∂Dq+1 ◦ fp,q+1, p+ q = n− 1,

where fi,j ∈ Hom(C−i, Dj), i+ j = n, defines a differential (∂n−1 ◦ ∂n = 0).
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Chapter 13

Cohomology of Sheaves

In this chapter we apply the results of Sections 11.4 and 11.8 to the case where C is the
abelian category of sheaves of R-modules on a topological space X, D is the (abelian)
category of abelian groups, and T is the left-exact global section functor Γ(X,−), with
Γ(X,F) = F(X) for every sheaf F on X. It turns out that the category of sheaves has
enough injectives, thus the right derived functors RpΓ(X,−) exist, and for every sheaf F on
X, the cohomology groups RpΓ(X,−)(F) are defined. These groups, denoted by Hp(X,F),
are called the cohomology groups of the sheaf F (or the cohomology groups of X with values
in F).

In principle, computing the cohomology groups Hp(X,F) requires finding injective reso-
lutions of sheaves. However injective sheaves are very big and hard to deal with. Fortunately,
there is a class of sheaves known as flasque sheaves (due to Godement) which are Γ(X,−)-
acyclic, and every sheaf has a resolution by flasque sheaves. Therefore, by Proposition 11.34,
the cohomology groups Hp(X,F) can be computed using flasque resolutions.

If the space X is paracompact (see Definition 13.7), then it turns out that for any sheaf F ,
the Čech cohomology groups Ȟp(X,F) are isomorphic to the cohomology groups Hp(X,F).

Furthermore, if F is a presheaf, then the Čech cohomology groups Ȟp(X,F) and Ȟp(X, F̃)

are isomorphic, where F̃ is the sheafification of F . Several other results (due to Leray and
Henri Cartan) about the relationship between Čech cohomology and sheaf cohomology will
be stated.

When X is a topological manifold (thus paracompact), for every R-module G, we will
show that the singular cohomology groups Hp(X;G) are isomorphic to the cohomology

groups Hp(X, G̃X) of the constant sheaf G̃X . Technically, we will need to define soft and
fine sheaves.

We will also define Alexander–Spanier cohomology and prove that it is equivalent to sheaf
cohomology (and Čech cohomology) for paracompact spaces and for the constant sheaf G̃X .

In summary, if X is a paracompact topological space (for example, a topological manifold)
and if G is any R-module, then singular cohomology, Čech cohomology, Alexander–Spanier

497
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cohomology, and sheaf cohomology for the constant sheaf G̃X or the presheaf GX are all
equivalent; there are isomorphisms

Hp(X,G) ∼= Ȟp(X,G) ∼= Hp
A-S(X;G) ∼= Hp(X, G̃X) ∼= Hp(X,GX)

for all p ≥ 0. if X is a smooth manifold and R = R, we also have the de Rham isomorphisms

Hp
dR(X) ∼= Hp(X, R̃X)

for all p ≥ 0.

13.1 Cohomology Groups of a Sheaf of Modules

It is convenient to use for a definition of an injective sheaf the condition of Proposition 11.3
which applies to abelian categories. Recall the definition of an injective, or monic, sheaf map
from Definition 10.16.

Definition 13.1. A sheaf I is injective if for any injective (monic) sheaf map h : F → G
and any sheaf map f : F → I, there is some sheaf map f̂ : G → I extending f : F → I in
the sense that f = f̂ ◦ h, as in the following commutative diagram:

0 // F
f

��

h // G

f̂��
I.

We need to prove that the category of sheaves of R-modules has enough injectives.

Proposition 13.1. For any sheaf F of R-modules, there is an injective sheaf I and an
injective sheaf homomorphism ϕ : F → I.

Proof. We know that the category of R-modules has enough injectives (see Theorem 11.6).
For every fixed x ∈ X, pick some injection Fx −→ Ix with Ix an injective R-module, which
always exists by Theorem 11.6 (recall that Fx is also an R-module). Define the “skyscraper
sheaf” Ix as the sheaf given by

Ix(U) =

{
Ix if x ∈ U
(0) if x /∈ U

for every open subset U of X (we use a superscript in Ix to avoid the potential confusion
with the stalk at x). See Figure 13.1. It is easy to check that there is an isomorphism

HomSh(X)(F , Ix) ∼= HomR(Fx, Ix)

for any sheaf F given by ϕ 7→ ϕx with ϕ ∈ HomSh(X)(F , Ix) (see Definition 10.3 and
Corollary 10.3), and this implies that Ix is an injective sheaf. We also have a sheaf map
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U
xx

U
x

I

Fx

I
x

(U)
x

inject into

I
x

X

X

Figure 13.1: A schematic representation of the “skyscraper sheaf” Ix. We represent X as
a white plane. The top figure injects the maroon stalk Fx into the blue R-module Ix. The
bottom figure shows that for any open set U of X, Ix(U) is a “skyscraper” whose blue “roof”
is the fixed module Ix.

from F to Ix given by the injection Fx −→ Ix. Consequently we obtain an injective sheaf
map

F −→
∏

x∈X
Ix.

Since a product of injective sheaves is injective, F is embedded into an injective sheaves.

Remark: The category of sheaves does not have enough projectives. This is the reason why
projective resolutions of sheaves are of little interest.

As we explained in Section 11.2, since the category of sheaves is an abelian category
and since it has enough injectives, Proposition 11.15 holds for sheaves; that is, every sheaf
has some injective resolution. Since the global section functor on sheaves is left-exact (see
Proposition 10.34(4)), as a corollary of Theorem 11.27 we make the following definition.

Definition 13.2. Let X be a topological space, and let Γ(X,−) be the global section functor
from the abelian category Sh(X) of sheaves of R-modules to the category of abelian groups.
The cohomology groups of the sheaf F (or the cohomology groups of X with values in F),
denoted by Hp(X,F), are the groups RpΓ(X,−)(F) induced by the right derived functor
RpΓ(X,−) (with p ≥ 0).
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To compute the sheaf cohomology groups Hp(X,F), pick any resolution of F

0 // F // I0 d0
// I1 d1

// I2 d2
// · · ·

by injective sheaves In, apply the global section functor Γ(X,−) to obtain the complex of
R-modules

0 δ−1
// I0(X) δ0

// I1(X) δ1
// I2(X) δ2

// · · · ,

and then

Hp(X,F) = Ker δp/Im δp−1.

By Theorem 11.47 the right derived functors RpΓ(X,−) constitute a universal δ-functor,
so all the properties of δ-functors apply.

In algebraic geometry it is useful to consider sheaves defined on a ringed space generalizing
modules. Roughly speaking, we consider sheaves of modules for which we allow the ring of
coefficients OX(U) to vary with U .

Definition 13.3. Given a ringed space (X,OX), an OX-module (or sheaf of modules over
X) is a sheaf F of abelian groups on X such that for every open subset U , the group F(U)
is an OX(U)-module, and the following conditions hold for all open subsets V ⊆ U :

OX(U)×F(U)

(ρOUV ,ρFUV )

��

// F(U)

ρFUV
��

OX(V )×F(V ) // F(V ).

Any sheaf of R-modules on X can be viewed as an OX-module with respect to the
constant sheaf R̃X . There is an obvious notion of morphism of OX-modules induced by the
notion of morphism of sheaves. The category of OX-modules on a ringed space (X,OX) is
denoted by Mod(X,OX). Proposition 13.1 has the following generalization.

Proposition 13.2. For any sheaf F of OX-modules, there is an injective OX-module I and
an injective morphism ϕ : F → I.

A proof of Proposition 13.2 can be found in Hartshorne [30] (Chapter III, Section 2,
Proposition 2.2). As a consequence, we can define the cohomology groups Hp(X,F) of the
OX-module F over the ringed space (X,OX) as the groups induced by the right derived
functors RpΓ(X,−) of the functor Γ(X,−) from the category Mod(X,OX) of OX-modules
to the category of abelian groups (with p ≥ 0).

We now turn to flasque sheaves.
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13.2 Flasque Sheaves

The notion of flasque sheaf is due to Godement (see [24], Chapter 3). The word flasque is
French and it is hard to find an accurate English translation for it. The closest appoximations
we can think of are flabby , limp, or soggy ; a good example of a “flasque” object is a slab of
jello or a jellyfish. Most authors use the French word “flasque” so we will use it too.

Definition 13.4. A sheaf F on a topological space X is flasque if for every open subset U
of X the restriction map ρXU : F(X)→ F(U) is surjective.

We will see shortly that injective sheaves are flasque. Although this is not obvious from
the definition, the notion of being flasque is local.

Proposition 13.3. Let F be an OX-module. If F is flasque, so is F � U for every open
subset U of X. Conversely, if for every x ∈ X, there is a neighborhood U such that F � U
is flasque, then F is flasque.

Proof. The first statement is trivial, so let us prove the converse. Given any open set V
of X, let s be a section of F over V . Let T be the set of all pairs (U, σ), where U is an
open in X containing V , and σ is an extension of s to U . Partially order T by saying that
(U1, σ1) ≤ (U2, σ2) if U1 ⊆ U2 and σ2 extends σ1, and observe that T is inductive, which
means that every chain has an upper bound. Zorn’s lemma provides us with a maximal
extension of s to a section σ over an open set U0. Were U0 not X, there would exist an
open set W in X not contained in U0 such that F � W is flasque. Thus we could extend the
section ρU0

U0∩W (σ) to a section σ′ of F � W . Since σ and σ′ agree on U0 ∩W by construction,
their common extension to U0 ∪W extends s, a contradiction; see Figure 13.2.

Proposition 13.4. Every OX-module may be embedded in a canonical functorial way into a
flasque OX-module. Consequently, every OX-module has a canonical flasque resolution (i.e.,
a resolution by flasque OX-modules.)

Proof. Let F be an OX-module, and define a presheaf C0(X,F) by

U 7→
∏

x∈U
Fx.

It is immediate that C0(X,F) is actually a sheaf and that we have an injection of OX-
modules j : F → C0(X,F). An element of C0(X,F) over any open set U is a collection (sx)
of elements indexed by U , each sx lying over the OX,x-module Fx. Such a sheaf is flasque
because every U -indexed sequence sx can be extended to an X-indexed sequence by assigning
any arbitrary element of Fx to any x ∈ X−U . Hence Mod(X,OX) possesses enough flasque
sheaves.

If Z1 is the (sheaf) cokernel C0(X,F)/j(F) of the canonical injection j : F → C0(X,F),
we define C1(X,F) to be the flasque sheaf C0(X,Z1), and d0 is the composite map

d0 : C0(X,F) // C0(X,F)/j(F) = Z1 // C0(X,Z1) = C1(X,F).
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X

VU

s

s

U0

X

VU

U0σ

W

s

X

VU

U0σ

W

σ ‘

Figure 13.2: A schematic illustration of the proof of Proposition 13.3. The space X is
represented by the white plane. The top figure shows the red section s over the open set V .
The middle figure shows the “supposed” maximal extension of s as the section σ. But if U0

is not X, the bottom figure illustrates how to extend σ, thus contradicting maximality.

In general,
Zn = Cn−1(X,F)/dn−2Cn−2(X,F),

the (sheaf) cokernel of the map dn−2 : Cn−2(X,F)→ Cn−1(X,F), and

Cn(X,F) = C0(X,Zn),

a flasque sheaf. The map dn−1 : Cn−1(X,F)→ Cn(X,F) is the composite

dn−1 : Cn−1(X,F) // Cn−1(X,F)/dn−2Cn−2(X,F) = Zn // C0(X,Zn) = Cn(X,F).

Observe that Im dn−1 ∼= Zn, so we could define Zn as

Zn = Cn−1(X,F)/Zn−1,

as in Godement [24] (Chapter 4, Section 4.2). Putting all this information together, we
obtain the desired flasque resolution of F

0 // F j // C0(X,F) d0
// C1(X,F) d1

// C2(X,F) d1
// · · ·
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as claimed.

Definition 13.5. The resolution of F constructed in Proposition 13.4 is called the canonical
flasque resolution of F or the Godement resolution of F . We define the R-modules Cn(X,F)
as

Cn(X,F) = Γ(X, Cn(X,F)) = Cn(X,F)(X),

where Γ(X,−) is the global section functor.

By applying the global section functor Γ(X,−) (which is exact) to the canonical resolution

0 // F j // C0(X,F) d0
// C1(X,F) d1

// C2(X,F) d2
// · · ·

of a sheaf F yields the cochain complex

0 // Γ(X,F),
j∗ // C0(X,F)

(d0)∗ // C1(X,F)
(d1)∗ // C2(X,F)

(d2)∗ // · · ·

denoted C(X,F), and we will see in Proposition 13.7 that the cohomology of the above
complex computes the sheaf cohomology modules Hp(X,F) (defined in terms of injective
resolutions), that is,

Hp(X,F) ∼= Hp(C(X,F);R).

Also recall that H0(X,F) ∼= Γ(X,F).

Definition 13.6. Given two sheaves of R-modules F ′ and F ′′, we obtain a presheaf F =
F ′ ⊕F ′′ by setting

F(U) = (F ′ ⊕F ′′)(U) = F ′(U)⊕F ′′(U)

for every open subset U of X. Actually, F ′⊕F ′′ is a sheaf. We call F ′ and F ′′ direct factors
of F .

Here is the principal property of flasque sheaves.

Theorem 13.5. Let 0 −→ F ′ −→ F −→ F ′′ −→ 0 be an exact sequence of OX-modules,
and assume F ′ is flasque. Then this sequence is exact as a sequence of presheaves. If both
F ′ and F are flasque, so is F ′′. Finally, any direct factor of a flasque sheaf is flasque.

Proof. Given any open set U , we must prove that

0 // F ′(U)
ϕ // F(U)

ψ // F ′′(U) // 0

is exact. By Proposition 10.34(4), the sole problem is to prove that F(U) −→ F ′′(U) is
surjective. By restricting attention to U , we may assume U = X; hence, we are going to
prove that a global section of F ′′ may be lifted to a global section of F . Let s′′ be a global
section of F ′′, then by Proposition 10.19(iv), locally s′′ may be lifted to sections of F . Let
T be the family of all pairs (U, σ) where U is an open in X, and σ is a section of F over



504 CHAPTER 13. COHOMOLOGY OF SHEAVES

U whose image σ′′ in F ′′(U) is equal to ρXF ′′(U)(s
′′). Partially order T as in the proof of

Proposition 13.3 and observe that T is inductive. Zorn’s lemma provides us with a maximal
lifting of s′′ to a section σ ∈ F(U0).

Were U0 not X, there would exist x ∈ X −U0, a neighborhood V of x, and a section τ of
F over V which is a local lifting of ρXV (s′′). The sections ρU0

U0∩V (σ), ρVU0∩V (τ) have the same
image under ψ in F ′′(U0 ∩ V ) so their difference maps to 0. Since SIm ϕ = Kerψ, there is a
section t of F ′(U0 ∩ V ) such that

ρU0
U0∩V (σ) = ρVU0∩V (τ) + ϕ(t).

Since F ′ is flasque, the section t is the restriction of a section t′ ∈ F ′(V ). Upon replacing
τ by τ + ϕ(t′) (which does not affect the image in F ′′(V ) since by definition ϕ(t′) = ϕ(t) =
ρU0
U0∩V (σ) − ρVU0∩V (τ) is in the kernel of ψ), we may assume that ρU0

U0∩V (σ) = ρVU0∩V (τ); that
is, that σ and τ agree on the overlap U0 ∩ V . Clearly, we may extend σ (via τ) to U0 ∪ V ,
contradicting the maximality of (U0, σ); hence, U0 = X; see Figure 13.3.

F
F

‘’

U = XU = X

s’’

σ ψ   (   )
U
σ

F
F

‘’

U = XU = X

s’’

σ ψ   (   )
U
σ

U U
0

0

U0 U0V V
x x

τ

ψ   (   )U τ

Figure 13.3: A schematic illustration of the proof of Theorem 13.5. The space X is repre-
sented by the white plane. The top figure shows the “supposed” maximal local lifting σ of
the global section s′′ ∈ F ′′. But if U0 is not X, the bottom figure illustrates how to extend
σ, thus contradicting maximality. Since F ′ is flasque, we could illustrate σ and τ as agreeing
on U0 ∩ V .

Now suppose that F ′ and F are flasque. If s′′ ∈ F ′′(U), then by the above, there is a
section s ∈ F(U) mapping onto s′′. Since F is also flasque, we may lift s to a global section
t of F . The image t′′ of t in F ′′(X) is the required extension of s′′ to a global section of F ′′.
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Finally, assume that F is flasque, and that F = F ′ ⊕ F ′′ for some sheaf F ′′. For any
open subset U of X and any section s ∈ F ′(U), we can make s into a section s̃ ∈ F(U) by
setting the component of s̃(U) in F ′′(U) equal to the zero section. Since F is flasque, there
is some section t ∈ F(X) such that ρXU (t) = s̃. But t = t1 + t2 for some unique t1 ∈ F ′(X)
and t2 ∈ F ′′(X), and since ρXU is linear,

s+ 0 = s̃ = ρXU (t) = ρXU (t1) + ρXU (t2)

with ρXU (t1) ∈ F ′(U) and ρXU (t2) ∈ F ′′(U), so s = ρXU (t1) with t1 ∈ F ′(X), which shows that
F ′ is flasque.

The following general proposition from Tohoku ([27], Section 3.3) implies that flasque
sheaves are Γ(X,−)-acyclic. It also implies that soft sheaves over a paracompact space are
Γ(X,−)-acyclic (see Section 13.5). Since the only functor involved is the global section
functor, it is customary to abbreviate Γ(X,−)-acyclic to acyclic.

Proposition 13.6. Let T be an additive functor from the abelian category C to the abelian
category C′, and suppose that C has enough injectives. Let X be a class of objects in C
which satisfies the following conditions:

(i) C possesses enough X-objects, which means that for every object A ∈ C, there is a
monic map from A to some object in X.

(ii) If A is an object of C and A is a direct factor of some object in X, then A belongs to
X.

(iii) If 0 −→ A′ −→ A −→ A′′ −→ 0 is exact and if A′ belongs to X, then
0 −→ T (A′) −→ T (A) −→ T (A′′) −→ 0 is exact, and if A also belongs to X, then A′′

belongs to X.

Under these conditions, every injective object belongs to X, for each M in X we have
RnT (M) = (0) for n > 0, and finally the functors RnT may be computed by taking X-
resolutions.

Proof. The following proof is due to Steve Shatz. Let I be an injective of C. By (i), I admits
a monic into some object M of the class X. We have an exact sequence

0 // I
ϕ //M // Coker ϕ // 0,

and as I is injective and ϕ : I → M is a monic map, there is a map p : M → I such that
p ◦ ϕ = id as in the following diagram

0 // I

id
��

ϕ //M

p
~~

I,
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and by Proposition 2.2(2) (which generalizes to abelian categories) the above sequence is
split so I is a direct factor of M (this is the generalization of the proof of Proposition 11.3(3)
to abelian categories); hence (ii) implies I lies in X. Let us now show that RnT (M) = (0) for
n > 0 if M lies in X. Now C possesses enough injectives, so if we set C0 = Coker(M −→ I0)
and inductively Ci+1 = Coker(Ci −→ Ii+1) where the maps M −→ I0 and Ci −→ Ii+1 are
injections and the Ii are injective, we have the exact sequences

0 −→M −→ I0 −→ C0 −→ 0

0 −→ C0 −→ I1 −→ C1 −→ 0

0 −→ C1 −→ I2 −→ C2 −→ 0

· · · · · · · · · · · · · · · · · · · · ·
0 −→ Cn −→ In+1 −→ Cn+1 −→ 0

· · · · · · · · · · · · · · · · · · · · · .

Here each Ii is injective, so lies in X. As M belongs to X, (iii) shows that C0 lies in X. By
induction, Ci belongs to X for every i ≥ 0. Again, by (iii), the sequences

0 −→ T (M) −→ T (I0) −→ T (C0) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 −→ T (Cn) −→ T (In+1) −→ T (Cn+1) −→ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

are exact. Then, as in the proof of Proposition 11.15, we obtain the exact sequence

0 −→ T (M) −→ T (I0) −→ T (I1) −→ T (I2) −→ · · ·

and this proves that RnT (M) = (0) for positive n. Finally, by Proposition 11.34, the functors
RnT may be computed from arbitrary X-resolutions (which exist by (i)).

Using Proposition 13.4 and Theorem 13.5, Proposition 13.6 applied with C the abelian
category of sheaves, X the family of flasque sheaves, and T the global section functor, yields
the following result.

Proposition 13.7. Flasque sheaves are acyclic, that is Hp(X,F) = (0) for every flasque
sheaf F and all p ≥ 1, and the cohomology groups Hp(X,F) of any arbitrary sheaf F can be
computed using flasque resolutions.

In view of Proposition 13.2, we also have the following result.

Proposition 13.8. If (X,OX) is a ringed space, then the right derived functors of the
functor Γ(X,−) from the category Mod(X,OX) of OX-modules to the category of abelian
groups coincide with the sheaf cohomology functors Hp(X,−).
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Proof. The right derived functors of the functor Γ(X,−) from the category Mod(X,OX) of
OX-modules to the category of abelian groups is computed using resolutions of injectives in
the category Mod(X,OX). But injective sheaves are flasque, and flasque sheaves are acyclic,
so by Proposition 11.34 these resolutions compute sheaf cohomology.

In the rest of this chapter we restrict our attention to presheaves and sheaves of R-
modules . Our next goal is to compare Čech cohomology and sheaf cohomology.

13.3 Comparison of Čech Cohomology and Sheaf Co-

homology

The reader may want to review Sections 9.1 and 9.2 before reading this section. We begin
by proving that for every space X, every open cover U of X, every sheaf F of R-modules on
X, and every p ≥ 0, there is a homomorphism

Ȟp(U ,F) −→ Hp(X,F).

For every open subset U of X let U/U denote the induced covering of U consisting of
all open subsets of the form Ui ∩ U , with Ui ∈ U . Then it is immediately verified that the
presheaf Cp(U ,F) defined by

Cp(U ,F)(U) = Cp(U/U ,F)

for any open subset U of X is a sheaf. The crucial property of the sheaves Cp(U ,F) is that
the complex

0 // F // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · ·

is a resolution of the sheaf F .

Proposition 13.9. For every open cover U of the space X, for every F of R-modules on
X, the complex

0 // F // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · ·

is a resolution of the sheaf F .

Sketch of proof. We follow Brylinski [9] (Section 1.3, Proposition 1.3.3). By Proposition
10.24(ii) it suffices to show that the stalk sequence

0 // Fx // C0(U ,F)x
δ // · · · // Cp(U ,F)x

δ // Cp+1(U ,F)x
δ // · · ·
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is exact for every x ∈ X, and since direct limits of exact sequences are still exact it suffice to
show that for every x ∈ X, there is some open neighborhood V of x such that the sequence

0 // F(W ) ε // C0(U/W ,F) δ // · · · // Cp(U/W ,F) δ // Cp+1(U/W ,F) δ // · · ·

is exact for every open subset W of V . Pick V = Ui0 for some open subset Ui0 in such that
x ∈ Ui0 . Then for W ⊆ V = Ui0 , the open cover {Ui ∩W | Ui ∈ U} contains W = W ∩ Ui0 .
The map ε with domain F(W ) is clearly injective and we conclude by using the following
simple proposition which is proven in Brylinski [9] (Section 1.3, Lemma 1.3.2) and Bredon
[8] (Chapter III, Lemma 4.8):

Proposition 13.10. If U = (Ui)i∈I is an open cover of X and if Ui = X for some index i,
then for any presheaf F of R-modules we have Ȟp(U ,F) = (0) for all p > 0.

It follows that the above sequence is exact.

Proposition 13.11. For every space X, every open cover U of X, every sheaf F of R-
modules on X, and every p ≥ 0, there is a homomorphism

Ȟp(U ,F) −→ Hp(X,F)

from Čech cohomology to sheaf cohomology. Consequently there is also a homomorphism

Ȟp(X,F) −→ Hp(X,F)

for every p ≥ 0.

Proof. By Proposition 13.9 we have a resolution 0 // F // C∗(U ,F) of the sheaf F .

For every injective resolution 0 // F // I of F , by Theorem 11.21, there is a map of
resolutions from C∗(U ,F) to I lifting the identity and unique up to homotopy. Thus, there is
a homomorphism of cohomology Ȟp(U ,F) −→ Hp(X,F). Since Ȟp(X,F) is a direct limit
of the Ȟp(U ,F), we obtain the homomorphism Ȟp(X,F) −→ Hp(X,F) by passing to the
limit.

In general, the homomorphism Ȟp(X,F) −→ Hp(X,F) of Proposition 13.11 is neither
injective nor surjective. A sufficient condition for having an isomorphism is that X be a
paracompact topological space (see Definition 13.7).

The strategy to prove that the maps Ȟp(X,F) −→ Hp(X,F) are isomorphisms is to
prove that (under certain conditions) the family of functors (Ȟp(X,−))p≥0 is a universal δ-
functor. Indeed, if two cohomology theories (Hn

S (−))n≥0 and (Hn
T (−))n≥0 defined for objects

in a category C (say, topological spaces) are given by universal δ-functors S and T in the
sense that the cohomology groups Hn

S (A) and Hn
T (A) are given by Hn

S (A) = Sn(A) and
Hn
T (A) = T n(A) for all objects A ∈ C, and if H0

S(A) and H0
T (A) are isomorphic, then Hn

S (A)
and Hn

T (A) are isomorphic for all n ≥ 0. Since sheaf cohomology is defined by right derived
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δ-functors, which are universal by Theorem 11.47, since for a sheaf, Ȟ0(X,F) ∼= Γ(X,F) =
F(X), by Proposition 11.38 we obtain the desired isomorphisms.

To prove that the family of functors (Ȟp(X,F))p≥0 is a universal δ-functor we use
Grothendieck’s theorem (Theorem 11.45).

We begin by proving that the functors Ȟp(U ,−) on sheaves are erasable. Next we will
show that the family (Ȟp(U ,−))p≥0 is a δ-functors on sheaves. To do this, we will first show
that they constitute a δ-functor on preshaves and then use the fact that if X is paracompact
and if F is a presheaf, then Ȟp(X,F) ∼= Ȟp(X, F̃) for all p ≥ 0 (see Proposition 13.16).

Proposition 13.12. For every space X, every open cover U of X, if the sheaf F is flasque
then

Ȟp(U ,F) = (0) p ≥ 1.

Consequently the functors Ȟp(U ,−) and the functors Ȟp(X,−) on sheaves are erasable for
all p ≥ 1.

Proof. Proposition 13.12 is proven in Godement [24] (Chapter 5, Theorem 5.2.3), Hartshorne
[30] (Chapter III, Proposition 4.3), and Bredon [8] (Chapter III, Corollary 4.10).

Observe that since F is assumed to be flasque, the sheaves Cp(U ,F) are also flasque
because the restriction of F to any open subset Ui0···ip is flasque and a product of flasque

sheaves is flasque. Thus by Proposition 13.9 0 // F // C∗(U ,F) is a resolution of F
by flasque sheaves. By Proposition 13.7 the cohomology groups Hp(X,F) can be computed
using this resolution, but by definition this resolution computes the cohomology groups
Ȟp(U ,F), so we get

Hp(X,F) = Ȟp(U ,F), for all p ≥ 0.

However since F is flasque, by Proposition 13.7 we have Hp(X,F) = (0) for all p ≥ 1,
so Ȟp(U ,F) = (0) for all p ≥ 1. Since every sheaf can be embedded in a flasque sheaf
(Proposition 13.4), the functors Ȟp(U ,−) are erasable for all p ≥ 1. By passing to the limit
over coverings we obtain the fact that the functors Ȟp(X,−) are erasable for all p ≥ 1

The next important fact is that, on presheaves , the functors Cp(U ,−) are exact.

Proposition 13.13. For every space X and every open cover U of X, the functor Cp(U ,−)
from presheaves to abelian groups is exact for all p ≥ 0.

Proof. If

0 // F ′ // F // F ′′ // 0 (∗)

is an exact sequence of presheaves, then the sequence

0 // Cp(U ,F ′) // Cp(U ,F) // Cp(U ,F ′′) // 0
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is of the form

0 //
∏

(i0,...,ip)

F ′(Ui0···ip) //
∏

(i0,...,ip)

F(Ui0···ip) //
∏

(i0,...,ip)

F ′′(Ui0···ip) // 0.

But since (∗) is an exact sequence of presheaves, by Proposition 10.24(i), every sequence

0 // F ′(Ui0···ip) // F(Ui0···ip) // F ′′(Ui0···ip) // 0

is exact, and since exactness is preserved under direct products, the sequence

0 //
∏

(i0,...,ip)

F ′(Ui0···ip) //
∏

(i0,...,ip)

F(Ui0···ip) //
∏

(i0,...,ip)

F ′′(Ui0···ip) // 0.

is exact.

As a corollary of Proposition 13.13 we have the next result.

Proposition 13.14. Every exact sequence of presheaves

0 // F ′ // F // F ′′ // 0

yields the short exact sequence

0 // C∗(X,F ′) // C∗(X,F) // C∗(X,F ′′) // 0,

which yields a long exact sequence of Čech cohomology groups.

Proof. Indeed, by Proposition 13.13, every exact sequence of presheaves

0 // F ′ // F // F ′′ // 0

yields an exact sequence of Čech cohomology complexes

0 // C∗(U ,F ′) // C∗(U ,F) // C∗(U ,F ′′) // 0,

and thus, by Theorem 2.22, a long exact sequence of Čech cohomology groups over the cover
U . By passing to the limit over covers, we obtain the short exact sequence

0 // C∗(X,F ′) // C∗(X,F) // C∗(X,F ′′) // 0,

which yields a long exact sequence of Čech cohomology groups.
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Condition (ii) of Definition 11.20 is verified in a similar fashion (for preseaves).

Thus, for presheaves , the family of functors (Ȟp(X,−))p≥0 is a δ-functor (and even a
universal δ-functor, in view of a previous remark). The difficulty is that for sheaves, in
general, it fails to be a δ-functor. If X is paracompact, Proposition 13.16 implies that the
family of functors (Ȟp(X,−))p≥0 is a δ-functor for sheaves.

Fortunately, since Ȟ0(X,F) ∼= F , by Proposition 10.34(4), the functors Ȟ0(X,−) are
left-exact on sheaves . Given an exact sequence of sheaves

0 // F ′ ϕ // F ψ // F ′′ // 0, (∗)

we can consider the exact sequence of presheaves

0 // F ′ // F // G // 0

where G = PCoker(ϕ), and by Proposition 13.14, we obtain a long exact sequence of coho-
mology whose rows

// Ȟp(X,F ′) // Ȟp(X,F) // Ȟp(X,G) // (∗∗)

involve the Čech cohomology groups Ȟp(X,F ′), Ȟp(X,F), and Ȟp(X,G). The exactness

of (∗) means that F ′′ = SCoker(ϕ), with SCoker(ϕ) = ˜PCoker(ϕ), the sheafification of
PCoker(ϕ) = G, so

F ′′ = G̃.
Thus, if we can show that

Ȟp(X,G) ∼= Ȟp(X, G̃) (†)

for every presheaf G, by replacing Ȟp(X,G) by Ȟp(X, G̃) = Ȟp(X,F ′′) in (∗∗) we obtain a
long exact sequence with rows

// Ȟp(X,F ′) // Ȟp(X,F) // Ȟp(X,F ′′) //

which constitutes a long exact sequence (in the sense of presheaves) of cohomology associated
with (∗), which by Proposition 10.24(iii) is also exact in the sense of sheaves, and the family
(Ȟp(X,−))p≥0 is a δ-functor. This is where the paracompactness condition comes in to save
the day (see Proposition 13.16).

Definition 13.7. A space X is paracompact if it is Hausdorff and if every open cover has
an open, locally finite, refinement. An open cover U = (Ui)i∈I of X is locally finite if for
every point x ∈ X, there is some open subset V containing x such that V ∩ Ui 6= ∅ for only
finitely many i ∈ I; see Figure 13.4.

Every metric space is paracompact and so is every locally compact and second-countable
space.

Assume that X is paracompact. The key fact due to Godement is the following somewhat
bizarre result which implies the crucial fact (†).
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Figure 13.4: Let X be R2 with U consisting of open unit disks centered at integer lattice
points. The left figure shows U around the origin. Since U is homogenous in nature, the
middle and right figures “demonstrate” the paracompactness of R2 by showing local finiteness
at the origin. In particular if V is the open disk centered at the with radius 1/4, V only
intersects five elements of U .

Proposition 13.15. Assume the space X is paracompact. For any presheaf F on X, if
F̃ = (0) (the sheafification of F is the zero sheaf), then

Ȟp(X,F) = (0), for all p ≥ 0.

Proposition 13.15 is proven Godement [24], Chapter 5, Theorem 5.10.2. Another proof
can be found in Bredon [8] (Chapter III, Theorem 4.4. See also Spanier [59] (Chapter
6, Theorem 16). None of these proofs are particularly illuminating. The significance of
Proposition 13.15 is that it implies (†).

The proof of the next proposition requires the notion of quotient of presheaves of R-
modules defined below.

Definition 13.8. Given any two presheaves F and G of R-modules over a topological space
X, if G is a subsheaf of F (in particular, G(U) is a submodule of F(U) for all open subsets
U of X), then the quotient presheaf F/G is the presheaf defined such that

(F/G)(U) = F(U)/G(U)

for every open subset U of X.
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It is easily verified that F/G is indeed a presheaf. However, if F and G are sheaves,
F/G may fail to be a sheaf. Thus for sheaves, the quotient sheaf F/G is defined as the
sheafification of the presheaf F/G.

Proposition 13.16. Assume the space X is paracompact. For any presheaf F on X, we
have isomorphisms

Ȟp(X,F) ∼= Ȟp(X, F̃) for all p ≥ 0.

Proof. We follow Godement [24] (Chapter 5, Page 230). Let η : F → F̃ be the morphism

from F to its sheafification F̃ (see Definition 10.5), and let K = Ker η and I = PIm η, as
presheaves. We have the exact sequences of presheaves

0 // K // F // I // 0

and

0 // I // F̃ // F̃/I // 0.

Furthermore, we claim that

K̃ = (0) and
˜̃F/I = (0).

It suffices to prove that Kx = (0) and (F̃/I)x = (0) for all x ∈ X. In the first case, by
definition of η, for every open subset U of X and every s ∈ F(U) we have ηU(s) = s̃, with
s̃(x) = sx for all x ∈ U , so s ∈ Ker ηU = K(U) iff sx = 0 for all x ∈ U , which implies that
Kx = (0).

To prove that (F̃/I)x = (0) we use the fact (which is not hard to prove) that for any

two presheaves F and G, we have (F/G)x = Fx/Gx. Then (F̃/I)x = F̃x/Ix, but it is easily

shown that Ix = F̃x since any continuous section in F̃(U) agrees locally with some section
of the form s̃ ∈ I(V ) for some V ⊆ U .

By taking the long cohomology sequence associated with the first exact sequence we
obtain exact sequences

Ȟp(X,K) // Ȟp(X,F) // Ȟp(X, I) // Ȟp+1(X,K)

for all p ≥ 0, and since K̃ = (0), by Proposition 13.15, we have

Ȟp(X,K) = Ȟp+1(X,K) = (0),

which yields isomorphisms

Ȟp(X,F) ∼= Ȟp(X, I), p ≥ 0.

Similarly, by taking the long cohomology sequence associated with the second exact sequence
we obtain exact sequences

0 // Ȟ0(X, I) // Ȟ0(X, F̃) // Ȟ0(X, F̃/I)
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and

Ȟp(X, F̃/I) // Ȟp+1(X, I) // Ȟp+1(X, F̃) // Ȟp+1(X, F̃/I)

for all p ≥ 0, and since
˜̃F/I = (0), by Proposition 13.15, we have

Ȟp(X, F̃/I) = Ȟp+1(X, F̃/I) = (0),

so we obtain isomorphisms

Ȟp(X, I) ∼= Ȟp(X, F̃), p ≥ 0.

It follows that
Ȟp(X,F) ∼= Ȟp(X, F̃), p ≥ 0,

as claimed.

By putting the previous results together, we proved the following important theorem.

Theorem 13.17. Assume the space X is paracompact. For any sheaf F on X, we have
isomorphisms

Ȟp(X,F) ∼= Hp(X,F) for all p ≥ 0

between Čech cohomology and sheaf cohomology. Furthermore, for every presheaf F , we have
isomorphisms

Ȟp(X,F) ∼= Hp(X, F̃) for all p ≥ 0.

Remark: The fact that for a paracompact space, every short exact sequence of sheaves
yields a long exact sequence of cohomology is already proven in Serre’s FAC [55] (Chapter
1, Section 25, Proposition 7).

Observe that all that is needed to prove Proposition 13.16 is the fact that for any presheaf
F , if F̃ = (0), then

Ȟp(X,F) = (0), for all p ≥ 0.

This condition holds if X paracompact (this is the content of Proposition 13.15), but there
are other situations where it holds (perhaps for specific values of p). For example, for any
space X (not necessarily paracompact), it is shown in Godement ([24] Chapter 5, Lemma

on Page 227) that for any presheaf F , if F̃ = (0), then Ȟ0(X,F) = (0). As a consequence,
for any space X, for any sheaf F on X, we have isomorphisms

Ȟp(X,F) ∼= Hp(X,F), p = 0, 1;

see Godement ([24] Chapter 5, Corollary of Theorem 5.9.1 on Page 227).

Grothendieck shows that the map Ȟ2(X,F) −→ H2(X,F) is injective and gives an
example where is it not an isomorphism; see Tohoku [27] (Section 3.8, Example, Pages
177–179).
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We now briefly discuss conditions not involving the space X but instead the cover U that
yield isomorphisms between the Čech cohomology groups Ȟp(U ,F) and the sheaf cohomology
groups Hp(X,F).

First we state a result due to Leray involving the vanishing of certain sheaf cohomology
groups on various open sets.

Theorem 13.18. (Leray) For any topological space X and any sheaf F on X, for any open
cover U , if Hp(Ui0···ip ,F) = (0) for all p > 0 and all (i0, . . . , ip), then

Ȟp(X,F) ∼= Hp(X,F), for all p ≥ 0.

A proof of Theorem 13.18 can be found in Bredon [8] (Chapter III, Theorem 4.13). The
proof involves a double complex. Leray’s theorem is used in algebraic geometry where X
is a scheme and F is a quasi-coherent sheaf; see Hartshorne [30] (Chapter III, Section 4,
Theorem 4.5), and EGA III [28] (1.4.1).

Next we state a result due to Henri Cartan involving the vanishing of certain Čech
cohomology groups on various open sets.

Theorem 13.19. (H. Cartan) For any topological space X and any sheaf F on X, for any
open cover U , if U is a basis for the topology of X closed under finite intersections and if
Ȟp(Ui0···ip ,F) = (0) for all p > 0 and all (i0, . . . , ip), then

Ȟp(X,F) ∼= Hp(X,F), for all p ≥ 0.

A proof of Theorem 13.19 is given in Grothendieck [27] (Section 3.8, Corollary 4), and
in more details in Godement [24] (Chapter 5, Theorem 5.9.2).

We now compare singular cohomology and sheaf cohomology (for constant sheaves). To
do so, we will need to introduce soft sheaves and fine sheaves.

13.4 Singular Cohomology and Sheaf Cohomology

If R is a commutative ring with an an identity element and G is an R-module, how can we
relate the singular cohomology groups Hp(X;G) to some sheaf cohomology groups? The

answer is to consider the cohomology groups Hp(X, G̃X) of the constant sheaf G̃X (the
sheafification of the constant presheaf G; see Example 8.2(1)). The key idea is to consider

some suitable resolution of G̃X by acyclic sheaves such that the complex obtained by applying
the global section functor to this resolution yields the singular cohomology groups, and to
apply Proposition 11.34 to conclude that we have isomorphisms Hp(X;G) ∼= Hp(X, G̃X),
provided some mild assumptions on X.

The natural candidate for the sheaves involved in a resolution of G̃X are the presheaves
Sp(−;G) given by

U 7→ Sp(U ;G),
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where Sp(U ;G) is the R-module of singular cochains on the open subset U , as defined in
Definition 4.27, replacing X by U .

The first problem is that the presheaves Sp(−;G) satisfy Axiom (G), but in general
fail to satisfy Axiom (M). To fix this problem we consider the sheafification Sp(−;G) of
Sp(−, G) (see Definition 10.7 and Proposition 10.8). The coboundary maps δp : Sp(U ;G)→
Sp+1(U ;G) induce maps δp : Sp(−;G) → Sp+1(−;G), where we wrote δ instead of δ̃ to
simplify the notation. Then we obtain a complex

0 // G̃X
// S0(−;G) δ // S1(−;G) δ // S2(−;G) δ // · · · . (∗)

When is this a resolution of G̃X and when are the sheaves Sp(−;G) acyclic?

It turns out that if X is locally Euclidean, then the complex (∗) is exact; that is, a resolu-
tion. There is a more general condition implying that the complex (∗) is a resolution, namely
that X is an HLC-space (X is homologically locally connected). Any locally contractible
space, any manifold, or any CW-complex is HLC; for details, see Bredon [8] (Chapter II,
Section 1). For our purposes, it suffices to assume that X is a topological manifold. The
proof that the complex (∗) is a resolution if M is a topological manifold can be found in
Warner [62] (Chapter V, Section 5.31). It is very technical.

Furthermore, if X is paracompact, then the sheaves Sp(−;G) are acyclic. These sheaves
are generally not flasque but they are soft sheaves. In fact, fine sheaves and soft sheaves are
acyclic; we will see this in the next section. By Proposition 11.34, if we apply the global
section functor Γ(X,−) to the resolution (∗), we obtain the complex S∗(X;G) (of modules)

0 // S0(X;G) δ // S1(X;G) δ // S2(X;G) δ // · · ·

whose cohomology is isomorphic to the sheaf cohomology H∗(X, G̃X).

However, there is a new problem: the cohomology groups of the complex S∗(X;G) involve
the modules Sp(X;G), but the singular cohomology groups involve the modules Sp(X;G);
how do we know that these groups are isomorphic? They are indeed isomorphic if X is
paracompact.

Let us settle this point before dealing with soft sheaves. Recall that we are only con-
sidering presheaves and sheaves of R-modules. Assume that X is paracompact. If F is a
presheaf on X and if F̃ is its sheafification, the natural map η : F → F̃ induces the map
η : F(X)→ F̃(X) given by η = ηX as in Definition 10.5; that is, for every s ∈ F(X),

η(s) = s̃

with s̃(x) = sx for all x ∈ X. Define the presheaf F(X)0 by

F(X)0 = {s ∈ F(X) | η(s) = 0} = Ker η.

Then we have the following result.
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Proposition 13.20. Assume the space X is paracompact. For every presheaf F , if F
satisfies Condition (G), then the sequence

0 // F(X)0
// F(X) θ // F̃(X) // 0

is exact.

The only thing that needs to be proven is that θ is surjective. This is proven in Warner
[62] (Chapter V, Proposition 5.27) and in Bredon [8] (Chapter I, Theorem 6.2). The proof
relies heavily on the existence of a locally finite open cover (this is where paracompactness
is used).

As a consequence of Proposition 13.20, we have an exact sequence of cochain complexes

0 // S∗(X;G)0
// S∗(X;G) // S∗(X;G) // 0. (†)

We claim that if we can prove that

Hp(S∗(X;G)0) = (0) for all p ≥ 0,

then we have isomorphisms

Hp(X;G) = Hp(S∗(X;G)) ∼= Hp(S∗(X;G)), for all p ≥ 0.

Proof. This follows easily by taking the long exact sequence of cohomology associated with
the exact sequence (†). We have exact sequences

Hp(S∗(X;G)0) // Hp(X;G) // Hp(S∗(X;G)) // Hp+1(S∗(X;G)0)

for all p ≥ 0, and since by hypothesis Hp(S∗(X;G)0) = Hp+1(S∗(X;G)0) = (0), we obtain
the isomorphisms

Hp(X;G) = Hp(S∗(X;G)) ∼= Hp(S∗(X;G)), for all p ≥ 0,

as claimed.

Now it is shown in Warner [62] (Chapter 5, Section 5.32) that indeed

Hp(S∗(X;G)0) = (0) for all p ≥ 0.

This is a very technical argument involving barycentric subdivision and a bit of topology
(but does not require X to be paracompact).

In summary, we have shown that ifX is paracompact and a topological manifold, provided
that the sheaves Sp(−;G) are acyclic, then we have isomorphisms

Hp(X;G) ∼= Hp(X, G̃X), for all p ≥ 0
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between singular cohomology and sheaf cohomology of the constant sheaf G̃X .

The sheaves Sp(−;G) are indeed acyclic because they are soft, and soft sheaves over
a paracompact space are acyclic; this will be proven in Section 13.5. Assuming that this
result has been proved, we have the following theorem showing the equivalence of singular
cohomology and sheaf cohomology for the constant sheaf G̃X and a (paracompact) topological
manifold X.

Theorem 13.21. Assume X is a paracompact topological manifold. For any R-module G,
there are isomorphisms

Hp(X;G) ∼= Hp(X, G̃X), for all p ≥ 0

between singular cohomology and sheaf cohomology of the constant sheaf G̃X .

Remark: There is a variant of singular cohomology that uses differentiable singular sim-
plices instead of singular simplices as defined in Definition 4.2. Given a topological space
X, if p ≥ 1, a differentiable singular p-simplex is any map σ : ∆p → X that can be ex-
tended to a smooth map of a neighborhood of ∆p. Then Sp∞(U ;G) denotes the R-module
of functions which assign to each differentiable singular p-simplex an element of G (for
p ≥ 1), and S0

∞(U ;G) = S0(X;G). Elements of Sp∞(U ;G) are called differentiable singu-
lar p-cochains . Then we obtain the cochain complex S∗∞(X;G) and its cohomology groups
denoted Hp

∆∞(X;G) are called the differentiable singular cohomology groups of X with co-
efficients in G. Each Sp∞(−;G) is a presheaf satisfying Condition (M), and we let Sp∞(−;G)
be its sheafification. As in the continuous case, we obtain a version of Theorem 13.21.

Theorem 13.22. Assume X is a paracompact topological manifold. For any R-module G,
there are isomorphisms

Hp
∆∞(X;G) ∼= Hp(X, G̃X), for all p ≥ 0

between differentiable singular cohomology and sheaf cohomology of the constant sheaf G̃X .

Details can be found in Warner [62] (Chapter 5, Sections 5.31, 5.32). The significance of
differentiable singular cohomology is that it yields a stronger version of the equivalence with
de Rham cohomology when G = R and X is a smooth manifold; see Section 13.7.

13.5 Soft Sheaves

Roughly speaking a sheaf is soft if it satisfies the condition for being flasque for closed subsets
of X; that is, for every closed subset A of X, the restriction map from F(X) to F(A) is
surjective. The problem is that sheaves are only defined over open subsets!

The remedy is to work with stalk spaces (E, p). Before proceeding the reader may want
to review Sections 10.3 and 10.4. Since every sheaf F is isomorphic to the sheaf of sections
F̃ associated with the stalk space (SF , π), this is not a problem, although at times it is a
little awkward.
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Definition 13.9. If (E, p) is a stalk space of R-modules on X with p : E → X, and Γ[E, p]
is the sheaf of continuous sections associated with (E, p) (see Example 8.2 (1)), following
Godement [24] (Chapter 1, bottom of Page 110), for every subset Y of X (not necessarily
open) we define

Γ(Y,Γ[E, p]) = {s : Y → E | p ◦ s = id and s is continuous}

as the set of all continuous sections from Y viewed as a subspace of X; see Figure 13.5.

X

E

Y

s1
s1

s2

s2
s3

s3s4 s4

Figure 13.5: A schematic representation of four sections of Γ(Y,Γ[E, p]).

We usually abuse notation a little and denote the sheaf Γ[E, p] associated with the stalk
space (E, p) by F . We write Γ(Y,F) for Γ(Y,Γ[E, p]). Then we can make the following
definition.

Definition 13.10. If F is the sheaf induced by a stalk space (E, p) of R-modules on X, we
say that the sheaf F is soft if the restriction map from Γ(X,F) to Γ(A,F) is surjective for
every closed subset A of X.

In order to prove that soft sheaves are acyclic, which is one of our main goals, we need
to assume that X is paracompact. Then we will see that every flasque sheaf is soft.

Given a sheaf F and its sheafification F̃ , the sheaf isomorphism η : F → F̃ ensures that
F is flasque iff F̃ is flasque, so there is no problem.

In this section we will content ourselves with stating the properties of soft sheaves that are
needed to finish the proof of the equivalence of singular cohomology and sheaf cohomology
(for the constant sheaves G̃X), and the proof of the equivalence of de Rham cohomology

and sheaf cohomology (for the constant sheaves R̃X). Details and proofs can be found in
Bredon [8] (Chapter II, Section 9) and Godement [24] (Chapters 3, 4, 5). Soft sheaves are
also discussed in Brylinski [9] (Chapter I, Section 1,4), but a different definition is used.
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Proposition 13.23. Let F be the sheaf induced by a stalk space (E, p) of R-modules over a
space X, let Y be any subset of X and let s ∈ Γ(Y,F) be any section over Y . If Y admits
a fundamental system of paracompact neighborhoods,1 then s has an extension to some open
neighborhood of Y in X.

Proposition 13.23 is proven in Godement [24] (Chapter III, Theorem 3.3.1) and Bredon
[8] (Chapter I, Theorem 9.5). As an immediate corollary we obtain the following result.

Proposition 13.24. Let F be the sheaf induced by a stalk space (E, p) of R-modules over a
space X. If X is paracompact and F is flasque, then F is soft.

Recall that we are only considering presheaves and sheaves of R-modules. To prove that
soft sheaves on a paracompact space are acyclic, we need the following two propositions.

Proposition 13.25. If X is paracompact, for any exact sequence of sheaves (induced by
stalk spaces)

0 // F ′ // F // F ′′ // 0,

if F ′ is soft, then the sequence

0 // Γ(X,F ′) // Γ(X,F) // Γ(X,F ′′) // 0,

is exact.

A proof of Proposition 13.25 is given in Bredon [8] (Chapter II, Theorem 9.9); see also
Godement [24] (Chapter 3, Theorem 3.5.2). The proof uses Zorn’s lemma and is fairly
involved.

Proposition 13.26. If X is paracompact, for any exact sequence of sheaves (induced by
stalk spaces)

0 // F ′ // F // F ′′ // 0,

if F ′ and F are soft, then F ′′ is also soft.

A proof of Proposition 13.26 is given in Bredon [8] (Chapter II, Theorem 9.10); see also
Godement [24] (Chapter 3, Theorem 3.5.3). The proof is analogous to the proof given for
flasque sheaves in Theorem 13.5.

It is also easy to see that every direct factor of a soft sheaf is soft; the proof is analogous
to the proof given for flasque sheaves in Theorem 13.5 with closed subsets playing the role
of open subsets. But now (as in the case of flasque sheaves) the assumptions of Proposition
13.6 apply, and we immediately get the following result.

1This means that there is a familyN of paracompact neighborhoods of Y such that for every neighborhood
V of Y there is some W in N such that W ⊆ V .
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Proposition 13.27. For any sheaf F induced by a stalk space (E, p), if X is paracompact
and F is soft, then F is acyclic, that is

Hp(X,F) = (0) for all p ≥ 1.

Neither Godement nor Bredon have Proposition 13.6 from Tohoku at their disposal, so
they need to prove Proposition 13.27; see Godement [24] (Chapter 4, Theorem 4.4.3) and
Bredon [8] (Chapter II, Theorem 9.11).

Going back to singular cohomology, it remains to prove that the sheaves Sp(X;G) are
soft.

Proposition 13.28. If the space X is paracompact, then the sheaves (of singular cochains)
Sp(X;G) are soft.

A proof of Proposition 13.28 is given in Godement [24] (Chapter 3, Section 3.9, Example
3.9.1).

Propositions 13.27 and 13.28 conclude the proof of Theorem 13.21.

13.6 Fine Sheaves

Another way to prove Proposition 13.28 is to prove that the sheaves Sp(X;G) are fine and
that fine sheaves are soft. Fine sheaves will also be needed in Section 13.7.

Definition 13.11. If F is the sheaf induced by a stalk space (E, p) where p : E → X is a
continuous surjection, for any subset Y of X, the sheaf F|Y is the sheaf of continuous sections
of the stalk space (p−1(Y ), p|p−1(Y )), where Y is endowed with the subspace topology.

Observe that Definition 13.11 specifies what is the restriction of a sheaf F induced by
a stalk space (E, p) with projection p : E → X to a subset Y of X, whose sections are
continuous functions over open subsets of Y endowed with the subspace topology, but Defi-
nition 13.9 defines sections of F over the fixed subset Y . Recall that we are only considering
presheaves and sheaves of R-modules.

Definition 13.12. Given two sheaves F and G induced by stalk spaces over the same space
X, we have a definition of the presheaf Hom(F ,G) analogous to Definition 8.7:

Hom(F ,G)(U) = Hom(F|U,G|U)

for every open subset U of X, where Hom(F|U,G|U) denotes the set of maps between the
sheaves F|U and G|U .

Even though Hom(F ,G) is a sheaf if F and G are sheaves induced by stalk spaces,
because we need to work with stalk spaces when dealing with soft sheaves, with some abuse
of notation, we also denote the sheafification of the above presheaf by Hom(F ,G). Then we
have the following definition due to Godement [24] (Chapter 3, Section 3.7).
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Definition 13.13. For any sheaf F (of R-modules) on X induced by the stalk space (E, p),
we say that F is fine if Hom(F ,F) is soft.

The following results about fine and soft sheaves are proven in Godement [24] (Chapter
3, Section 3.7) and in Bredon [8] (Chapter II, Section 9).

Proposition 13.29. Assume the space X is paracompact. If OX is any sheaf of rings with
unit induced by a stalk space and if OX is soft, then any OX-module is soft.

This is Theorem 3.7.1 in Godement [24].

Proposition 13.30. Assume the space X is paracompact. If OX is sheaf of rings with unit
induced by a stalk space, then OX is soft iff every x ∈ X has some open neighborhood U such
that for any two disjoint open subsets S, T contained in U , there is some section s ∈ OX(U)
such that s ≡ 1 on S and s ≡ 0 on T .

This is Theorem 3.7.2 in Godement [24]. The proof uses Urysohn’s theorem and a
local characterization of soft sheaves, namely Theorem 3.4.1 in Godement [24]. We omited
Theorem 3.4.1 because of its technical nature (its proof uses Zorn’s lemma).

Proposition 13.31. Assume the space X is paracompact. A sheaf F (of R-modules) induced
by a stalk space (E, p) is fine iff for any two disjoint open subsets S, T in X, there is a
sheaf homomorphism ϕ : F → F such that ϕ ≡ 1 in a neighborhood of S and ϕ ≡ 0 in a
neighborhood of T . Every fine sheaf is soft.

See Godement [24] (Section 3.7, Page 157) and Bredon [8] (Chapter II, Theorem 9.16).
Since every soft sheaf is acyclic, so is every fine sheaf (over a paracompact space).

Remark: If X is paracompact, then any injective sheaf on X is fine; see Bredon [8] (Chapter
II, Exercise 17). The following diagram summarizes the relationships between injective,
flasque, fine, and soft sheaves (assuming that X is paracompact):

injective +3

��

flasque

��
fine +3 soft.

Godement proves that the sheaves Sp(−;G) are fine (Godement, Example 3.7.1, Page
161); see also Bredon [8] (Chapter III, Page 180).

Besides being acyclic, fine sheaves behave well with respect to tensor products, which,
historically motivated their introduction.
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Definition 13.14. Given two sheaves F and G of R-modules, the presheaf F ⊗G is defined
by

(F ⊗ G)(U) = F(U)⊗ G(U)

for any open subset U of X.

Actually, the presheaf F ⊗ G is a sheaf. If F and G are induced by stalk spaces of R-
modules, with a minor abuse of notation we let F ⊗ G be the sheafification of the above
sheaf.

Proposition 13.32. Assume the space X is paracompact. For any fine sheaf F and any
sheaf G induced by stalk spaces on X, the sheaf F ⊗ G is fine.

Proposition 13.32 is proven in Godement [24] (Chapter 3, Theorem 3.7.3), Bredon [8]
(Chapter II, Corollary 9.18), and Warner [62] (Chapter V, Section 5.10).

Proposition 13.32 can used to create resolutions. Indeed, suppose that we have a resolu-
tion

0 // R̃X
// C0 // C1 // C2 // · · ·

of the locally constant sheaf R̃X by fine and torsion-free sheaves Cp (which means that each
stalk Cpx is a torsion-free R-module, where by stalk we mean the fibre over x ∈ X in the stalk
space defining Cp). Then it can be shown that for any sheaf F of R-modules, the complex

0 // R̃X ⊗F // C0 ⊗F // C1 ⊗F // C2 ⊗F // · · · (∗)

is a resolution of F ∼= R̃X ⊗ F by fine sheaves; see Warner [62] (Chapter V, Section 5.10),
Theorem 5.15). Furthermore, if X is paracompact and if the ring R is a PID, resolutions of

R̃X by fine and torsion-free sheaves do exist; for example, the sheaves Sp(X;R) of singular
cochains are fine and torsion-free; see Warner [62] (Chapter V, Section 5.31).

Thus, if X is paracompact and if R is a PID, we can define the sheaf cohomology groups
Hp(X,F) in terms of the resolution (∗) as

Hp(X,F) = Hp(Γ(C∗ ⊗F)).

Since fine sheaves are acyclic, it follows that these groups are independent of the fine and
torsion-free resolution of R̃X chosen.

This method to define sheaf cohomology in terms of resolutions of fine sheaves is due to
Henri Cartan and is presented in Chapter V of Warner [62]. It is also the approach used by
Bredon [8].

The advantage of this method is that it does not require the machinery of derived functors.
The disadvantage is that it relies on fine sheaves, and thus on paracompactness, and assumes
that the ring R is a PID. This makes it unsuitable for more general spaces and sheaves that
arise naturally in algebraic geometry.
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Fine sheaves are often defined in terms of partitions of unity, as in Warner [62] (Chapter
V, Definition 5.10) or Spanier [59] (Chapter 6, Section 8). Given a sheaf F induced by a
stalk space (E, p), the support of a map ϕ : F → F , denoted by supp(ϕ), is the closure of
the set of elements x ∈ X such that ϕ(x)|Fx 6= 0 (where Fx = p−1(x) denotes the stalk of F
at x).

Definition 13.15. Given a sheaf F induced by a stalk space of rings (E, p) over X, we say
that F is p-fine if for each locally finite open cover U = (Ui)i∈I of X, for each i ∈ I there is
some map ϕi : F → F such that

(a) supp(ϕi) ⊆ Ui.

(b)
∑
ϕi = id.

This sum makes sense because U is locally finite.

The family (ϕi)i∈I is called a partition of unity for F subordinate to the cover U .

Then if X is paracompact, using a partition of unity, it is not hard to show to the sheaves
Sp(−;G) and Sp∞(−;G) are p-fine; see Warner [62] (Chapter V, Sections 5.31 and 5.32, Pages
193–196).

It is not obvious that on a paracompact space, a sheaf is fine iff it is p-fine. It is shown in
Brylinski [9] (Chapter 1, Proposition 1.4.9) that a p-fine sheaf is soft. It is shown in Warner
that a p-fine sheaf is acyclic; see [62] (Chapter V, Section 5.20, Page 179). Therefore, both
fine sheaves and p-fine sheaves are acyclic. It is also claimed in Exercise 13 in Bredon
([8], Chapter II, Page 170) that Definition 13.13 is equivalent to Definition 13.15 for a
paracompact space; thus, a sheaf is fine iff it is p-fine; see Figure 13.6.

Remark: There is a slight generalization of the various cohomology theories involving “fam-
ilies of support.” A family of support on X is a family Φ of closed subsets of X satisfying
certain closure properties. Interesting families of support are also paracompactifying ; see
Godement [24] (Chapter 3, Section 3.2). Then given a sheaf F induced by a stalk space, for
any section s ∈ Γ(X,F), the support |s| of s is the closed set of x ∈ X such that s(x) 6= 0.
We define ΓΦ by

ΓΦ(X,F) = {s ∈ Γ(X,F) | |s| ∈ Φ}.
Then we can define the cohomology groups Hp

Φ(X,F) by considering the (left-exact) functor
ΓΦ instead of Γ. We can also define Φ-soft and Φ-fine sheaves, and the results that we
have presented generalize to paracompactifying families of support Φ. For details on this
approach, see Godement [24] and Bredon [8].

Another example of a p-fine sheaf is the sheaf ApX of differential forms on a smooth mani-
fold X. Here, since we have to use stalk spaces, we are really dealing with the sheafification of
the sheaf of differential forms, but we will use the same notation. This will allow us to finish
the discussion of the comparison between the de Rham cohomology and sheaf cohomology
started with Proposition 11.37.
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soft

flasque

injective

fine = p-fine

X is paracompact

Figure 13.6: Sheaf containment diagram for X paracompact.

13.7 de Rham Cohomology and Sheaf Cohomology

Let X be a smooth manifold. Recall that we proved in Proposition 11.37 that the sequence

0 // R̃X
ε // A0

X
d // A1

X
d // · · · d // ApX

d // Ap+1
X

d // · · ·

is a resolution of the locally constant sheaf R̃X . As we stated in the previous section, we
have the following result.

Proposition 13.33. For any (paracompact) smooth manifold X, the sheaves ApX (actually,
the sheafifications of the sheaves ApX) are p-fine and fine sheaves.

That the ApX are fine sheaves is proven in Godement [24] (Chapter 3, Example 3.7.1,
Page 158). That the ApX are p-fine sheaves is proven in Warner [62] (Chapter V, Section
5.28) and Brylinski [9] (Section 1.4, Page 139). Since fine sheaves and p-fine sheaves are
equivalent and thus acyclic, by Proposition 11.34 the sheaf cohomology groups of the sheaf
R̃X are computed by the resolution of fine (and p-fine) sheaves

0 // R̃X
ε // A0

X
d // A1

X
d // · · · d // ApX

d // Ap+1
X

d // · · · .

Thus, in view of Theorem 13.17 and Theorem 13.21, we obtain the following version of the
de Rham theorem:

Theorem 13.34. Let X be a (paracompact) smooth manifold. There are isomorphisms

Hp
dR(X) ∼= Hp(X, R̃X) ∼= Ȟp(X, R̃X) ∼= Hp(X;R)

between de Rham cohomology, the sheaf cohomology of the locally constant sheaf R̃X , Čech
cohomology of R̃X , and singular cohomology over R.
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Theorem 13.22 also yields an isomorphism

Hp
dR(X) ∼= Hp

∆∞(X;R)

between de Rham cohomology and differentiable singular cohomology with coefficients in R.
It is possible to give a more explicit definition of the above isomorphism using integration.

For any p ≥ 1, define the map kp : Ap(X)→ Sp∞(X;R) by

kp(ω)(σ) =

∫

σ

ω,

for any p-form ω ∈ Ap(X) and any differentiable singular p-simplex σ in X. Using Stokes’
theorem, it can be shown that the kp induce a cochain map

k : A∗(X)→ S∗∞(X;R).

The above map induces a map of cohomology, and a strong version of the de Rham theorem
is this:

Theorem 13.35. For any smooth manifold X, the cochain map k : A∗(X) → S∗∞(X;R)
induces an isomorphism

k∗p : Hp
dR(X)→ Hp

∆∞(X;R)

for every p ≥ 0, between de Rham cohomology and differentiable singular cohomology.

For details, see Warner [62] (Chapter 5, Sections 5.35–5.37). Chapter 5 of Warner also
contains a treatment of the multiplicative structure of cohomology.

There is yet another cohomology theory, Alexander–Spanier cohomology . It turns out
to be equivalent to Čech cohomology, but it occurs naturally in a version of duality called
Alexander–Lefschetz duality.

Alexander–Spanier cohomology is discussed extensively in Warner [62] (Chapter V), Bre-
don [8] (Chapters I, II, III), and Spanier [59] (Chapter 6).

13.8 Alexander–Spanier Cohomology and Sheaf

Cohomology

Let X be a paracompact space and let G be an R-module.

Definition 13.16. For any open subset U of X, for any p ≥ 0, let Ap(U ;G) denote the
R-module of all functions f : Up+1 → G. The homomorphism

δp : Ap(U ;G)→ Ap+1(U ;G)
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is defined by

(δpf)(x0, . . . , xp+1) =

p+1∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xp+1),

for all f ∈ Ap(U ;G) and all (x0, . . . , xp+1) ∈ Up+2.

It is easily checked that δp+1 ◦ δp = 0 for all p ≥ 0, so we obtain a cochain complex

0 // A0(U ;G) δ0
// A1(U ;G) δ1

// A2(U ;G) δ2
// · · ·

denoted by A∗(U ;G). If V ⊆ U , then there is a restriction homomorphism

ρUV : Ap(U ;G)→ Ap(V ;G),

so we obtain a presheaf Ap(−;G) of R-modules called the presheaf of Alexander–Spanier
p-cochains . The presheaf Ap(−;G) satisfies Condition (G) for p ≥ 1 but not Condition (M).

Let ApA-S(−;G) be the sheafification of Ap(−;G). As in the case of singular cohomology
we obtain a complex

0 // G̃X
// A0

A-S(−;G) δ // A1
A-S(−;G) δ // A2

A-S(−;G) δ // · · · . (∗)

The following result is proven in Warner [62] (Chapter 5, Section 5.26).

Proposition 13.36. The sheaves ApA-S(−;G) are fine and the complex (∗) is a resolution of

G̃X .

By Proposition 11.34, if we apply the global section functor Γ(X,−) to the resolution
(∗), we obtain the complex A∗A-S(X;G) (of modules)

0 // A0
A-S(X;G) δ0

// A1
A-S(X;G) δ1

// A2
A-S(X;G) δ2

// · · ·

whose cohomology is isomorphic to the sheaf cohomology H∗(X, G̃X).

We can give an alternative and more direct definition of ApA-S(X;G). Since X is para-
compact and since the presheaves Ap(−;G) satisfy Condition (G), Proposition 13.20 implies
that the sequence of cochain complexes

0 // A∗0(X;G) // A∗(X;G) // A∗A-S(X;G) // 0

is exact, with
Ap0(X;G) = {f ∈ Ap(X;G) | fx = 0 for all x ∈ X}.

Then we have isomorphisms

Ap(X;G)/Ap0(X;G) ∼= ApA-S(X;G)
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for all p ≥ 0, and the sheaf cohomology groups Hp(X; G̃X) are the cohomology groups of
the complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · · .

Now, the elements of Ap0(X;G) can be described as functions f ∈ Ap(X;G) that are
locally zero.

Definition 13.17. A function f ∈ Ap(X;G) is locally zero if there is some open cover
U = (Ui)i∈I of X such that f(x0, . . . xp) = 0 for all (x0, . . . , xp) ∈ Up+1

i in some Ui ∈ U .

Equivalently, if we write

Up+1 =
⋃

i∈I
Up+1
i ⊆ Xp+1,

then f ∈ Ap(X;G) is locally zero if there is some open cover U = (Ui)i∈I of X such that f
vanishes on Up+1.

It follows that the restriction of δ to Ap0(X;G) has its image in Ap+1
0 (X;G), because if f

vanishes on Up+1, then δf vanishes on Up+2. It follows that we obtain the quotient complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · ·

as above. By definition, its cohomology groups are the Alexander–Spanier cohomology
groups.

Definition 13.18. For any topological space X, the Alexander–Spanier complex is the
complex

0 // A0(X;G)/A0
0(X;G) δ0

// A1(X;G)/A1
0(X;G) δ1

// A2(X;G)/A2
0(X;G) δ2

// · · ·

where the Ap(−;G) are the Alexander–Spanier presheaves and Ap0(X;G) consists of the
functions in Ap(X;G) that are locally zero. The cohomology groups of the above complex
are the Alexander–Spanier cohomology groups and are denoted by Hp

A-S(X;G).

Observe that the Alexander–Spanier cohomology groups are defined for all topological
spaces, not necessarily paracompact. However, we proved that if X is paracompact, then
they agree with the sheaf cohomology groups of the sheaf G̃X .

Theorem 13.37. If the space X is paracompact, then we have isomorphisms

Hp
A-S(X;G) ∼= Hp(X; G̃X) for all p ≥ 0

between Alexander–Spanier cohomology and the sheaf cohomology of the constant sheaf G̃X .
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In view of Theorem 13.17, we also have the following theorem (proven in full in Warner
[62], Chapter 5, Section 5.26, Pages 187–188).

Theorem 13.38. If the space X is paracompact, then we have isomorphisms

Hp
A-S(X;G) ∼= Ȟp(X; G̃X) for all p ≥ 0

between Alexander–Spanier cohomology and the Čech cohomology of the constant sheaf G̃X

(classical Čech cohomology).

Theorem 13.38 is also proven in Spanier [59] (Chapter 6, Section 8, Corollary 8). In fact,
the above isomorphisms hold even if X is not paracompact, a theorem due to Dowker; see
Theorem 14.5, and also Spanier [59] (Chapter 6, Exercise 6.D.3).

Remark: The cohomology of the complex

0 // A0(X;G) δ0
// A1(X;G) δ1

// A2(X;G) δ2
// · · ·

is trivial; that is, its cohomology groups are all equal to G; see Spanier [59] (Chapter 6,
Section 4, Lemma 1).

13.9 Problems

Problem 13.1. Prove that for any sheaf F , the map

HomSh(X)(F , Ix) ∼= HomR(Fx, Ix)

given by ϕ 7→ ϕx, with ϕ ∈ HomSh(X)(F , Ix), is an isomorphism.

Problem 13.2. Prove Proposition 13.10.

Problem 13.3. Prove that for any two presheaves F and G, we have (F/G)x = Fx/Gx.

Problem 13.4. Prove that for any space X and for any sheaf F on X, we have isomorphisms

Ȟp(X,F) ∼= Hp(X,F), p = 0, 1.

Problem 13.5. Prove Proposition 13.26.

Problem 13.6. Consider the homomorphism

δp : Ap(U ;G)→ Ap+1(U ;G)

defined by

(δpf)(x0, . . . , xp+1) =

p+1∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xp+1),

for all f ∈ Ap(U ;G) and all (x0, . . . , xp+1) ∈ Up+2. Check that δp+1 ◦ δp = 0 for all p ≥ 0.
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Chapter 14

Alexander and Alexander–Lefschetz
Duality

Our goal is to present various generalizations of Poincaré duality. These versions of duality
involve taking direct limits of direct mapping families of singular cohomology groups which,
in general, are not singular cohomology groups. However, such limits are isomorphic to
Alexander–Spanier cohomology groups, and thus to Čech cohomology groups. These duality
results also require relative versions of homology and cohomology. Thus, in preparation for
Alexander–Lefschetz duality we need to define relative Alexander–Spanier cohomology and
relative Čech cohomology.

14.1 Relative Alexander–Spanier Cohomology

Given any topological space X (not necessarily paracompact), let us denote by ApA-S(X;G)1

the Alexander–Spanier cochain modules

ApA-S(X;G) = Ap(X;G)/Ap0(X;G),

where Ap0(X;G) is the set of functions in Ap(X;G) that are locally zero (which means that
there is some open cover U = (Ui)i∈I of X such that f(x0, . . . xp) = 0 for all (x0, . . . , xp) ∈
Up+1
i in some Ui ∈ U). Recall that if we write

Up+1 =
⋃

i∈I
Up+1
i ⊆ Xp+1,

then f ∈ Ap(X;G) is locally zero if there is some open cover U = (Ui)i∈I of X such that f
vanishes on Up+1.

We are going to provide three equivalent definitions of relative Alexander–Spanier co-
homology. The first two definitions parallel the technique used in Section 13.8. The first

1In Section 13.8 we used the notation Ap
A-S(X;G), but for the sake of simplicity we will use the notation

Ap
A-S(X;G).
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definition (Definition 14.1) uses an abstract complex. The second definition (see Proposition
14.1) uses a concrete quotient module definition. The third definition involves a direct limit
over open covers. Since Čech cohomology is also defined in terms of open covers, this third
definition provides the link between Alexander–Spanier cohomology and Čech cohomology.
In fact, they are isomorphic.

If h : X → Y is a continuous map, then we have an induced cochain maps

hp] : Ap(Y ;G)→ Ap(X;G)

given by
hp](ϕ)(x0, . . . , xp) = ϕ(h(x0), . . . , h(xp))

for all (x0, . . . , xp) ∈ Xp+1 and all ϕ ∈ Ap(Y ;G).

If ϕ vanishes on Vp+1, where V is some open cover of Y , since h is continuous we see that
h−1(V) is an open cover of X and then hp] vanishes on (h−1(V))p+1. It follows that hp] maps
Ap0(Y ;G) into Ap0(X;G), so there is an induced map

hp] : ApA-S(Y ;G)→ ApA-S(X;G),

and thus a module homomorphism

hp∗ : Hp
A-S(Y ;G)→ Hp

A-S(X;G).

If A is a subspace of X and i : A → X is the inclusion map, then the homomorphisms
ip] : ApA-S(X;G)→ ApA-S(A;G) are surjective (see the proof of Proposition 14.1 for an explicit
definition of ip]). Therefore

ApA-S(X,A;G) = Ker ip]

is a submodule of ApA-S(X;G) called the module of relative Alexander–Spanier p-cochains ,
and by restriction we obtain a cochain complex

0 // A0
A-S(X,A;G) δ0

// A1
A-S(X,A;G) δ1

// A2
A-S(X,A;G) δ2

// // · · · . (∗)

Definition 14.1. If X is a topological space and if A is a subspace of X, the relative
Alexander–Spanier cohomology groups Hp

A-S(X,A;G) are the cohomology groups of the com-
plex (∗).

Observe that by definition the sequence

0 // A∗A-S(X,A;G) // A∗A-S(X;G) // A∗A-S(A;G) // 0

is an exact sequence of cochain complexes. Therefore by Theorem 2.22 we have the following
long exact sequence of cohomology:



14.1. RELATIVE ALEXANDER–SPANIER COHOMOLOGY 533

· · · // Hp−1
A-S (A;G)

δ∗p−1

// Hp
A-S(X,A;G) // Hp

A-S(X;G) // Hp
A-S(A;G)

δ∗p

// Hp+1
A-S (X,A;G) // Hp+1

A-S (X;G) // Hp+1
A-S (A;G)

δ∗p+1

// Hp+2
A-S (X,A;G) // · · ·

A continuous map h : (X,A) → (Y,B) (with h(A) ⊆ B) also yields the commutative
diagram

0 // A∗A-S(Y,B;G) //

h]

��

A∗A-S(Y ;G) //

(h|X)]

��

A∗A-S(B;G) //

(h|A)]

��

0

0 // A∗A-S(X,A;G) // A∗A-S(X;G) // A∗A-S(A;G) // 0.

in which the rows are exact, and a diagram chasing argument proves the existence of a map
h] making the left square commute. We define the homomorphism

h∗ : H∗A-S(Y,B;G)→ H∗A-S(X,A;G)

induced by h : (X,A)→ (Y,B) as the homomorphism induced by the cochain homomorphism

h] : A∗A-S(Y,B;G)→ A∗A-S(X,A;G)

given by the above commutative diagram.

The Alexander–Spanier relative cohomology modules are also limits of certain cohomol-
ogy groups defined in terms of open covers. This characterization is needed to prove that
relative Alexander–Spanier cohomology satisfies the homotopy axiom, and also to prove later
on its equivalence with relative classical Čech cohomology defined in Section 14.4. We now
sketch this development.

The first step is to give another characterization of A∗A-S(X,A;G) in terms of A∗0(X;G)
and a certain submodule of A∗(X;G).

Definition 14.2. For any space X and any subspace A of X, we define Ap(X,A;G) as
the submodule of Ap(X;G) consisting of all functions in Ap(X;G) which are locally zero on
A. More precisely, there is some open cover U of X such that f ∈ Ap(X;G) vanishes on
Up+1 ∩ Ap+1.
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It is immediate that δ : A∗(X;G)→ A∗(X;G) restricts to A∗(X,A;G) so A∗(X,A;G) is
a cochain complex. Observe that A∗(X, ∅;G) = A∗(X;G).

Proposition 14.1. Let (X,A) be a pair of spaces with A ⊆ X. There is an isomorphism

A∗A-S(X,A;G) ∼= A∗(X,A;G)/A∗0(X;G).

Proof. The surjective homomorphism ip] : ApA-S(X;G)→ ApA-S(A;G) induced by the inclusion
i : A→ X is defined by

i]([f ]) = [f |A],

where on the left-hand side [f ] is the equivalence class of f ∈ Ap(X;G) modulo Ap0(X;G),
and on the right-hand side [f |A] is the equivalence modulo Ap0(A;G) of the restriction of f
to Ap. If f ′ = f + g where g is locally zero on X, there is some open cover U of X such that
g vanishes on Up+1, and g|A vanishes on Up+1 ∩ Ap+1. Since f ′|A = f |A + g|A this shows
that [f ′|A] = [f |A] and the above map is well defined. This reasoning also shows that the
map ϕ given by the composition

A∗(X;G) π // A∗(X;G)/A∗0(X;G) i] // A∗(A;G)/A∗0(A;G) = A∗A-S(A;G)

is given by

ϕ(f) = [f |A],

and that the kernel of ϕ is equal to A∗(X,A;G), so we have an exact sequence

0 // A∗(X,A;G) ι // A∗(X;G)
ϕ // A∗A-S(A;G) // 0,

and A∗0(X;G) ⊆ A∗(X,A;G). Since A∗0(X;G) ⊆ A∗(X,A;G), Kerϕ = A∗(X,A;G) (since
Im ι = Kerϕ), and the following diagram commutes

A∗(X;G) π //

ϕ
))

A∗(X;G)/A∗0(X;G)

i]

��
A∗A-S(A;G),

we have Ker i] ∼= A∗(X,A;G)/A∗0(X;G), and we conclude that we have the isomorphism

A∗A-S(X,A;G) ∼= A∗(X,A;G)/A∗0(X;G),

as claimed.

Observe that A∗A-S(X, ∅;G) = A∗A-S(X;G).
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14.2 Alexander–Spanier Cohomology as a Direct Limit

The next step is to define some cohomology groups based on open covers of (X,A), and for
this we need a few facts about open covers.

Definition 14.3. Given a pair of topological spaces (X,A) where A is a subset of X, a pair
(U ,UA) is an open cover of (X,A) if U = (Ui)i∈I is an open cover of X and UA = (Ui)i∈IA is
a subcover of U which is a cover of A; that is, IA ⊆ I and A ⊆

⋃
i∈IA Ui; see Figure 14.1.

X = S 2

U1

U

U

U

2

3
4

A

Figure 14.1: Let X = S2 and A be the orange semicircle. Let U = {U1, U2, U3, U4} with
I = {1, 2, 3, 4}. Then UA = {U1, U3} with IA = {1, 3}.

Recall from Definition 9.6 that given two covers U = (Ui)i∈I and V = (Vj)j∈J of a space
X, we say that V is a refinement of U , denoted U ≺ V , if there is a function τ : J → I
(sometimes called a projection) such that

Vj ⊆ Uτ(j) for all j ∈ J.

Definition 14.4. Given a pair of topological spaces (X,A) where A is a subset of X, for
any two open covers (U ,UA) and (V ,VA) of (X,A), with U = (Ui)i∈I , IA ⊆ I, V = (Vj)j∈J ,
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JA ⊆ J , we say that (V ,VA) is a refinement of (U ,UA), written (U ,UA) ≺ (V ,VA), if there
is a function τ : J → I (sometimes called a projection) such that τ(JA) ⊆ IA and

Vj ⊆ Uτ(j) for all j ∈ J ; see Figure 14.2.

A X = S 2

V   =  U3 2

V   =    U6 4

V
V

V
V

1

2

3

4

Figure 14.2: Let X = S2 and A be the orange semicircle. Let V = {V1, V2, V3, V4, V5, V6}
with J = {1, 2, 3, 4, 5, 6}, and VA = {V1, V4} with JA = {1, 4}. Then (V ,VA) is a refinement
of (U ,UA) of Figure 14.1 since V1 ⊆ U1, V2 ⊆ U1, V3 = U2, V4 ⊆ U3, V5 ⊆ U3, and V6 = U4.

Let Cov(X,A) be the preorder of open covers (U ,UA) of (X,A) under refinement. If
(U ,UA) and (V ,VA) are two open covers of (X,A), if we let

W = {Ui ∩ Vj | (i, j) ∈ I × J}

and
WA = {Ui ∩ Vj | (i, j) ∈ IA × JA},

we see that (W ,WA) is an open cover of (X,A) that refines both (U ,UA) and (V ,VA); see
Figure 14.3. Therefore, Cov(X,A) is a directed preorder.

We also define Cov(X) as the preorder of open covers of X under refinement; it is a
directed preorder. However, observe that Cov(X) is not equal to Cov(X, ∅), because even if
A = ∅, a cover of (X, ∅) consists of a pair (U ,UA) where UA is a subcover of U associated
with some index set IA ⊆ I which is not necessarily empty. Covers in Cov(X) correspond to
those covers (U , ∅) in Cov(X, ∅) for which IA = ∅. In the end this will not matter but this
a subtle point that should not be overlooked.
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2

U1

U2 = V3

V

A

1
V

U

U2 = V3

V
1

2

V2

U1 V3

U V

U V

2

2

1

2

h

h

h

Figure 14.3: Let X be the unit disk and A the red boundary arc. The top level shows (U ,UA)
where U = {U1, U2} and UA = {U1}. The middle level shows (V ,VA) where V = {V1, V2, V3}
and VA = {V1, V2}. The bottom level shows the common refinement (W ,WA) where W =
{U1∩V1 = V1, U1∩V2 = V2, U1∩V3, U2∩V1, U2∩V2, V3} andWA = {U1∩V1 = V1, U1∩V2 = V2}.

We are ready to show that A∗A-S(X,A;G) is the limit of cochain complexes associated
with covers (U ,UA) of (X,A).

Definition 14.5. Let (X,A) be a pair of topological spaces with A ⊆ X. For any open
cover (U ,UA) of (X,A), let Ap(U ,UA;G) be the submodule of Ap(X;G) given by

Ap(U ,UA;G) = {f : Up+1 → G | f(x0, . . . , xp) = 0 if (x0, . . . , xp) ∈ (UA)p+1 ∩ Ap+1}.

The homomorphism

δp : Ap(U ,UA;G)→ Ap+1(U ,UA;G)

is defined as in Definition 13.16 by

(δpf)(x0, . . . , xp+1) =

p+1∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xp+1).

It is easily checked that δp+1 ◦ δp = 0 for all p ≥ 0, so the modules Ap(U ,UA;G) form a
cochain complex.
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Remark: The module Ap(U ,UA;G) can be viewed as an ordered simplicial cochain complex;
see Spanier [59] (Chapter 6, Section 5).

If (V ,VA) is a refinement of (U ,UA), then the restriction map is a cochain map

ρU ,U
A

V,VA : Ap(U ,UA;G)→ Ap(V ,VA;G),

so the directed family (Ap(U ,UA;G))(U ,UA)∈Cov(X,A) together with the family of maps ρU ,U
A

V,VA
with (U ,UA) ≺ (V ,VA) is a direct mapping family.

Remark: As usual, one has to exercise some care because the set of all covers of (X,A) is
not a set. This can be dealt with as in Serre’s FAC [55] or as in Eilenberg and Steenrod [15]
(Chapter IX, Page 238).

The remarkable fact is that if A 6= ∅, then we have an isomorphism

ApA-S(X,A;G) ∼= lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G),

and if A = ∅, we have an isomorphism

ApA-S(X;G) ∼= lim−→
U∈Cov(X)

Ap(U , ∅;G).

To prove the above isomorphism, first if A 6= ∅, we will define a map

λ : Ap(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G),

where A∗(X,A;G) is the module defined in Definition 14.2, and if A = ∅, we will define a
map

λ : Ap(X;G)→ lim−→
U∈Cov(X)

Ap(U , ∅;G).

Assume A 6= ∅. For any f ∈ Ap(X,A;G), there is some open cover UA of A consisting
of open subsets of X such that f vanishes on (UA)p+1 ∩ Ap+1, and we let U be the open
cover of X obtained by adding X itself to the cover UA and giving it some new index, say k
(we need to do this to obey the indexing convention of Definition 14.3). Then (U ,UA) is an
open cover of (X,A) and by restriction f determines an element f |(U ,UA) ∈ Ap(U ,UA;G).
Passing to the limit, we obtain a homomorphism

λp : Ap(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

Ap(U ,UA;G).
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Theorem 14.2. If A 6= ∅, then the map

λ : A∗(X,A;G)→ lim−→
(U ,UA)∈Cov(X,A)

A∗(U ,UA;G)

as defined above is surjective and its kernel is given by Kerλ = A∗0(X;G). Consequently, we
have an isomorphism

A∗A-S(X,A;G) ∼= lim−→
(U ,UA)∈Cov(X,A)

A∗(U ,UA;G).

If A = ∅, then the map
λ : A∗(X;G)→ lim−→

U∈Cov(X)

A∗(U , ∅;G)

is surjective and its kernel is given by Kerλ = A∗0(X;G). Consequently, we have an isomor-
phism

A∗A-S(X;G) ∼= lim−→
U∈Cov(X)

A∗(U , ∅;G).

Proof. We follow Spanier’s proof, see Spanier [59] (Chapter 6, Section 4, Theorem 1). Assume
that A 6= ∅. First we prove that λ is surjective. Pick any u ∈ Ap(U ,UA;G), and define
fu ∈ Ap(X,A;G) by

fu(x0, . . . , xp) =

{
u(x0, . . . , xp) if (x0, . . . , xp) ∈ Up+1

0 otherwise.

Then fu vanishes on (UA)p+1∩Ap+1, and therefore fu|(U ,UA) ∈ Ap(U ,UA;G). By definition,
we have fu| = u, so λ is surjective.

Next we prove that Kerλ = A∗0(X;G). A function f ∈ Ap(X,A;G) is in the kernel of
λ iff there is some open cover (U ,UA) such that f |(U ,UA) = 0. Thus, λ(f) = 0 iff there is
some open covering U such that f vanishes on Up+1. By the definition of A∗0(X;G), we have
λ(f) = 0 iff f ∈ A∗0(X;G).

The case where A = ∅ is similar but slightly simpler.

An important corollary of Theorem 14.2 is the following characterization of the relative
Alexander–Spanier cohomology groups as certain limits of simpler cohomology groups (in
fact, simplicial cohomology).

Theorem 14.3. Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅, then we have an
isomorphism

Hp
A-S(X,A;G) ∼= lim−→

(U ,UA)∈Cov(X,A)

Hp(U ,UA;G), for all p ≥ 0.

If A = ∅, then we have an isomorphism

Hp
A-S(X;G) ∼= lim−→

U∈Cov(X)

Hp(U , ∅;G), for all p ≥ 0.
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Proof. It is shown in Spanier [59] (Chapter 4) that cohomology commutes with direct limits
(this is a general categorical fact about direct limits). Using Theorem 14.2 we obtain our
result.

Spanier uses Theorem 14.3 to prove that Alexander–Spanier cohomology satisfies the
homotopy axiom; see Spanier [59] (Chapter 6, Section 5). Actually, Spanier proves that
Alexander–Spanier cohomology satisfies all of the Eilenberg–Steenrod axioms. A more de-
tailed treatment of Alexander–Spanier cohomology is found in Spanier [59] (Chapter 6, Sec-
tions 4–9).

14.3 Alexander–Spanier Cohomology with Compact

Support

In order to state the most general version of Alexander–Lefschetz duality (not restricted to
the compact case), it is necessary to introduce Alexander–Spanier cohomology with compact
support

Definition 14.6. A subset A of a topological space X is said to be bounded if its closure A
is compact. A subset B ⊆ X is said to be cobounded if its complement X − B is bounded;
see Figure 14.4. A function h : X → Y is proper if it is continuous and if h−1(A) is bounded
in X whenever A is bounded in Y .

(1,0)

(0,1)

(-1,0)

(0,-1)

(1,0)

(0,1)

(-1,0)

(0,-1)

A

B

Figure 14.4: Let X = R2. In the left figure, A, the open unit disk, is a bounded subset of
X, while in the right figure, B, the complement of A, is a cobounded subset of X.

It is immediate to check that the composition of two proper maps is proper. A proper
map h between (X,A) and (Y,B) (where A ⊆ X and B ⊆ Y ) is a proper map from X to Y
such that h(A) ⊆ B.
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Definition 14.7. Let (X,A) be a pair of spaces with A ⊆ X. The module Apc(X,A;G)
is the submodule of Ap(X,A;G) consisting of all functions f ∈ Ap(X,A;G) such that f is
locally zero on some cobounded subset B of X. If f ∈ Ap(X,A;G) is locally zero on B, so
is δf , thus the family of modules Apc(X,A;G) with the restrictions of the δp is a cochain
complex which is a subcomplex of A∗(X,A;G). Since A∗0(X;G) ⊆ A∗c(X,A;G), we obtain
the cochain complex A∗A-S,c(X,A;G), with

A∗A-S,c(X,A;G) = A∗c(X,A;G)/A∗0(X;G).

The Alexander–Spanier cohomology modules of (X,A) with compact support Hp
A-S,c(X,A;G)

are the cohomology modules of the cochain complex A∗A-S,c(X,A;G).

If h : (X,A) → (Y,B) is a proper map, then h] maps A∗A-S,c(Y,B;G) to A∗A-S,c(X,A;G)
and induces a homomorphism

h∗ : Hp
A-S,c(Y,B;G)→ Hp

A-S,c(X,A;G).

Properties of Alexander–Spanier cohomology with compact support are investigated in
Spanier [59] (Chapter 6, Section 6). We just mention the following result.

Proposition 14.4. Let (X,A) be a pair of spaces with A ⊆ X. If A is a cobounded subset
of X, then there is an isomorphism

H∗A-S,c(X,A;G) ∼= H∗A-S(X,A;G).

In particular, Proposition 14.4 applies to the situation where (X,A) is a compact pair ,
which means that X is compact and A is a closed subset of X.

We conclude this section by mentioning that Alexander–Spanier cohomology enjoys a
very simple definition of the cup product. Indeed, given f1 ∈ Ap(X;G) and f2 ∈ Aq(X;G)
we define f1 ^ f2 ∈ Ap+q(X;G) by

(f1 ^ f2)(x0, . . . , xp+q) = f1(x0, . . . , xp)f2(xp, . . . , xp+q).

If f1 is locally zero on A1 then so is f1 ^ f2, and if f2 is locally zero on A1 then so is f1 ^ f2.
Consequently ^ induces a cup product

^ : ApA-S(X;G)× AqA-S(X;G)→ Ap+qA-S (X;G).

One verifies that
δ(f1 ^ f2) = δf1 ^ f2 + (−1)pf1 ^ δf2,

so we obtain a cup product

^ : Hp
A-S(X;G)×Hq

A-S(X;G)→ Hp+q
A-S (X;G)

at the cohomology level.

It is also easy to deal with relative cohomology; see Spanier [59] (Chapter 6, Section 5).
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14.4 Relative Classical Čech Cohomology

In this section we deal with classical Čech cohomology, which means that given an open
cover U = (Ui)i∈I of the space X and given an R-module G, the module Cp(U , G) of Čech
p-cochains is defined as the R-module of functions f : Ip+1 → G such that for all (i0, . . . , ip) ∈
Ip+1,

f(i0, . . . , ip) = 0 if Ui0···ip = ∅,
where Ui0···ip = Ui0 ∩ · · · ∩ Uip . The coboundary maps are defined by

(δpf)(i0, . . . , ip+1) =

p+1∑

j=0

(−1)jf(i0, . . . , îj, . . . , ip+1),

for all f ∈ Cp(U , G) and all (i0, . . . , ip+1) ∈ Ip+2. This is the special case of the notion of
Čech cohomology with values in a presheaf discussed in Section 9.1, where the presheaf F
is the constant presheaf GX ; see Definition 9.4.

Remark: The Čech cochain modules Cp(U , G) are often defined in terms of the nerve of
the covering U . The ordered nerve ∆N (U) of the open covering U is the set of sequences
(i0, . . . , ip) ∈ Ip+1 such that Ui0···ip 6= ∅, for some p ≥ 0. We can view (I,∆N (U)) as
an abstract simplicial complex where the vertices are the elements of I and the ordered
p-simplices are the sequences (i0, . . . , ip) in ∆N (U) (recall Definition 5.19). For any given
p ≥ 0, the set of sequences (i0, . . . , ip) in ∆N (U) is denoted by ∆Np(U). Then the cochain
module Cp(U , G) is the set of functions f : ∆Np(U) → G. Every function f : ∆Np(U) → G

corresponds bijectively to the function f̃ : Ip+1 → G obtained by extending f to Ip+1 so that

f̃(i0, . . . , ip) = 0 if Ui0···ip = ∅.

Thus it is equivalent to use functions of the form f̃ , and this seems simpler and more direct
to us. Serre and Godement use this method.

The nerve N (U) of a covering U is defined as the set of subsets {i0, . . . , ip} of elements
in I such that Ui0···ip 6= ∅, for some p ≥ 0; see Spanier [59], Page 109. The corresponding
abstract simplicial complex is (I,N (U)). This is not the notion that we are using. The
abstract simplicial complex (I,∆N (U)) that we are using is what Spanier calls an ordered
chain complex ; see Spanier [59] (Page 170).

A last word of caution. As we explained in Section 9.1 and in the paragraph following
Example 9.2, in order to deal correctly with the passage to a finer cover it is necessary to
allow repetitions of indices. To eliminate repeated indices we can use alternating cochains
as introduced in Definition 9.5.

Our first goal is to explain how a continuous map h : X → Y induces a homomorphism
of Čech cohomology

hp∗ : Ȟp(Y,G)→ Ȟp(X,G).



14.4. RELATIVE CLASSICAL ČECH COHOMOLOGY 543

For this it necessary to take a closer look at the behavior of open covers of Y under h−1.

If V = (Vi)i∈I is an open cover of Y , then since h is continuous h−1(V) = (h−1(Vi))i∈I is
an open cover of X, with the same index set I. We also denote h−1(Vi) by h−1(V )i or V ′i ;
see Figure 14.5.

V1

V4

V3

V2
h

Y

h  (V  )-1
4

h  (V  )-1
3

h  (V  )-1
2

h  (V  )-1
1

X

Figure 14.5: A schematic illustration of the pullback cover h−1(V).

If W = (Wj)j∈J is a refinement of V = (Vi)i∈I and if τ : J → I is a function such that

Wj ⊆ Vτ(j) for all j ∈ J,

since
h−1(Wj) ⊆ h−1(Vτ(j)),

if we write W ′
j = h−1(Wj) and V ′i = h−1(Vi), then we have

W ′
j ⊆ V ′τ(j) for all j ∈ J,

which means that h−1(W) is a refinement of h−1(V) (as open covers of X); see Figure 14.6.

Let Cov(X) be the preorder of open covers U of X under refinement and let Cov(Y ) be
the preorder of open covers V of Y under refinement. Observe that what we just showed
implies that the map V 7→ h−1(V) between Cov(Y ) and Cov(X) is an order-preserving map.

For any tuple (i0, . . . , ip) ∈ Ip+1, we have

h−1(Vi0···ip) = h−1(Vi0 ∩ · · · ∩ Vip) = h−1(Vi0) ∩ · · · ∩ h−1(Vip),

and if we let h−1(V )i0···ip = h−1(Vi0) ∩ · · · ∩ h−1(Vip), then

h−1(Vi0···ip) = h−1(V )i0···ip .
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Figure 14.6: The cover W is a refinement of the cover V illustrated in Figure 14.5. Note
that τ(1) = 1, τ(2) = 2, τ(3) = 3, τ(4) = 4, and τ(5) = 4. Then h−1(W) is a refinement of
h−1(V).

Note that it is possible that Vi0···ip 6= ∅ but h−1(Vi0···ip) = h−1(V )i0···ip = ∅ as evidenced by
Figure 14.7.

Given a continuous map h : X → Y and an open cover V = (Vi)i∈I of Y , we define a
homomorphism from Cp(V , G) to Cp(h−1(V), G) (where h−1(V) is an open cover of X).

Definition 14.8. Let h : X → Y be a continuous map between two spaces X and Y , and
let V = (Vi)i∈I be some open cover of Y . The R-module homomorphism

hp]V : Cp(V , G)→ Cp(h−1(V), G)

is defined as follows: for any f ∈ Cp(V ;G), for all (i0, . . . , ip) ∈ Ip+1,

hp]V (f)(i0, . . . , ip) =

{
f(i0, . . . , ip) if h−1(V )i0···ip 6= ∅
0 if h−1(V )i0···ip = ∅.

The module homomorphism hp]V : Cp(V , G) → Cp(h−1(V), G) induces a module homo-
morphism of Čech cohomology groups

hp∗V : Ȟp(V ;G)→ Ȟp(h−1(V);G).

For every refinement W of V (V ≺ W), we have a commutative diagram

Ȟp(V ;G)
hp∗V //

ρVW
��

Ȟp(h−1(V);G)

ρ
h−1(V)

h−1(W)

��
Ȟp(W ;G)

hp∗W // Ȟp(h−1(W);G),
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Figure 14.7: Another schematic illustration of a pullback cover h−1(V). Note that V2 ∩ V4 is
a nonempty set of Y , but h−1(V2) ∩ h−1(V4) = ∅.

where the restriction map ρVW : Ȟp(V ;G)→ Ȟp(W ;G) is defined just after 9.3 (and similarly

for ρ
h−1(V)

h−1(W) : Ȟp(h−1(V);G)→ Ȟp(h−1(W);G)). If we define the map τh : Cov(Y )→ Cov(X)

by τh(V) = h−1(V), then we see that τh and the family of maps

hp∗V : Ȟp(V ;G)→ Ȟp(h−1(V);G)

defines a map from the direct mapping family (Ȟp(V ;G))V∈Cov(Y ) to the direct mapping
family (Ȟp(U ;G))U∈Cov(X), and by the discussion just before Definition 8.14 we obtain a
homomorphism between their direct limits, that is, a homomorphism

hp∗ : Ȟp(Y ;G)→ Ȟp(X;G).

In order to define the relative Čech cohomology groups we need to consider a few more
properties of the open covers of a pair (X,A). Let h : (X,A)→ (Y,B) be a continuous map
(recall that h : X → Y is continuous and h(A) ⊆ B). If (V ,VB) is any open cover of (Y,B)
(with index sets (I, IB)) then (h−1(V), h−1(VB)) is an open cover of (X,A) with the same
index sets I and IB; see Figure 14.8.

If (W ,WB) (with index sets (J, JB)) is a refinement of (V ,VB) (with index set (I, IB))
with projection function τ : J → I, it is immediate to check that (h−1(W), h−1(WB)) is a
refinement of (h−1(V), h−1(VB)); see Figure 14.9.

It follows that the map

(V ,VB) 7→ (h−1(V), h−1(VB))
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A
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h    (V   )
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1

h    (V   )
-1

1

Figure 14.8: Let X be the unit disk and A the unit circle boundary. Let Y be S2 and B
the equatorial circle. The map h : (X,A)→ (Y,B) maps X onto the northern hemisphere of
Y . For V = {V1, V2, V3} with VB = {V2}, (h−1(V), h−1(VB)) is an open cover of (X,A) with
h−1(V3) = ∅.

is an order preserving map between Cov(Y,B) and Cov(X,A). As before, for any tuple
(i0, . . . , ip) in Ip+1 or in (IA)p+1 we write

h−1(V )i0···ip = h−1(Vi0···ip) = h−1(Vi0) ∩ · · · ∩ h−1(Vip).

It is possible that Vi0···ip 6= ∅ but h−1(Vi0···ip) = h−1(V )i0···ip = ∅.

Definition 14.9. Let (X,A) be a pair of spaces with A ⊆ X. For every open cover (U ,UA)
of (X,A), the module Cp(U ,UA;G) is the submodule of Cp(U ;G) defined as follows:

Cp(U ,UA;G) = {f : Ip+1 → G | for all (i0, . . . , ip) ∈ Ip+1,

if Ui0···ip = ∅ or (i0, . . . , ip) ∈ (IA)p+1 and Ui0···ip ∩ A 6= ∅, then

f(i0, . . . , ip) = 0}.

Observe that if A = ∅, then Cp(U ,UA;G) = Cp(U ;G) for any UA. In this case, we will
restrict ourselves to covers for which UA = ∅, to ensure that direct limits are taken over
Cov(X) in order to obtain the Čech cohomology groups of Definition 9.8.

The analogy between the above definition of Cp(U ,UA;G) and the Alexander–Spanier
modules

Ap(U ,UA;G) = {f : Up+1 → G | f(x0, . . . , xp) = 0 if (x0, . . . , xp) ∈ (UA)p+1 ∩ Ap+1}
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Figure 14.9: Let X be the unit disk and A the unit circle boundary. Let Y be S2 and B
the equatorial circle. The cover W is a refinement of V from Figure 14.8 since W1 = V1,
W2 ⊆ V2, W3 ⊆ V2, and W4 = V3. Observe that WB = {W3}. Then (h−1(W), h−1(WB)) is
a refinement of (h−1(V), h−1(VB)) with h−1(W4) = ∅.

of Definition 14.5 is striking. Indeed, it turns out that they induce isomorphic cohomology.

It is immediately checked that the coboundary maps δp : Cp(U ;G)→ Cp+1(U ;G) restrict
to the Cp(U ,UA;G) and we obtain a cochain complex C∗(U ,UA;G).

Definition 14.10. Let (X,A) be a pair of spaces with A ⊆ X. For every open cover (U ,UA)
of (X,A), the Čech cohomology modules Ȟp(U ,UA;G) are the cohomology modules of the
complex C∗(U ,UA;G).

Observe that if A = ∅, then Ȟp(U ,UA;G) = Ȟp(U ;G) for any UA.

If (V ,VA) is a refinement of (U ,UA) then there is a cochain map

ρU ,U
A

V,VA : Cp(U ,UA;G)→ Cp(V ,VA;G),

One needs to prove that ρU ,U
A

V,VA does not depend on the projection map τ : J → I, but this can

be done as in Serre’s FAC [55] or as in Eilenberg and Steenrod [15] (Chapter IX, Theorem
2.13 and Corollary 2.14).

Therefore, the directed family (Cp(U ,UA;G))(U ,UA)∈Cov(X,A) together with the family of

maps ρU ,U
A

V,VA with (U ,UA) ≺ (V ,VA) is a direct mapping family.
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Remark: As usual, one has to exercise some care because the set of all covers of (X,A) is
not a set. This can be dealt with as in Serre’s FAC [55] or as in Eilenberg and Steenrod [15]
(Chapter IX, Page 238).

Definition 14.11. Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅, then the relative
Čech cohomology modules Ȟp(X,A;G) are defined as the direct limits

Ȟp(X,A;G) = lim−→
(U ,UA)∈Cov(X,A)

Ȟp(U ,UA;G).

If A = ∅, then the (absolute) Čech cohomology modules Ȟp(X;G) are defined as the direct
limits

Ȟp(X;G) = lim−→
U∈Cov(X)

Ȟp(U ;G).

It is clear that the absolute Čech cohomology modules Ȟp(X;G) are equal to the classical
Čech cohomology modules Ȟp(X;GX) of the constant presheaf GX as defined in Definition
9.8, since direct limits are taken over Cov(X).

At this stage, we could proceed with a study of the properties of the relative Čech
cohomology modules as in Eilenberg and Steenrod [15], but instead we will state a crucial
result due to Dowker [13] which proves that the relative Čech cohomology modules and
the relative Alexander–Spanier cohomology modules are isomorphic; this is also true in the
absolute case. This way we are reduced to a study of the properties of the Alexander–Spanier
cohomology modules, which is often simpler. For example the proof of the existence of the
long exact cohomology sequence in Čech cohomology is quite involved (see Eilenberg and
Steenrod [15] (Chapter IX), but is is quite simple in Alexander–Spanier cohomology.

This does not mean that Čech cohomology is not interesting. On the contrary, it arises
naturally whenever the notion of cover is involved, and it plays an important role in algebraic
geometry. It also lends itself to generalizations by extending the notion of cover.

Theorem 14.5. (Dowker) Let (X,A) be a pair of spaces with A ⊆ X. If A 6= ∅, then the
Alexander–Spanier cohomology modules Hp

A-S(X,A;G) and the Čech cohomology modules
Ȟp(X,A;G) are isomorphic:

Hp
A-S(X,A;G) ∼= Ȟp(X,A;G) for all p ≥ 0.

If A = ∅, then we have isomorphisms

Hp
A-S(X;G) ∼= Ȟp(X;G) for all p ≥ 0.

A complete proof of Theorem 14.5 is given in Dowker [13]; see Theorem 2. Dowker is
careful to parametrize the Alexander–Spanier cohomology modules and the Čech cohomology
modules with a directed preorder of covers Ω so that he does not run into problems when
taking direct limits when A = ∅. The proof of Theorem 14.5 is also proposed as a sequence
of problems in Spanier [59] (Chapter 6, Problems D1, D2, D3).
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14.5 Alexander–Lefschetz Duality

For any R-orientable manifold M , Alexander–Lefschetz duality is a generalization of Poincaré
duality that asserts that the Alexander–Spanier cohomology group Hp

A-S(K,L;G) and the
singular homology group Hn−p(M − L,M −K;G) are isomorphic, where L ⊆ K ⊆ M and
L and K are compact. Actually, the method for proving this duality yields an isomorphism
between a certain direct limit H

p
(K,L;G) of singular cohomology groups Hp(U, V ;G) where

U is any open subset of M containing K and V is any any open subset of M containing L,
and the singular homology group Hn−p(M − L,M −K;G).

Furthermore, it can be shown that H
p
(K,L;G) and Hp

A-S(K,L;G) are isomorphic, so
Alexander–Lefschetz duality can indeed be stated as an isomorphism between Hp

A-S(K,L;G)
and Hn−p(M −L,M −K;G). Since Alexander–Lefschetz cohomology and Čech cohomology
are isomorphic, Alexander–Lefschetz duality can also be stated as an isomorphism between
Ȟp(K,L;G) and Hn−p(M − L,M − K;G), and this is what certain authors do, including
Bredon [7] (Chapter 6, Section 8).

Definition 14.12. Given any topological space X, for any pair (A,B) of subsets of X, let
N(A,B) be the set of all pairs (U, V ) of open subsets of X such that A ⊆ U and B ⊆ V
ordered such that (U1, V1) ≤ (U2, V2) iff U2 ⊆ U1 and V2 ⊆ V1 (reverse inclusion); see Figure
14.10.

A

X

BU1

U2

V1

V2

Figure 14.10: A schematic illustration of two elements of N(A,B) with (U1, V1) ≤ (U2, V2).

Clearly N(A,B) is a directed preorder, and if (U1, V1) ≤ (U2, V2) then there is an in-
duced map of singular cohomology ρU1,V1

U2,V2
: Hp(U1, V1;G) → Hp(U2, V2;G), so the family

(Hp(U, V ;G))(U,V )∈N(A,B) together with the maps ρU1,V1

U2,V2
is a direct mapping family.

Definition 14.13. Given any topological space X, for any pair (A,B) of subsets of X, the
modules H

p
(A,B;G) are defined

H
p
(A,B;G) = lim−→

(U,V )∈N(A,B)

Hp(U, V ;G) for all p ≥ 0.
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The restriction maps Hp(U, V ;G) −→ Hp(A,B;G) yield a natural homomorphism

ip : H
p
(A,B;G)→ Hp(A,B;G)

between H
p
(A,B;G) and the singular cohomology module Hp(A,B;G). In general, ip nei-

ther injective nor surjective. Following Spanier [59] (Chapter 6, Section 1), we say that the
pair (A,B) is tautly imbedded in X if every ip is an isomorphism.

Remark: The notation H
p
(A,B;G) is borrowed from Spanier [59] (Chapter 6, Section 1).

Bredon denotes the direct limit in Definition 14.13 by Ȟp(A,B;G); see Bredon [7] (Chapter
6, Section 8). He then goes on to say that if X is a manifold and A and B are closed then
this group (which is really H

p
(A,B;G)) is naturally isomorphic to the Čech cohomology

group. This is indeed true, but this is proven by showing that H
p
(A,B;G) is isomorphic to

the Alexander–Spanier cohomology module Hp
A-S(A,B;G) and then using the isomorphism

between the Alexander–Spanier cohomology modules and the Čech cohomology modules.
Since these results are nontrivial, we find Bredon’s notation somewhat confusing.

It is shown in Spanier ([59], Chapter 6, Section 1, Corollary 11) that if A, B and X
are compact polyhedra, then the pair (A,B) is taut in X, which means that there are
isomorphisms H

p
(A,B;G) ∼= Hp(A,B;G), so we can simply use singular cohomology. This

is the set-up in which Lefschetz duality was originally proven. We also have the following
useful result about manifolds; see Spanier ([59], Chapter 6, Section 9, Corollary 7).

Proposition 14.6. If X is a manifold, then H
∗
(X;G) ∼= H∗(X;G).

The following result shows that when X is a manifold and (A,B) is a closed pair, the
groups H

p
(A,B;G) are just the Alexander–Spanier cohomology groups.

Proposition 14.7. Let X be a manifold. For any pair (A,B) of closed subsets of X, there
are isomorphisms

Hp
A-S(A,B;G) ∼= H

p
(A,B;G) for all p ≥ 0.

Proposition 14.7 is proven in Spanier [59] (Chapter 6, Section 9, Corollary 9).

We are now ready state the main result of this chapter. Let M be an R-orientable
manifold. By Theorem 7.7, for any compact subset K of M , there is a unique R-fundamental
class µK ∈ Hn(M,M −K;R) of M at K. In order to state Alexander–Lefschetz duality, we
need to define a relative cap product

_ : Hp(U, V ;G)×Hn(M,M −K;R)→ Hn−p(M − L,M −K;G).

The derivation of this cap product is quite technical and can be skipped during a first reading.

Asume that L ⊆ K ⊆ M , V ⊆ U , K ⊆ U , and L ⊆ V , with K,L compact. Then
U −K ⊆ U −L and {V, U −L} is an open cover of U . We know from Section 7.5 that there
is a relative cap product

_ : Hp(X,A;G)×Hn(X,A ∪B;R)→ Hn−p(X;B,G),
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so with X = U , A = V , and B = U −K, we have a cap product

_ : Sp(U, V ;G)× Sn(U, V ∪ (U −K);R)→ Sn−p(U,U −K;G).

We claim that the above cap product induces a cap product

_ : Sp(U, V ;G)× Sn(U,U −K;R)→ Sn−p(U − L,U −K;G).

Since U −K ⊆ V ∪ (U −K), we have a homomorphism

i : Sn(U,U −K;R)→ Sn(U, V ∪ (U −K);R),

where the equivalence class of a ∈ Sn(U ;R) mod Sn(U −K;R) is mapped to the equivalence
class of a mod Sn(V ∪ (U − K);R). Recall that a cochain f ∈ Sp(U, V ;G) is a cochain
in Sp(U ;G) that vanishes on simplices in V . Also since U = V ∪ (U − L), any chain σ in
Sn(U, V ∪ (U −K);R) = Sn(V ∪ (U − L), V ∪ (U −K);R) is represented by a sum of the
form

a+ b+ c,

with a ∈ Sn(V ;R), b ∈ Sn(U − L;R) and c ∈ Sn(V ∪ (U − K);R). Since Sn(V ;R) ⊆
Sn(V ∪ (U − K);R), we see that a ∈ Sn(V ∪ (U − K);R) and so σ is also represented by
some element b+ d with b ∈ Sn(U − L;R) and d ∈ Sn(V ∪ (U −K);R). See Figure 14.11.

K

L

M

V
U

a
b cd

Figure 14.11: A schematic depiction illustrating the construction of _ : Sp(U, V ;G) ×
Sn(U,U − K;R) → Sn−p(U − L,U − K;G), where a ∈ Sn(V ;R), b ∈ Sn(U − L;R),
c ∈ Sn(V ∪ (U −K);R), and d ∈ Sn(V ∪ (U −K);R).

Then we have
f _ (b+ d) = f _ b+ f _ d,
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with f _ b ∈ Sn−p(U − L;G), and since f vanishes on V and d ∈ Sn(V ∪ (U −K);R) the
term f _ d belongs to Sn−p(U − K;G), so in the end f _ (b + d) represents a cycle in
Sn−p(U − L,U −K;G). Passing to cohomology and homology, since by excision

Hn(M,M −K;R) ∼= Hn(U,U −K;R)

Hn−p(M − L,M − L;G) ∼= Hn−p(U − L,U −K;G),

the cap product

_ : Sp(U, V ;G)× Sn(U,U −K;R)→ Sn−p(U − L,U −K;G)

induces a cap product

_ : Hp(U, V ;G)×Hn(M,M −K;R)→ Hn−p(M − L,M −K;G).

If M is an R-orientable manifold, for any pair (K,L) of compact subsets of M such that
L ⊆ K and for any pair (U, V ) ∈ N(K,L), we obtain a map

_ µK : Hp(U, V ;G)→ Hn−p(M − L,M −K;G),

and by a limit argument, we obtain a map

_ µK : H
p
(K,L;G)→ Hn−p(M − L,M −K;G);

for details see Bredon [7] (Chapter 6, Section 8).

Theorem 14.8. (Alexander–Lefschetz duality) Let M be an R-orientable manifold where R
is any commutative ring with an identity element. For any R-module G, for any pair (K,L)
of compact subsets of M such that L ⊆ K, the map ω 7→ ω _ µK yields an isomorphism

H
p
(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.

Thus we also have isomorphisms

Hp
A-S(K,L;G) ∼= Ȟp(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.

Theorem 14.8 is proven in Bredon [7] where it is called the Poincaré–Alexander–Lefschetz
duality (Chapter 6, Section 8, Theorem 8.3) by using the Bootstrap Lemma (Proposition
7.6). It is also proven in Spanier [59] (Chapter 6, Section 2, Theorem 17), except that the
isomorphism goes in the opposite direction and does not use the fundamental class µK .

If we let K = M and L = ∅, since for a manifold we have H
p
(M ;G) ∼= Hp(M ;G), then

Theorem 14.8 yields isomorphisms

Hp(M ;G) ∼= Hn−p(M ;G),

which is Poincaré duality if M is compact and R-orientable.

In the special case where K = M , we get a version of Lefschetz duality for M compact:
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Theorem 14.9. (Lefschetz Duality, Version 1) Let M be a compact R-orientable n-manifold
where R is any commutative ring with an identity element. For any R-module G, for any
compact subset L of M , we have isomorphisms

Hp
A-S(M,L;G) ∼= Ȟp(M,L;G) ∼= Hn−p(M − L;G) for all p ≥ 0.

A version of Lefschetz duality where M and L are compact and triangulable, in which
case singular cohomology suffices, is proven in Munkres [48] (Chapter 8, Theorem 72.3).

Spanier proves a slightly more general version. A pair (X,A) is called a relative n-
manifold if X is a Hausdorff space, A is closed in X, and X − A is an n-manifold.

Theorem 14.10. (Lefschetz Duality, Version 2) Let (X,A) be a compact relative n-manifold
such that X −A is R-orientable where R is any commutative ring with an identity element.
For any R-module G, there are isomorphisms

Hp
A-S(X,A;G) ∼= Ȟp(X,A;G) ∼= Hn−p(X − A;G) for all p ≥ 0.

Theorem 14.9 is proven in Spanier [59] (Chapter 8, Section 2, Theorem 18).

There are also version of Poincaré and Lefschetz duality for manifolds with boundary
but we will omit this topic. The interested reader is referred to Spanier [59] (Chapter 8,
especially Section 2).

We now turn to two versions of Alexander duality.

14.6 Alexander Duality

Alexander duality corresponds to the special case of Alexander–Lefschetz duality in which
L = ∅. We begin with a version of Alexander duality in the situation where M = Rn.

Theorem 14.11. (Alexander–Pontrjagin duality) Let A be a compact subset of Rn. For any
commutative ring R with an identity element, for any R-module G, we have isomorphisms

Hn−p−1
A-S (A;G) ∼= Ȟn−p−1(A;G) ∼= H̃p(Rn − A;G) for all p ≤ n.

Proof. By Theorem 14.8 with M = Rn, K = A and L = ∅, there are isomorphisms

Ȟn−p−1(A;G) ∼= Hp+1(Rn,Rn − A;G) for all p ≤ n− 1.

We also have the long exact sequence of reduced homology of the pair (Rn,Rn − A), which
yields exact sequences

H̃p+1(Rn;G) // H̃p+1(Rn,Rn − A;G) // H̃p(Rn − A;G) // H̃p(Rn;G),
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and since H̃p+1(Rn;G) ∼= H̃p(Rn;G) ∼= (0) (because Rn is contractible and by the facts stated
just after Definition 4.20), we conclude that

Hp+1(Rn,Rn − A;G) = H̃p+1(Rn,Rn − A;G) ∼= H̃p(Rn − A;G),

which proves our result.

Here is another version of Alexander duality in which M = Sn. Recall from Section 4.9
that the relationship between the cohomology and the reduced cohomology of a space X is

H0(X;G) ∼= H̃0(X;G)⊕G
Hp(X;G) ∼= H̃p(X;G), p ≥ 1.

Theorem 14.12. (Alexander duality) Let A be a proper closed nonempty subset of Sn. For
any commutative ring R with an identity element, for any R-module G, we have isomor-
phisms

H̃p(S
n − A;G) ∼=

{
Ȟn−p−1(A;G) if p 6= n− 1
˜̌H0(A;G) if p = n− 1,

or equivalently
˜̌Hn−p−1(A;G) ∼= H̃p(S

n − A;G) for all p ≤ n.

Proof. The case n = 0 is easily handled, so assume n > 0. By Theorem 14.8 with M = Sn,
K = A and L = ∅, there are isomorphisms

Ȟn−p−1(A;G) ∼= Hp+1(Sn, Sn − A;G) for all p ≤ n− 1.

We also have the long exact sequence of reduced homology of the pair (Sn, Sn − A), which
yields exact sequences

H̃p+1(Sn;G) // H̃p+1(Sn, Sn − A;G) // H̃p(S
n − A;G) // H̃p(S

n;G).

By Proposition 4.18 the reduced homology of Sn is given by

H̃p(S
n;G) =

{
G if p = n

(0) if p 6= n,

It follows that we have isomorphisms

Hp+1(Sn, Sn − A;G) = H̃p+1(Sn, Sn − A;G) ∼= H̃p(S
n − A;G)

for p 6= n− 1. If p = n− 1 we have the following commutative diagram

0 // H0(Sn) //

��

Ȟ0(A) //

��

˜̌H0(A) //

��

0

Hn(Sn − A) 0 // Hn(Sn) // Hn(Sn, Sn − A) // H̃n−1(Sn − A) 0 //



14.6. ALEXANDER DUALITY 555

in which the left vertical solid arrow is an isomorphism by Poincaré duality, the right vertical
solid arrow is an isomorphism by Theorem 14.8, the bottom row is exact by the long exact
sequence of reduced homology, and the top one because

Ȟ0(A) ∼= ˜̌H0(A)⊕G

and H0(Sn) ∼= Hn(Sn) ∼= G. We have zero maps on the bottom because the inclusion map
Sn − A −→ Sn factors through a contractible space Sn − {pt}. It is easy to see that the

kernel of the map from Ȟ0(A) to H̃n−1(Sn−A) is isomorphic to H0(Sn), so this map factors

through ˜̌H0(A) as the dotted arrow, and using the commutative diagram and the fact that
the rows are exact it is easy to show that the dotted arrow is an isomorphism.

Remark: This version involving Čech (or Alexander–Spanier) cohomology is a generaliza-
tion of Alexander’s original version that applies to a polyhedron in Sn, and only requires
singular cohomology; see Munkres [48] (Chapter 8, Theorem 72.4).

An interesting corollary of Theorem 14.9 is the following generalization of the version
of the Jordan curve theorem stated in Theorem 4.21. For comparison with Theorem 14.13
below think of M as Sn and of A as C.

Theorem 14.13. (Generalized Jordan curve theorem) Let M be a connected, orientable,
compact n-manifold, and assume that H1(M ;R) = (0) for some ring R (with unity). For
any proper closed subset A of M , the module Ȟn−1(A;R) is a free R-module such that if r
is its rank, then r + 1 is equal to the number of connected components of M − A.

Proof. The number of connected components of M−A is equal to the rank s of H0(M−A;R),

and since H0(M−A;R) ∼= H̃0(M−A;G)⊕R we have s = t+1 with t = rank(H̃0(M−A;G)).
By the long exact sequence of reduced homology of the pair (M,M −A) we have the exact
sequence

H1(M ;R) // H1(M,M − A;R) // H̃0(M − A;R) // H̃0(M ;R).

Since H1(M ;R) = (0) and since M is connected H̃0(M ;R) = (0) so we get the isomorphism

H̃0(M − A;R) ∼= H1(M,M − A;R).

By Lefschetz duality (Theorem 14.9) we have

H1(M,M − A;R) ∼= Ȟn−1(A;R),

and thus
Ȟn−1(A;R) ∼= H̃0(M − A;R),

which shows that Ȟn−1(A;R) is a free R-module with rank r = t = s − 1, where s is the
number of connected component of M − A.
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Recall that given two topological spaces X and Y we say that there is an embedding of
X into Y if there is a homeomorphism f : X → Y of X onto its image f(X). As a corollary
of Theorem 14.13 we get the following result.

Proposition 14.14. Let M be a connected, orientable, and compact n-manifold M . If
H1(M ;Z) = (0), then no nonorientable compact (n− 1)-manifold N can be embedded in M .

Proof. If the (n − 1)-manifold N is nonorientable, then by Proposition 7.11 Hn−1(N ;Z) ∼=
Z/2Z, and since N is a manifold Hn−1(N ;Z) ∼= Ȟn−1(N ;Z), so Ȟn−1(N ;Z) ∼= Z/2Z, which
contradicts Theorem 14.13 (since Z/2Z is not free).

Proposition 14.14 implies that RP2n cannot be embedded into S2n+1. In particular RP2

cannot be embedded into S3.

More applications of duality are presented in Bredon [7] (Chapter 6, Section 10). In
particular, it is shown that for all n ≥ 2 (not just even) the real projective space RPn cannot
be embedded in Sn+1.

We conclude this chapter by stating a generalization of Alexander–Lefschetz duality for
cohomology with compact support.

14.7 Alexander–Lefschetz Duality for Cohomology

with Compact Support

The Alexander–Spanier cohomology modules with compact support HA-S,c(X,A;G) were
defined in Section 14.3. Alexander–Lefschetz duality (Theorem 14.8) can be generalized to
arbitrary closed pairs (K,L) (not necessarily compact), using the modules HA-S,c(X,A;G)
instead of the modules HA-S(X,A;G), in a way which is reminiscent of the general Poincaré
duality theorem (Theorem 7.16).

Theorem 14.15. (Alexander–Lefschetz duality) Let M be an R-orientable manifold where
R is any commutative ring with an identity element. For any R-module G, for any pair
(K,L) of closed subsets of M such that L ⊆ K, there is an isomorphism

Hp
A-S, c(K,L;G) ∼= Hn−p(M − L,M −K;G) for all p ≥ 0.

Theorem 14.15 is proven in Spanier [59] (Chapter 6, Section 9, Theorem 10) and in Dold
[12] (Chapter VIII, Section 7, Proposition 7.14). It should be noted that Spanier’s proof
provides an isomorphism in the other direction (from homology to cohomology) and does
not involve the cap product. However, Dold’s version uses a version of the cap product
obtained by a limit argument.
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14.8 Problems

Problem 14.1. Pove that if M is an orientable connected manifold and if L is a proper
compact subset of M , then H

n
(L;G) = (0).

Problem 14.2. Let M be a connected, orientable, compact n-manifold and let N be a
compact connected (n − 1)-submanifold of M . Prove that if H1(M ;Z) = (0), then M − N
has exactly two components with N as the topological boundary of each.

Problem 14.3. Show that Theorem 14.13 is false if Ȟn−1 is replaced by Hn−1.

Problem 14.4. Prove that if U ⊆ R3 is open, then H1(U) is torsion-free.

Problem 14.5. Show that Proposition 14.14 remains true if the hypothesis that H1(M ;Z) =
(0) is weakened to H1(M ;Z/2Z) = (0).
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Chapter 15

Spectral Sequences

A spectral sequence is a tool of homological algebra whose purpose is to approximate the
cohomology (or homology) H(M) of a module M endowed with a family (F pM)p∈Z of sub-
modules such that F p+1M ⊆ F pM for all p and

M =
⋃

p∈Z
F pM,

called a filtration. The module M is also equipped with a linear map d : M → M called
differential such that d ◦ d = 0, so that it makes sense to define

H(M) = Ker d/Im d.

We say that (M,d) is a differential module. To be more precise, the filtration induces
cohomology submodules H(M)p of H(M), the images of H(F pM) in H(M), and a spectral
sequence is a sequence of modules Ep

r (equipped with a differential dpr), for r ≥ 1, such that
Ep
r approximates the “graded piece” H(M)p/H(M)p+1 of H(M).

Actually, to be useful, the machinery of spectral sequences must be generalized to filtered
cochain complexes. Technically this implies dealing with objects Ep,q

r involving three indices,
which makes its quite challenging to follow the exposition.

Many presentations jump immediately to the general case, but it seems pedagogically
advantageous to begin with the simpler case of a single filtered differential module. This the
approach followed by Serre in his dissertation [56] (Pages 24–104, Annals of Mathematics ,
54 (1951), 425–505), Godement [24], and Cartan and Eilenberg [10].

Spectral sequences were first introduced by Jean Leray in 1945 and 1946. Paraphrazing
Jean Dieudoné [11], Leray’s definitions were cryptic and proofs were incomplete. Koszul
was the first to give a clear definition of spectral sequences in 1947. This is the definition
that has been used even since. Independently, in his dissertation (1946), Lyndon introduced
spectral sequences in the context of group extensions.

Detailed expositions of spectral sequences do not seem to have appeared until 1951, in
lecture notes by Henri Cartan and in Serre’s dissertation [56], which we highly recommend for

559
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its clarity (Serre defines homology spectral sequences, but the translation to cohomology is
immediate). A concise but very clear description of spectral sequences appears in Dieudonné
[11] (Chapter 4, Section 7, Parts D, E, F). More extensive presentations appeared in Cartan
and Eilenberg [10] and Godement [24] around 1955. Every “advanced” book on algebraic
topology and homological algebra published between 1960 and 1980 has a treatment of
spectral sequences: Mac Lane [37], Rotman [50, 52], Spanier [59]. More recent references are
Weibel [63] and McCleary [44]. Arm yourself with patience.

The first spectacular application of spectral sequences was made by Serre in his dis-
sertation (1951) [56]. Serre used spectral sequences and other methods he invented (Serre
classes of abelian groups) to prove the following results about the homotopy groups πm(Sn)
of spheres (it was already known that πi(S

n) = (0) for i < n):

(1) The homotopy groups πm(Sn) are finitely generated (this was not known before Serre
proved it).

(2) If n is odd, then πm(Sn) is finite if m 6= n.

(3) If n is even, then πm(Sn) is finite if m 6= n and if m 6= 2n− 1.

The above results are presented in English in Spanier [59] (Chapter 9).

Double complexes are a major source of spectral sequences. A double complex is a direct
sum

C =
⊕

p,q∈N
Cp,q,

equipped with a horizontal differential dI and a vertical differential dII that anticommute;
see Section 15.9. A double complex yields the singly graded module Tot(C), called its total
space, with

Tot(C) =
⊕

n∈N
Cn, with Cn =

⊕

p+q=n

Cp,q,

and the differential D = dI + dII. There are two natural filtrations on C and Tot, thus
two spectral sequences I and II associated with them. These spectral sequences can be
used to compare the cohomology modules Hp

I (Hq
II(CI)) (associated with the first spectral

sequence), where CI is the complex C with the first filtration and the differential dI, and
Hp

II(H
q
I (CII)) (associated with the second spectral sequence), where CII is the complex C

with the second filtration and the differential dII. Technically Hq
II(CI) and Hq

I (CII) are
certain complexes; see Section 15.9. Under certain conditions (when the spectral sequences
degenerate for q = 0), both Hp

I (H0
II(CI)) and Hp

II(H
0
I (CII)) are isomorphic to the cohomology

of the total space Tot(C) (with differential D), and we obtain an isomorphism between two
kinds of cohomology because the complexes H0

II(CI) and H0
I (CII) can be recognized as known

complexes. This will happen for sheaf cohomology, Čech cohomology of a cover, and Čech
cohomology.
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This phenomenon will be illustrated in Section 15.10 (where the row cohomology is sheaf
cohomology), Section 15.11 (where the row cohomology is the Čech cohomology of a cover
U) and Section 15.12 (where the row cohomology is Čech cohomology). In all three cases, the
column cohomology involves a family of sheaves F∗ = (Fp) called a differential sheaf. The
column cohomology is usually harder to compute than the row cohomology precisely because
it involves the whole family F∗ = (Fp). If the differential sheaf F∗ has extra properties, for
example, it is a resolution of a sheaf by special sheaves, then it can be computed.

A last comment before we launch into the presentation of spectral sequences. It seems
unfortunate to us that the term “spectral” is used, since it is already used for other totally
unrelated concepts: spectral theorems in linear algebra, spectral analysis in Fourier theory,
etc. But as many other terms in mathematics (“normal”), overloading of the terminology
should not stop us from moving on.

There are several methods for defining spectral sequences, including the following three:

(1) Koszul’s original approach as described by Serre [56] and Godement [24]. In our opinion
it is the simplest method to understand what is going on.

(2) Cartan and Eilenberg’s approach [10]. This is a somewhat faster and slicker method
than the previous method.

(3) Exact couples of Massey (1952). This somewhat faster method for defining spectral
sequences is adopted by Rotman [50, 52] and Bott and Tu [4]. Mac Lane [37], Weibel
[63], and McCleary [44] also present it and show its equivalence with the first approach.
It appears to be favored by algebraic topologists. This approach leads to spectral
sequences in a quicker fashion and is more general because exact couples need not
arise from a filtration, but our feeling is that it is even more mysterious to a novice
than the first two approaches.

We will primarily follow Method (1) and present Method (2) and Method (3) in starred
sections (Method (2) in Section 15.15 and Method (3) in Section 15.14). All three methods
produce isomorphic sequences, and we will show their equivalence.

15.1 Case 1: Filtered Differential Modules

We begin by giving an idea of what is the spectral sequence associated with a filtered differ-
ential module. The ingredient that leads to spectral sequences is the notion of a filtration.

Definition 15.1. Given a R-module M , a decreasing filtration on M is a family (F p(M))p∈Z
of R-submodules of M such that

F p+1(M) ⊆ F p(M) for all p ∈ Z and M =
⋃

p∈Z
F p(M).

An R-module M equipped with a filtration (F p(M))p∈Z is called a filtered module. For
simplicity of notation, we write F pM instead of F p(M).
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In most applications we have ⋂

p∈Z
F p(M) = (0),

so in an intuitive sense we can think of the elements of F pM as being more and more
negligible as p goes to +∞; see Figure 15.1.

M

F  (M)
p

F    (M)
p+1

F    (M)
p+2

F    (M)
p+3

F    (M)p+4

Figure 15.1: A schematic representation of the filtered module M . As the superscripts of
the filtration become more positive, the associated F pM is smaller.

Example 15.1. Let M be a direct sum

M =
⊕

p∈Z
Mp

of R-modules Mp. A direct sum M as above is called a Z-graded module (for short, a graded
module). Recall that every element of M is a finite sum

∑
i∈I ui of elements ui ∈M i (where

I is a finite subset of Z). We have the filtration given by

F pM =
⊕

i≥p
M i.

Example 15.2. Let M be a direct sum

M =
⊕

p,q∈Z
Mpq

of R-modules Mpq. A direct sum M as above is called a bigraded module. We have two
filtrations (F p

I M) and (F q
IIM) given by

F p
I M =

⊕

i≥p

⊕

q∈Z
M iq,
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which is the direct sum of the columns of index i greater than or equal to p and

F q
IIM =

⊕

j≥q

⊕

p∈Z
Mpj,

which is the direct sum of the rows of index greater j than or equal to q; see Figures 15.2
and 15.3.
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Figure 15.2: A schematic first quadrant representation of the bigraded module M and its
column filtration (F p

I M). Each time p increases by one, the left column is excluded.

The key ingredient which allows the definition of cohomology (or homology) of a module
M is an R-linear map such that d ◦ d = 0.

Definition 15.2. A differential module is a pair (M,d), where M is an R-module and
d : M → M is an R-linear map such that d ◦ d = 0, called the differential of M . Let
Z(M) = Ker d, the set of cocycles , and B(M) = Im d, the set of coboundaries . If no
confusion is arises we write Z for Z(M) and B for B(M). Since d ◦ d = 0, we have B ⊆ Z,
and the R-module

H(M) = Z/B = Ker d/Im d

is called the derived module of M .

If M also has a filtration (F pM), then we require that d(F pM) ⊆ F pM for all p ∈ Z,
and we call such a module a filtered differential module.

If (M,d) is a filtered differential module with filtration (F pM), since d(F pM) ⊆ F pM ,
the restriction of the differential d to F pM is a differential on F pM denoted dF p .

We are interested in the cohomology H(M) of M , but this may be hard to compute.
This is where a filtration (F pM) on M is useful. Indeed, a filtration (F pM) on M induces a
filtration (H(M)p) of H(M). Then we can compute the quotient modules H(M)p/H(M)p+1.
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M00 M M M10 20 30 M M M

M M M M

M

MMMM

40 50 60 70

01 11 21 31 41 51 61 71

M

M

M

M

M

M

M

M

02

03

12

13

22

23

32

33

M

M

M

M

M

M

M

M

42 52 62 72

43 63

44

45

53 73

M M M M

M

M

M

34

35

241404

M M M05 15 25

M M M

M M M

54

55

64 74

65 75

M00 M M M10 20 30 M M M

M M M M

M

MMMM

40 50 60 70

01 11 21 31 41 51 61 71

M

M

M

M

M

M

M

M

02

03

12

13

22

23

32

33

M

M

M

M

M

M

M

M

42 52 62 72

43 63

44

45

53 73

M M M M

M

M

M

34

35

241404

M M M05 15 25

M M M

M M M

54

55

64 74

65 75

F1MII F1MII J F MII
2

Figure 15.3: A schematic first quadrant representation of the bigraded module M and its
row filtration (F q

IIM). Each time q increases by one, the bottom row is excluded.

In general it is not possible to reconstruct H(M) from the modules H(M)p/H(M)p+1, but
still this constitutes some progress. The problem is that given a module M with a filtration
(F pM), the sequence of quotient modules F pM/F p+1M does not determine M uniquely, in
other words, the direct sum

⊕
p∈Z F

pM/F p+1M (denoted as gr(M); see Definition 15.5) does
not uniquely determine M .

For example, consider the abelian groups M1 = Z/4Z and M2 = Z/2Z ⊕ Z/2Z, which
are not isomorphic. Filter M1 by

Z/4Z ⊇ Z/2Z ⊇ (0)

and M2 by
Z/2Z⊕ Z/2Z ⊇ Z/2Z ⊇ (0).

Then F pM1/F
p+1M1

∼= F pM2/F
p+1M2 for p = 0, 1, since these groups are Z/2Z,Z/2Z,

even though M1 and M2 are not isomorphic. We have what is called the extension problem,
and such a problem lies at the heart of homological algebra (and was one of the main
motativations for the development of homological algebra).

In special cases, H(M) can be completely recovered from the modules H(M)p/H(M)p+1.

The purpose of a spectral sequence is to approximate the quotients H(M)p/H(M)p+1,
also denoted Ep

∞, by a sequence of approximations Ep
r which gets better and better as r

increases, starting with Ep
0 = F pM/F p+1M .

A filtration (H(M)p) of H(M) can be obtained from the cohomology modules H(F pM)
but an extra step is needed as we now explain.

As we said before, each submodule module F pM of M is a differential module with dF p ,
the restriction of d to F pM , as differential. Observe that Ker dF p = Ker d∩F pM = Z∩F pM
and Im dF p+1 = dF p+1M ⊆ dF pM .
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Definition 15.3. The cohomology of the submodule F pM is defined as

H(F pM) = Ker dF p/Im dF p .

The “obvious” homomorphism from H(F p+1M) to H(F pM) given by [z]Im dFp+1 7→
[z]Im dFp , with z ∈ Z ∩ F p+1M , is generally not injective, since if z ∈ Im dF p ∩ F p+1M ⊆
Z∩F p+1M , then [z]Im dFp = 0; see Figure 15.4. The module H(F pM) is also not a submodule
of H(M). However, we can map H(F pM) in H(M) (not necessarily in an injective fashion)
in such a way that we obtain a filtration of H(M).

F  M
p

F    M
p+1

Ker d F    p Im d F    p

Ker dF      p+1

Im dF     p+1

z

4Ker d
F      

p+1 Ker d
F    p

Im d F     
p+1 4 Im d F    p

Im d F    p 4 Ker d
F    p

Im d F     
p+1 4 Ker d

F      
p+1

Figure 15.4: A schematic representation illustrating the inclusion relationships between the
kernels and images of dF p and dF p+1 . Note there is no relationship between Im dF p and
Ker dF p+1 . Furthermore since z ∈ Im dF p ∩ F p+1M ⊆ Z ∩ F p+1M , then [z]Im dFp = 0.

Indeed, we have a linear map

ηp : Ker dF p/Im dF p → Ker d/Im d

given by

ηp([z]Im dFp ) = [z]B,

where [z]Im dFp is the equivalence class of z ∈ Z ∩F pM = Ker dF p modulo Im dF p and [z]B is
the equivalence class of z modulo B = Im d; see Figure 15.5. Observe that if z ∈ B ∩ F pM ,
then ηp([z]) = 0.

Definition 15.4. We define the R-module H(M)p as the image of H(F pM) in H(M) by
ηp, namely,

H(M)p = {[z]B | z ∈ Z ∩ F p(M)}.
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M M Md d H(M) = Ker d/Im d

F   MpF   Mp F   Mpd F pd F p

d Fd F p+1 p+1p+1F     M
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F     M
p+1F     M

F   MF   M F   M
d Fd F-2 -2 -2-2 -2

F   MF   M F   M
d Fd F -2-3 -3 -3

-3 H(F     ) = Ker d     /Im d-3
F F-3 -3

H(F    ) = Ker d     /Im dF F
p

p p

ηp

H(M)
p

H(M)

η -3

-3

Figure 15.5: An illustration of the ηp mapping of H(F pM) into H(M).

Since F p+1M ⊆ F pM , we have

Ker dF p+1 = Ker d ∩ F p+1M ⊆ Ker d ∩ F pM = Ker dF p ,

which implies that H(M)p+1 ⊆ H(M)p, so the modules H(M)p form a filtration of H(M).

Let Zp
∞ = Ker dF p = Z ∩ F pM and Bp

∞ = B ∩ F pM .

Proposition 15.1. We have an isomorphism

H(M)p ∼= Zp
∞/B

p
∞.

Proof. The map from Zp
∞ to H(M)p given by z 7→ [z]B is obviously surjective. Some z ∈

Zp
∞ = Z ∩F pM maps to 0 iff z ∈ B∩F pM . Therefore, the kernel of this map is B∩F pM =

Bp
∞ and by the first isomorphism theorem,

H(M)p ∼= Zp
∞/B

p
∞.

15.2 Graded Modules and Their Cohomology

Having a filtration (F pM) on an R-module M gives us the ability to form the successive
quotients F pM/F p+1M , and this process yields a graded module defined as follows.
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Definition 15.5. Let M be a filtered R-module with a filtration (F pM)p∈Z. The graded
module gr(M) induced by the filtration (F pM)p∈Z is defined as the direct sum

gr(M) =
⊕

p∈Z
F pM/F p+1M.

Typically, because the quotient F pM/F p+1M sets the elements in F p+1M to zero, the
graded module gr(M) is simpler than the original module M .

Example 15.3. Suppose that

M =
⊕

p∈Z
Mp

as in Example 15.1 with the filtration given by

F pM =
⊕

i≥p
M i.

Obviously F pM/F p+1M ∼= Mp, so in this case gr(M) ∼= M .

Example 15.4. Now consider the infinite dimensional vector space M =
∏

i∈N R, consisting
of sequence (xi)i∈N of reals xi ∈ R under componentwise addition and rescaling. If we define
the filtration (F pM) by F pM = M if p ≤ 0, and

F pM = {(xi)i∈N | x0 = x1 = · · · = xp−1 = 0, p ≥ 1},

then
F pM/F p+1M ∼= R,

and so
gr(M) =

⊕

p∈N
R,

which is simpler that M , since the elements of gr(M) are sequences (xi)i∈N with xi = 0 for
all but finitely many i.

It turns out that many of the graded modules that we will encounter later, including⊕
p∈Z F

pM , gr(M), and the modules Er =
⊕
∈ZE

p
r arising from spectral sequences, can be

viewed as cochain complexes, except that their differential does not have degree 1. Here is
the technical definition.

Definition 15.6. For any r ∈ N, a cochain complex C with differential d of degree r, for
short a complex C with differential d of degree r, is a direct sum C =

⊕
p∈ZC

p of R-modules
Cp together with a map d : C → C such that d ◦ d = 0 and the restriction dp of d to Cp is a
map dp : Cp → Cp+r. Then dp ◦ dp−r = 0, and we define the cohomology module Hp(C) as

Hp(C) = Ker dp/Im dp−r.

We write H(C) =
⊕

p∈ZH
p(C).
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Observe that Definition 2.8 is the special case of Definition 15.6 when r = 1. If r = 0,
then dp : Cp → Cp, in which case (Cp, dp) is a differential module, so Hp(C) = H(Cp), and
H(C) =

⊕
p∈ZH(Cp). This situation arises from a filtered differential module (M,d).

Given a filtered differential module (M,d), the differential d on M induces a linear map
dp0 from F pM/F p+1M to itself given by

dp0([x]F p+1M) = [dx]F p+1M ,

where [x]F p+1M is the equivalence class of x ∈ F pM modulo F p+1M and [dx]F p+1M is the
equivalence class of dx modulo F p+1M . This map is well-defined because dF pM ⊆ F pM and
dF p+1M ⊆ F p+1M . It is also obvious that dp0 ◦ d

p
0 = 0, so (F pM/F p+1M,dp0) is a differential

module with cohomology H(F pM/F p+1M).

The graded module gr(M) =
⊕

p∈Z F
pM/F p+1M is a complex with a differential d0 of

degree 0, with d0 =
⊕

p∈Z d
p
0, which means that

d0

(∑

p∈I
up
)

=
∑

p∈I
dp0(up), up ∈ F pM/F p+1M

(where I is a finite index set).

Since (gr(M), d0) is a complex with differential d0 of degree 0, according to Definition
15.6 its cohomology is defined as a follows.

Definition 15.7. The cohomology of the complex gr(M) =
⊕

p∈Z F
pM/F p+1M with differ-

ential d0 of degree 0 is defined as

H(gr(M)) =
⊕

p∈Z
H(F pM/F p+1M).

Typically, we are more interested in the cohomology H(M) of M , but this may be hard
to compute. Using the filtration H(M)p on H(M) we can attempt to compute the quotient
modules H(M)p/H(M)p+1, which is usually easier to do.

Definition 15.8. The graded module gr(H(M)) is defined by

gr(H(M)) =
⊕

p∈Z
H(M)p/H(M)p+1.

The modules H(M)p/H(M)p+1 are called the composition factors in the filtration of H(M).

The next step is to construct a sequence of families of modules (Ep
r )p∈Z with r ∈ N,

where each Ep
r is a quotient of submodules of F pM , and for each p ∈ Z, an R-linear map

dpr : Ep
r → Ep+r

r such that
dpr ◦ dp−rr = 0.
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The direct sum Er =
⊕

p∈ZE
p
r is a complex with differential dr =

⊕
p∈Z d

p
r, but the

restriction dpr of dr to Ep
r is a map dpr : Ep

r → Ep+r
r of degree r. Therefore, (Er, dr) is

a complex with differential dr of degree r (as in Definition 15.6) and its pth cohomology
module Hp(Er) is given by

Hp(Er) = Ker dpr/Im dp−rr .

One of the main points of the construction of a spectral sequence is that there is an
isomorphism

Hp(Er) ∼= Ep
r+1

for every r ≥ 0.

There is also a sequence of “ideal” modules (Ep
∞)p∈Z, and the Ep

r may be viewed as
approximations of the Ep

∞. The significance of the Ep
∞ is that we have isomorphisms

Ep
∞
∼= H(M)p/H(M)p+1.

This means that the modules Ep
∞ compute the graded pieces of the graded module gr(H(M)),

and so the Ep
r approximate the graded module gr(H(M)). This is not as good as computing

H(M), but in many applications where the family of (Ep
r ) degenerates , some Ep

r computes
H(M)p.

Actually, in most applications M is also a graded differential module, for example, a
cochain complex, but this leads us to consider triply indexed modules Ep,q

r , and we postpone
discussing this more general case.

We now give the construction of the Ep
r and Ep

∞.

15.3 Construction of the Spectral Sequence

Definition 15.9. For all r, p ∈ Z, define Zp
r , B

p
r , Z

p
∞ and Bp

∞ as follows:

Zp
r = {x ∈ F pM | dx ∈ F p+rM},

Bp
r = {x ∈ F pM | (∃y ∈ F p−rM)(x = dy)} = (dF p−rM) ∩ F pM,

Zp
∞ = {x ∈ F pM | dx = 0} = Z(M) ∩ F pM

Bp
∞ = {x ∈ F pM | (∃y ∈M)(x = dy)} = B(M) ∩ F pM.

Several identities needed to justify properties of the construction can easily be derived.
We classify these identities into four categories.

(1) Negative r identities. Since F pM ⊆ F p+rM for r ≤ 0, we have Zp
r = F pM and

Bp
r ⊆ F p−rM for all r ≤ 0.

(2) Level p inclusions.

dF pM = Bp
0 ⊆ Bp

1 ⊆ · · · ⊆ Bp
s ⊆ Bp

s+1 ⊆ · · · ⊆ Bp
∞ ⊆ Zp

∞ ⊆ · · · ⊆ Zp
r+1 ⊆ Zp

r

⊆ · · · ⊆ Zp
1 ⊆ Zp

0 = F pM

for all p ∈ Z. See Figure 15.6.
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(3) (r, p)-Boundary identity.
Bp
r = dZp−r

r . (∗B)

(4) Z-Jump identities. Since F p+1M ⊆ F pM , we have Zp+1
r−1 ⊆ Zp

r and Zp+1
∞ ⊆ Zp

∞.

F   M  = Z
p p

0

Z
p
r

Z
p
r+1

ZN
p

NB
p

B
p
s+1

Bp
s

B  = dF
pp

0

Figure 15.6: A schematic illustration of the Level p inclusions.

Definition 15.10. For all r ≥ 0 and all p ∈ Z, define Ep
r and Ep

∞, as follows:

Ep
r = Zp

r /(B
p
r−1 + Zp+1

r−1 ) (†r)

and
Ep
∞ = Zp

∞/(B
p
∞ + Zp+1

∞ ). (†∞)

Since Zp
−1 = F pM , Zp+1

−1 = F p+1M , and Bp
−1 ⊆ F p+1M , we see that Bp

−1+Zp+1
−1 = F p+1M ,

so
Ep

0 = F pM/F p+1M. (E0)

This shows that the modules Ep
0 are the graded pieces of the graded module gr(M). We will

see shortly that
Ep

1
∼= Hp(gr(M)) = H(F pM/F p+1M) = Hp(E0).

Now the differential d of M maps Zp
r into Zp+r

r , and (Bp
r−1 + Zp+1

r−1 ) into Bp+r
r−1 (since

dBp
r−1 = (0) and dZp+1

r−1 ⊆ Bp+r
r−1), and since

Ep
r = Zp

r /(B
p
r−1 + Zp+1

r−1 )

Ep+r
r = Zp+r

r /(Bp+r
r−1 + Zp+r+1

r−1 ),

the differential d induces a map
dpr : Ep

r → Ep+r
r .
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Definition 15.11. The map dpr : Ep
r → Ep+r

r is defined by

dpr([x]Bpr−1+Zp+1
r−1

) = [dx]Bp+rr−1+Zp+r+1
r−1

for all x ∈ Zp
r .

The above map is well-defined because for any x, y ∈ Zp
r , if x − y = z for some z ∈

Bp
r−1 + Zp+1

r−1 , then dx− dy = dz ∈ d(Bp
r−1 + Zp+1

r−1 ) ⊆ Bp+r
r−1 ⊆ Bp+r

r−1 + Zp+r+1
r−1 .

Let us compute Ker dpr and Im dp−rr .

Proposition 15.2. We have

Ker dpr = (Zp
r+1 + Zp+1

r−1 )/(Bp
r−1 + Zp+1

r−1 )

Im dp−rr = (Bp
r + Zp+1

r−1 )/(Bp
r−1 + Zp+1

r−1 ).

Proof. Since dpr : Ep
r → Ep+r

r and

Ep
r = Zp

r /(B
p
r−1 + Zp+1

r−1 ), Ep+r
r = Zp+r

r /(Bp+r
r−1 + Zp+r+1

r−1 ),

for any x ∈ Zp
r , dpr([x]) = 0 iff dx ∈ Bp+r

r−1 + Zp+r+1
r−1 = dZp+1

r−1 + Zp+r+1
r−1 , which means that

dx = dy + z, for some y ∈ Zp+1
r−1 and some z ∈ Zp+r+1

r−1 . Since Zp+1
r−1 ⊆ Zp

r ⊆ F pM , we can
write x = y + u with u = x− y, where u ∈ F pM , and since dx = dy + z and dx = dy + du,
we find that du = z. Since du = z ∈ Zp+r+1

r−1 , we have du ∈ F p+r+1M , and since u ∈ F pM ,
this means that u ∈ Zp

r+1 as shown in Figure 15.7. Consequently, x = u + y, with u ∈ Zp
r+1

and y ∈ Zp+1
r−1 , which shows that

Ker dpr = (Zp
r+1 + Zp+1

r−1 )/(Bp
r−1 + Zp+1

r−1 ).

The image of dp−rr consists of all classes modulo (Bp
r−1 +Zp+1

r−1 ) of elements in Bp
r = dZp−r

r .

These are classes of the form [x+ y + z](Bpr−1+Zp+1
r−1 ), where x ∈ Bp

r , y ∈ B
p
r−1, and z ∈ Zp+1

r−1 ,

but since Bp
r−1 ⊆ Bp

r , these are the classes of the form [x + z](Bpr−1+Zp+1
r−1 ), where x ∈ Bp

r and

z ∈ Zp+1
r−1 , which shows that

Im dp−rr = (Bp
r + Zp+1

r−1 )/(Bp
r−1 + Zp+1

r−1 ).

Proposition 15.2 implies that
dpr ◦ dp−rr = 0,

which allows us to make the following definition.

Definition 15.12. The graded modules Er for r ∈ N and E∞ are defined as

Er =
⊕

p∈Z
Ep
r , E∞ =

⊕

p∈Z
Ep
∞.

The graded module Er is a complex with differential dr of degree r defined such that the
restriction of dr to Ep

r is equal to dpr : Ep
r → Ep+r

r .



572 CHAPTER 15. SPECTRAL SEQUENCES

F  Mp

F     Mp+1

Z
p
r

Z
p+1
r-1

B
p
r-1

x

y

u

x = y + u

u 2Zp
r+1

Figure 15.7: A schematic illustration associated with Ker dpr = (Zp
r+1 +Zp+1

r−1 )/(Bp
r−1 +Zp+1

r−1 ).

Having Definition 15.12, in view of Definition 15.6, Proposition 15.2 shows that

Hp(Er) = Ker dpr/Im dp−rr
∼= (Zp

r+1 + Zp+1
r−1 )/(Bp

r + Zp+1
r−1 ).

In order to simplify the above quotient module we need the following proposition.

Proposition 15.3. (Modular Noether isomorphism) For any R-modules A,B,Z with B a
submodule of A, there is an isomorphism

(A+ Z)/(B + Z) ∼= A/(A ∩ (B + Z)).

Proof. To prove the above isomorphism, consider the R-linear map ϕ : A→ (A+Z)/(B+Z)
defined by

ϕ(a) = [a]B+Z , a ∈ A,

the equivalence class of a ∈ A + Z modulo B + Z. This map is surjective because for
every equivalence class [a + z]B+Z , with a ∈ A and z ∈ Z, since a + z and a are equivalent
modulo B + Z since a + z − a = z ∈ B + Z, we have [a + z]B+Z = [a]B+Z = ϕ(a). Since
ϕ(a) = [a]B+Z = 0 iff a ∈ B + Z, we have Kerϕ = A ∩ (B + Z). By the first isomorphism
theorem,

(A+ Z)/(B + Z) ∼= A/(A ∩ (B + Z)),

as claimed.
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As a consequence,

(Zp
r+1 + Zp+1

r−1 )/(Bp
r + Zp+1

r−1 ) ∼= Zp
r+1/(Z

p
r+1 ∩ (Bp

r + Zp+1
r−1 ))

∼= Zp
r+1/(B

p
r + Zp+1

r )

= Ep
r+1,

since Bp
r ⊆ Zp

r+1 and Zp
r+1 ∩ Z

p+1
r−1 = Zp+1

r . Therefore, we proved that

Hp(Er) ∼= Ep
r+1, r ≥ 0. (Er)

In particular,
Hp(E0) = H(F pM/F p+1M) ∼= Ep

1 , (E1)

as claimed earlier. This shows that the modules Ep
1 are the pieces of the graded module

H(gr(M)).

Recall that we showed in Proposition 15.1 that

H(M)p ∼= (Z(M) ∩ F pM)/(B(M) ∩ F pM) = Zp
∞/B

p
∞.

Proposition 15.4. We have an isomorphism

Ep
∞ = Zp

∞/(B
p
∞ + Zp+1

∞ ) ∼= H(M)p/H(M)p+1. (E∞)

Proof. Recall that

H(M)p = {[z]B | z ∈ Z ∩ F pM} = {[z]B | z ∈ Zp
∞}.

The map from Zp
∞ to H(M)p given by z 7→ [z]B is obviously surjective, and by composing it

with the quotient map from H(M)p to H(M)p/H(M)p+1 we obtain a surjection πp∞ : Zp
∞ →

H(M)p/H(M)p+1. We have πp∞(z) = 0 iff [z]B ∈ H(M)p+1 iff z = z1 + b for some z1 ∈
Z ∩ F p+1M = Zp+1

∞ and some b ∈ B. Since Zp+1
∞ ⊆ Zp

∞, we have b = z − z1 ∈ Zp
∞ ⊆ F pM ,

so b ∈ B ∩F pM = Bp
∞. Consequently, [z]B ∈ H(M)p+1 iff z ∈ Bp

∞+Zp+1
∞ , which shows that

Ker πp∞ = Bp
∞ + Zp+1

∞ . By the first isomorphism theorem,

Ep
∞ = Zp

∞/(B
p
∞ + Zp+1

∞ ) ∼= H(M)p/H(M)p+1.

Thus, the “limit modules” Ep
∞ are isomorphic to the graded pieces H(M)p/H(M)p+1 of

the graded module gr(H(M)) and the modules Ep
r are approximations of the modules Ep

∞.

Definition 15.13. The family of graded modules (Er)r∈N∪{∞} is called the spectral sequence
associated with the filtered differential module (M,d) with filtration (F pM).

In some sense, a spectral sequence is a method for passing from the graded module
H(gr(M)) (computed by E1) to the graded module gr(H(M)) (computed by E∞). We
summarize the above discussion as the following theorem.



574 CHAPTER 15. SPECTRAL SEQUENCES

Theorem 15.5. Let (M,d) be a filtered R-module with filtration (F pM)p∈Z. There is a
sequence of graded modules

Er =
⊕

p∈Z
Ep
r , r ≥ 1, E∞ =

⊕

p∈Z
Ep
∞

called a spectral sequence, where the graded module Er is a complex with differential dr of
degree r, such that the following properties hold for all r ≥ 1 and all p ∈ Z:

(1) Recall that Hp(Er) is defined as

Hp(Er) = Ker dpr/Im dp−rr .

Then there is an isomorphism
Hp(Er) ∼= Ep

r+1.

(2) There is an isomorphism

Ep
∞
∼= H(M)p/H(M)p+1 = (gr(H(M))p.

(3) The term Ep
0 is given by

Ep
0 = F pM/F p+1M = (gr(M))p.

At this stage we could investigate conditions on the filtration that yield isomorphisms
involving Ep

∞, but the theory of spectral sequences is most useful when applied to filtered
cochain complexes. Let us mention the following case in which only finitely many Ep

∞ are
nonzero and the other Ep

∞ are obtained from the Ep
r after finitely many steps.

Suppose that the filtration F pM is finite, which means that there are indices s ≤ t
such that F pM = M for all p ≤ s and F pM = (0) for all p > t. Then the condition
F pM = M for all p ≤ s implies that H(M)p = H(F pM) = H(M) for all p ≤ s, so
Ep
∞ = H(M)p/H(M)p+1 = (0) for all p < s. Similarly, the condition F pM = (0) for all p > t

implies that H(M)p = H(F pM) = (0) for all p > t, so Ep
∞ = H(M)p/H(M)p+1 = (0) for all

p > s. Therefore, the only interesting Ep
∞ arise when s ≤ p ≤ t. Since

Zp
r = {x ∈ F pM | dx ∈ F p+rM},

Zp
∞ = {x ∈ F pM | dx = 0} = Z(M) ∩ F pM,

and F pM = (0) for all p > t, we see that if p+ r > t, that is, r > t− p, then F p+rM = (0),
in which case dx = 0, and so Zp

r = Zp
∞ and Zp+1

r−1 = Zp
∞. Since

Bp
r = {x ∈ F pM | (∃y ∈ F p−rM)(x = dy)} = (dF p−rM) ∩ F pM,

Bp
∞ = {x ∈ F pM | (∃y ∈M)(x = dy)} = B(M) ∩ F pM,
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and F pM = M for all p ≤ s, if p − r ≤ s, that is, r ≥ p − s, then F p−rM = M , and so
Bp
r = Bp

∞. Since

Ep
r = Zp

r /(B
p
r−1 + Zp+1

r−1 )

Ep
∞ = Zp

∞/(B
p
∞ + Zp+1

∞ ),

if r > max(p− s, t− p), then
Ep
r = Ep

∞.

Since s ≤ p ≤ t, the condition r > max(p− s, t− p) is equivalent to r > t− s. In summary,
if r > t− s, then

Ep
∞ =

{
Ep
r if s ≤ p ≤ t

(0) if p < s or p > t.

This situation will be generalized in Section 15.8 dealing with degenerate spectral sequences.

Many presentations start right away with filtered and graded differential modules. The
reader is hit with objects involving three indices (Ep,q

r , Zp,q
r , Bp,q

r ) and in our opinion, it is
very difficult to understand what is going on unless one already knows the subject. This
is why (following Serre, Godement, and even Cartan and Eilenberg) we started with the
simpler case of a single filtered module. Having done the warm up we proceed with the more
general case of a filtered complex.

15.4 Case 2: Filtered Differential Complexes

Recall from Definition 2.8 that the cochain complex (C, d) is a direct sum

C =
⊕

p∈Z
Cp

of R-modules Cp together with an R-linear map d : C → C (called coboundary map) such
that dCp ⊆ Cp+1 and d ◦ d = 0. The restriction of d to Cp is denoted by dp : Cp → Cp+1.

Some authors denote a cochain complex by C• or C∗. To keep the notation as simple as
possible we will omit the superscript • or ∗. Doing so does not appear to cause confusion.

Definition 15.14. A filtered cochain complex (C, d) is a cochain complex together with a
family of submodules (F pC)p∈Z of C such that

· · · ⊇ F−pC ⊇ F−p+1C ⊇ · · · ⊇ F−1C ⊇ F 0C ⊇ F 1C ⊇ · · · ⊇ F pC ⊇ F p+1C ⊇ · · ·

for all p ∈ N− {0}. We also assume that
⋃
p∈Z F

pC = C and
⋂
p∈Z F

pC = (0). Moreover, if
d is the coboundary map of the complex C (also called differentiation), we assume that

(1) The filtration (F pC) and d are compatible, which means that d(F pC) ⊆ F pC for all
p ∈ Z.
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(2) The filtration (F pC) is compatible with the grading on C , i.e.,

F pC =
⊕

q∈Z
Cp+q ∩ F pC =

⊕

q∈Z
Cp,q,

where Cp,q = Cp+q ∩ F pC .

An equivalent way to say that a filtration (F pC) is compatible with the grading on C is
to say that for every p ∈ Z, there is a family of submodules Cp,q of Cp+q (q ∈ Z) such that

F pC =
⊕

q∈Z
Cp,q.

Since F p+1C ⊆ F pC and
F p+1C =

⊕

s∈Z
Cp+1,s,

comparing the submodules of Cp+q, which are Cp,q and Cp+1,q−1, we have

Cp+1,q−1 ⊆ Cp,q ⊆ Cp+q.

If we write n = p + q, we have Cp+1,n−p−1 ⊆ Cp,n−p ⊆ Cn, so each Cn has the filtration
(Cs,n−s)s∈Z. Since

F pC =
⊕

q∈Z
Cp+q ∩ F pC =

⊕

q∈Z
Cp,q =

⊕

n∈Z
Cp,n−p,

we see that the pth module F pC in a (compatible) filtration of C arises by picking the pth
piece Cp,n−p in the filtration of Cn and by forming the direct sum of these pieces. See Figures
15.8 and 15.9.

The reason for using the superscript p+ q instead of q is technical. It has the effect that
if we plot the Cp,q as points in a grid with the index p along the x-axis and the index q along
the y-axis, then the filtration of Cn appears as the descending diagonal of equation p+q = n
as illustrated by Figure 15.10.

Remarks:

(1) The elements in Cp,q = Cp+q ∩ F pC have degree n = p+ q.

(2) The Cp,q are submodules of Cp+q.

(3) The Cp,n−p filter Cn, and p is the index of filtration.

Example 15.5. As a naive example of a filtration compatible with the grading, we have
F pC =

⊕
n≥pC

n; see also Example 15.1.
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Figure 15.8: A section of the filtered cochain complex (C, d). Each horizontal row
demonstrates the graded module F pC =

⊕
q∈ZC

p,q, while each column demonstrates the
(Cs,n−s)s∈Z filtration of Cn.

Remark: The case of a single filtered differential module (M,d) with filtration (F pM)
considered in Section 15.1 can be viewed as a special case of a filtered cochain complex by
considering the cochain complex

C =
⊕

p∈Z
Cp, Cp = M,

with coboundary map d defined such that the restriction of d to Cp = M is equal to d. The
filtration (F pC) is given by

F pC =
⊕

q∈Z
Cp,q, Cp,q = F pM.

This filtration is obviously compatible with the grading. We have Hp(C) = H(M) for all p.

The reader might wonder when a filtration is not compatible with a grading. Here is an
example exhibiting this behavior.
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C0

C-3,3

C-2,2

C-1,1

C0,0

C1,-1

C2,-2

Figure 15.9: Another view of the (Cs,n−s)s∈Z filtration of Cn, where n = 0.

Example 15.6. Consider the module (actually, vector space) C consisting of all real poly-
nomials of the form P (x) + Q(y), where P (x) ∈ R[x] and Q(y) ∈ R[y], with the grading
given by

Cp =





{ax−p | a ∈ R} if p < 0

R if p = 0

{ayp | a ∈ R} if p > 0.

Since every polynomial P (x)+Q(y) can be expressed uniquely as the sum of monomials axp,
a, and ayq, with p, q ≥ 1 and a ∈ R, we have

C =
⊕

p∈Z
Cp.

The map d is irrelevant so we may assume that it is the zero map. Consider the filtration
given by

F pC = F 0C = C, p < 0

and

F pC =

{ n∑

i=p

ai(x
i + yi) | ai ∈ R, n ≥ p

}
, p ≥ 1.

Since Cp+q ∩F pC = (0) for all p, q, the vector space F pC is not the direct sum of the spaces
Cp+q ∩F pC . The problem is that the spaces F pC are not “homogeneous,” in the sense that
the elements of F pC do not arise from sums coming from the spaces Cp,q = Cp+q ∩ F pC .

As in Section 15.1, each F pC is itself a graded complex as is F pC/F p+1C . To see that
F pC is a graded complex, since

F pC =
⊕

n∈Z
Cp,n−p,
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Figure 15.10: By rotating Figure 15.8 45◦ counterclockwise, the vertical filtration of Cn

becomes the integer coordinates on the diagonal line p + q = n. Also note that the graded
modules F pC =

⊕
q∈ZC

p,q are now represented as vertical columns.

with Cp,n−p = Cn ∩ F pC , since the coboundary map d of C maps Cn to Cn+1, we see that
the restriction dCp,n−p of d to Cp,n−p = Cn ∩ F pC is a map dCp,n−p : Cp,n−p → Cp,n+1−p

such that dCp,n−p ◦ dCp,n−p−1 = 0. Thus F pC =
⊕

n∈ZC
p,n−p with the coboundary map

dF p =
⊕

n∈Z dCp,n−p is indeed a chain complex as illustrated in Figure 15.11. More precisely,
if x =

∑
n∈I xn, with xn ∈ Cp,n−p (I is a finite index set), then

dF p(x) =
∑

n∈I
dCp,n−p(xn).

It is immediately verified that dF p ◦ dF p = 0. Observe that when applying dF p , every
component xn ∈ Cp,n−p is shifted to the right by one slot since dCp,n−p(xn) lands in Cp,n+1−p

as evidenced by Figure 15.12.

The following technical result will be needed to prove that the graded module associated
with a filtered module which is also a direct sum can also be expressed as a direct sum of
pieces.
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Figure 15.11: A three-dimensional grid which illustrates the coboundary maps dF 0 and dF 1

of the chain complexes F 0C and F 1C . If we associate the plane z = 0 for the chain complex
(C, d) (which we denote in red), the coboundary map dF 0 =

⊕
n∈Z dC0,n fills the plane z = 1

while the coboundary map dF 1 =
⊕

n∈Z dC1,n−1 fills the plane z = 2. Observe that the front
face of this three-dimensional grid is compatible with Figure 15.8.

Proposition 15.6. Let M =
⊕

i∈IMi and N =
⊕

i∈I Ni be direct sums of R-modules, with
each Ni a submodule of Mi. There is an isomorphism

M/N =

(⊕

i∈I
Mi

)/(⊕

i∈I
Ni

)
∼=
⊕

i∈I
Mi/Ni.

Proof. Define the R-linear map ϕ from M =
⊕

i∈IMi to
⊕

i∈IMi/Ni by

ϕ(
∑

j∈J
xj) =

∑

j∈J
[xj]Ni xj ∈Mj, J finite.

The map ϕ is obviously surjective. We have ϕ
(∑

j∈J xj
)

= 0 iff xj ∈ Nj for all j ∈ J iff∑
j∈J xj ∈

⊕
i∈I Ni, so Kerϕ =

⊕
i∈I Ni. By the first isomorphism theorem, we have the

isomorphism (⊕

i∈I
Mi

)/(⊕

i∈I
Ni

)
∼=
⊕

i∈I
Mi/Ni,
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C 0,0 C 0,1 C0,2d 0,0C d 0,1C 0,2Cdd 0,-1C

C 0,0 C0,1 C0,2d 0,0C d 0,1C 0,2Cdd 0,-1C

x 0
2 d

F 0

d    (      )F0 x0
2

Figure 15.12: An illustration showing the left shift phenomenon of dF p for p = 0 which is
compatible with the first two rows in the z = 1 plane of Figure 15.11.

as claimed.

15.5 Some Graded Modules of a Filtered and Graded

Complex

In preparation for the construction of a spectral sequence for a filtered cochain complex we
need to generalize the definitions of the graded modules gr(M), H(gr(M)) and gr(H(M))
given in Definitions 15.5, 15.7 and 15.8. We will define the graded modules gr(C)p =
F pC/F p+1C, gr(C) =

⊕
p∈Z gr(C)p, H (gr(C)p), H (gr(C)) =

⊕
p∈ZH (gr(C)p), gr(H(C))p,

and gr(H(C)) =
⊕

p∈Z gr(H(C))p. Both gr(C)p and gr(C) are complexes with a differential
of degree 0.

First, mimicking Definition 15.5 we have the graded module

gr(C) =
⊕

p∈Z
gr(C)p

induced by F on C with gr(C)p defined as

gr(C)p = F pC/F p+1C.

Using Proposition 15.6, we have

gr(C)p = F pC/F p+1C

=
(⊕

q∈Z
Cp+q ∩ F pC

)/(⊕

q∈Z
Cp+q ∩ F p+1C

)

∼=
⊕

q∈Z
(Cp+q ∩ F pC)/(Cp+q ∩ F p+1C)

=
⊕

q∈Z
Cp,q/Cp+1,q−1.
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If we let
gr(C)p,q = Cp,q/Cp+1,q−1,

then
gr(C)p ∼=

⊕

q∈Z
Cp,q/Cp+1,q−1 =

⊕

n∈Z
gr(C)p,n−p,

and gr(C) is a bigraded module, with

gr(C) =
⊕

p∈Z
gr(C)p ∼=

⊕

p,q∈Z
Cp,q/Cp+1,q−1 =

⊕

p,n∈Z
gr(C)p,n−p.

Definition 15.15. If we let

gr(C)p,q = Cp,q/Cp+1,q−1 and gr(C)p = F pC/F p+1C,

then gr(C)p is a graded module with

gr(C)p ∼=
⊕

n∈Z
gr(C)p,n−p,

and gr(C) is a bigraded module with

gr(C) =
⊕

p∈Z
gr(C)p ∼=

⊕

p,n∈Z
gr(C)p,n−p;

see Figure 15.13.

gr(C)  = -3 F   C-3 F   C-2 CC -2,2-3,3 CC -2,3-3,4 C -3,5= 4 4 4( ) ( 4 4 C -2,4
4 )

ygr(C)  -3 C -3,3 C -2,2 4 C
-3,4 C -2,3 4 C -3,5 C

-2,4
4

gr(C)  -3 4 gr(C)
-3,3 gr(C)4

-3,4
4 gr(C)-3,5 4y

Figure 15.13: The graded module gr(C)−3 = F−3C/F−2C obtained by taking the quotient
of the last two rows of Figure 15.8.

The map dCp,n−p : Cp,n−p → Cp,n+1−p induces a quotient map dp,n−p0 : Cp,n−p/Cp+1,n−1−p →
Cp,n+1−p/Cp+1,n−p given by

dp,n−p0 ([x]Cp+1,n−1−p) = [dCp,n−p(x)]Cp+1,n−p ,

for any x ∈ Cp,n−p. Then by the isomorphism

F pC/F p+1C = gr(C)p ∼=
⊕

n∈Z
Cp,n−p/Cp+1,n−1−p,
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-3,3

d0
-3,4

Figure 15.14: A continuation of Figure 15.13 which illustrates the differential complex
(gr(C)−3, d−3

0 =
⊕

n∈Z d
−3,n+3
0 ).

the map dp0 =
⊕

n∈Z d
p,n−p
0 is a differential of degree 0 on the complex gr(C)p = F pC/F p+1C;

see Figure 15.14.

Since each module Cn has the filtration (Cp,n−p)p∈Z, we have, as demonstrated by Figure
15.15, the associated graded module gr(Cn), with

gr(Cn)p = Cp,n−p/Cp+1,n−p−1 = gr(C)p,n−p,

so

gr(Cn) =
⊕

p∈Z
gr(C)p,n−p.
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gr(C  )0 = 4gr(C)-3,3
4 gr(C)-2,2

4 gr(C)-1,1
4 gr(C)0,0

4 gr(C)1,-1
4

4

Figure 15.15: An illustration of gr(C0), the graded module associated with the first column
of Figure 15.8.
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We will not need this graded module but later will consider its analog gr(Hn(C)), so
it does not hurt to consider it now. Note that the sum is performed along the diagonal
p+ q = n (with n fixed). Since

gr(C) =
⊕

p,q∈Z
gr(C)p,q =

⊕

p,n∈Z
gr(C)p,n−q =

⊕

n∈Z

⊕

p∈Z
gr(C)p,n−q,

we also have
gr(C) =

⊕

n∈Z
gr(Cn).

Since each gr(C)p = F pC/F p+1C is a complex with differential dp0 of degree 0, the graded
module gr(C) =

⊕
p∈Z gr(C)p is a complex with differential d0 =

⊕
p∈Z d

p
0 of degree 0. The

cohomology H (gr(C)) of the cochain complex gr(C) is given by

H (gr(C)) =
⊕

p∈Z
H (gr(C)p).

Then we have
H(gr(C)p) =

⊕

n∈Z
Hn(gr(C)p) =

⊕

n∈Z
Hn(F pC/F p+1C),

and

H (gr(C)) =
⊕

p∈Z
H (gr(C)p) =

⊕

p∈Z

⊕

n∈Z
Hn(gr(C)p) =

⊕

p∈Z

⊕

n∈Z
Hn(F pC/F p+1C),

where
Hn(F pC/F p+1C) = Ker dp,n−p0 /Im dp,n−p−1

0 .

We can make the change of variable n = p+ q, in which case the above is written as

H (gr(C)) =
⊕

p∈Z

⊕

q∈Z
Hp+q(gr(C)p) =

⊕

p∈Z

⊕

q∈Z
Hp+q(F pC/F p+1C),

but technically it is preferable to sum over the total index n = p + q, since n is the index
uses in the definition of the complex

F pC/F p+1C ∼=
⊕

n∈Z
Cp,n−p/Cp+1,n−1−p =

⊕

n∈Z
gr(C)p,n−p.

If we write
H(gr(C))p,q = Hp+q(F pC/F p+1C),

then H(gr(C)p) is graded with

H(gr(C)p) =
⊕

n∈Z
H(gr(C))p,n−p =

⊕

n∈Z
Hn(F pC/F p+1C),

and H (gr(C)) is bigraded with

H (gr(C)) =
⊕

p,n∈Z
H(gr(C))p,n−p.
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Definition 15.16. If we write

H(gr(C))p,q = Hp+q(F pC/F p+1C),

then H (gr(C)) is bigraded and we we have

H (gr(C)) =
⊕

p,n∈Z
H(gr(C))p,n−p =

⊕

p,n∈Z
Hn(F pC/F p+1C).

Now the cochain complex C =
⊕

n∈ZC
n has cohomology

H (C) =
⊕

n∈Z
Hn(C).

The cochain complex

F pC =
⊕

n∈Z
Cp,n−p

also possesses cohomology

H (F pC) =
⊕

n∈Z
Hn(F pC).

The inclusion map between F pC and C is a chain map, so we have a map in cohomology
H (F pC) −→ H (C) whose image is denoted H (C)p. In this map, the image of Hn(F pC) in
Hn(C) is denoted H(C)p,n−p. Since

H(C) =
⊕

n∈Z
Hn(C)

and
H(C)p =

⊕

n∈Z
H(C)p,n−p

(where the sum is performed along the q-axis with p fixed), observe that

H(C)p,n−p = Hn(C) ∩H(C)p.

The modules H(C)p filter H (C) and the modules H(C)p,n−p filter Hn(C). This is analogous
to the fact that the F pC filter C and that the Cp,n−p = Cn ∩F pC filter Cn; see Figures 15.8
and 15.16.

The condition C =
⋃
p∈Z F

p(C) implies that Hn(C) =
⋃
p∈ZH(C)p,n−p because ev-

ery element in Hn(C) is represented by a cocycle in some Cp,n−p. However, in general⋂
p∈Z F

pC = (0) does not imply that
⋂
p∈ZH(C)p,n−p = (0). We will see in Section 15.7 that

a sufficient condition for this property to hold is that the filtration is regular.

We now mimic the definitions of gr(C)p and gr(C). We define the graded modules
gr(H(C))p and gr(H(C)) as

gr(H(C))p = H(C)p/H(C)p+1
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Figure 15.16: A section of the filtered cochain complex H(C), where H(C)p,n−p is the image
Hn(F pC) in Hn(C). Each horizontal row demonstrates the homology of the graded module
F pC =

⊕
q∈ZC

p,q, while each column demonstrates the (H(C)s,n−s)s∈Z filtration of Hn(C).

and
gr(H(C)) =

⊕

p∈Z
gr(H(C))p.

Since
H(C)p =

⊕

n∈Z
H(C)p,n−p and H(C)p+1 =

⊕

n∈Z
H(C)p+1,n−p−1,

by Proposition 15.6, we have

gr(H(C))p = H(C)p/H(C)p+1

=

(⊕

n∈Z
H(C)p,n−p

)/(⊕

n∈Z
H(C)p+1,n−p−1

)

∼=
⊕

n∈Z
H(C)p,n−p/H(C)p+1,n−p−1.

If we let
gr(H(C))p,n−p = H(C)p,n−p/H(C)p+1,n−p−1,
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or equivalently
gr(H(C))p,q = H(C)p,q/H(C)p+1,q−1,

then
gr(H(C))p = H(C)p/H(C)p+1 ∼=

⊕

n∈Z
gr(H(C))p,n−p =

⊕

q∈Z
gr(H(C))p,q;

see Figure 15.17.

-3 -3 -2 -2,2-3,3 -2,3-3,4 -3,5
= 4 4 4( ) ( 4 4

-2,4
4 )

y
-3 -3,3 -2,2

4
-3,4 -2,3

4 -3,5 -2,4 4

gr(H(C)) = H(C) H(C)

gr(H(C))

H(C)

H(C)

H(C)

H(C)

H(C)

H(C) H(C)

H(C)H(C) H(C)

H(C) H(C)

gr(H(C))-3 gr(H(C))-3,34 gr(H(C))4
-3,4

4 gr(H(C))-3,5 4y

Figure 15.17: The graded module gr(H(C))−3 = H(C)−3/H(C)−2 obtained by taking the
quotient of the last two rows of Figure 15.16.

The bigraded module gr(H(C)) is given by

gr(H(C)) =
⊕

p∈Z
gr(H(C))p ∼=

⊕

p∈Z

⊕

n∈Z
gr(H(C))p,n−p =

⊕

p∈Z

⊕

q∈Z
gr(H(C))p,q.

Definition 15.17. If we let

gr(H(C))p,n−p = H(C)p,n−p/H(C)p+1,n−p−1,

or equivalently
gr(H(C))p,q = H(C)p,q/H(C)p+1,q−1,

then the bigraded module gr(H(C)) is given by

gr(H(C)) ∼=
⊕

p∈Z

⊕

n∈Z
gr(H(C))p,n−p =

⊕

p∈Z

⊕

q∈Z
gr(H(C))p,q.

Now Hn(C) is filtered by the H(C)p,n−p with p ∈ Z, thus the graded module gr(Hn(C))
associated with Hn(C) is given by

gr(Hn(C)) =
⊕

p∈Z
H(C)p,n−p/H(C)p+1,n−p−1 =

⊕

p∈Z
gr(H(C))p,n−p,

so
gr(Hn(C))p = gr(H(C))p,n−p;

see Figure 15.18.
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4

4

Figure 15.18: An illustration of gr(H0(C))), the graded module associated with the first
column of Figure 15.16.

This is analogous to the fact that Cn is filtered by (Cp,n−p)p∈Z and gr(Hn(C)) is analogous
to gr(Cn). Observe that the sum is performed along the diagonal p + q = n with n fixed.
The graded module gr(Hn(C)) consisting of a direct sum of modules appearing along the
diagonal p+ q = n plays an important role in spectral sequences. It turns our that

gr(Hn(C))p = gr(H(C))p,n−p ∼= Ep,n−q
∞ .

Note that gr(H(C)) is also expressed as

gr(H(C)) ∼=
⊕

n∈Z
gr(Hn(C)).

The rest of this chapter is replete with indices—a veritable orgy of indices. The definitions
to remember are five: Cp,q, gr(C)p,q, H(gr(C))p,q, H(C)p,q, and gr(H(C))p,q, namely:

Cp,q = Cp+q ∩ F pC

gr(C)p,q = Cp,q/Cp+1,q−1

H(gr(C))p,q = Hp+q(F pC/F p+1C)

H(C)p,q = Hp+q(C) ∩H (C)p

gr(H(C))p,q = gr(Hp+q(C))p = H(C)p,q/H(C)p+1,q−1.
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15.6 Construction of a Spectral Sequence;

Serre–Godement

Ideally we would like to compute the cohomology H (C) of C . However, experience shows
that this is usually not feasible, but instead we can begin by computing H (gr(C)) because
gr(C) is simpler than C . Then a spectral sequence is just the passage from H (gr(C)) to
gr(H (C)); this is not quite H (C) but is usually good enough.

Definition 15.18. A spectral sequence is a sequence

(〈Er, E∞, dr, αr〉)r∈N,

where

(1) Each Er is a bigraded R-module with

Er =
⊕

p∈Z
Ep
r and Ep

r =
⊕

q∈Z
Ep,q
r ,

for r ∈ N ∪ {∞} (the subscript r is called the level).

(2) For all r ∈ N, the graded module Er =
⊕

p∈ZE
p
r is a complex with differential dr of

degree r, where the restriction dp,qr of dr to Ep,q
r is a map dp,qr : Ep,q

r → Ep+r,q−r+1
r such

that dp,qr ◦ dp−r,q+r−1
r = 0, for all p, q ∈ Z. The restriction dpr of dr to Ep

r is the map
dpr =

⊕
q∈Z d

p,q
r , with dpr : Ep

r → Ep+r
r .

(3) There is an isomorphism
αr : H(Er)→ Er+1

for all r ∈ N, and more precisely,

Hp(Er) = Ker dpr/Im dp−rr
∼= Ep

r+1.

If we write Hp,q(Er) = Ker dp,qr /Im dp−r,q+r−1
r , then H(Er) is bigraded, with

H(Er) =
⊕

p∈Z
Hp(Er), Hp(Er) =

⊕

q∈Z
Hp,q(Er),

and we have an isomorphism
Hp,q(Er) ∼= Ep,q

r+1.

To understand a spectral sequence, it is useful to have in mind a pictorial representation
of it in its entirety. For simplicity, assume that Ep,q

r = (0) if p < 0 or q < 0 (a first quadrant
spectral sequence). We are to imagine an infinitely tall three-dimensional apartment house
described in space by (p, q, r) coordinates where p corresponds to the x coordinate, q is the y
coordinate, and r the z coordinate. The rth floor of the apartment building is on the plane
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z = r. The rooms of this rth floor are indexed by integer ordered pairs (p, q). The roof of
the apartment building is the ∞-floor. In addition, there is the map dp,qr on the rth floor; it
goes “over r and down r − 1”. Hence, a picture of the rth floor is shown in Figure 15.19.

dp,q
r

p

q

Ep,q
r

Ep+r,q−r+1
r

Figure 15.19: The Ep,q
r terms of a spectral sequence (“rth floor”).

The terms Ep,q
r lie on the diagonal line (of slope −1) of equation p + q = n. Observe

that dp,qr has its range Ep+r,q−r+1
r on the next diagonal of equation x + y = n + 1 (where

= p+ q) and that dp−r,q+r−1 has its domain Ep−r,q+r−1
r on the previous diagonal of equation

x+ y = n− 1. The module Ep
r corresponds to the pth column. The differential dr maps the

pth column to the (p+ r)th column. The entire edifice is depicted in Figure 15.20.

E
∞ (roof)

E p,q∞

E
2

E
3

E
4

E
s

E
rE p,qr

d
s

Figure 15.20: The entire spectral sequence.
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One passes vertically directly to the floor above by forming cohomology (with respect to
dr); so one gets to the roof by repeated formings of cohomology at each higher level.

Once on the roof—at the ∞-level—the points on the line p + q = n, i.e., the modules
E0,n
∞ , E1,n−1

∞ , . . . , En,0
∞ , are the composition factors for the filtration of Hn(C):

Hn(C) ⊇ H(C)1,n−1 ⊇ H(C)2,n−2 ⊇ · · · ⊇ H(C)n,0 ⊇ (0);

see Figure 15.21.

p

q

p + q = n; points = composition factors in Hn(C)

Figure 15.21: The Ep,q
∞ terms of a spectral sequence (“roof level”).

Theorem 15.7. Let (C, d) be a filtered and graded complex C =
⊕

n∈ZC
n with a differential

d of degree 1 and a filtration (F pC)p∈Z compatible with the grading. There is a spectral
sequence (〈Er, E∞, dr, αr〉)r∈N∪{∞} with the following properties:

(1) E0 = gr(C) and E1
∼= H(gr(C)). In particular,

Ep,q
0 = Cp,q/Cp+1,q−1 = (Cp+q ∩F pC)/(Cp+q ∩F p+1C) and Ep,q

1
∼= Hp+q(F pC/F p+1C).

(2) E∞ ∼= gr(H(C)). In particular,

Ep,q
∞
∼= gr(H(C))p,q = gr(Hp+q(C))p = H(C)p,q/H(C)p+1,q−1

and
gr(Hn(C)) ∼=

⊕

p∈Z
Ep,n−p
∞ .

Proof. We break the proof in several steps.

Step 1 : Proving the existence of a spectral sequence satisfying Conditions (1)–(3) of
Definition 15.18.

We begin by constructing the Ep
r =

⊕
q∈ZE

p,q
r , for r ∈ N ∪ {∞}. The new ingredient in

the construction is to apply the grading of C by the Cp to the Zp
r and Bp

r of Definition 15.9.
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Definition 15.19. For all p, q, r ∈ Z, define Zp,q
r , Bp,q

r , Zp,q
∞ and Bp,q

∞ as follows:

Zp,q
r = {x ∈ Cp+q ∩ F pC | dx ∈ Cp+q+1 ∩ F p+rC},

Bp,q
r = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1 ∩ F p−rC)(x = dy)},

Zp,q
∞ = {x ∈ Cp+q ∩ F pC | dx = 0},

Bp,q
∞ = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1)(x = dy)}.

We have Zp,q
r = Cp+q ∩ F pC = Cp,q and Bp,q

r ⊆ Cp+q ∩ F p−rC = Cp−r,q+r for all r ≤ 0.
We verify easily that

Bp,q
r = dZp−r,q+r−1

r

Zp+1,q−1
r−1 ⊆ Zp,q

r

Bp,q
r−1 ⊆ Bp,q

r ⊆ Zp,q
r

Zp+1,q−1
∞ ⊆ Zp,q

∞
Bp,q
∞ ⊆ Zp,q

∞ .

We define the graded modules Zp
r and Bp

r as

Zp
r =

⊕

q∈Z
Zp,q
r , Bp

r =
⊕

q∈Z
Bp,q
r ,

and the graded modules Zp
∞ and Bp

∞ as

Zp
∞ =

⊕

q∈Z
Zp,q
∞ , Bp

∞ =
⊕

q∈Z
Bp,q
∞ .

The above modules correspond precisely to the modules introduced in Definition 15.9 if
we ignore the grading on C. Just as in Section 15.3 we make the following definition which
is identical to Definition 15.10.

Definition 15.20. For all r ≥ 0 and all p ∈ Z, define Ep
r and Ep

∞ as follows:

Ep
r = Zp

r /(B
p
r−1 + Zp+1

r−1 ) (†r)

and
Ep
∞ = Zp

∞/(B
p
∞ + Zp+1

∞ ). (†∞)

Since Ep
r and Ep

∞ are direct sums, by Proposition 15.6, we get

Ep
r =

(⊕

q∈Z
Zp,q
r

)/(⊕

s∈Z
Bp,s
r−1 +

⊕

t∈Z
Zp+1,t
r−1

)
=

(⊕

q∈Z
Zp,q
r

)/(⊕

q∈Z
(Bp,q

r−1 + Zp+1,q−1
r−1 )

)

∼=
⊕

q∈Z
Zp,q
r /(Bp,q

r−1 + Zp+1,q−1
r−1 ).
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A similar computation shows that

Ep
∞
∼=
⊕

q∈Z
Zp,q
∞ /(Bp,q

∞ + Zp+1,q−1
∞ ).

These equations suggest the following definition.

Definition 15.21. For all r ≥ 0 and all p, q ∈ Z, define Ep,q
r and Ep,q

∞ as follows:

Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 ) (††r)

and
Ep,q
∞ = Zp,q

∞ /(Bp,q
∞ + Zp+1,q−1

∞ ). (††∞)

By definition

Ep
r
∼=
⊕

q∈Z
Ep,q
r

Ep
∞
∼=
⊕

q∈Z
Ep,q
∞ .

Again, as in Section 15.3 (see Definition 15.11), we easily check that d induces a linear
map dp,qr : Ep,q

r → Ep+r,q−r+1
r .

We can adapt the argument used in Section 15.3 to prove Equation (Er) to show that

Ker dp,qr /Im dp−r,q+r−1
r

∼= Ep,q
r+1.

Let use compute Ker dp,qr and Im dp−r,q+r−1
r . Recall that

Bp,q
r = dZp−r,q+r−1

r

Zp+1,q−1
r−1 ⊆ Zp,q

r

Bp,q
r−1 ⊆ Bp,q

r ⊆ Zp,q
r

Zp+1,q−1
∞ ⊆ Zp,q

∞
Bp,q
∞ ⊆ Zp,q

∞ ,

and
Zp,q
r = {x ∈ Cp+q ∩ F pC | dx ∈ Cp+q+1 ∩ F p+rC}.

Since dp,qr : Ep,q
r → Ep+r,q−r+1

r and

Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 ), Ep+r,q−r+1
r = Zp+r,q−r+1

r /(Bp+r,q−r+1
r−1 + Zp+r+1,q−r

r−1 ),

for any x ∈ Zp,q
r , dp,qr ([x]) = 0 iff dx ∈ Bp+r,q−r+1

r−1 + Zp+r+1,q−r
r−1 = dZp+1,q−1

r−1 + Zp+r+1,q−r
r−1 ,

which means that dx = dy + z, for some y ∈ Zp+1,q−1
r−1 and some z ∈ Zp+r+1,q−r

r−1 . Since

Zp+1,q−1
r−1 ⊆ Zp,q

r ⊆ Cp+q∩F pC, we can write x = y+u with u = x−y, where u ∈ Cp+q∩F pC,
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and since dx = dy + z and dx = dy + du, we find that du = z. Since du = z ∈ Zp+r+1,q−r
r−1 ,

we have du ∈ Cp+q+1 ∩ F p+r+1C, and since u ∈ Cp+q ∩ F pC, this means that u ∈ Zp,q
r+1.

Consequently, as seen by Figure 15.22, x = u + y, with u ∈ Zp,q
r+1 and y ∈ Zp+1,q−1

r−1 , which
shows that

Ker dp,qr = (Zp,q
r+1 + Zp+1,q−1

r−1 )/(Bp,q
r−1 + Zp+1,q−1

r−1 ).

F   C
p

Z
p,q
r

x
Bp,q

r-1

Z
p+1, q-1
r-1

y
u

Z
p,q
r+1

x y u= +

Figure 15.22: A schematic illustration for Ker dp,qr = (Zp,q
r+1 + Zp+1,q−1

r−1 )/(Bp,q
r−1 + Zp+1,q−1

r−1 ).

The image of dp−r,q+r−1
r : Ep−r,q+r−1

r → Ep,q
r consists of all classes modulo (Bp,q

r−1+Zp+1,q−1
r−1 )

of elements in Bp,q
r = dZp−r,q+r−1

r . These are classes of the form [x + y + z](Bp,qr−1+Zp+1,q−1
r−1 ),

where x ∈ Bp,q
r , y ∈ Bp,q

r−1, and z ∈ Zp+1,q−1
r−1 , but since Bp,q

r−1 ⊆ Bp,q
r , these are the classes of

the form [x+ z](Bp,qr−1+Zp+1,q−1
r−1 ), where x ∈ Bp,q

r and z ∈ Zp+1,q−1
r−1 , which shows that

Im dp−r,q+r−1
r = (Bp,q

r + Zp+1,q−1
r−1 )/(Bp,q

r−1 + Zp+1,q−1
r−1 ).

In summary, we have

Ker dp,qr = (Zp,q
r+1 + Zp+1,q−1

r−1 )/(Bp,q
r−1 + Zp+1,q−1

r−1 )

Im dp−r,q+r−1
r = (Bp,q

r + Zp+1,q−1
r−1 )/(Bp,q

r−1 + Zp+1,q−1
r−1 ).

The above formulae immediately imply that

dp,qr ◦ dp−r,q+r−1
r = 0.
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It follows that the linear map dpr =
⊕

q∈Z d
p,q
r is a differential

dpr : Ep
r → Ep+r

r

such that the piece Ep,q
r is shifted left by r − 1 slots (on the q index). As a consequence, as

in Section 15.3,

Er =
⊕

p∈Z
Ep
r

is a graded complex with differential dr =
⊕

p∈Z d
p
r of degree r. This proves (1) and (2) of

the definition of a spectral sequence.

Using the above formulae for Ker dp,qr and dp−r,q+r−1
r , we obtain.

Ker dp,qr /Im dp−r,q+r−1
r

∼= (Zp,q
r+1 + Zp+1,q−1

r−1 )/(Bp,q
r + Zp+1,q−1

r−1 ).

Using the modular Noether isomorphism, we have

(Zp,q
r+1 + Zp+1,q−1

r−1 )/(Bp,q
r + Zp+1,q−1

r−1 ) ∼= Zp,q
r+1/(Z

p,q
r+1 ∩ (Bp,q

r + Zp+1,q−1
r−1 ))

∼= Zp,q
r+1/(B

p,q
r + Zp+1,q−1

r )

= Ep,q
r+1,

since Bp,q
r ⊆ Zp,q

r+1 and Zp,q
r+1 ∩ Z

p+1,q−1
r−1 = Zp+1,q−1

r . Therefore, we proved that

Ker dp,qr /Im dp−r,q+r−1
r

∼= Ep,q
r+1 = Zp,q

r+1/(B
p,q
r + Zp+1,q−1

r ).

If we define Hp,q(Er) as

Hp,q(Er) = Ker dp,qr /Im dp−r,q+r−1
r ,

then
Hp,q(Er) ∼= Ep,q

r+1. (∗)
Since

Er =
⊕

p,q∈Z
Ep,q
r ,

and dpr =
⊕

q∈Z d
p,q
r , by Proposition 15.6,

Hp(Er) = Ker dpr/Im dp−rr
∼=
⊕

q∈Z
Ker dp,qr /Im dp−r,q+r−1

r =
⊕

q∈Z
Hp,q(Er) ∼=

⊕

q∈Z
Ep,q
r+1 = Ep

r+1.

This proves (3) of definition 15.18.

Step 2 : Verifying Condition (1) of Theorem 15.7.

As in Section 15.3, since Zp,q
−1 = Cp,q, Zp+1,q−1

−1 = Cp+1,q−1 and Bp,q
−1 ⊆ Cp+1,q−1 ⊆ Cp,q, we

find that

Ep,q
0 = Cp,q/Cp+1,q−1 = (Cp+q ∩ F pC)/(Cp+q ∩ F p+1C) = gr(C)p,q.
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By Definition of E0 and gr(C), this proves the first part of (1).

Since
Ep,q

0 = (Cp+q ∩ F pC)/(Cp+q ∩ F p+1C) = Cp,q/Cp+1,q−1

and
Ep

0 =
⊕

q∈Z
Ep,q

0 =
⊕

q∈Z
Cp,q/Cp+1,q−1 =

⊕

n∈Z
Cp,n−p/Cp+1,n−p−1 = F pC/F p+1C

is a differential module with differential dp0 =
⊕

n∈Z d
p,n−p
0 where dp,n−p0 : Ep,n−p

0 → Ep,n−p+1
0

(see just after Definition 15.15), we have

Hn(F pC/F p+1C) = Ker dp,n−p0 /Im dp,n−p−1
0 ,

or equivalently
Hp+q(F pC/F p+1C) = Ker dp,q0 /Im dp,q−1

0 .

Now E0 =
⊕

p∈ZE
p
0 is a differential module with differential d0 =

⊕
p∈Z d

p
0 of degree 0, and

by definition
Hp,q(E0) = Ker dp,q0 /Im dp,q−1

0 ,

so by (∗) and the above,

Ep,q
1
∼= Hp,q(E0) = Ker dp,q0 /Im dp,q−1

0 = Hp+q(F pC/F p+1C),

proving the second part of (1).

Step 3 : Verifying Condition (2) of Theorem 15.7.

The argument used in Section 15.3 can also be adapted to show that

Ep,n−p
∞

∼= gr(H(C))p,n−p = gr(Hn(C))p = H(C)p,n−p/H(C)p+1,n−p−1.

The key point is that since the complex F pC is given by

F pC =
⊕

n∈Z
Cp,n−p, Cp,n−p = Cn ∩ F pC,

where the differential dCp,n−p : Cp,n−p → Cp,n+1−p is the restriction of dn to Cp,n−p, and since
Zp,n−p
∞ = {z ∈ Cn ∩ F pC | dz = 0}, we see that the image H(C)p,n−p of Hn(F pC) in Hn(C)

is given by
H(C)p,n−p = {[z]Bn | z ∈ Zp,n−p

∞ },

where Bn = Im dn−1. The map from Zp,n−p
∞ toH(C)p,n−p is surjective, and we obtain a surjec-

tion πp,n−p∞ : Zp,n−p
∞ → H(C)p,n−p/H(C)p+1,n−p−1. We need to figure out when πp,n−p∞ (z) = 0,

which happens iff [z]Bn ∈ H(C)p+1,n−p−1 iff z = z1 + b for some z1 ∈ Zp+1,n−p−1
∞ and some

b ∈ Bn. Since Zp+1,n−p−1
∞ ⊆ Zp,n−p

∞ , we get b = z − z1 ∈ Zp,n−p
∞ ⊆ Cn ∩ F pC, so b ∈ Bp,n−p

∞ .
Thus we proved that

Ker πp,n−p∞ = Bp,n−p
∞ + Zp+1,n−p−1

∞ .
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By the first isomorphism theorem,

Ep,n−p
∞ = Zp,n−p

∞ /(Bp,n−p
∞ + Zp+1,n−p−1

∞ ) ∼= H(C)p,n−p/H(C)p+1,n−p−1.

Since

gr(Hn(C)) =
⊕

p∈Z
gr(H(C))p,n−p =

⊕

p∈Z
gr(Hn(C))p, gr(H(C)) =

⊕

n∈Z
gr(Hn(C)),

we have
gr(Hn(C)) ∼=

⊕

p∈Z
Ep,n−p
∞ ,

and since
E∞ =

⊕

p,n∈Z
Ep,n−p
∞ ,

we obtain
E∞ ∼= gr(H(C)),

establishing (2).

15.7 Convergence of Spectral Sequences

Since the goal of constructing a spectral sequence is to “compute” the limit terms Ep,q
∞ , it

is natural to consider what it means for a spectral sequence to converge. Various notions
of convergence can be defined, weak convergence, strong convergence, etc.; see Cartan–
Eilenberg [10], Weibel [63] and McCleary [44] for detailed expositions.

The general approach is to find conditions on filtrations that ensure some type of conver-
gence. Ideally, we would like all Ep,q

r (that is, for all p, q ∈ Z) to stabilize to a fixed value for
all r ≥ r0, for some fixed r0 > 0, and to have Ep,q

r0
isomorphic to Ep,q

∞ . This is a very strong
requirement, so instead we can ask that for p, q fixed, there is some r0 = r(p, q) such that
Ep,q
r0

is isomorphic to Ep,q
∞ . This happens for bounded filtrations; see Theorem 15.12.

Another notion of convergence is to ask for p, q fixed whether Ep,q
∞ can be viewed as a

direct limit of the Ep,q
r . This is indeed the case when the filtration is bounded; see Proposition

15.15.

Perhaps the strongest notion of convergence is to require that for every n, there is some
r such only one nonzero En−q,q

r occurs on the diagonal p+ q = n for some q = q(n). In such
a case, we say that the spectral sequence degenerates at r. In this situation, if the filtration
is regular, then E

n−q(n),q(n)
∞ is isomorphic to Hn(C) for every n. Under other mild conditions

on q(n), we actually have E
n−q(n),q(n)
r

∼= Hn(C) for every n; see Proposition 15.17. This
result is quite unexpected, because in general, the Ep,q

∞ only compute the graded pieces of
gr(H(C)). Nevertheless, degenerate spectral sequences often show up in algebraic topology.
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In the rest of this chapter it is assumed that all filtrations are compatible with the grading .
To simplify matters in stating our first “convergence” theorem, we restrict ourselves to
spectral sequences induced by positive filtrations.

Definition 15.22. A filtration (F pC)p∈Z on a graded complex C is a positive filtration if
F pC = C for all p ≤ 0. It is convenient to assume that F−∞C = C and that F∞C = (0).

Proposition 15.8. Let (C, d) be filtered and graded complex C =
⊕

n∈ZC
n with a differential

d of degree 1 and a filtration (F pC)p∈Z.

(1) If F pC = C for all p ≤ 0, then Ep,q
r = (0) for all p < 0, all q ∈ Z, and all r ∈ N∪{∞};

see Figure 15.23.

(2) For all n, p ∈ Z, if p > n implies that Cn ∩ F pC = (0), then Ep,q
r = (0) for all q < 0,

all p ∈ Z, and all r ∈ N ∪ {∞}; see Figure 15.23.

fixed rth floor
F   C = C implies E     = (0)

p

p axis

q
 a

x
is

p,q
r

If p > n implies C  h  F   C = (0), then E     = (0)n p p,q
r

Only nontrivial E
p,q
r

Figure 15.23: For a fixed rth level, Proposition 15.8(1) ensures that the integer indices of
blue region are associated with trivial Ep,q

r while Proposition 15.8(2) ensures that the integer
indices of the green region are with trivial Ep,q

r .

Proof. (1) Since

Zp,q
r = {x ∈ Cp+q ∩ F pC | dx ∈ Cp+q+1 ∩ F p+rC},

Zp+1,q−1
r−1 = {x ∈ Cp+q ∩ F p+1C | dx ∈ Cp+q+1 ∩ F p+rC},

we have
Zp+1,q−1
r−1 = Zp,q

r ∩ F p+1C,

so if p < 0, since F sC = C for s ≤ 0, we have F p+1C = C and Zp+1,q−1
r−1 = Zp,q

r . Since

Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 ),
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we deduce that Ep,q
r = (0) for p < 0.

Since
Zp,q
∞ = {x ∈ Cp+q ∩ F pC | dx = 0},

we have Zp+1,q−1
∞ = Zp,q

∞ ∩ F p+1C, and since

Ep,q
∞ = Zp,q

∞ /(Bp,q
∞ + Zp+1,q−1

∞ ),

we deduce that Ep,q
∞ = (0) for p < 0.

(2) Since Zp,q
r ⊆ Cp+q ∩ F pC, if Cn ∩ F pC = (0) when p > n, we see that if q < 0, then

p > p+ q, so Cp+q ∩ F pC = (0) and Ep,q
r = Zp,q

r = (0). We also have Zp,q
∞ ⊆ Cp+q ∩ F pC, so

if q < 0, then Ep,q
∞ = Zp,q

∞ = (0).

Remark: Suppose the filtration (F pC) is positive. Since F 0C = C, if the condition Cn ∩
F pC = (0) holds for all p, n ∈ Z such that p > n, we deduce that if n < 0, we have
(0) = Cn ∩ F 0C = Cn ∩ C = Cn, that is Cn = (0).

The condition that Cn ∩ F pC = (0) if p > n is a special case of the following condition.

Definition 15.23. A filtration is regular (or bounded below) if for every n ∈ Z, there is some
integer µ(n) such that for all p > µ(n) we have Cn ∩ F pC = (0). Since Cn is filtered by the
Cp,n−p = Cn ∩ F pC , this means that Cp,n−p = (0) for p = µ(n) + 1; that is, the filtration
(Cp,n−p) of Cn stabilizes to the zero module for p = µ(n) + 1.

Geometrically, a sequence is regular if on every diagonal p + q = n (for fixed n), as p
increases, that is, as we go down along this diagonal, the modules Cp,n−p stabilize to the
zero module for p ≥ µ(n) + 1; see Figure 15.24.

Remark: Some authors, such as Weibel [63], define a spectral sequence to be regular if
for each p and q, the differentials dp,qr leaving Ep,q

r are 0 for all r large enough. A spectral
sequence which is bounded below is regular; see Proposition 15.10(b). This is a weaker
notion of regularity that we will not use.

Proposition 15.9. If the filtration (F pC) on a graded complex C is regular, namely for
every n ∈ Z, there is some µ(n) such that for p = µ(n) + 1 we have Cp,n−p = (0), then for
every n ∈ Z, the filtration (H(C)p,n−p) of Hn(C) is also regular and of the form

Hn(C) ⊇ · · ·H(C)p,n−p ⊇ H(C)p+1,n−p−1 ⊇ · · · ⊇ H(C)µ(n),n−µ(n) ⊇ (0),

with H(C)µ(n)+1,n−µ(n)−1 = (0).

Proof. Recall that H(C)p,n−p is the image in Hn(C) of the module Hn(F pC) and that the
cochain complex F pC is given by

F pC =
⊕

n∈Z
Cp,n−p,
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Figure 15.24: An example of a regular filtration since along each p + q = n diagonal the
modules Cp,n−p stabilize to the zero module.

with the coboundary maps dCp,n−p : Cp,n−p → Cp,n+1−p. Since

Hn(F pC) = Ker dCp,n−p/Im dCp,n−p−1

and Cp,n−p = (0) for all p > µ(n), we have Ker dCp,n−p = (0), thus Hn(F pC) = (0) for all
p > µ(n), and the image H(C)p,n−p of Hn(F pC) = (0) is also (0) for all p > µ(n).

Proposition 15.10. Let (C, d) be a filtered and graded complex C =
⊕

n∈ZC
n with a dif-

ferential d of degree 1 and a filtration (F pC)p∈Z.

(1) If the filtration is regular, then

(a) For all n, p ∈ Z, if p > µ(n), then for all r ∈ N ∪ {∞}, we have

Ep,n−p
r = (0);

see Figure 15.25.

(b) For all p, q ∈ Z, for all r > µ(p+ q + 1)− p, we have

Zp,q
r = Zp,q

∞

and dp,qr = 0 on Ep,q
r .
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(2) If the filtration is regular and positive, then for all p, q ∈ Z and for all
r > max(p, µ(p+ q + 1)− p), we have

Ep,q
r = Ep,q

∞ ;

see Figure 15.26.

fixed rth floor

p axis

q axis

(n,0)

p+ q = n

μ(n)

E      = (0)

p, n-pr

Figure 15.25: An illustration of Proposition 15.10(1).

Proof. (1)(a) Since

Zp,n−p
r = {x ∈ Cn ∩ F pC | dx ∈ Cn+1 ∩ F p+rC}

and Cn ∩ F pC = (0) if p > µ(n), we have Ep,n−p
r = Zp,n−p

r = (0). Since

Zp,n−p
∞ = {x ∈ Cn ∩ F pC | dx = 0},

the same reasoning shows that Ep,n−p
∞ = (0) if p > µ(n).

(1)(b) Since
Zp,q
r = {x ∈ Cp+q ∩ F pC | dx ∈ Cp+q+1 ∩ F p+rC}

and since the filtration is regular, if p+ r > µ(p+ q + 1), that is, r > µ(p+ q + 1)− p, then
Cp+q+1 ∩ F p+rC = (0), and so Zp,q

r = Zp,q
∞ .

Recall that dp,qr : Ep,q
r → Ep+r,q−r+1

r . Since

Zp+r,q−r+1
r = {x ∈ Cp+q+1 ∩ F p+rC | dx ∈ Cp+q+2 ∩ F p+2rC}

and the filtration is regular, if p + r > µ(p + q + 1), that is, r > µ(p + q + 1) − p, then
Cp+q+1 ∩F p+rC = (0), so Zp+r,q−r+1

r = (0) and thus Ep+r,q−r+1
r = (0), so dp,qr is zero on Ep,q

r .
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p axis

q axis

r a
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fix p and q

r = max(p, μ(p+q+1)-p)

E    =  E  p,q p,q
r N

Figure 15.26: An illustration of Proposition 15.10(2). For the integer triples (p, q, r) on the
bold red line, Ep,q

r stabilizes to Ep,q
∞ .

(2) Since

Bp,q
r = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1 ∩ F p−rC)(x = dy)},

Bp,q
∞ = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1)(x = dy)}

and the filtration is positive, if p − r ≤ 0, that is, r ≥ p, then Cp+q−1 ∩ F p−rC = Cp+q−1,
and thus

Bp,q
r = Bp,q

∞ .

Consequently, if r > p, then Bp,q
r−1 = Bp,q

∞ . By (1), if r > µ(p+ q + 1)− p, then

Zp,q
r = Zp,q

∞ ,

and since r − 1 > µ(p + q + 1) − (p + 1) because r > µ(p + q + 1) − p, we also have
Zp+1,q−1
r−1 = Zp−1,q−1

∞ . Since

Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 )

Ep,q
∞ = Zp,q

∞ /(Bp,q
∞ + Zp+1,q−1

∞ ),

we see that if r > max(p, µ(p+ q + 1)− p), then

Ep,q
r = Ep,q

∞ ,

as claimed.
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Proposition 15.10 shows that if the filtration on C is positive and regular, then for any
fixed p, q, for r large enough, the Ep,q

r stabilize to the limit value Ep,q
∞ .

Proposition 15.10(2) holds under a weaker condition than positivity of the filtration.

Definition 15.24. A filtration is bounded if for every n ∈ Z, there are some integers ν(n) ≤
µ(n) such that

(a) For p = ν(n), we have Cn ∩ F pC = Cn.

(b) For p = µ(n) + 1, we have Cn ∩ F pC = (0).

Since Cn is filtered by the Cp,n−p = Cn ∩ F pC , this means that Cp,n−p = Cn for p = ν(n)
and Cn,n−p = (0) for p = µ(n) + 1. Thus the filtration of Cn has finite length:

Cn = Cν(n),n−ν(n) ⊇ Cν(n)+1,n−ν(n)−1 ⊇ · · · ⊇ Cµ(n),n−µ(n) ⊇ (0) = Cµ(n)+1,n−µ(n)−1.

Geometrically, a sequence is bounded if for every diagonal p+q = n (for fixed n), there is
a finite strip such that all modules Cp,n−p above or equal to Cν(n),n−ν(n) are equal to Cn and
all modules below Cµ(n),n−µ(n) are zero; see Figure 15.27. Observe that a bounded filtration
is bounded below (and above) and thus regular.
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Figure 15.27: An example of a bounded filtration. Along each diagonal p+q = n, if p ≤ ν(n),
then Cp,n−p = C, while if p > µ(n), then Cp,n−p = (0).
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Proposition 15.11. Let (C, d) be a filtered and graded complex C =
⊕

n∈ZC
n with a differ-

ential d of degree 1 and a filtration (F pC)p∈Z. If the filtration is bounded, then the following
facts hold:

(1) For all p, n ∈ Z, if p < ν(n), then for all r ∈ N ∪ {∞}, we have

Ep,n−p
r = (0);

see Figure 15.28.

(2) For all p, q ∈ Z and for all r > max(p− ν(p+ q − 1), µ(p+ q + 1)− p), we have

Ep,q
r = Ep,q

∞ ;

see Figure 15.26 with r = max(p− ν(p+ q − 1), µ(p+ q + 1)− p).

fixed rth floor

p axis

q axis

(n,0)

p+ q = n μ(n)

E      = (0)

p, n-pr

ν(n)

(0,n)

E      = (0)

p, n-pr

Figure 15.28: An illustration of Proposition 15.11(1).

Proof. (1) Since

Zp,n−p
r = {x ∈ Cn ∩ F pC | dx ∈ Cn+1 ∩ F p+rC},

Zp+1,n−p−1
r−1 = {x ∈ Cn ∩ F p+1C | dx ∈ Cn+1 ∩ F p+rC}

and since Cn ∩ F sC = Cn if s ≤ ν(n), if p < ν(n), then Zp+1,n−p−1
r−1 = Zp,n−p

r . Since

Ep,n−p
r = Zp,n−p

r /(Bp,n−p
r−1 + Zp+1,n−p−1

r−1 ),

we deduce that Ep,n−p
r = (0) for p < ν(n).
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Similarly,

Zp,n−p
∞ = {x ∈ Cn ∩ F pC | dx = 0},

Zp+1,n−p−1
∞ = {x ∈ Cn ∩ F p+1C | dx = 0}

and the same reasoning as above shows that Zp+1,n−p−1
∞ = Zp,n−p

∞ . Since

Ep,n−p
∞ = Zp,n−p

∞ /(Bp,n−p
∞ + Zp+1,n−p−1

∞ ),

we deduce that Ep,n−p
∞ = (0) for p < ν(n).

(2) Since

Bp,q
r = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1 ∩ F p−rC)(x = dy)},

Bp,q
∞ = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1)(x = dy)}

and the filtration is bounded, if p − r ≤ ν(p + q − 1), that is, r ≥ p − ν(p + q − 1), then
Cp+q−1 ∩ F p−rC = Cp+q−1, and thus

Bp,q
r = Bp,q

∞ .

Consequently, if r > p− ν(p+ q− 1), then Bp,q
r−1 = Bp,q

∞ . The rest of the proof is identical to
the proof of Proposition 15.10(2).

Combining Proposition 15.10 and Proposition 15.11 we obtain the following result.

Theorem 15.12. Let (C, d) be a filtered and graded complex C =
⊕

n∈ZC
n with a differential

d of degree 1 and a filtration (F pC)p∈Z. If the filtration is bounded, then the following facts
hold:

(1) For all p, n ∈ Z, if p < ν(n) or p > µ(n), then for all r ∈ N ∪ {∞}, we have

Ep,n−p
r = (0).

(2) For all p, q ∈ Z and for all r > max(p− ν(p+ q − 1), µ(p+ q + 1)− p), we have

Ep,q
r = Ep,q

∞ .

Geometrically, Theorem 15.12 means that for every diagonal with slope −1 given by the
equation p+q = n, there are only finitely many nonzero terms Ep,n−p, with ν(n) ≤ p ≤ µ(n),
and that for n fixed, for all r large enough, namely r > max(p− ν(n− 1), µ(n+ 1)− p), the
Ep,n−p
r stabilize to the limit value Ep,n−p

∞ .

The special case of a bounded filtration on a cohomological cochain complex (which
means that Cn = (0) for all n < 0) for which ν(n) = 0 and µ(n) = n for all n ∈ N is of
special interest. In this case, Cp,n−p = Cn ∩ F pC = Cn for all p ≤ 0 and all n ∈ N, and
since C =

⊕
n∈NC

n, we see that F pC = C for all p ≤ 0, which means that the filtration is
positive. This case is illustrated in Figure 15.29.
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Figure 15.29: An illustration of the canonically cobounded filtration. The pertinent infor-
mation is contained within the first quadrant of the (p, q)-plane.

Definition 15.25. A filtration (F pC) on a cohomological cochain complex C =
⊕

n∈NC
n

is canonically cobounded1 if the filtration is positive and if Cp,n−p = Cn ∩ F pC = (0) for all
p > n (equivalently, Cn+1,−1 = (0)). See Figures 15.23 and 15.29.

Proposition 15.13. If the filtration (F pC) on a graded complex C is canonically cobounded,
namely Cn = (0) for all n < 0, and C0,n = Cn and Cn+1,−1 = (0) for all n ∈ N, then for
every n ≥ 0, the filtration (H(C)p,n−p) of Hn(C) is also canonically cobounded and of the
form

Hn(C) = H(C)0,n ⊇ · · · ⊇ H(C)p+1,n−p−1 ⊇ · · · ⊇ H(C)n,0 ⊇ (0),

with H(C)n+1,−1 = (0).

Proof. Recall that H(C)p,n−p is the image in Hn(C) of the module Hn(F pC) and that the
cochain complex F pC is given by

F pC =
⊕

n∈N
Cp,n−p,

with the coboundary maps dCp,n−p : Cp,n−p → Cp,n+1−p. Since Cn = (0) for n < 0 and
C0,n = Cn for all n ≥ 0, the complex for F 0C is the complex C, so Hn(F 0C) = Hn(C) and

1This notion appears to have been introduced by Mac Lane.
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H(C)0,n = Hn(C). The fact that the filtration H(C)p,n−p is bounded below follows from
Proposition 15.9.

Proposition 15.8 and Theorem 15.12 imply the following result.

Theorem 15.14. Let (C, d) be filtered cohomological complex C =
⊕

n∈NC
n with a filtration

(F pC)p∈N. If the filtration is canonically cobounded then the following facts hold:

(1) For all p, q ∈ Z, if p < 0 or q < 0, then for all r ∈ N ∪ {∞}, we have

Ep,n−p
r = (0).

(2) For all p, q ∈ N and for all r > max(p, q + 1), we have

Ep,q
r = Ep,q

∞ .

Definition 15.26. A spectral sequence E for which Ep,q
r = (0) if p < 0 or q < 0 is called a

first quadrant spectral sequence.

15.8 Degenerate Spectral Sequences

The assumption that the bounding function ν exists was crucial for the Bp,q
r to stabilize. If

we relax this condition, the Bp,q
r may not stabilize, but since a filtration has the property

that
⋃
∈Z F

pC = C, we have

Bp,q
∞ =

⋃

r∈N
Bp,q
r .

If we still assume that the filtration is regular, then we can prove that each Ep,q
∞ is a direct

limit of the Ep,q
r . Technically we have the following result.

Proposition 15.15. Let (C, d) be a filtered and graded complex C =
⊕

n∈ZC
n with a differ-

ential d of degree 1 and a filtration (F pC)p∈Z. If the filtration is regular, then for any fixed
p, q ∈ Z, for r0 = µ(p+ q + 1)− p+ 1, there is a commutative diagram

Ep,q
r0

θr0 //

ηr0
))

Ep,q
r0+1

θr0+1
//

ηr0+1

##

· · · // Ep,q
s

θs //

ηs

||

Ep,q
s+1

θs+1
//

ηs+1

vv

· · ·

Ep,q
∞

in which all the morphisms are surjective, and Ep,q
∞ is the direct limit of the above mapping

family.
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Proof. By Proposition 15.10(1)(b), if r > µ(p+ q + 1)− p, then we have

Zp,q
r = Zp,q

∞

and dp,qr = 0 on Ep,q
r . Since Ep,q

r+1
∼= Hp,q(Er) = Ker dp,qr /Im dp−r,q+r−1

r , if dp,qr = 0 on Ep,q
r ,

then Ker dp,qr = Ep,q
r , so Ep,q

r+1
∼= Ep,q

r /Im dp−r,q+r−1
r , and by composing the surjective quotient

map from Ep,q
r onto Ep,q

r /Im dp−r,q+r−1
r and the isomorphism between Ep,q

r /Im dp−r,q+r−1
r and

Ep,q
r+1, we obtain a surjective map θr : Ep,q

r → Ep,q
r+1.

If r > µ(p + q + 1) − p, then Zp,q
r = Zp,q

∞ and Zp+1,q−1
r−1 = Zp+1,q−1

∞ , since r − 1 >
µ(p+ q + 1)− (p+ 1) is equivalent to r > µ(p+ q + 1)− p. We also have Bp,q

r ⊆ Bp,q
∞ for all

r. Since

Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 )

Ep,q
∞ = Zp,q

∞ /(Bp,q
∞ + Zp+1,q−1

∞ ),

for r > µ(p+ q + 1)− p, we have

Ep,q
r = Zp,q

∞ /(Bp,q
r−1 + Zp+1,q−1

∞ ),

and since Bp,q
r ⊆ Bp,q

∞ , we have Bp,q
r−1 + Zp+1,q−1

∞ ⊆ Bp,q
∞ + Zp+1,q−1

∞ , so we obtain a surjective
map ηr : Ep,q

r → Ep,q
∞ . It is easy to verify that ηr = ηr+1 ◦ θr, so the diagram commutes.

Since
Bp,q
∞ =

⋃

r∈N
Bp,q
r ,

it can be shown that Ep,q
∞ is a direct limit (a colimit).

Since Ep,q
s+1
∼= Ker dp,qs /Im dp−s,q+s−1

s , if Ep,q
r = (0) for some r, then Ker dp,qr = (0), and

so Ep,q
r+1 = (0), and by induction Ep,q

r+1 = (0) for all s > r. Then Proposition 15.15 has the
following important corollary.

Proposition 15.16. If the filtration is regular and if Ep,q
r = (0) for some r, then Ep,q

∞ = (0).

This fact can be used to prove a useful fact when the spectral sequence “degenerates”
for some r.

Definition 15.27. A spectral sequence degenerates at (level) r if for every n ∈ Z there is
some q(n) ∈ Z such that

En−q,q
r = (0) for all q 6= q(n).

What this means is that for every n ∈ Z, there is a single nonzero Ep,q
r on the diagonal of

equation p+ q = n. This situation is illustrated in Figure 15.30.

Remark: When the condition of Definition 15.27 holds some authors say that the spectral
sequences collapses at level r, but other other use the term “collapse” for a different condition.
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Figure 15.30: An illustration of spectral sequence which degenerates at level r. Each diagonal
line p+ q = n has only nonzero En−q,q

r which we depicted as a colored dot.

Proposition 15.17. Let (C, d) be filtered and graded complex C =
⊕

n∈ZC
n with a differ-

ential d of degree 1 and a filtration (F pC)p∈Z. If the filtration is regular and if the spectral
sequence associated with C degenerates for some r ≥ 1, then

Hn(C) ∼= En−q(n),q(n)
∞ for all n ∈ Z.

If q(n+ 1) 6= q(n)− (r − 1) for all n ∈ Z, then

Hn(C) ∼= En−q(n),q(n)
r for all n ∈ Z.

Proof. By Proposition 15.16, for every n ∈ Z, if En−q,q
r = (0) for all q 6= q(n), then En−q,q

∞ =
(0) for all q 6= q(n). Recall that Hn(C) is filtered by the H(C)p,n−p with p ∈ Z. Thus the
graded module gr(Hn(C)) associated with Hn(C) is given by

gr(Hn(C)) =
⊕

p∈Z
H(C)p,n−p/H(C)p+1,n−p−1 =

⊕

p∈Z
gr(H(C))p,n−p.

Since by Theorem 15.7 we have

H(C)p,n−p/H(C)p+1,n−p−1 ∼= Ep,n−p
∞ ,

we obtain
gr(Hn(C)) ∼=

⊕

p∈Z
Ep,n−p
∞ ,
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and using the change of variable q = n− p,

gr(Hn(C)) ∼=
⊕

q∈Z
En−q,q
∞ .

Since all terms En−q,q
∞ are (0) for q 6= q(n), we get

gr(Hn(C)) ∼= En−q(n),q(n)
∞ .

Now since
⋃
p∈Z F

pC = C, we have

Hn(C) =
⋃

q∈Z
H(C)n−q,q,

and since the filtration is regular, by Proposition 15.9, the filtration (H(C)p,n−p) of Hn(C)
is also regular and of the form

Hn(C) ⊇ · · ·H(C)p,n−p ⊇ H(C)p+1,n−p−1 ⊇ · · · ⊇ H(C)µ(n),n−µ(n) ⊇ (0),

with H(C)µ(n)+1,n−µ(n)−1 = (0). Since Ep,n−p
∞

∼= H(C)p,n−p/H(C)p+1,n−p−1, we have Ep,n−p
∞ =

(0) iff H(C)p,n−p = H(C)p+1,n−p−1, that is, the two consecutive modules H(C)p,n−p and
H(C)p+1,n−p−1 in the filtration of Hn(C) are identical. For n fixed, by the change of variable
p = n − q, the condition En−q,q

∞ = (0) for all q 6= q(n) is equivalent to Ep,n−p
∞ = (0) for all

p 6= n− q(n). Write p(n) = n− q(n).

We may assume that Hn(C) 6= (0) since otherwise we have trivially H(C)p,n−p = (0)
for all p, so Ep,n−p

∞ = (0) for all p, and Ep,n−p
∞ = (0) = Hn(C) for all p. But then, since

Ep,n−p
∞ = (0) for all p < p(n) and all p > p(n), any two consecutive modules to the left or

to the right of H(C)p(n),n−p(n) must be identical. Since H(C)µ(n)+1,n−µ(n)−1 = (0), all the
modules to the right of H(C)p(n),n−p(n) must be (0), so the filtration of Hn(C) is of the form

Hn(C) · · · ⊇ H(C)p(n),n−p(n) = · · · = H(C)p(n),n−p(n) ⊇ (0) = H(C)p(n)+1,n−p(n)−1.

However, since Hn(C) =
⋃
p∈ZH(C)p,n−p we must have Hn(C) = H(C)p(n),n−p(n), and this

is the only nonzero term in the filtration. Then

Ep(n),n−p(n)
∞

∼= H(C)p(n),n−p(n)/H(C)p(n)+1,n−p(n)−1 = H(C)p(n),n−p(n) = Hn(C),

and we conclude that
Hn(C) ∼= Ep(n),n−p(n)

∞ = En−q(n),q(n)
∞ .

Since dn−q,qr : En−q,q
r → En−q+r,q−r+1

r and n−q+r = n+1−(q−r+1), if q−r+1 6= q(n+1),
we have Im dn−q,qr = (0). For q = q(n) this says that if q(n + 1) 6= q(n) − (r − 1), then

d
n−q(n),q(n)
r = (0). Similarly, since dn−q−r,q+r−1

r : En−q−r,q+r−1
r → En−q,q

r and n− q − r = n−
1−(q+r−1), we have Im dn−q−r,q+r−1

r = (0) if q+r−1 6= q(n−1), that is q 6= q(n−1)−(r−1).
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For q = q(n) this says that if q(n) 6= q(n− 1)− (r − 1), then Im d
n−q(n)−r,q(n)+r−1
r = (0). If

d
n−q(n),q(n)
r = 0 on E

n−q(n),q(n)
r , then Ker d

n−q(n),q(n)
r = E

n−q(n),q(n)
r , and since

Hn−q(n),q(n)(Er) = Ker dn−q(n),q(n)
r /Im dn−q(n)−r,q(n)+r−1

r ,

if Im d
n−q(n)−r,q(n)+r−1
r = (0), then

Hn−q(n),q(n)(Er) = En−q(n),q(n)
r .

Since

E
n−q(n),q(n)
r+1

∼= Hn−q(n),q(n)(Er),

we get

E
n−q(n),q(n)
r+1

∼= En−q(n),q(n)
r .

In summary, if q(n+ 1) 6= q(n)− (r − 1) and q(n) 6= q(n− 1)− (r − 1), then

E
n−q(n),q(n)
r+1

∼= En−q(n),q(n)
r .

Consequently, if q(n+ 1) 6= q(n)− (r − 1) for all n ∈ Z, then

E
n−q(n),q(n)
s+1

∼= En−q(n),q(n)
s for all s ≥ r,

that is, the sequence of E
n−q(n),q(n)
s stabilizes for s ≥ r, and since the filtration is regular, by

Proposition 15.15, we have E
n−q(n),q(n)
r

∼= E
n−q(n),q(n)
∞ .

If r ≥ 2 and q(n) has the same value for all n, then the condition q(n+1) 6= q(n)−(r−1)
for all n ∈ Z is automatically satisfied, and so

Hn(C) ∼= En−q(n),q(n)
r for all n ∈ Z.

In practice, this situation often arises for r = 2 and q(n) = 0, because of some acyclicity
property.

The convergence of spectral sequences, including results involving weaker assumptions,
is discussed in Cartan and Eilenberg [10], Spanier [59] Mac Lane [37], McCleary [44] and
Weibel [63]. Proposition 15.17 seems sufficient for all applications considered in Godement
[24]. We warn the reader that the statement of Theorem 4.4.1 in Godement [24] seems

incorrect. One can only claim that Hn(C) ∼= E
n−q(n),q(n)
∞ , not that Hn(C) ∼= E

n−q(n),q(n)
r .

However, Godement only uses this result when r ≥ 2 and q(n) = 0, so there is no problem.
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15.9 Spectral Sequences Defined by Double Complexes

Big sources of spectral sequences are double complexes.

Definition 15.28. A double complex (or bicomplex ) is a doubly-graded complex

C =
⊕

p,q∈N
Cp,q

together with two differentiations

dp,qI : Cp,q −→ Cp+1,q, (horizontal)

dp,qII : Cp,q −→ Cp,q+1, (vertical)

such that
dp+1,q

I ◦ dp,qI = dp,q+1
II ◦ dp,qII = 0,

and we also require

dp+1,q
II ◦ dp,qI + dp,q+1

I ◦ dp,qII = 0, for all p, q ∈ N. (†)

See Figure 15.31.

C
p,q C p+1,q

C p,q+1

C p+2,q

Cp+1,q+1

C p,q+2

C p+3,q

C

C

C

p+2 ,q+1

p+1, q+2

p, q+3

C

C

C

C

p+4,q

p+3, q+1

p+2,q+2

p+1, q+3

C

C

C

p+4, q+1

p+3, q+2

p+2,q+3

C

C C
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p+3, p+3 p+4, q+3

dI

dI

dI

dI

d I

d I

d I

d I

d I

d I

d I

dI

d I

d I

dI
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p,q p+1,q p+2,q p+3,q

p+3, q+1p+2 ,q+1p,q+1 p+1,q+1

p,q+2 p+1, q+2 p+2,q+2 p+3, q+2

p, q+3 p+1, q+3 p+2,q+3 p+3, p+3

IId

IId IId IId IId IId

IId IId
IId IId

IId IId IId IId IId

p,q p+1,q p+2,q p+3,q p+4,q

p,q+1 p+1,q+1 p+2 ,q+1 p+3, q+1 p+4, q+1

p,q+2 p+1, q+2 p+2,q+2 p+3, q+2 p+4, q+2

Figure 15.31: A section of the double complex C =
⊕

p,q∈NC
p,q.

We get the (singly graded) total complex

Tot(C) =
⊕

n∈N
Cn, where Cn =

⊕

p+q=n

Cp,q,
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with total differential

dT =
⊕

n∈Z
dnT , with dnT =

⊕

p+q=n

dp,qI + dp,qII .

Observe that dnT : Cn → Cn+1. See Figure 15.32.

C
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dI

d I

dI
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IId
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IId
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IId

IId
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dp, q+3
II dp+1, q+3
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I

d
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I

dp+3, p+3
II dII
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Tot(C) = Cp+q Cp+q+1 Cp+q+2 C p+q+3d
p+q
T d
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T d

p+q+3
T Cp+q+4 dp+q+4

TdT
p+q-1

Figure 15.32: The total complex Tot(C) is constructed by summing along the diagonals
p+ q = n.

Using the fact that dp+1,q
II ◦dp,qI +dp,q+1

I ◦dp,qII = 0, we immediately check that dn+1
T ◦dnT = 0.

For notational simplicity, we often denote Tot(C) as C and say that C is viewed as a total
complex.

As suggested by Figure 15.31, the double complex C can be pictured as a first quadrant
diagram (grid) in which the node of coordinates (p, q) is Cp,q.

Remark: It often more convenient to require that the dp,qI and dp,qII satisfy the equation

dp+1,q
II ◦ dp,qI = dp,q+1

I ◦ dp,qII , for all p, q ∈ N (††)

instead of Equation (†), namely that the following diagram commutes, rather than anti-
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commutes:

Cp,q
dp,qI //

dp,qII
��

Cp+1,q

dp+1,q
II
��

Cp,q+1

dp,q+1
I

// Cp+1,q+1.

In this case, we define Dp,q
I and Dp,q

II by

Dp,q
I = dp,qI and Dp,q

II = (−1)pdp,qII ,

so that rewriting (††) in terms of Dp,q
I and Dp,q

II yields

Dp+1,q
II ◦Dp,q

I +Dp,q+1
I ◦Dp,q

II = 0, for all p, q ∈ N.

We also set the differential of the total complex Tot(C) to be

DT =
⊕

n∈Z
Dn
T , with Dn

T =
⊕

p+q=n

Dp,q
I +Dp,q

II .

This is the approach adopted by Bott and Tu [4] (Chapter II), but we will stick to the first
definition which seems to be the definition adopted in most books on homological algebra.

We can also view C as a cochain complex in two ways.

Definition 15.29. The complex (CI, dI) is the direct sum

CI =
⊕

p∈N
Cp

I ,

where Cp
I is a direct sum corresponding to the pth column of the diagram C, namely

Cp
I =

⊕

q∈N
Cp,q,

with
dp,∗I =

⊕

q∈N
dp,qI , dI =

⊕

p∈N
dp,∗I ;

see Figure 15.33.

Observe that dp,∗I : Cp
I → Cp+1

I and dp+1,∗
I ◦dp,∗I = 0, so (CI, dI) is indeed cochain complex.

Definition 15.30. The complex (CII, dII) is the direct sum

CII =
⊕

q∈N
Cq

II,
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Figure 15.33: The complex CI is constructed by summing along the columns of the double
complex.

where Cq
II is a direct sum corresponding to the qth row of the diagram C, namely

Cq
II =

⊕

p∈N
Cp,q,

with
d∗,qII =

⊕

p∈N
(−1)pdp,qII , dII =

⊕

q∈N
d∗,qII ;

see Figure 15.34.

Observe that d∗,qII : Cq
II → Cq+1

II and d∗,q+1
II ◦d∗,qII = 0, so (CII, dII) is indeed cochain complex.

The reason for inserting the sign (−1)p will become clear later. It is unnecessary if we assume
that Equation (††) holds.

In order to define spectral sequences on Tot(C) we use the two filtrations of Example
15.2 whose definitions are repeated for the reader’s convenience.

Definition 15.31. We have the filtration

F p
I C =

⊕

s≥p

⊕

q∈N
Cs,q, p ∈ N

on CI, which amounts to the direct sum of the columns of index s ≥ p, and the filtration

F q
IIC =

⊕

p∈N

⊕

t≥q
Cp,t, q ∈ N,
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Figure 15.34: The complex CII is constructed by summing along the rows of the double
complex.

on CII, which amounts to the direct sum of the rows of index t ≥ q. The filtration F p
I C is

illustrated by Figure 15.2 while the filtration F q
IIC is illustrated by Figure 15.3.

Both filtrations are also filtrations on the total complex C. In all three cases, these
filtrations are compatible with the grading and regular on the total complex. In fact, they
are canonically cobounded.

In order to compute the terms IEp,q
2 and IIEp,q

2 of the spectral sequences associated with the
two filtrations above, we need to define complexes whose cochain modules are the cohomology
modules of the columns and of the rows of the double complex C viewed themselves as
complexes.

Observe that Cp
I =

⊕
q∈NC

p,q is a cochain complex with differential dp,∗II =
⊕

q∈N(−1)pdp,qII .
Here we view the pth column of the diagram C as a cochain complex.

Definition 15.32. The map dp,∗I : Cp
I → Cp+1

I , where dp,∗I =
⊕

q∈N d
p,q
I , can be viewed as a

chain map between Cp
I and Cp+1

I because the diagram

Cp,q
dp,qI //

(−1)pdp,qII
��

Cp+1,q

(−1)p+1dp+1,q
II

��
Cp,q+1

dp,q+1
I

// Cp+1,q+1
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commutes, since
(−1)p+1dp+1,q

II ◦ dp,qI = dp,q+1
I ◦ (−1)pdp,qII

is equivalent to dp+1,q
II ◦ dp,qI + dp,q+1

I ◦ dp,qII = 0, which is (†).

Observe that the columns are the complexes Cp
I and the chain maps are the horizontal

arrows .

If we denote the cohomology modules of the chain complex (Cp
I , d

p,∗
II ) by Hq

II(C
p
I ), the

chain maps dp,∗I from Cp
I to Cp+1

I induce homomorphisms

(dp,∗I )∗ : Hq
II(C

p
I )→ Hq

II(C
p+1
I ),

and we easily check that (dp+1,∗
I )∗ ◦ (dp,∗I )∗ = 0. Consequently, we obtain a cochain complex.

Definition 15.33. The cochain complex Hq
II(CI) is given by

0 // Hq
II(C

0
I ) // Hq

II(C
1
I ) // · · · // Hq

II(C
p
I ) // Hq

II(C
p+1
I ) // · · · ;

see Figure 15.35.
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2,1

2,2

II
2,1

II
2,2

HII
0 (CI ) = Ker  II d 2,0

HII(CI
2 )1 = Ker  II d 2,1 Im d

HII(CI )2 = Ker 
 II d 2,2 Im

 II
 d 2,1

d

d

d

2

2

 II
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2

d0,0
I

d 0,0
I( )*

d1,0
I d2,0

I
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I( )*

d0,1
I

dI
0,2 dI

1,2

dI( )*0,1
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d1,1
I
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I( )*
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dI
2,2

dI( )*1,2

Figure 15.35: A schematic illustration of the construction of the first three modules of
H0

II(CI), H
1
II(CI), and H1

II(CI).

It is important to remember that as a complex, Cp
I (the pth column) with index I, has

the differential dp,∗II whose index is II, and that the complex Hq
II(CI) whose leftmost index is
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II, has a differential induced by the chain map (dp,∗I ), whose index is I. In other words, the
indices I and II alternate.

As illustrated in Figure 15.36, the above complexes are the rows of a (first quadrant)
diagram HII(C), in which each node Hq

II(C
p
I ) is the qth cohomology module of the pth column

Cp
I of the complex C viewed as a (vertical) complex with the differential dp,∗II , and the complex

Hq
II(CI) corresponds to the qth row of this diagram viewed as a (horizontal) complex with

differential induced by dI.

HII
0 (CI

0 ) HII
0 (CI

1 ) HII
0 (CI

2 ) HII
0 (CI

3 ) HII
0 (CI

4 )

HII(CI
0 )1 HII(CI

1 )1 HII(CI
2 )1 HII(CI

3 )1 HII(CI
4 )1

HII(CI
0 )2

HII(CI
0 )3

HII(CI )2 1 HII(CI )2 2 HII(CI )2 3 HII(CI )2 4

HII(CI
1 )3 HII(CI

2 )3 HII(CI
3 )3 HII(CI

4 )3

d 0,0( )* d 1,0( )* d 2,0( )*I I I d 3,0( )*I

d 0,1( )*I
d 1,1( )*I

d 2,1( )*I d 3,1( )*I

d 0,2( )*I
d1,2 ( )*I d 2,2( )*I

d 3,2( )*I

d 0,3( )*I
d 1,3( )*I

d 2,3( )*I
d 3,3( )*I

Figure 15.36: A section first quadrant grid depiction of Hq
II(CI), where 0 ≤ q ≤ 3. Observe

that the coordinates of the orange nodes have transposed horizontal and vertical indexing
conventions.

Remark: Note that the insertion of the sign (−1)p is unnecessary if we assume that Equation
(††) holds.

Similarly, observe that Cq
II =

⊕
p∈NC

p,q is a cochain complex with differential d∗,qI =⊕
p∈N d

p,q
I . Here we view the qth row of the diagram C as a cochain complex.

Definition 15.34. The map d∗,qII : Cq
II → Cq+1

II , where d∗,qII =
⊕

p∈N(−1)pdp,qII , can be viewed

as a chain map between Cq
II and Cq+1

II because the diagram

Cp,q
dp,qI //

(−1)pdp,qII
��

Cp+1,q

(−1)p+1dp+1,q
II

��
Cp,q+1

dp,q+1
I

// Cp+1,q+1

commutes, as above.
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Observe that the rows are the complexes Cq
II and the chain maps are the vertical arrows .

If we denote the cohomology modules of the chain complex (Cq
II, d

∗,q
I ) by Hp

I (Cq
II), the

chain maps d∗,qII induce homomorphisms

(d∗,qII )∗ : Hp
I (Cq

II)→ Hp
I (Cq+1

II ),

and we easily check that (d∗,q+1
II )∗ ◦ (d∗,qII )∗ = 0. Consequently, we obtain a cochain complex.

Definition 15.35. The cochain complex Hp
I (CII) is given by

0 // Hp
I (C0

II)
// Hp

I (C1
II)

// · · · // Hp
I (Cq

II)
// Hp

I (Cq+1
II ) // · · · ;

see Figure 15.37.

C0
II C0,0 C1,0 C2,0d0,0

Id0,0
I d1,0

I d2,0
I

HI
0 (CII

0 ) = Ker  I d 0,0 HI (CII
0 )1 = Ker  I d 1,0 Im  I d 0,0 HI (CII

0 )2 = Ker  I d 2,0 Im  I d 1,0

CII C C1,1 C
d0,1

IdI d1,1
I d2,1

I

HI
0 (CII

1 ) = Ker  I d 0,1 HI (CII
1 )1 = Ker  I d Im  I d 0,1 HI (CII )2 = Ker  I d 2,1 Im  I d 1,1

CII C C C
d0,2

Id0,
I d1,2

I d2,2
I

H0 (CII ) = Ker  I d 0,2 HI (CII )1 = Ker  I d Im  I d 0,2 H I (CII )2 = Ker  I d 2,2 Im  I d 1,2

1 0,1 2,1

1,1 1

0,22

2 1,22 2

IId0,0

IId0,1

IId0,1

IId1,0

IId1,1

IId1,2 IId2,2

IId2,1

IId2,0

1,2 2,2

d 0,0
II( )*

I

d 0,1
II )*(

d 1,0
II )*(

d 1,1)*( II

d 2,0
II )*(

d 2,1)*(

Figure 15.37: A schematic illustration of the construction of the first three modules of
H0

I (CII), H
1
I (CII), and H1

I (CII).

It is important to remember that as a complex, Cq
II (the qth row) with index II, has the

differential d∗,qI whose index is I, and that the complex Hq
I (CII) whose leftmost index is I,

has a differential induced by the chain map (d∗,qII ), whose index is II. Again, the indices I
and II alternate.

As shown by Figure 15.38, the above complexes are the columns of a (first quadrant)
diagram HI(C), in which each node Hp

I (Cq
II) is the pth cohomology module of the qth row Cq

II
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of the complex C viewed as a (horizontal) complex with the differential d∗,qI , and the complex
Hp

I (CII) corresponds to the pth column of this diagram viewed as a (vertical) complex with
differential induced by dII.

HI
0 (CII

0 ) H 0(CII
1 ) H II

0(CI
2 ) H II

0(CI
3 )

H II(CI
4 )

HI (CII
0 ) H II(CI

1 )1
H II

(CI
2 )1 H II(CI

3 )1

H II(CI
4 )

HI (C0 )2

HI (C0 )3

H II(CI )21
H II(CI )2 2 H II(CI )23

H II(CI )4

H II(CI
1 )3 H II(CI

2 )3 H II(CI
3 )3

H II
(CI

4)

d 0,0( )* d 1,0( )* d 2,0( )*
II

d 3,0( )*

d 0,1( )*II
d 1,1( )* d 2,1( )* d 3,1( )*

d 0,2( )* d 1,2 ( )* d 2,2( )* d 3,2( )*

1

II

II

II

I

II

II

II

II

II

II

0

d 0,3( )*II
d 1,3 ( )*II

1

d 2,3( )*II

2 3

II

II

II

d 3,3( )*II

Figure 15.38: A section first quadrant grid depiction of Hq
I (CII), where 0 ≤ q ≤ 3.

Remark: Note that the insertion of the sign (−1)p is unnecessary if we assume that Equation
(††) holds.

We finally come to the spectral sequences induced by the filtrations F p
I C and F q

IIC on C
viewed as a total complex. We obtain the spectral sequences denoted IE and IIE.

It is possible to compute the terms IEp,q
1 and IEp,q

2 and the terms IIEp,q
1 and IIEp,q

2 with
some labor.

The term IEp
0 is not hard to compute since it is equal to F p

I C/F
p+1
I C, which is isomorphic

to
Cp

I =
⊕

q∈N
Cp,q,

the pth column, and IEp,q
0 = Cp,q. It follows that

IEp,q
1 = Hp+q(F p

I C/F
p+1
I C) = Hq

II(C
p
I ),

the cohomology being computed in the complex Cp
I with the differential dp,∗II . The com-

putation of IEp
2 is more involved. By Property (3) of the definition of a spectral sequence

(Definition 15.18),
IEp

2
∼= Hp(IE1) = Ker dp1/Im dp−1

1 ,
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so we need to compute dp1 in spectral sequence IE. The key point is that for any graded and
filtered complex C, the map dp1 is equal to the connecting homomorphism arising from the
short exact sequence

0 // F p+1C/F p+2C // F pC/F p+2C // F pC/F p+1C // 0.

Recall that

Ep,q
1 = Zp,q

1 /(Bp,q
0 + Zp+1,q−1

0 ).

Since Zp+1,q−1
0 = Cp+1,q−1 and Bp,q

0 = dZp,q−1
0 = dCp,q−1, we have

Ep,q
1 = Zp,q

1 /(dCp,q−1 + Cp+1,q−1).

The qth row of the above exact sequence of complexes is

0 // Cp+1,q−1/Cp+2,q−2 // Cp,q/Cp+2,q−2 // Cp,q/Cp+1,q−1 // 0.

For every s ≥ 1, all differentials

dp,q0,s : Cp,q/Cp+s,q−s → Cp,q+1/Cp+s,q−s+1

are induced by d : Cp,q → Cp,q+1 (actually, the restriction dCp,q of d to Cp,q), with

dp,q0,s([x]Cp+s,q−s) = [d(x)]Cp+s,q−s+1 , x ∈ Cp,q.

In the special case s = 1, dp,q0,1 = dp,q0 , the differential defined just after Definition 15.15. With
this notation

Hp+q(F pC/F p+1C) = Ker dp,q0,1/Im dp,q−1
0,1 .

But dp,q0,1(c) = 0 iff c ∈ Cp,q and dc ∈ Cp+1,q, which is equivalent to c ∈ Zp,q
1 . Thus we have

Ker dp,q0,1 = (Zp,q
1 + Cp+1,q−1)/Cp+1,q−1

Im dp,q−1
0,1 = (dCp,q−1 + Cp+1,q−1)/Cp+1,q−1.

We confirm (using the modular Noether isomorphism) that

Ep,q
1 = Zp,q

1 /(dCp,q−1 + Cp+1,q−1) ∼= Hp+q(F pC/F p+1C).

Similarly, we have

Ep+1,q
1 = Zp+1,q

1 /(dCp+1,q−1 + Cp+2,q−1) ∼= Hp+q+1(F p+1C/F p+2C).

In order to compute the connecting map

δp+q : Hp+q(F pC/F p+1C)→ Hp+q+1(F p+1C/F p+2C),
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as in the proof of the zig-zag lemma (Theorem 2.22), we use the diagram

Cp,q/Cp+2,q−2

dp,q0,2

��

π // Cp,q/Cp+1,q−1 // 0

0 // Cp+1,q/Cp+2,q−1 i // Cp,q+1/Cp+2,q−1.

We start with a cocycle γ = [c]Cp+1,q−1 ∈ Cp,q/Cp+1,q−1, which is equivalent to c ∈ Zp,q
1 .

Then we pull back [c]Cp+1,q−1 along the projection π, obtaining [c]Cp+2,q−2 , push this ele-
ment down along dp,q0,2, obtaining [dc]Cp+2,q−1 , and then pull back along i obtaining a cocycle

[dc]Cp+2,q−1 with dc ∈ Cp+1,q, which is equivalent to dc ∈ Zp+1,q−1
1 . In summary, we con-

structed a function that maps [c] ∈ Cp,q/Cp+1,q−1 with c ∈ Zp,q
1 to [dc] ∈ Cp+1,q/Cp+2,q−1

with dc ∈ Zp+1,q
1 . The connecting map δp+q sends the equivalence class of [c] modulo

Im dp,q−1
0,1 = (dCp,q−1 + Cp+1,q−1)/Cp+1,q−1 (an element of Hp+q(F pC/F p+1C)) to the equiv-

alence class of [dc] modulo Im dp+1,q−1
0,1 = (dCp+1,q−1 + Cp+2,q−1)/Cp+2,q−1 (an element of

Hp+q+1(F p+1C/F p+2C)). Since

(Cp,q/Cp+1,q−1)/((dCp,q−1 + Cp+1,q−1)/Cp+1,q−1) ∼= Cp,q/(dCp,q−1 + Cp+1,q−1)

and

(Cp+1,q/Cp+2,q−1)/((dCp+1,q−1 + Cp+2,q−1)/Cp+2,q−1) ∼= Cp+1,q/(dCp+1,q−1 + Cp+2,q−1),

we deduce that we can view the map δp+q as the map dp,q1 from Ep,q
1 = Zp,q

1 /(dCp,q−1 +
Cp+1,q−1) to Ep+1,q

1 = Zp+1,q
1 /(dCp+1,q−1 + Cp+2,q−1), as claimed. We leave the details as an

exercise.

The rest of the proof is an adaptation of Rotman’s proof which applies to homological
spectral sequences.

The above exact sequence is equivalent to the exact sequence

0 // Cp+1
I

// Cp
I ⊕ C

p+1
I

// Cp
I

// 0.

The complex Cp+1
I is equipped with the differential dp+1,∗

II and the complex Cp
I is equipped

with the differential dp,∗II . The complex Cp
I ⊕ C

p+1
I is equipped with the restriction of dT to

it. It is easy to show by induction that we can define the grading (Mp,q)q∈N of Cp
I ⊕C

p+1
I by

Mp,0 = Cp,0

Mp,q = Cp,q ⊕ Cp+1,q−1, q ≥ 1

and the differential D
p,q

: Mp,q →Mp,q+1 given by

D
p,q

(xp,q + yp+1,q−1) = dp,qII (xp,q) + dp,qI (xp,q) + dp+1,q−1
II (yp+1,q−1),
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C  =  M
p,0 p,0 C

C p,1

p+1,0

          4

C

M p,1

C

          4

Mp,2

p,2

p+1,1

C

C
          4

Mp,3

p,3

p+1,2

C

C

          4

Mp,4

p,4

p+1,3

C Cp
I I

p+1

Figure 15.39: The construction of Mp,q for Cp
I ⊕ C

p+1
I .

for any xp,q ∈ Cp,q, yp+1,q−1 ∈ Cp+1,q−1 (with yp+1,q−1 = 0 if q = 0); see Figures 15.39 and
15.40.

Since dp,qII (xp,q) ∈ Cp,q+1, dp,qI (xp,q) + dp+1,q−1
II (yp+1,q−1) ∈ Cp+1,q, we have

D
p,q+1

(D
p,q

(xp,q + yp+1,q−1)) = dp,q+1
II (dp,qII (xp,q)) + dp,q+1

I (dp,qII (xp,q))

+ dp+1,q
II (dp,qI (xp,q) + dp+1,q−1

II (yp+1,q−1))

= dp,q+1
I (dp,qII (xp,q)) + dp+1,q

II (dp,qI (xp,q)) = 0,

so D
p,q+1 ◦Dp,q

= 0. We also add the zero module as first module to the complex Cp+1
I , so

that we have commutative diagrams with exact rows

0 // 0

0
��

// Cp,0

D
p,0

��

// Cp,0

dp,0I
��

// 0

0 // Cp+1,0 // Cp,1 ⊕ Cp+1,0 // Cp,1 // 0

0 // Cp+1,q−1

dp+1,q−1
I
��

// Cp,q ⊕ Cp+1,q−1

D
p,q

��

// Cp,q

dp,qI

��

// 0

0 // Cp+1,q // Cp,q+1 ⊕ Cp+1,q // Cp,q+1 // 0
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C p,q d
p,q

i C p+1,q

C

C p+1,q-1

p,q+1

d
p,q

II

dII
p+1,q-1x     

2

p,q

d
p,q

II (xp,q )
d

p,q

I (xp,q )

y     
     
2

p+1,,q
-1

dII (
p+1,q-1

yp+1,q-1)

2

H

H

Figure 15.40: An illustration of D
p,q

: Mp,q →Mp,q+1.

for q ≥ 1. When we compute the connecting map

δq : Hq
II(C

p
I )→ Hq

II(C
p+1
I ),

as in the proof of the zig-zag lemma (Theorem 2.22), we use the diagram

Cp,q ⊕ Cp+1,q−1

D
p,q

��

π // Cp,q // 0

0 // Cp+1,q i // Cp,q+1 ⊕ Cp+1,q

in which π is the projection and i is the injection, where we pick some cocycle c ∈ Cp,q,
that is dp,qII (c) = 0, pick b = c ∈ Cp,q ⊕ Cp+1,q−1 such that π(b) = π(c) = c, push b = c
down using D

p,q
obtaining D

p,q
(c), and pull back D

p,q
(c) using the inclusion i, which yields

a = i−1(D
p,q

(c)). Then

δq([c]) = [a].

But by definition of D
p,q

, since dp,qII (c) = 0, we see that

D
p,q

(c) = dp,qI (c),

and so δq = (dp,qI )∗, namely δq([c]) = [dp,qI (c)]. Consequently, the chain complex consisting
of the modules Hq

II(C
p
I ) and the coboundary maps δq is just the chain complex HII(CI) of

Definition 15.33, and we find that

IEp,q
2
∼= Hp

I (Hq
II(CI)).

Other (less detailed) proofs can be found in Godement [24] (Chapter 4, Section 4.8) and
Mac Lane [37] (Chapter XI, Section 6).
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There is a subtle point which is “swept under the rug” by a number of authors, which is
that if we want to keep the filtration index in the second spectral sequence to be p, we need
to transpose the double complex, that is, to form the complex C> given by

C> =
⊕

p,q∈N
Cq,p,

as explained in Mac Lane [37] (Chapter XI, Section 6) and Rotman [50, 52] (Chapter 11,
Page 327). Indeed, to keep the index of filtration to be p, we need to consider F p

IIC/F
p+1
II C,

which is isomorphic to

Cp
II =

⊕

q∈N
Cq,p,

the pth row, and IIEp,q
0 = Cq,p, which explains why the transpose double complex C> shows

up. We also have to consider the differential d>I and d>II given by (d>I )p,q = dq,pII and (d>II)
p,q =

dq,pI . Obviously Tot(C) = Tot(C>), and the total differentials dnT and (d>)nT agree. See
Figures 15.41 and 15.42.

C
p,p C p+1,p

C p,p+1

C p+2,p

Cp+1,p+1

C p,p+2

C

C

p+2 ,p+1

p+1, p+2 Cp+2,p+2

dI

dI

dI

d I

d I

d I
d I

d I

dI
p,p p+1,p p+2,p

p+2 ,p+1p,p+1 p+1,p+1

p,p+2 p+1, p+2 p+2,p+2

IId

IId IId IId

IId IId

IId IId IId

p,p p+1,p p+2,p

p,p+1 p+1,p+1 p+2 ,p+1

p,p+2 p+1, p+2 p+2,p+2

C
p,p C

p+1,pC

p,p+1 C

p+2,p

Cp+1,p+1

C

p,p+2

C

Cp+2 ,p+1

p+1, p+2

Cp+2,p+2

dI

d

I

d

d

I
d I d I

d

Id IdI

p,p

p+1,p

p+2,p
p+2 ,p+1

p,p+1

p+1,p+1

p+2,p

p+1, p+2

p+2,p+2

IIdII

d

IId

II

II

d

IId

IId

IId

II

d

p,p

p+1,p

p,p+1

p+1,p+1

p+2 ,p+1

p,p+2

p+1, p+2

p+2,p+2

dI
p,p+2

Figure 15.41: The left diagram is the double complex C while the right diagram is its
reflection over the dotted orange diagonal line. Note this reflection interchanges rows and
columns and is the precursor to the double complex C>. What remains is to appropriately
relabel the nodes and maps as shown in Figure 15.42.

Since the second filtration of C is equal to the first filtration of C>, we find that the IIEp,q
2

term of the spectral sequence associated with the second filtration of C is equal to the IE
′p,q
2

term of the spectral sequence associated with the first filtration of C>, so as before,

IIEp,q
2 = IE

′p,q
2
∼= H

′p
I (H

′q
II (C>I )),



626 CHAPTER 15. SPECTRAL SEQUENCES

C p,p C p+1,p

C p,p+1

C p+2,p

C p+1,p+1
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C p+1, p+2 C p+2,p+2

I

dI I

I

I

dI
p,p p+2,p

p+2 ,p+1p+1,p+1

p+2,p+2

IId

IId

II IId IId

p,p

p,p+1 p+1,p+1

p+2 ,p+1

p,p+2 p+1, p+2 p+2,p+2

p,p+2

T( )

T( )

T T

T T

T

T

( T )

d
p+1,p

( T )

d
p,p+1

( T )

IId
p+1,p

( T )

( T )

d( T )

dI( T )

IId( T )

IId( T )

T

p+2 ,p+1T

T
dI( T )

p,p+2

( T )

d( T )

IId( T )
p+2 ,p+1

Id( T )

( T )

d( T )

Figure 15.42: The double complex C>.

where the prime indicates that we take cohomology with respect to d>I and d>II. Let us express
the above formula in terms of the complex C.

First, C>I = CII, and since (d>I )p,q = dq,pII and (d>II)
p,q = dq,pI ,

H
′q
II ((C>I )p) = Hq

I (Cp
II),

so the complex H
′q
II (C>I )), which is

0 // H
′q
II ((C>I )0) // H

′q
II ((C>I )1) // · · · // H

′q
II ((C>I )p) // H

′q
II ((C>I )p+1) // · · · ,

with differential induced by the chain maps (d>I )p,∗, is equal to

0 // Hq
I (C0

II)
// Hq

I (C1
II)

// · · · // Hq
I (Cp

II)
// Hq

I (Cp+1
II ) // · · · ,

with the differential induced by the chain maps d∗,pII . The above complex is just the complex
Hq

I (CII). Therefore, we obtain
IIEp,q

2
∼= Hp

II(H
q
I (CII)),

where the complex Hq
I (CII) is given by

0 // Hq
I (C0

II)
// Hq

I (C1
II)

// · · · // Hq
I (Cp

II)
// Hq

I (Cp+1
II ) // · · · .

We have the following result.
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Theorem 15.18. Given a double complex C =
⊕

p,q∈NC
p,q, we have two spectral sequences

IE and IIE corresponding to the filtrations F p
I C and F q

IIC on C viewed as a total complex (in
fact, these filtrations are canonically cobounded). We have

IEp,q
2
∼= Hp

I (Hq
II(CI))

and
IIEp,q

2
∼= Hp

II(H
q
I (CII)).

In the next three sections we will provide several examples of double complexes.

15.10 Spectral Sequences of a Differential Sheaf

Let X be a topological space.

Definition 15.36. A differential sheaf F∗ is a family (Fp)p∈N of sheaves of R-modules on
X together with a family of sheaf maps δp : Fp → Fp+1 such that δp+1 ◦ δp = 0 for all p ≥ 0.
We represent a differential sheaf by the diagram

0 // F0 δ0
// F1 δ1

// F2 δ2
// · · · // Fn δn // Fn+1 δn+1

// · · · .

Observe that since a resolution of a sheaf F is an exact sequence of sheaves

0 // F j // F0 δ0
// F1 δ1

// · · · // Fn δn // · · · ,

the sequence F∗

0 // F0 δ0
// F1 δ1

// · · · // Fn δn // · · ·
is also a differential sheaf. With a slight abuse of language, we also call F∗ a resolution of
F .

Definition 15.37. Given a differential sheaf F∗, we define the sheaves Zn(F∗), Bn(F∗) and
the cohomology Hn(F∗) by

Zn(F∗) = Ker δn

Bn(F∗) = SIm δn−1

Hn(F∗) = ˜Zn(F∗)/Bn(F∗),

where ˜Zn(F∗)/Bn(F∗) is the sheafification of the presheaf Zn(F∗)/Bn(F∗).

Let T be an additive functor on sheaves. Given a differential sheaf F∗, the complex
T (F∗) is obtained by applying T to the Fn and to the coboundary maps δn, namely

0 // T (F0)
T (δ0) // T (F1)

T (δ1) // T (F2)
T (δ2) // · · · // T (Fn)

T (δn) // T (Fn+1)
T (δn+1)// · · · .

The following result is proven in Godement [24] (Chapter 5, Page 165).



628 CHAPTER 15. SPECTRAL SEQUENCES

Proposition 15.19. If the functor T is exact, for every differential sheaf F∗, we have

Hn(T (F∗)) ∼= T (Hn(F∗)), n ≥ 0.

Given a sheaf F , recall from Definition 13.5 the canonical flasque resolution

0 // F j // C0(X,F) D0
// C1(X,F) D1

// C2(X,F) D2
// · · ·

of Proposition 13.4, denoted C(X,F) (or C∗(X,F)). Here we have renamed the maps of the
resolution as Dp instead of dp to avoid a clash of notation below when defining dI, dII. Also
recall from Definition 13.5 that the R-modules Cn(X,F) are defined as

Cn(X,F) = Γ(X, Cn(X,F)) = Cn(X,F)(X),

where Γ(X,−) is the global section functor.

Definition 15.38. The cochain complex C(X,F) (also denoted C∗(X,F)) is obtained by
applying the global section functor to the canonical resolution and is given by

0 // Γ(X,F)
j∗ // C0(X,F)

(D0)∗ // C1(X,F)
(D1)∗ // C2(X,F)

(D2)∗ // · · · .
We call this complex the canonical resolution complex of F .

The functor F 7→ C(X,F) from the category of sheaves to the category of cochain
complexes is exact. This is proven in Godement [24] (Chapter 4, Page 168). This implies
that the functors F 7→ Cp(X,F) from sheaves to R-modules are also exact. As a corollary,
using Proposition 15.19 with T = Cp(X,−) we deduce the following result.

Proposition 15.20. Given a differential sheaf F∗, recall that Cp(X,F∗) denotes the cochain
complex obtained by applying the functor Cp(X,−) to the cochain complex defined by F∗.
There are isomorphisms

Hq(Cp(X,F∗)) ∼= Cp(X,Hq(F∗)), q ≥ 0.

Definition 15.39. Given a differential sheaf F∗, we define the double complex

C(X,F∗) =
⊕

p,q∈N
Cp(X,F q),

where Cp(X,F q) is the pth module in the canonical resolution C(X,F q) of F q. We have
two differentials dI and dII. The horizontal differential dI is given by dI =

⊕
q∈N d

q
I , with

dqI =
⊕

p∈N d
p,q, where

dp,q = (Dp,q)∗ : Cp(X,F q)→ Cp+1(X,F q)
occurs in the cochain complex C(X,F q) (the canonical resolution of F q), the qth row of
the double complex C(X,F∗). The vertical differential dII is given by dII =

⊕
p∈N d

p
II, with

dpII =
⊕

q∈N d
p,q
II (a map on the pth column of C(X,F∗)), where

dp,qII : Cp(X,F q)→ Cp(X,F q+1)

is the map induced by functoriality by the map (−1)pδq : F q → F q+1. The total complex
associated with C(X,F∗) is denoted by C. See Figure 15.43.
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Figure 15.43: A section of the double complex C(X,F∗) =
⊕

p,q∈NC
p(X,F q).

� Do not confuse the cochain complex C(X,F) (the canonical resolution of Definition
15.38) and the double complex C(X,F∗), in which F∗ is a differential sheaf.

The following observation applies to all the double complexes that we are considering
in this section and the next two. These complexes involve a differential sheaf F∗ in the q-
coordinate. As a consequence, the row cohomology involves a single sheaf Fp and is usually
easy to compute. It follows that computing the terms IIEp,q

2 of the second spectral sequence
is also easy. On the other hand, the column cohomology involves the entire differential sheaf
F∗ and is harder to compute. The terms IEp,q

2 of the first spectral sequence are also harder
to compute.

The pth row of C(X,F∗) is the canonical resolution C(X,Fp) of Fp, which computes the
sheaf cohomology of the sheaf Fp, and the pth column of C(X,F∗) computes the cohomology
of the complex Cp(X,F∗), which is harder to handle, but can be expressed in terms of the
cohomology sheaves Hq(F∗). If F∗ is a resolution of F , then the first spectral sequence
degenerates at r = 2. If this resolution consists of sheaves with special properties, then
the second spectral sequence also degenerates and we obtain isomorphisms Hn(Γ(F∗)) ∼=
Hn(X,F) that allow us to compute sheaf cohomology using special resolutions F∗.

The conditions needed for applying Theorem 15.18 are satisfied and we obtain a spectral
sequence where the terms IEp,q

2 and IIEp,q
2 are determined.

To compute IEp,q
2
∼= Hp

I (Hq
II(CI)) we need to determine the complex Hq

II(CI), which re-
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quires computing Hq
II(C

p
I ), with Cp

I the complex (the pth column of C(X,F∗)) given by

Cp
I =

⊕

q∈N
Cp(X,F q) = Cp(X,F∗).

By Proposition 15.20, we obtain

Hq
II(C

p
I ) ∼= Cp(X,Hq(F∗)).

Thus the complex Hq
II(CI) is the complex

⊕
p∈NC

p(X,Hq(F∗)), and by taking the cohomol-
ogy Hp

I , we get
IEp,q

2
∼= Hp(X;Hq(F∗)).

To compute IIEp,q
2
∼= Hp

II(H
q
I (CII)), we need to determine the complex Hq

I (CII), which
requires computing Hq

I (Cp
II), with Cp

II the complex (the pth row of C(X,F∗)) given by

Cp
II =

⊕

q∈N
Cq(X,Fp),

which is the canonical resolution C(X,Fp) of Fp, so we have

Hq
I (Cp

II)
∼= Hq(X,Fp),

and the complex Hq
I (CII) is the complex Hq(X,F∗) given by

0 // Hq(X,F0) // Hq(X,F1) // · · · // Hq(X,Fp) // Hq(X,Fp+1) // · · · ,

where the maps Hq(X,Fp) −→ Hq(X,Fp+1) are induced on cohomology by the maps
δp : Fp → Fp+1. Finally, we obtain

IIEp,q
2
∼= Hp(Hq(X;F∗)).

In summary, we have shown the following result.

Proposition 15.21. The terms IEp,q
2 and IIEp,q

2 of the spectral sequences associated with the
double complex C(X,F∗) are given by

IEp,q
2
∼= Hp(X;Hp(F∗))

IIEp,q
2
∼= Hp(Hq(X;F∗)).

Observe that if the complexes Hq(X,F∗) are acyclic in all degrees for all q ≥ 1, which
means that Hp(Hq(X,F∗)) = (0) for all p ≥ 0 and all q ≥ 1, then we see that IIEn−q,q

2
∼=

Hn−q(Hq(X,F∗)) = (0) for all q 6= 0, which is the condition for the spectral sequence IIE
to degenerate at r = 2 with q(n) = 0. Since the second filtration is regular, by Proposition
15.17, we have isomorphisms

Hn(C) ∼= IIEn,0
2
∼= Hn(Γ(F∗)),
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where Γ(F∗) is the cochain complex

0 // Γ(X,F0) // Γ(X,F1) // Γ(X,F2) // Γ(X,F3) // · · · ,

since H0(X,Fp) ∼= Γ(X,Fp). Thus we have the following theorem from Godement [24]
(Chapter 4, Theorem 4.6.1).

Theorem 15.22. Given any differential sheaf F∗ = (Fp), let C be the total complex asso-
ciated with the complex C(X,F∗) of Definition 15.39. If Hp(Hq(X,F∗)) = (0) for all p ≥ 0
and all q ≥ 1, then the second spectral sequence IIE degenerates for r = 2 and q(n) = 0 and
we have an isomorphism

Hn(C) ∼= Hn(Γ(F∗)), n ≥ 0.

The first spectral sequence IE has the property that for all p, q ≥ 0, for r large enough, we
have IE∞ ∼= gr(H(C)), and

IEp,q
2
∼= Hp(X;Hq(F∗)).

Given a resolution F∗

0 // F j // F0 δ0
// F1 δ1

// · · · // Fn δn // · · ·

of a sheaf F , we have the differential sheaf F∗ given by

0 // F0 δ0
// F1 δ1

// · · · // Fn δn // · · · ,

and more can be said. Indeed, since the sequence

0 // F j // F0 δ0
// F1 δ1

// · · · // Fn δn // · · ·

is exact, by definition of the cohomology of a differential sheaf, we have Hq(H(F∗)) = (0)
for all q ≥ 1, and thus

IEp,q
2
∼= Hp(X;Hq(F∗)) = (0)

for all p ≥ 0 and all q ≥ 1. We also haveH0(F∗) ∼= F . This means that the spectral sequence
IE degenerates for r = 2 and q(n) = 0. Since the first filtration is regular, by Proposition
15.17, we have isomorphisms

Hn(C) ∼= IEn,0
2
∼= Hn(X,H0(F∗)) ∼= Hn(X,F),

since H0(F∗) ∼= F .

If we also have Hn(C) ∼= Hn(Γ(F∗)), as in Theorem 15.22, then if the above result holds,
we obtain an isomorphism

Hn(Γ(F∗)) ∼= Hn(X,F).

This means that the sheaf cohomology Hn(X,F) can be computed using a special resolution
F∗ of F . Indeed we have the following result (also from Godement [24], Chapter 4, Theorem
4.7.1).
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Theorem 15.23. Let F∗ be a resolution of a sheaf F and let C be the total complex associated
with the complex C(X,F∗) of Definition 15.39. The first spectral sequence degenerates for
r = 2 and q(n) = 0 and we have isomorphisms

Hn(C) ∼= Hn(X,F), n ≥ 0.

If Hp(Hq(X,F∗)) = (0) for all p ≥ 0 and all q ≥ 1, then the second spectral sequence also
degenerates for r = 2 and q(n) = 0 and we have an isomorphism

Hn(C) ∼= Hn(Γ(F∗)) ∼= Hn(X,F), n ≥ 0.

In particular, the above isomorphisms hold if the sheaves Fp are acyclic for all p ≥ 0. The
above holds in the following two cases:

(1) The sheaves Fp are flasque for all p ≥ 0.

(2) The topological space X is paracompact and the sheaves Fp are soft for all p ≥ 0.

Proof. Recall that a sheaf F is acyclic if Hq(X,F) = (0) for all q ≥ 1. If all sheaves Fp are
acyclic, then the complexes Hq(X,F∗) given by

0 // Hq(X,F0) // Hq(X,F1) // · · · // Hq(X,Fp) // Hq(X,Fp+1) // · · · ,

are trivial (all module are zero) for q ≥ 1. It only remains to prove (1) and (2). By
Proposition 13.7, flasque sheaves are acyclic. Similarly, by Proposition 13.27, a soft sheaf on
a paracompact space is acyclic.

Theorem 15.23 can be applied to constant sheaves to prove that various sheaf cohomolo-
gies can be computed using special resolutions. This applies to Alexander–Spanier cochains,
and de Rham cohomology. See Godement [24] (Chapter 4) for more details. Proposition
15.23 also implies Proposition 11.34 in the case where T is the global section functor. The
proof can be generalized to any left-exact functor T .

15.11 Spectral Sequences of Čech Cohomology, I

In this section we are going to define spectral sequences induced by double complexes whose
row cohomology is the Čech cohomology associated with a cover U on a topological space.
The reader may want to review Section 9.1.

Recall from Section 13.3 that given an open cover U on a topological space X, for any
sheaf F on X, we have the sheaves Cp(U ,F). A crucial property of the sheaves Cp(U ,F) is
that they form a resolution

0 // F // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · ·

of the sheaf F . This is shown in Proposition 13.9, and in fact it is also a resolution if U is a
closed cover which is locally finite. This second result is proven in Godement [24] (Chapter
5, Theorem 5.2.1).
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Definition 15.40. The sheaves Cp(U ,F) constitute the differential sheaf C(U ,F) given by

0 // C0(U ,F) δ // C1(U ,F) δ // · · · // Cp(U ,F) δ // Cp+1(U ,F) δ // · · · ,

called the Čech resolution of F .

Because the Cp(U ,F) are sheaves, applying the global section functor to the differential
sheaf C(U ,F) we get Γ(X, C(U ,F)) = C(U ,F), which is just the Čech complex

0 // C0(U ,F) // C1(U ,F) // · · · // Cp(U ,F) // Cp+1(U ,F) // · · · .

See Definitions 9.1, 9.2 and 9.3.

� One should not confuse the sheaves Cp(X,F) that occur in the canonical flasque reso-
lution of a sheaf F , and the sheaves Cp(U ,F) that occur in the Čech resolution of F .

Similarly, the canonical resolution complex C(X,F) should not be confused with the Čech
complex C(U ,F).

The following result is also shown in Godement [24] (Chapter 5, Theorem 5.2.2).

Proposition 15.24. If the cover U on X is either open or closed and locally finite, then we
have isomorphisms

Ȟ0(U ,F) ∼= Γ(X,F) ∼= H0(X,F).

The first of two spectral sequences that we will consider arise from the double complex

C(X, C(U ,F)) =
⊕

p,q∈N
Cp(X, Cq(U ,F)).

Let C be the total complex associated with C(X, C(U ,F)). This is an instance of Definition
15.39 with F∗ equal to the differential sheaf C(U ,F) of Definition 15.40 (which involves Čech
cohomology). Since the sheaves Cq(U ,F) form a resolution of F , we know from Theorem
15.23 that the first spectral sequence degenerates at r = 2 and we obtain isomorphisms

Hn(C) ∼= Hn(X,F), n ≥ 0.

Regarding the second spectral sequence, by Theorem 15.22, we have

IIEp,q
2
∼= Hp(Hq(X, C(U ,F))).

In general this expression can’t be simplified but it can be if U is a closed and locally finite
cover. For this one needs to introduce the notion of system of coefficients, which we will
do later. This leads to a result of Leray about closed and locally finite covers, but we will
not pursue this matter any further and instead refer to reader to Godement [24] (Chapter
5, Theorem 5.2.4).

In general, Ȟ0(U ,F) and H0(X,F) are not isomorphic but spectral sequences can be
used to prove that various conditions yield isomorphisms.

The key is that given a differential sheaf F∗ = (Fp) we can form the following double
complex.
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Definition 15.41. Let U be an open cover on a topological space X and let F∗ be a
differential sheaf on X. The double complex C(U ,F∗), illustrated by Figure 15.44, is given
by

C(U ,F∗) =
⊕

p,q∈N
Cp(U ,F q),

where Cp(U ,F q) is the pth module in the Čech complex C(U ,F q) of F q, the qth row of the
double complex C(U ,F∗). The differentials dI and dII are defined as in Definition 15.39, ex-
cept that the horizontal differential dI arises from the coboundary maps of the Čech complex
C(U ,F q). The total complex associated with C(U ,F∗) is denoted by C.

C
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Figure 15.44: A section of the double complex C(U ,F∗) =
⊕

p,q∈NC
p(U ,F q), where we used

the conventions of Definition 15.39 to express dI.

� One should not confuse the double complex C(X,F∗) of Definition 15.39 whose pth row
involves the sheaf cohomology of Fp, and the double complex C(U ,F∗) defined above,

whose pth row involves the Čech cohomology of Fp.

The pth row of C(U ,F∗) is the Čech complex C(U ,Fp) which computes the Čech coho-
mology (over U) of the sheaf Fp. The pth column of C(U ,F∗) computes the cohomology of
the complex

Cp(U ,F∗) =
⊕

q∈N
Cp(U ,F q),

which involves the Čech cochains Cp(U ,F q) of the sheaves F q. The complex Cp(U ,F∗)
is a bit complicated but it can be expressed in terms of complexes of the form F∗(Ui0···is)
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obtained by applying the differential sheaf F∗ to the open subsets Ui0···is . Then it is possible
to express the cohomology modules of the complex Cp(U ,F∗) using what is known as systems
of coefficient. If F∗ is the canonical resolution of F , then the second spectral sequence
degenerates at r = 2. Under additional conditions on F∗, the first spectral sequence also
degenerates and we find isomorphisms

Ȟn(U ,F) ∼= Hn(X,F), n ≥ 0.

As in the previous section, to compute IIEp,q
2
∼= Hp

II(H
q
I (CII)), we need to determine the

complex Hq
I (CII), which requires computing Hq

I (Cp
II), with Cp

II the complex (the pth row of
C(U ,F∗)) given by

Cp
II =

⊕

q∈N
Cq(U ,Fp),

which is the Čech complex C(U ,Fp) of Fp (over U), so we have

Hq
I (Cp

II)
∼= Ȟq(U ,Fp),

and the complex Hq
I (CII) is the complex Ȟq(U ,F∗) given by

0 // Ȟq(U ,F0) // Ȟq(U ,F1) // · · · // Ȟq(U ,Fp) // Ȟq(U ,Fp+1) // · · · ,

where the maps Ȟq(U ,Fp) −→ Ȟq(U ,Fp+1) are induced on cohomology by the maps
δp : Fp → Fp+1.

Proposition 15.25. The terms IIEp,q
2 of second spectral sequence associated with the double

complex C(U ,F∗) are given by

IIEp,q
2
∼= Hp(Ȟq(U ,F∗)).

The term IEp,q
2 is a little harder to determine. We will return to this point shortly.

The following vanishing cohomology results will be used to give sufficient conditions for
the second spectral sequence to degenerate.

Proposition 15.26. Let U be a cover on a topological space X, and let F be a sheaf on X.
We have

Ȟp(U ,F) = (0) for all p ≥ 1

if one of the conditions below holds:

(a) The cover U is open and F is flasque.

(b) The cover U is open, X is paracompact, and F is fine.

(c) The cover U is closed, locally finite, X is paracompact and F is soft.
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Proposition 15.26 is proven in Godement [24] (Chapter 5, Theorem 5.2.3).

Let us now assume that U is open and that G∗ is the canonical flasque resolution of the
sheaf F . By Proposition 15.26, we have

Ȟq(U ,Gp) = (0) for all p ≥ 0 and all q ≥ 1,

so the complexes Ȟq(U ,G∗) are trivial for all q ≥ 1, which implies that the spectral sequence
IIE degenerates for r = 2 and q(n) = 0. Consequently we have isomorphisms

Hn(C) ∼= IIEn,0
2
∼= Hn(Ȟ0(U ,G∗)) ∼= Hn(X,F),

because the complex Ȟ0(U ,G∗) is simply the complex Γ(X,G∗) since Ȟ0(U ,Gp) ∼= Γ(X,Gp),
and since G∗ is the canonical flasque resolution of F , the complex Γ(X,G∗) computes the
sheaf cohomology of F . In summary we proved the following result.

Proposition 15.27. Let U be an open cover on a topological space X and let G∗ be the
canonical flasque resolution of a sheaf F . The second spectral sequence associated with the
double complex C(U ,G∗) degenerates at r = 2 and we have isomorphisms

Hn(C) ∼= IIEn,0
2
∼= Hn(X,F), n ≥ 0.

To proceed any further we need to determine IEp,q
2 , where we assume again that F∗ is a dif-

ferential sheaf. To compute IEp,q
2
∼= Hp

I (Hq
II(CI)) we need to determine the complex Hq

II(CI),
which requires computing Hq

II(C
p
I ), with Cp

I the complex (the pth column of C(U ,F∗)) given
by

Cp
I =

⊕

q∈N
Cp(U ,F q) = Cp(U ,F∗).

We now are faced with computing Hq
II(C

p(U ,F∗)). This involves cohomology groups of the
form Hq(F∗(Ui0···is)), where as usual Ui0···is = Ui0 ∩ · · · ∩ Uis , with v = (i0, . . . , is) a finite
sequence of indices from the index set J of the open cover U = (Ui)i∈J . The complex
F∗(Ui0···is) = F∗(Uv), is given by

0 // F0(Uv) // F1(Uv) // · · · // Fn(Uv) // · · · ,

where the coboundary maps are induced by functoriality.

The map (i0, · · · , is) 7→ Hq(F∗(Ui0···is)) is not quite a presheaf. First, it is not defined on
open subsets, but even it it was defined on open subsets of the form Ui0···is , it is not defined
on all open subsets. Still, it shares the defining properties of a presheaf. It is called a system
of coefficients .

Definition 15.42. Given a cover U = (Ui)i∈J on a topological space X, a system of coef-
ficients K on J∗ =

⋃
k∈N J

n consists of an assignment of an R-module K(v) to every finite
sequence v = (i0, . . . , is) ∈ Js+1, and for any two finite sequences v and w (over J∗) such that
v is a subsequence of w of a restriction map ρvw : K(v) → K(w). Note that since Uw ⊆ Uv
if v is a subsequence of w, not the other way around, the restriction map goes in the right
direction. The restriction maps satisfy the following properties:
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(a) If v = w, then ρvv = id.

(b) If t is a subsequence of v and v is a subsequence of w, then

ρtw = ρvw ◦ ρtv;

see Figure 15.45.

Key

U 1

U2

U 3

4U

w = (1,2,3,4) v = (1,2)
t = (2)

K
K

K

(t)

(v)
(w) ρ

t
vρ

v
w

Figure 15.45: A schematic representation of Condition (b) of Definition 15.42. The spherical
objects above the plane containing the U ’s are the R-modules. The ρ-maps systematically
collapse the larger modules onto the smaller, subcontained modules. The nesting of the
modules is shown in the diagram below the maps.

Given a system of coefficients K on a cover U , we define Cp(U ,K) just as in Definition
9.1.

Definition 15.43. Given a topological space X, a cover U = (Uj)j∈J of X, and a system of
coefficients K, the R-module Cp(U ,K) of Čech p-cochains with coefficients in K is the set
of all functions f with domain Jp+1 such that f(i0, . . . , ip) ∈ K(i0, . . . , ip); in other words,

Cp(U ,K) =
∏

(i0,...,ip)∈Jp+1

K(i0, . . . , ip),

the set of all Jp+1-indexed families (fi0,...,ip)(i0,...,ip)∈Jp+1 with fi0,...,ip ∈ K(i0, . . . , ip).
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Then as in Section 9.1 we define the Čech cohomology modules Ȟp(U ,K) with coefficients
in K.

Returning to our differential sheaf F∗ and to our first spectral sequence, to compute
IEp,q

2
∼= Hp

I (Hq
II(CI)) we need to determine the complex Hq

II(CI), which requires computing
Hq

II(C
p
I ), where Cp

I = Cp(U ,F∗). But we are now in the position to compute Hq
II(C

p(U ,F∗)).
This is because

Cp(U ,F∗) =
⊕

q∈N
Cp(U ,F q)

=
⊕

q∈N

∏

(i0,...,ip)∈Jp+1

F q(Ui0···ip)

∼=
∏

(i0,...,ip)∈Jp+1

⊕

q∈N
F q(Ui0···ip)

=
∏

(i0,...,ip)∈Jp+1

F∗(Ui0···ip),

where F∗(Ui0···ip) is the cochain complex

0 // F0(Ui0···ip) // F1(Ui0···ip) // · · · // F q(Ui0···ip) // · · · (∗F∗(Uv))

induced by the differential sheaf F∗ on Ui0···ip (with differential induced by functoriality by
the map (−1)pδq : F q → F q+1); see Figure 15.46.

Writing Uv as an abbreviation for Ui0···ip , we have

Hq
II(C

p
I ) =

∏

v∈Jp+1

Hq(F∗(Uv)).

This concept is illustrated by Figure 15.47. If we define the system of coefficients Kq(F∗),
by

Kq(F∗) : v 7→ Hq(F∗(Uv)),
where F∗(Uv) is the complex in (∗F∗(Uv)), with the obvious restriction maps, then IEp,q

1 =
Hq

II(C
p
I ) = Cp(U ,Kq(F∗)), and thus we have the following result.

Proposition 15.28. The terms IEp,q
2 of the first spectral sequence associated with the double

complex C(U ,F∗) are given by

IEp,q
2 = Ȟp(U ,Kq(F∗)).

Let us now assume that U is an open cover and that G∗ is the canonical flasque resolution
of F . It can be shown that

Hq(G∗(Uv)) ∼= Hq(Uv,F),

where Hq(Uv,F) is the qth module of sheaf cohomology of the restriction of the sheaf F to
Uv; see Godement [24] (Chapter 4, Lemma 4.9.1). In summary, using Proposition 15.27, we
have the following theorem from Godement [24] (Chapter 5, Theorem 5.4.1).
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U1 U2g

X
U1

= U11

U2= U22

U1 U2h = U12
= U21

C  (U, F   )1 0

F  (U  )F  (U  ) F  (U  ) F  (U  )( ),11 12 21 22, ,

F  (U  )F  (U  ) F  (U  ) F  (U  )( ),11 12 21 22, ,

F  (U  )F  (U  ) F  (U  ) F  (U  )( ),11 12 21 22, ,

C  (U, F   )1

C  (U, F   )1

0 0 0 0

1

1 1 1 1

2
2 2 2 2

-δ0

-δ1

Figure 15.46: Let X be the union of the peach and pink open disks. The three horizontal
boxes are the first three elements in the second column of the double complex C(U ,F∗). A
typical element of C1(U ,F q) is a horizontal 4-tuple. The vertical red rectangles represent
the componentwise recollection used to form F∗(Uij).

Theorem 15.29. Let U be an open cover on a topological space X, and let F be a sheaf on
X. Let G∗ be the canonical flasque resolution of a sheaf F and let C be the total complex
associated with the double complex C(U ,G∗).

(1) The second spectral sequence IIE degenerates at r = 2 and there are isomorphisms

Hn(C) ∼= Hn(X,F) for all n ≥ 0.

(2) We can define the system of coefficients Kq(F) by

Kq(F)(v) = Hq(Uv,F),

for all open subsets Uv, with v = (i0, . . . , is) ∈ Js+1, and for every q ≥ 0, and the term
IEp,q

2 of the first spectral sequence IE is given by

IEp,q
2 = Ȟp(U ,Kq(F)).

As a corollary of Theorem 15.29, we obtain a result due to Henri Cartan.
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Figure 15.47: A continuation of Figure 15.46 in which the vertical red rectangles are replaced
by vertical cochains. The cohomology is via (−1)pδq : F q → F q+1 as seen by the construction
of H2

II(C
1
I ).

Theorem 15.30. Let U be an open cover on a topological space X, and let F be a sheaf on
X. If

Hq(Uv,F) = (0) for all q ≥ 1

and all open subsets Uv, with v = (i0, . . . , is) ∈ Js+1, then the first spectral sequence also
degenerates at r = 2 and we have isomorphisms

Ȟn(U ,F) ∼= Hn(X,F), n ≥ 0.

An interesting special case of the double complex C(U ,F∗) arises when F∗ is the dif-
ferential sheaf A∗ associated with de Rham cohomology of differential forms, where Ap(U)
consists of the p-differential forms on the open subset U . This is the Čech–de–Rham complex
double complex AC∗,∗(U) of Section 9.3, which we now denote C(U ,A∗), with

C(U ,A∗) =
⊕

p,q∈N
Cp(U ,Aq)

and
Cp(U ,Aq) =

∏

v∈Jp+1

Aq(Uv).
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The pth row Cp
II of C(U ,A∗) is the Čech complex C(U ,Ap),

0 // C0(U ,Ap) // C1(U ,Ap) // C2(U ,Ap) // · · · ,

which computes the Čech cohomology modules Ȟq(U ,Ap) of the sheaf Ap. However, by
Proposition 8.5 of Bott and Tu [4], the complex

0 // Ap(X) // C0(U ,Ap) // C1(U ,Ap) // C2(U ,Ap) // · · ·

is exact for all p ≥ 0, and this implies that the complex C(U ,Ap) is acyclic, so

Ȟq(U ,Ap) = (0) for all q ≥ 1 and all p ≥ 0,

and Ȟ0(U ,Ap) ∼= Ap(X). Consequently, the complex Ȟ0(U ,A∗) is the de Rham complex,
and since by Proposition 15.25

IIEp,q
2
∼= Hp(Ȟq(U ,A∗)),

the second spectral sequence degenerates for r = 2 and q(n) = 0, we have isomorphisms

Hn(C) ∼= Hn
dR(X).

Observe that we obtained a quick proof of Theorem 9.5 using spectral sequences.

The pth column Cp
I of C(U ,A∗) is the complex Cp(U ,A∗),

0 // Cp(U ,A0) // Cp(U ,A1) // Cp(U ,A2) // · · · ,

which computes the cohomology modules Hq
II(C

p(U ,A∗)). In general, it is not easy to com-
pute this cohomology, but if U is a good cover, the open subsets Uv are contractible (with
v ∈ Jp+1, p ≥ 0), so the complex A∗(Uv) induced by the differential sheaf A∗ on Uv,

0 // A0(Uv) // A1(Uv) // · · · // Aq(Uv) // · · · ,

is acyclic, and
Hq(A∗(Uv)) = (0) for all q ≥ 1.

But then the system of coefficient Kq(A∗) given by Kq(A∗) : v 7→ Hq(A∗(Uv)) has the prop-
erty that

Kq(A∗) = (0) for all q ≥ 1,

and
K0(A∗)(v) = H0(A∗(Uv)) = C0(Uv, R̃X),

the space of locally constant functions on Uv, where R̃X is constant sheaf of locally constant
functions with values in R. By inspection of the definition of Ȟp(U ,K0(A∗)), we see that

Ȟp(U ,K0(A∗)) ∼= Ȟp(U , R̃X),
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the pth Čech cohomology module of U with coefficients in the constant sheaf R̃X of lo-
cally constant functions with values in R. By Proposition 15.28, the first spectral sequence
degenerates for r = 2 and we have isomorphisms

Hn(C) ∼= Ȟn(U , R̃X).

Therefore, spectral sequences provide a quick proof of the equivalence of de Rham coho-
mology and Čech cohomology for a good cover (on a manifold, Theorem 9.4), namely

Hn
dR(X) ∼= Ȟn(U , R̃X).

Many more applications of spectral sequences in topology are described in Bott and Tu
[4] and McCleary [44].

We now consider Čech cohomology. The reader may want to review Section 9.2.

15.12 Spectral Sequences of Čech Cohomology, II

In Definition 9.8, the Čech cohomology groups Ȟp(X,F) with values in F are defined as the
direct limits

Ȟp(X,F) = lim−→U
Ȟp(U ,F)

with respect to coverings U = (Ui)i∈I whose index set I is a subset of 2X . In order to define
our double complex we need to introduce the following complexes.

Definition 15.44. The Čech cochain complexes Č(X,F) are given by the direct limits (of
complexes!)

Č(X,F) = lim−→U
C(U ,F),

where C(U ,F) is the Čech complex associated with the open cover U (see just after Definition
15.40 or just after Definition 9.3).

Then it is easy to see that

Ȟp(X,F) = Hp(Č(X,F)).

Again let us consider the canonical flasque resolution G∗ of the sheaf F . We define the
following double complex.

Definition 15.45. Let G∗ be the canonical flasque resolution of a sheaf F . The double
complex Č(X,G∗) is given by

Č(X,G∗) =
⊕

p,q∈N
Čp(X,Gq),

where Čp(X,Gq) is the pth module in the Čech complex Č(X,Gq), the qth row of the double
complex Č(X,G∗); see Figure 15.48. We denote the total complex associated with Č(X,G∗)
as C.
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Figure 15.48: A section of the double complex Č(X,G∗) =
⊕

p,q∈N Č
p(X,Gq).

The pth row of Č(X,G∗) is the Čech complex Č(X,Gp), which computes the Čech co-
homology of the sheaf Gp. The pth column of Č(X,G∗) computes the cohomology of the
complex Čp(X,G∗) =

⊕
q∈N Č

p(X,Gq), which involves the Čech cochains Čp(X,Gq) of the

sheaves Gq. The modules Hq(Čp(X,G∗)) can be expressed in terms of certain presheaves
Hq(X,−) as

Hq(Čp(X,G∗)) ∼= Čp(X,Hq(X,F)).

Since G∗ is the canonical resolution of F , the second spectral sequence degenerates at r = 2.
If X is paracompact, the first spectral sequence also degenerates and we have the celebrated
isomorphisms

Ȟn(X,F) ∼= Hn(X,F), n ≥ 0.

By mimicking the computation that we made for the second spectral sequence of the
double complex C(U ,F∗), we obtain the following result.

Proposition 15.31. The terms IIEp,q
2 of the second spectral sequence associated with the

double complex Č(X,G∗) are given by

IIEp,q
2
∼= Hp(Ȟq(X,G∗)),

where Ȟq(X,G∗) is the cochain complex

0 // Ȟq(X,G0) // Ȟq(X,G1) // · · · // Ȟq(X,Gp) // Ȟq(X,Gp+1) // · · · .
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Since G∗ consists of flasque sheaves and since we are considering open covers, by passing
to the limit, Proposition 15.26(a) implies that the complexes Ȟq(X,G∗) are trivial for all
q ≥ 1 (since Ȟq(X,Gp) = (0) for all p ≥ 0 and all q ≥ 1). It follows that the second spectral
sequence degenerates and that we have isomorphisms

Hn(C) ∼= IIEn,0
2
∼= Hn(Ȟ0(X,G∗)) ∼= Hn(Γ(G∗)) = Hn(X,F), for all n ≥ 0,

since Ȟ0(X,Gp) ∼= Γ(X,Gp) and since the canonical flasque resolution G∗ compute sheaf
cohomology.

Proposition 15.32. Let G∗ be the canonical flasque resolution of the sheaf F . The second
spectral sequence associated with the double complex Č(X,G∗) degenerates at r = 2 and we
have isomorphisms

Hn(C) ∼= IIEn,0
2
∼= Hn(X,F), for all n ≥ 0.

It remains to determine IEp,q
2 .

By mimicking the computation that we made for the first spectral sequence of the double
complex C(U ,F∗), but using the canonical resolution G∗ of F , we obtain

Cp
I =

⊕

q∈N
Čp(X,Gq) = Čp(X,G∗),

and so
IEp,q

1
∼= Hq(Cp

I ) = Hp(Čp(X,G∗)).
But the functor F 7→ Čp(X,F) is exact on presheaves , as shown in Godement [24] (Chapter
5, Theorem 5.8.1). Then if we define the presheaves Hq(X,F) given by

Hq(X,F)(U) = Hq(G∗(U)) = Hq(U,F),

using an adaptation of Proposition 15.19, we have

IEp,q
1 = Hq(Čp(X,G∗)) ∼= Čp(X,Hq(X,F))

and
IEp,q

2
∼= Ȟp(X,Hq(X,F)).

� Beware that Hq(X,F) is not the sheaf cohomology module Hq(F∗) of the differential
sheaf F∗ from Definition 15.37.

In summary we have the following theorem from Godement [24] (Chapter 5, Theorem
5.9.1).

Theorem 15.33. Let F be a sheaf on a topological space X, let G∗ be the canonical flasque
resolution of F , and let Č(X,G∗) be the double complex Č(X,G∗) with associated total com-
plex C.
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(1) The second spectral sequence IIE degenerates at r = 2 and there are isomorphisms

Hn(C) ∼= Hn(X,F), for all n ≥ 0.

(2) We can define the presheaf Hq(X,F) given by

Hq(X,F)(U) = Hq(U,F)

for every open subset U of X, for all q ≥ 0, and the term IEp,q
2 of the first spectral

sequence IE is given by
IEp,q

2
∼= Ȟp(X,Hq(X,F)).

Observe that since H0(X,F) ∼= F , we have

IEn,0
2
∼= Ȟn(X,F).

Now a fundamental property of the presheaves Hq(X,F) is this.

Proposition 15.34. The sheafificaction of the presheaf Hq(X,F) is the zero sheaf if q ≥ 1.

This fact holds because Hq(X,F)(U) = Hq(G∗(U)) and G∗ is the canonical flasque reso-
lution, so locally, every cocycle of G∗ is a coboundary; see Godement [24] (Chapter 5, Page
227).

As a consequence, the first spectral sequence degenerates at r = 2 if we can find conditions
on the space X so that

Ȟn(X,G) = (0) for all n ≥ 0

for any presheaf G whose sheafification is the zero sheaf. This is the case if X is paracompact.

Proposition 15.35. Let X be a topological space and let G be a presheaf on X. If X is
paracompact and if the sheafification of G is the zero sheaf, then

Ȟn(X,G) = (0) for all n ≥ 0.

Proposition 15.35 is proven in Godement [24] (Chapter 5, Theorem 5.10,2). As a conse-
quence, if X is paracompact, since the sheafification of the presheaves Hq(X,F) is zero for
all q ≥ 1, we see that

IEp,q
2
∼= Ȟp(X,Hq(X,F)) = (0) for all p ≥ 0 and all q ≥ 1,

which means that the spectral sequence IE degenerates for r = 2, and we have isomorphisms

Hn(C) ∼= IEn,0
2
∼= Ȟn(X,H0(X,F)) = Ȟn(X,F),

since by definition, H0(X,F)(U) = H0(U,F) ∼= F(U). Since we also have isomorphisms

Hp(C) ∼= Hn(X,F) for all n ≥ 0

We obtain the following important isomorphism theorem from Godement [24] (Chapter 5,
Theorem 5.10.1).
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Theorem 15.36. Let F be a sheaf on a topological space X, let G∗ be the canonical flasque
resolution of F , and let Č(X,G∗) be the double complex Č(X,G∗) with associated total com-
plex C. If X is paracompact, then the the first spectral sequence IE degenerates at r = 2 and
there are isomorphisms

Ȟp(X,F) ∼= Hn(X,F) for all n ≥ 0.

Note that Theorem 15.36 is identical to Theorem 13.17(1), and we obtained another proof
using spectral sequences.

Even if X is not paracompact, the spectral sequences associated with the complex
Č(X,G∗) yield interesting results. We will need the following results.

Proposition 15.37. Let (F pC) be a canonically cobounded fitration on a graded complex C.
There is an exact sequence (called an edge sequence)

0 // E1,0
2

// H1(C) // E0,1
2

// E2,0
2

// H2(C).

Proposition 15.37 is proven in Theorem 15.54 and in Godement [24] (Chapter 4, Theorem
4.5.1).

Proposition 15.38. If a presheaf G has the zero sheaf as sheafification, then

Č0(X,F) = (0) and Ȟ0(X,F) = (0).

Proposition 15.38 is proven in Godement [24] (Chapter 5, lemma after Theorem 5.9.1).
Using these results we obtain the following theorem.

Theorem 15.39. Let F be a sheaf on a topological space X. There maps

Ȟn(X,F) ∼= H(X,F)

that are isomorphisms for n = 0, 1, and an injection for n = 2.

Proof. The case n = 0 is trivial (we have Γ(X,F) in both cases). For n = 1, 2 we use the
exact sequence

0 // E1,0
2

// H1(C) // E0,1
2

// E2,0
2

// H2(C)

of Proposition 15.38, where C is the total complex associated with the double complex
Č(X,G∗) and E = IE. Since

IEp,q
2
∼= Ȟp(X,Hq(X,F)),

and since the sheafication of the presheaf H1(X,F)) is the zero sheaf, we have

IE0,1
2
∼= Ȟ0(X,H1(X,F)) = (0)

IE1,0
2
∼= Ȟ1(X,H0(X,F)) ∼= Ȟ1(X,F)

IE2,0
2
∼= Ȟ2(X,H0(X,F)) ∼= Ȟ2(X,F),
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so we have the exact sequence

0 // Ȟ1(X,F) // H1(C) // 0 // Ȟ2(X,F) // H2(C),

and since Hn(C) ∼= Hn(X,F) for all n ≥ 0, the proposition follows.

Theorem 15.33 can also be used to prove a theorem of Henri Cartan that we stated earlier
(Theorem 13.19). The proof uses induction.

Theorem 15.40. (H. Cartan) For any topological space X and any sheaf F on X, for any
open cover U , if U is a basis for the topology of X closed under finite intersections and if
Ȟp(Ui0···ip ,F) = (0) for all p > 0 and all (i0, . . . , ip), then

Ȟp(X,F) ∼= Hp(X,F), for all p ≥ 0.

A few more interesting results can be found in Godement [24] (Chapter 5).

15.13 Grothendieck’s Spectral Sequences of

Composed Functors ~

This section and the next three deal with somewhat more advanced material and are op-
tional. Before reading this section the reader may want to review Section 11.4, in particular,
Definition 11.17.

Another source of double complexes appears as the answer to the following.

Problem. Given two left-exact functors F : A → B and G : B → C between abelian
categories (with enough injectives, etc.), we have GF : A → C (left-exact); how can we
compute Rn(GF ) if we know RpF and RqG?

In order to answer this question we need to introduce special kinds of injective resolutions
of complexes.

Definition 15.46. A Cartan–Eilenberg injective resolution of a complex C• (with Ck = (0)
if k < 0) is a resolution

0 −→ C• −→ Q• 0 −→ Q• 1 −→ Q• 2 −→ · · · ,

in which each Q• j =
⊕

iQ
i,j is a complex (differential dij) and every Qi,j is injective, so that

if we write Zi,j = Ker di,j, Bi,j = Im di−1,j and H i,j = Zi,j/Bi,j, then we have the injective
resolutions

(1) 0 // Ci // Qi,0 // Qi,1 // · · ·

(2) 0 // Zi(C) // Zi,0 // Zi,1 // · · ·

(3) 0 // Bi(C) // Bi,0 // Bi,1 // · · ·

(4) 0 // H i(C) // H i,0 // H i,1 // · · · .
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The way to remember this complicated definition is through the following diagram:

0 // Ci+1

OO

// Qi+1,0

OO

// Qi+1,1

OO

// · · ·

0 // Ci

δi

OO

// Qi,0

di,0

OO

// Qi,1

di,1

OO

// · · ·

0 // Zi

OO

// Zi,0

OO

// Zi,1

OO

// · · ·

0

OO

0

OO

0

OO

Note that due to the exigencies of notation (we resolved our complex C• horizontally)
the usual conventions of horizontal and vertical were interchanged. The rows are resolutions
and the columns are complexes. The same switch of rows and columns occurs in the proof
of Proposition 15.41, at least as far as Cartesian coordinate notation is concerned.

Proposition 15.41. Every complex C has a Cartan–Eilenberg resolution 0 −→ C −→ Q•,
where the {Qi,j} form a double complex. Here we have suppressed the grading indices of C
and the Qj.

Proof. We begin with injective resolutions 0 −→ B0(C) −→ B0,•; 0 −→ B1(C) −→ B1,• and
0 −→ H0(C) −→ H0,• of B0(C); B1(C); H0(C). Now we have exact sequences

0 −→ B0(C) −→ Z0(C) −→ H0(C) −→ 0

and

0 −→ Z0(C) −→ C0 d0

−→ B1(C) −→ 0;

so by Proposition 11.25, we get injective resolutions 0 −→ Z0(C) −→ Z0,• and 0 −→ C0 −→
Q0,•, so that

0 −→ B0,• −→ Z0,• −→ H0,• −→ 0

and
0 −→ Z0,• −→ Q0,• −→ B1,• −→ 0

are exact.

For the induction step, assume that the complexes Bi−1,•, Zi−1,•, H i−1,•, Qi−1,• and Bi,•

are determined and satisfy the required exactness properties (i ≥ 1). Pick any injective
resolution H i,• of H i(C), then using the exact sequence

0 −→ Bi(C) −→ Zi(C) −→ H i(C) −→ 0
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and Proposition 11.25, we get an injective resolution 0 −→ Zi(C) −→ Zi,• so that

0 −→ Bi,• −→ Zi,• −→ H i,• −→ 0 (∗1)

is exact. Next pick an injective resolution, 0 −→ Bi+1(C) −→ Bi+1,•, of Bi+1(C) and use
the exact sequence

0 −→ Zi(C) −→ Ci di−→ Bi+1(C) −→ 0

and Proposition 11.25 to get an injective resolution 0 −→ Ci −→ Qi,• so that

0 −→ Zi,• −→ Qi,• −→ Bi+1,• −→ 0 (∗2)

is exact. The differential di,jII of the double complex {Qi,j} is the composition

Qi,j −→ Bi+1,j −→ Zi+1,j −→ Qi+1,j

and the differential di,jI is given by

di,jI = (−1)iεi,j,

where, εi,• is the differential of Qi,•. The reader should check that {Qi,j} is indeed a Cartan–
Eilenberg resolution and a double complex.

In the next theorem we will resolve our Cartan–Eilenberg resolutions vertically. This has
the effect of transposing the indices in Definition 15.46 and returning to the usual indexing
conventions regarding the horizontal and vertical directions. This theorem provides the
answer to the problem posed at the beginning of this section and has many applications
throughout the field of homological algebra.

Theorem 15.42. (Grothendieck) Let F : A → B and G : B → C be two left-exact functors
between abelian categories (with enough injectives, etc.) and suppose that F (Q) is G-acyclic
whenever Q is injective, which means that RpG(FQ) = (0) if p > 0. Then for every object
A ∈ A, there is a double complex C of composed functors whose total complex computes the
cohomology Hn(C) ∼= Rn(GF )(A) for all n ≥ 0, and for the second spectral sequence, we
have

IIEp,q
2
∼= RpG((RqF )(A)).

Proof. Pick some object A ∈ A and resolve it by injectives to obtain the resolution 0 −→
A −→ Q•(A):

0 −→ A −→ Q0 −→ Q1 −→ Q2 −→ · · · .

If we apply GF to Q•(A) and compute cohomology, we get Rn(GF )(A). If we just apply F
to Q•(A), we get the complex:

F (Q0) −→ F (Q1) −→ F (Q2) −→ · · · , (FQ•(A))
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whose cohomology is RqF (A).

Now resolve the complex FQ•(A) in the vertical direction by a Cartan–Eilenberg resolu-
tion. There results a double complex of injectives (with exact columns)

...
...

...

Q0,1 //

OO

Q1,1 //

OO

· · · // Qn,1 //

OO

· · ·

Q0,0 //

OO

Q1,0 //

OO

· · · // Qn,0 //

OO

· · ·

F (Q0) //

OO

F (Q1) //

OO

· · · // F (Qn) //

OO

· · ·

0

OO

0

OO

0

OO

(M)

in the category B. The rows are complexes and the columns are deleted injective resolutions.
Apply the left-exact functor G to the double complex M to obtain a new double complex
GM , denoted as C:

...
...

...

G(Q0,1) //

OO

G(Q1,1) //

OO

· · · // G(Qn,1) //

OO

· · ·

G(Q0,0) //

OO

G(Q1,0) //

OO

· · · // G(Qn,0) //

OO

· · ·

GF (Q0) //

OO

GF (Q1) //

OO

· · · // GF (Qn) //

OO

· · ·

0

OO

0

OO

0

OO

.

(C)

For fixed p, the pth column Mp,• of (M) is a deleted injective resolution of F (Qp) so G(Mp,•)
is a complex whose cohomology is RqG, and we have

Hp,q
II (C) = Hq(GMp,•) = RqG(FQp).

But since Qp is injective, FQp is G-acyclic, so RqG(FQp) = (0) for q > 0. Since G is
left-exact, R0G = G, and we deduce that

Hp,q
II (C) =

{
GF (Qp) if q = 0

(0) if q > 0.
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The only surviving terms are on the p-axis:

0 // GF (Q0) // GF (Q1) // GF (Q2) // · · · .

Applying Hp
I , we get

IEp,q
2 =

{
Rp(GF (A)) if q = 0

(0) if q > 0.

Therefore, the first spectral sequence degenerates for r = 2 and q(n) = 0, and we get the
isomorphism

Hn(C) ∼= Rn(GF )(A).

We now turn to the second spectral sequence. Since we used a Cartan–Eilenberg resolu-
tion of FQ•(A), we have the following injective resolutions

0 −→ Zp(FQ•(A)) −→ Z ′
p,0 −→ Z ′

p,1 −→ · · ·
0 −→ Bp(FQ•(A)) −→ B′

p,0 −→ B′
p,1 −→ · · ·

0 −→ Hp(FQ•(A)) −→ H ′
p,0 −→ H ′

p,1 −→ · · · ,

for all p ≥ 0. Moreover, after swapping the indices p and q in (∗1) and (∗2), the exact
sequences

0 // Z ′q,p // Qq,p d′q,p // B′q+1,p // 0

and
0 // B′q,p // Z ′q,p // H ′q,p // 0

are split because the terms are injectives of B. Therefore, the sequences

0 // G(Z ′q,p) // G(Qq,p) Gd
′q,p
// G(B′q+1,p) // 0 (†1)

and
0 // G(B′q,p) // G(Z ′q,p) // G(H ′q,p) // 0 (†2)

are still exact. From the exact sequences (†1) we obtain

Ker (Gd′
q,p

) ∼= G(Z ′
q,p

), Im (Gd′
q−1,p

) ∼= G(B′
q,p

),

so
Hq

I (C•,p) = Ker (Gd′
q,p

)/Im (Gd′
q−1,p

) ∼= G(Z ′
q,p

)/G(B′
q,p

),

and from the exact sequences (†2),

G(H ′
q,p

) ∼= G(Z ′
q,p

)/G(B′
q,p

),

so we obtain
Hq

I (C•,p) ∼= G(H ′
q,p

).
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But the H ′q,• form an injective resolution of Hq(FQ•(A)) and the latter is just RqF (A). So
G(H ′q,•) is the complex whose pth cohomology module is exactly RpG(RqF (A)). Now this
cohomology module is Hp

II(G(H ′q,•)) and Hq
I (C•,•) is G(H ′q,•) by the above. We obtain

RpG(RqF (A)) = Hp
II(H

q
I (C•,•)) = IIEp,q

2 .

Since we previously found (through the calculation of the first spectral sequence) that
Hn(C) ∼= Rn(GF )(A), we are done.

15.14 Exact Couples ~

Having presented spectral sequences using the Cartan–Serre method, we are now in the
position to understand and appreciate Massey’s approach in terms of exact couples (which
are really quintuples!).

Definition 15.47. An exact couple is a quintuple C = (D,E, i, j, k) where D and E are
R-modules and i : D → D, j : D → E and k : E → D are morphisms such that the pairs
(i, j), (j, k) and (k, i) are exact, that is,

Im i = Ker j, Im j = Ker k, Im k = Ker i.

A convenient way to present the above data is the triangle below:

D
i // D

j

��
E

k

__

.

In most applications, E and D will be bigraded modules, which means that

D =
⊕

p,q∈Z
Dp,q, E =

⊕

p,q∈Z
Ep,q,

and the maps i, j, k are graded maps of bidegrees (−1, 1), (0, 0) and (1, 0), which means that

i : Dp,q → Dp−1,q+1, j : Dp,q → Ep,q, k : Ep,q → Dp+1,q.

More generally, j will have bidegree (r−1,−(r−1)) with r ≥ 1. An exact couple of bigraded
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modules can be depicted as follows:

i

��

i

��
k // Dp+1,q−1

i

��

j // Ep+1,q−1 k // Dp+2,q−1 j //

i

��
k // Dp,q j //

i

��

Ep,q k // Dp+1,q

i

��

j //

k // Dp−1,q+1 j //

i

��

Ep−1,q+1 k // Dp,q+1 j //

i

�� .

Observe that the blue path is exact.

The connection with the other definitions of a spectral sequence is that a filtration on a
graded module induces an exact couple.

Example 15.7. Let C be a graded complex and let (F pC) be a filtration of C compatible
with the grading. For every p there is an exact sequence

0 // F p+1C // F pC // F pC/F p+1C // 0. (∗1)

By the zig-zag lemma, we obtain the exact sequence

Hp+q(F p+1C) ip+1,q−1
// Hp+q(F pC)

jp,q // Hp+q(F pC/F p+1C)

kp,q // Hp+q+1(F p+1C) ip+1,q
// Hp+q+1(F pC).

(∗2)

If we let
Dp,q = Hp+q(F pC), Ep,q = Hp+q(F pC/F p+1C),

and

D =
⊕

p,q∈Z
Dp,q, E =

⊕

p,q∈Z
Ep,q, i =

⊕

p,q∈Z
ip,q, j =

⊕

p,q∈Z
jp,q, k =

⊕

p,q∈Z
kp,q,

we immediately check that we obtain an exact couple.

Observe that Ep,q = Ep,q
1
∼= Hp+q(F pC/F p+1C), the term of rank one of a spectral

sequence. This should be a clue that we might be able to use exact couples to define the
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other terms Ep,q
r . Indeed this can be done though the introduction of the derived couple of

an exact couple.

The first step is to observe that exactness of the pair (j, k) implies that k ◦ j = 0, so if
we define

d = j ◦ k (note that k comes before j),

then we have a map d : E → E such that d◦d = 0, since d◦d = (j◦k)◦(j◦k) = j◦(k◦j)◦k = 0.
Note that if D and E are bigraded modules, since j has bidegree (r− 1,−(r− 1)) and k has
bidegree (1, 0), d = j ◦ k has bidegree (r,−(r − 1)).

The above suggests defining a new exact couple whose node E is replaced by H(E). We
also replace D by i(D). The new maps are defined below.

Definition 15.48. Given an exact couple C

D i // D

j

��
E

k

__

,

the derived couple C ′

D′ i′ // D′

j′

~~
E ′

k′

``

is defined as follows: D′ = i(D), E ′ = H(E) (the cohomology of (E, d)), i′ is the restriction
of i to i(D), and

j′(i(x)) = [j(x)], x ∈ D
k′([e]) = k(e), e ∈ E,

where [j(x)] is the cohomology class of the cocycle j(x) ∈ E and [e] is the cohomology class
of the cocycle e ∈ E. Note that

i′(i(x)) = i(i(x)), x ∈ D.

We need to check that j′ and k′ are well-defined. Let us begin with j′. Since (j, k) is
exact, k ◦ j = 0, so we have

d(j(x)) = (j ◦ k)(j(x)) = j((k ◦ j)(x)) = 0,

so j(x) is a cocycle.
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If i(x) = i(x′) for some x, x′ ∈ D, then i(x−x′) = 0, so x−x′ ∈ Ker i = Im k (since (k, i)
is exact), so there is some y ∈ E such that x− x′ = k(y), and so

j(x− x′) = j(k(y)) = d(y),

that is j(x) = j(x′) + d(y), which means that [j(x)] = [j(x′)]. Thus j′ is well-defined.

Next we check that k′ is well-defined. Let e be a cocycle in E. This means that de = 0,
that is, (j ◦ k)(e) = 0, and since (i, j) is exact, there some x ∈ D such that i(x) = k(e), so
k′([e]) = k(e) ∈ i(D). If [e] = [e′] for any two cocycles e, e′ ∈ D, then e = e′ + d(y) for some
y ∈ E, so

k(e′) = k(e+ d(y)) = k(e) + k((j ◦ k)(y)) = k(e) + 0 = k(e),

since k ◦ j = 0 by exactness of (j, k). Consequently, k′ is also well-defined.

Actually, the derived couple of an exact couple is an exact couple.

Proposition 15.43. Given an exact couple C

D
i // D

j

��
E

k

__

,

its derived couple C ′

D′ i′ // D′

j′

~~
E ′

k′

``

is also an exact couple.

We leave the proof that the pairs (i′, j′), (j′, k′) and (k′, i′) are exact as an exercise. For
help, consult McCleary [44] (Chapter 2, Proposition 2.7).

The module E ′ = H(E) = Ker d/Im d can be described is a way that makes it easier
to understand what is the result of iterating the procedure of constructing exact couples.
Indeed, since d = j ◦ k, we have

Ker d = Ker (j ◦ k) = {x ∈ E | k(x) ∈ Ker j} = k−1(Ker j) = k−1(Im i).

We also have
Im(j ◦ k) = j(Im k) = j(Ker i).

Therefore, if we let
dp,q = jp+1,q ◦ kp,q,
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we obtain

E ′
p,q

= Ker dp,q/Im dp−1,q = k−1(Im i : Dp+2,q−1 → Dp+1,q)/j(Ker i : Dp,q → Dp−1,q+1). (†1)

The above formula provides a way of understanding graphically how E ′p,q is constructed
using the diagram

i

��

i

��
k // Dp+1,q−1

i

��

j // Ep+1,q−1 k // Dp+2,q−1 j //

i

��
k // Dp,q j //

i

��

Ep,q k // Dp+1,q

i

��

j //

k // Dp−1,q+1 j //

i

��

Ep−1,q+1 k // Dp,q+1 j //

i

�� .

The numerator of E ′p,q is obtained by pulling back along k (in blue) the image of the blue
map i, and the denominator is obtained by pushing forward along j (in red) the kernel of
the red map i.

It is now fairly obvious that a spectral sequence is obtained by iterating the construction
of a derived couple.

Given an exact couple C, we define the nth derived couple C(n) inductively as follows: for
n ∈ N,

C(0) = C
C(n+1) = (C(n))′.

The following result can be shown.

Proposition 15.44. Given a bigraded exact couple C = (D,E, i, j, k),

D
i // D

j

��
E

k

__

,
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where the maps i, j, k are graded maps of bidegrees (−1, 1), (0, 0) and (1, 0), the sequence of
derived exact couples E (r) = (D′r, E

′
r, i

(r), j(r), k(r)) = C(r−1), with r ≥ 1, determines a spectral
sequence (E ′r, dr), with

dr = j(r) ◦ k(r),

and dp,qr has bidegree (r,−(r − 1)).

Proposition 15.44 is not hard to prove. By construction E ′r+1
∼= H(E ′r) so what remains

to be checked is that the maps dr have the correct bidegrees; see McCleary [44] (Chapter 2,
Theorem 2.8).

It is possible to describe the E ′p,qr in terms of some modules Z ′p,qr and B′p,qr analogous
(but not equal) to those used in the proof of Theorem 15.7. Using induction and (†1), we
find that for r ≥ 2,

Z ′
p,q
r = k−1(Im ir−1 : Dp+r,q−r+1 → Dp+1,q)

B′
p,q
r = j(Ker ir−1 : Dp,q → Dp−r+1,q+r−1)

E ′
p,q
r = Z ′

p,q
r /B′

p,q
r .

See McCleary [44] (Chapter 2, Proposition 2.9). Again there is a geometric interpretation of
Z ′p,qr and B′p,qr in terms of our diagram (thanks to Mac Lane [37], Page 338):

i

��

Dp+r,q−r+1

i

��
k // Dp+1,q−1

i

��

j // Ep+1,q−1 k // Dp+2,q−1 j //

i

��
k // Dp,q j //

i

��

Ep,q k // Dp+1,q

i

��

j //

k // Dp−1,q+1 j //

i

��

Ep−1,q+1 k // Dp,q+1 j //

i

��Dp−r+1,q+r−1 .

The term Z ′p,qr is obtained by pulling back along k (in blue) the image of the blue map ir−1,
and the term B′p,qr is obtained by pushing forward along j (in red) the kernel of the red map
ir−1. It can also be shown that

E ′
p,q
∞ =

(⋂

r≥1

Z ′
p,q
r

)/(⋃

r≥1

B′
p,q
r

)
.
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Finally, it can be shown that if we start we the exact couple of Example 15.7 we obtain
the same spectral sequence produced by Theorem 15.7.

Theorem 15.45. Let C be a graded complex and let (F pC) be a filtration of C compatible
with the grading. If C is the exact couple defined in Example 15.7 by the exact sequence (∗1),
then the spectral sequence defined by the derived exact couples E (r) (r ≥ 1) is isomorphic with
the spectral sequence produced by Theorem 15.7.

Theorem 15.45 is proven in McCleary [44] (Chapter 2, Theorem 2.11) and its homological
version is proven in Mac Lane [37] (Chapter XI, Theorem 5.4). McCleary’s proof contains
an error but Mac Lane’s proof is immediately transposed to the cohomological case. The
key to the proof is that it can be shown that

Z ′
p,q
r = k−1(Im ir−1 : Dp+r,q−r+1 → Dp+1,q) = (Zp,q

r + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C)

B′
p,q
r = j(Ker ir−1 : Dp,q → Dp−r+1,q+r−1) = (Bp,q

r−1 + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C),

where Zp,q and Bp,q
r−1 are defined as in Definition 15.19. The error in McCleary is that it

is claimed that Z ′p,qr = Zp,q
r /(Cp+q ∩ F p+1C) and B′p,qr = Bp,q

r−1/(C
p+q ∩ F p+1C), but the

denominator is not contained in the numerator. Since

Zp+1,q−1
r−1 = Zp,q

r ∩ (Cp+q ∩ F p+1C),

as in Mac Lane we can use the modular Noether isomorphism (Proposition 15.3), and we
have

E ′
p,q
r = Z ′

p,q
r /B′

p,q
r

= k−1(Im ir−1 : Dp+r,q−r+1 → Dp+1,q)/j(Ker ir−1 : Dp,q → Dp−r+1,q+r−1)

= (Zp,q
r + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C))

/(Bp,q
r−1 + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C))

∼= (Zp,q
r + (Cp+q ∩ F p+1C))/(Bp,q

r−1 + (Cp+q ∩ F p+1C))
∼= Zp,q

r /(Bp,q
r−1 + Zp,q

r ∩ (Cp+q ∩ F p+1C))

= Zp,q
r /(Bp,q

r−1 + Zp+1,q−1
r−1 ) = Ep,q

r ,

where Ep,q
r is defined in Definition 15.21.

The definition of an exact couple and of a derived exact couple makes sense without any
grading on D and E. It is also possible to define homological spectral sequences. This is
achieved by changing the bidegree of the maps i, j, k so that they become (1,−1), (0, 0), and
(−1, 0). Homological spectral sequences are discussed in Rotman [50, 52] and Mac Lane [37].

Examples of exact couples that do not arise from filtrations are discussed in Mac Lane
[37] and McCleary [44]. Among those are the Bockstein exact couples and another one arising
from tensor products.



15.15. CONSTRUCTION OF A SPECTRAL SEQUENCE; CARTAN–EILENBERG ~659

15.15 Construction of a Spectral Sequence;

Cartan–Eilenberg ~

In this section we present Cartan and Eilenberg’s method for defining spectral sequences
[10] (Chapter XV). The proof due to Steve Shatz is essentially Cartan and Eilenberg’s proof,
except that filtered and graded complexes are considered right away rather than considering
the simpler case of a filtered ungraded module first.

The theory of spectral sequences can be developed in an abelian category A. We denote
the objects of the category A by Ob(A). In all the applications that we will consider, A is
either the category of R-modules, the category of presheaves of R-modules, or the category of
sheaves or R-modules on a topological space, so the reader may safely assume that A is one
of these categories. We only discuss spectral sequences in the category of R-modules, leaving
the adaptation to the more general case of an abelian category to the reader. Basically, one
simply has to assume that we use objects, subobjects, quotient objects, and morphisms in
the abelian category A.

To simplify matters we present the construction of spectral sequences for cohomology
cochain complexes and positive filtrations, which means that Cn = (0) for all n < 0 (C is a
cohomology cochain complex) and F pC = C for all p ≤ 0 (the filtration is positive). It is
convenient to assume that F−∞C = C and that F∞C = (0). The fact that Cn = (0) for
all n < 0 implies that Ep,q

r = (0) for all p+ q < 0 and the positivity of the filtration implies
that Ep,q

r = (0) for p < 0. In other words, we consider the first quadrant and the region of
the fourth quadrant on or above the line p+ q = 0. For the reader’s convenience we give the
definition of a spectral sequence in this situation.

Definition 15.49. A spectral sequence is a sequence

(〈Er, E∞, dr, αr〉)r∈N,

where

(1) Each Er is a bigraded R-module with

Er =
⊕

p∈N
Ep
r and Ep

r =
⊕

p+q≥0,q∈Z
Ep,q
r , p ∈ N,

for r ∈ N ∪ {∞} (the subscript r is called the level).

(2) For all r ∈ N, the graded module Er =
⊕

p∈NE
p
r is a complex with differential dr of

degree r, where the restriction dp,qr of dr to Ep,q
r is a map dp,qr : Ep,q

r → Ep+r,q−r+1
r such

that dp,qr ◦dp−r,q+r−1
r = 0, for all p ∈ N and all q ∈ Z such that p+q ≥ 0. The restriction

dpr of dr to Ep
r is the map dpr =

⊕
p+q≥0 d

p,q
r , with dpr : Ep

r → Ep+r
r .
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(3) There is an isomorphism
αr : H(Er)→ Er+1

for all r ∈ N, and more precisely,

Hp(Er) = Ker dpr/Im dp−rr
∼= Ep

r+1.

If we write Hp,q(Er) = Ker dp,qr /Im dp−r,q+r−1
r (p ∈ N, q ∈ Z, p+ q ≥ 0), then H(Er) is

bigraded, with

H(Er) =
⊕

p∈N
Hp(Er), Hn(Er) =

⊕

p∈N
Hp,n−p(Er), n ∈ N,

and we have an isomorphism

Hp,n−p(Er) ∼= Ep,n−p
r+1 .

A first quadrant spectral sequence is a spectral sequence for which Ep,q
r = (0) for all q < 0

and all r ∈ N ∪ {∞} (recall that in our definition, p ∈ N).

Recall that the notation r >> 0 is an abbreviation for r is “large enough.”

Remarks:

(1) In some sources the whole definition is denoted in the compact form

Ep,q
2 =⇒

p
H(C) or Ep,q

2 =⇒ H(C),

and H(C) is called the end of the spectral sequence. In Mac Lane [37] and Rotman
[50, 52] the above notation implies that

Ep,q
∞
∼= gr(H(C))p,q = H(C)p,q/H(C)p+1,q−1.

The index p is called the filtration index , p+ q is called the total or grading index and
q the complementary index .

(2) Assume that the spectral sequence is a first quadrant spectral sequence, which means
that Ep,q

r = (0) if q < 0. Since dp,qr : Ep,q
r → Ep+r,q−r+1

r , if r > q+ 1, then Im dp,qr = (0),
and if r > p, then Im dp−r,q+r−1

r = (0). So if r > max{p, q+ 1}, then Im dp,qr = (0) and
Im dp−r,q+r−1

r = (0) imply that Ker dp,qr = Ep,q
r and Hp,q

r (E) = Ker dp,qr /Im dp−r,q+r−1
r =

Ep,q
r /(0) = Ep,q

r . By (3), Ep,q
r+1
∼= Hp,q

r (E) = Ep,q
r , i.e., the sequence of Ep,q

r stabilizes
for r >> 0.

(3) In general, when Ep,q
r stabilizes, Ep,q

r 6= Ep,q
∞ . Further assumptions must be made to

get Ep,q
r = Ep,q

∞ for r >> 0.
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Spectral sequences can be introduced in many ways. The one chosen here leads immedi-
ately into applications involving double complexes but is weaker if one passes to triangulated
and derived categories. In the existence proof given below there are many complicated di-
agrams and indices. We urge you to read as far as the definition of Zp,q

r and Bp,q
r (one half

page) and skip the rest of the proof on a first reading.

Theorem 15.46. Let C be a filtered cohomological complex whose filtration is positive and
compatible with its grading and differentiation. Then H (C) possesses a filtration (and is
graded) and there exists a spectral sequence

Ep,q
2 =⇒

p
H (C)

with the following properties:

(1) We have Ep,q
1
∼= H (gr(C))—so that

Ep,q
1 = H(gr(C))p,q = Hp+q(F pC/F p+1C).

(2) There are isomorphisms

Ep,q
∞
∼= gr(H(C))p,q = gr(Hp+q(C))p = H(C)p,q/H(C)p+1,q−1.

(3) If the filtration is regular, the objects gr(Hp+q(C))p = H(C)p,q/H(C)p+1,q−1, called the
composition factors in the filtration of Hp+q(C), are exactly the Ep,q

r when r >> 0.

In the course of the proof of Theorem 15.46, we shall make heavy use of the following
lemma.

Lemma 15.47. (Lemma (L)) Let

B

ϕ

��

ψ

!!
A′

ϕ′
//

>>

A η
// A′′

be a commutative diagram with exact bottom row, that is, Imϕ′ = Ker η. Then η induces an
isomorphism Im ϕ/Im ϕ′ ∼= Im ψ.

Proof. Since the left triangle commutes, Im ϕ′ ⊆ Im ϕ, and since Imϕ′ = Ker η, we have
Ker η ⊆ Im ϕ and

Im ϕ/Im ϕ′ = Im ϕ/Ker η.

By the first isomorphism theorem applied to the restriction of η to Im ϕ, we have

Im ϕ/Im ϕ′ = Im ϕ/Ker η ∼= η(Im ϕ) = Im (η ◦ ϕ) = Imψ,

establishing our result.
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Proof of Theorem 15.46. The proof makes makes a clever use of the zig-zag lemma (Theorem
2.22) applied to exact sequences of the form

0 // F qC/F sC // F pC/F sC // F pC/F qC // 0, (∗)

for any p, q, s such that p < q < s (including the case where s =∞, in which case F sC = (0),
or the case where p < 0, in which case F pC = C), to get the exact sequence of the bottom
row of the diagram in Lemma (L), and of the naturality of the zig-zag lemma (Proposition
2.23) applied to maps of exact sequences as above, to get the diagram in Lemma (L). The
sequence (∗) is exact because by the third isomorphism theorem,

F pC/F qC ∼= (F pC/F sC)/(F qC/F sC).

This technique is an example of a more general approach discussed in Cartan and Eilenberg
[10] (Chapter XV, Section 7).

First we need to define Zp,q
r and Bp,q

r and set Ep,q
r = Zp,q

r /Bp,q
r .

Consider the exact sequence

0 −→ F pC −→ F p−r+1C −→ F p−r+1C/F pC −→ 0.

Upon applying cohomology (using the zig-zag lemma, Theorem 2.22), we obtain

· · · −→ Hp+q−1(F p−r+1C) −→ Hp+q−1(F p−r+1C/F pC)
δ∗−→ Hp+q(F pC) −→ · · ·

There is also the natural map Hp+q(F pC) −→ Hp+q(F pC/F p+1C) induced by the projection
F pC −→ F pC/F p+1C. Moreover, we have the projection F pC/F p+rC −→ F pC/F p+1C,
which induces a map on cohomology

Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C).

Set

Zp,q
r = Im (Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C))

Bp,q
r = Im (Hp+q−1(F p−r+1C/F pC) −→ Hp+q(F pC/F p+1C)),

the latter map being the composition of δ∗ and the map Hp+q(F pC) −→ Hp+q(F pC/F p+1C)
(where r ≥ 1). When r =∞ (remember, F−∞C = C), we get

Zp,q
∞ = Im (Hp+q(F pC) −→ Hp+q(F pC/F p+1C))

Bp,q
∞ = Im (Hp+q−1(C/F pC) −→ Hp+q(F pC/F p+1C)).

The inclusion F p−r+1C ⊆ F p−rC yields a map F p−r+1C/F pC −→ F p−rC/F pC; hence we
obtain the inclusion relation Bp,q

r ⊆ Bp,q
r+1. In a similar way, the projection F pC/F p+r+1C −→
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F pC/F p+rC yields the inclusion Zp,q
r+1 ⊆ Zp,q

r . When r =∞, the coboundary map yields the
inclusion Bp,q

∞ ⊆ Zp,q
∞ (remember, F−∞C = C and F∞C = (0)). Consequently, we can write

· · · ⊆ Bp,q
r ⊆ Bp,q

r+1 ⊆ · · · ⊆ Bp,q
∞ ⊆ Zp,q

∞ ⊆ · · · ⊆ Zp,q
r+1 ⊆ Zp,q

r ⊆ · · · .

Set

Ep,q
r = Zp,q

r /Bp,q
r , where 1 ≤ r ≤ ∞, and En = Hn(C).

Then E =
⊕

nEn = H(C), filtered by the H(C)p, as explained earlier. When r = 1,
Bp,q

1 = (0) and

Zp,q
1 = Hp+q(F pC/F p+1C);

We obtain Ep,q
1 = Hp+q(F pC/F p+1C) = H(gr(C))p,q.

Now we have the following commutative diagram with exact rows

0 // F pC //

��

C //

��

C/F pC //

��

0

0 // F pC/F p+1C // C/F p+1C // C/F pC // 0.

(†1)

Applying the zig-zag lemma to the bottom row of the commutative diagram above yields
the cohomology sequence

· · · −→ Hp+q−1(C/F pC)
δ∗−→ Hp+q(F pC/F p+1C) −→ Hp+q(C/F p+1C) −→ · · ·

and applied to the top row the connecting homomorphism Hp+q−1(C/F pC) −→ Hp+q(F pC).
Consequently, by Proposition 2.23 applied to (†1), we obtain the commutative diagram (with
exact bottom row)

Hp+q(F pC)

��

α

**

// Hp+q(C)

��
Hp+q−1(C/F pC) //

55

Hp+q(F pC/F p+1C) // Hp+q(C/F p+1C),

and Lemma (L) yields an isomorphism

ξp,q : Ep,q
∞ = Zp,q

∞ /Bp,q
∞ −→ Im (α : Hp+q(F pC) −→ Hp+q(C/F p+1C)).

But another application of Lemma (L) to the diagram

Hp+q(F pC)

��

α

((
Hp+q(F p+1C) //

66

Hp+q(C) // Hp+q(C/F p+1C)
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in which the bottom row is exact by the zig-zag lemma applied to the top row of the
commutative diagram (†1) gives us the isomorphism

ηp,q : gr(H(C))p,q −→ Im (α : Hp+q(F pC) −→ Hp+q(C/F p+1C)).

Thus, (ηp,q)−1 ◦ ξp,q is the isomorphism required by Part (2) of Theorem 15.46.

Only two things remain to be proven to complete the proof of Theorem 15.46. They are
the verification of (2) and (3) of Definition 15.49, and the observation that Ep,q

∞ , as defined
above, is the common value of the Ep,q

r for r >> 0. The verification of (2) and (3) depends
upon Lemma (L). Specifically, we have two commutative diagrams shown below. The first
diagram arises from the commutative diagram with exact rows

0 // F p+rC/F p+r+1C //

��

F pC/F p+r+1C //

��

F pC/F p+rC //

��

0

0 // F p+1C/F p+r+1C // F pC/F p+r+1C // F pC/F p+1C // 0,

(†2)

by applying Proposition 2.23 (the naturality of the zig-zag lemma),

Hp+q(F pC/F p+rC)

��

θ

**

β // Hp+q+1(F p+rC/F p+r+1C)

��
Hp+q(F pC/F p+r+1C) //

44

Hp+q(F pC/F p+1C)
δ∗
// Hp+q+1(F p+1C/F p+r+1C),

(1)

where the left triangle obviously commutes. The second diagram arises from the commutative
diagram with exact rows

0 // F p+rC/F p+r+1C //

��

F p+1C/F p+r+1C //

��

F p+1C/F p+rC //

��

0

0 // F p+rC/F p+r+1C // F pC/F p+r+1C // F pC/F p+rC // 0,

(†3)

by applying Proposition 2.23 (the naturality of the zig-zag lemma),

Hp+q(F pC/F p+rC)

β
��

θ

++
Hp+q(F p+1C/F p+rC)

δ∗
//

44

Hp+q+1(F p+rC/F p+r+1C) // Hp+q+1(F p+1C/F p+r+1C),

(2)

where the left triangle is obtained from (†3) by flipping it upside down and the right triangle
comes from the upper right triangle in (1), where the map θ is the composition

Hp+q(F pC/F p+rC) −→ Hp+q+1(F p+rC/F p+r+1C) −→ Hp+q+1(F p+1C/F p+r+1C).
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Observe that the top row of (†2) is identical to the bottom row of (†3), so the map β is
indeed the same in (1) and (2). Now Lemma (L) yields the following facts:

Zp,q
r /Zp,q

r+1
∼= Im θ, by (1)

Bp+r,q−r+1
r+1 /Bp+r,q−r+1

r
∼= Im θ, by (2),

that is,
δp,qr : Zp,q

r /Zp,q
r+1
∼= Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r .

As Bp,q
r ⊆ Zp,q

s for every r and s, there is a surjection

πp,qr : Ep,q
r −→ Zp,q

r /Zp,q
r+1

with kernel Zp,q
r+1/B

p,q
r , and there exists an injection

σp+r,q−r+1
r+1 : Bp+r,q−r+1

r+1 /Bp+r,q−r+1
r −→ Ep+r,q−r+1

r .

The composition σp+r,q−r+1
r+1 ◦ δp,qr ◦ πp,qr is the map dp,qr from Ep,q

r to Ep+r,q−r+1
r required by

(2). Observe that

Im dp−r,q+r−1
r = Bp,q

r+1/B
p,q
r ⊆ Zp,q

r+1/B
p,q
r = Ker dp,qr ;

hence
H(Ep,q

r ) = Ker dp,qr /Im dp−r,q+r−1
r

∼= Zp,q
r+1/B

p,q
r+1 = Ep,q

r+1,

as required by (3).

To prove that Ep,q
∞ as defined above is the common value of Ep,q

r for large enough r, we
must make use of the regularity of our filtration. By Proposition 2.23 (the naturality of the
zig-zag lemma), the commutative diagram with exact rows

0 // F p+rC //

��

F pC //

��

F pC/F p+rC //

��

0

0 // F p+1C // F pC // F pC/F p+1C // 0

induces the commutative diagram

Hp+q(F pC/F p+rC)

��

λ

))

// Hp+q+1(F p+rC)

��
Hp+q(F pC) //

55

Hp+q(F pC/F p+1C) // Hp+q+1(F p+1C),

where λ is the composition

Hp+q(F pC/F p+rC)
δ∗−→ Hp+q+1(F p+rC) −→ Hp+q+1(F p+1C).
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By Lemma (L), we have Zp,q
r /Zp,q

∞
∼= Im λ. However, if r > µ(p+ q + 1)− p, then Cp+q+1 ∩

F p+rC = (0), so Hp+q+1(F p+rC) = (0) (by definition of the grading on F p+rC) and δ∗ is the
zero map. This shows Im λ = (0); hence, we have proven

Zp,q
r = Zp,q

∞ for r > µ(p+ q + 1)− p.

By our assumptions, the filtration begins with C = F 0C, therefore if r > p we find Bp,q
r =

Bp,q
∞ . Hence, for

r > max{p, µ(p+ q + 1)− p}
the term Ep,q

r is equal to Ep,q
∞ .

It is easy to verify that if the filtration is canonically cobounded, then we obtain a first
quadrant spectral sequence.

Remarks:

(1) Even if our filtration does not start at 0, we can still understand Ep,q
∞ from the Ep,q

r

when the filtration is regular. To see this, note that since cohomology commutes with
right limits, we have

lim−→
r

Bp,q
r = Bp,q

∞ ,

and this implies
⋃
r B

p,q
r = Bp,q

∞ . Hence, we obtain maps

Ep,q
r = Zp,q

r /Bp,q
r −→ Zp,q

s /Bp,q
s = Ep,q

s

for s ≥ r > µ(p + q + 1) − p, and these maps are surjective. (The maps are in fact
induced by the dp−r,q+r−1

r because of the equality

Ep,q
r /Im dp−r,q+r−1

r = (Zp,q
r /Bp,q

r )/(Bp,q
r+1/B

p,q
r ) = Ep,q

r+1

for r > µ(p+ q + 1)− p.) As in Proposition 15.15 we can show that the right limit of
the surjective mapping family

Ep,q
r −→ Ep,q

r+1 −→ · · · −→ Ep,q
s −→ · · ·

is the group Zp,q
∞ /(

⋃
Bp,q
r ) = Ep,q

∞ ; so, each element of Ep,q
∞ arises from Ep,q

r if r >> 0 (for
fixed p, q). Regularity is therefore still an important condition for spectral sequences
that are first and second quadrant or first and fourth quadrant.

(2) The construction of Theorem 15.46 works just as well for an arbitrary graded and
filtered complex C = (Cn)n∈Z with a filtration (F pC)p∈Z compatible with the grading.

� It is not true in general that Zp,q
∞ =

⋂
r Z

p,q
r or that lim←−r Z

p,q
r = Zp,q

∞ . In the first case,
we have a weakly convergent spectral sequence. In the second case, we have a strongly

convergent spectral sequence.
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Although it not obvious at all, the spectral sequences constructed by the Serre–Godement
method and the Cartan–Eilenberg method are isomorphic. This is reassuring since otherwise
it would be possible for some results to hold for one kind of spectral sequence but not for
the other.

Let us denote the Z-terms and B-terms used to define the spectral sequence using Cartan–
Eilenberg’s method by Z ′p,qr and B′p,qr , and the terms of the Cartan–Eilenberg spectral se-
quence by E ′p,qr . We have

Z ′
p,q
r = Im (Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C))

B′
p,q
r = Im (Hp+q−1(F p−r+1C/F pC) −→ Hp+q(F pC/F p+1C))

E ′
p,q
r = Z ′

p,q
r /B′

p,q
r .

Recall from Definition 15.19 that the terms of the Serre–Godement method are given by

Zp,q
r = {x ∈ Cp+q ∩ F pC | dx ∈ Cp+q+1 ∩ F p+rC}

= {x ∈ Cp,q | dx ∈ Cp+r,q−r+1}
Bp,q
r = {x ∈ Cp+q ∩ F pC | (∃y ∈ Cp+q−1 ∩ F p−rC)(x = dy)}

= {x ∈ Cp,q | (∃y ∈ Cp−r,q+r−1)(x = dy),

and
Ep,q
r = Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 ),

for all p, q, r ∈ Z.

Proposition 15.48. The spectral sequences defined by the Serre–Godement method and the
Cartan–Eilenberg method are isomorphic, that is,

E ′
p,q
r
∼= Ep,q

r

for all p, q ∈ Z and r ≥ 1.

Proof. First we compute Im (Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C)) in terms of Zp,q
r .

As in Section 15.9 we have the differentials

dp,q0,r : Cp,q/Cp+r,q−r → Cp,q+1/Cp+r,q−r+1

induced by d : Cp,q → Cp,q+1 (actually, the restriction dCp,q of d to Cp,q), with

dp,q0,r([x]Cp+r,q−r) = [d(x)]Cp+r,q−r+1 , x ∈ Cp,q.

By definition Hp+q(F pC/F p+rC) = Ker dp,q0,r/Im dp,q−1
0,r , so an element γ ∈ Hp+q(F pC/F p+rC)

is an equivalence class [c]Cp+r,q−r modulo Im dp,q−1
0,r of some cocycle [c]Cp+r,q−r ∈ Cp,q/Cp+r,q−r,

which means that dp,q0,r([c]) = 0. By definition of dp,q0,r, this means that c ∈ Cp,q and dc ∈
Cp+r,q−r+1. But these conditions are equivalent to c ∈ Zp,q

r . In summary we have shown that

Hp+q(F pC/F p+rC) =
(
(Zp,q

r + Cp+r,q−r)/Cp+r,q−r)/Im dp,q−1
0,r .
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The inclusion
Cp,q/Cp+r,q−r → Cp,q/Cp+1,q−1

induces the map on cohomology in which the equivalence class [c]Cp+r,q−r modulo Im dp,q−1
0,r

with c ∈ Zp,q
r (an element of Hp+q(F pC/F p+rC)) is mapped to the equivalence class [c]Cp+1,q−1

modulo Im dp,q−1
0,1 (an element of Hp+q(F pC/F p+1C)). It follows that

Z ′
p,q
r = Im (Hp+q(F pC/F p+rC) −→ Hp+q(F pC/F p+1C))

=
(
(Zp,q

r + Cp+1,q−1)/Cp+1,q−1
)
/Im dp,q−1

0,1 . (∗1)

To compute Im (Hp+q−1(F p−r+1C/F pC) −→ Hp+q(F pC/F p+1C)) we need to compute
the connecting map δ : Hp+q−1(F p−r+1C/F pC)→ Hp+q(F pC) and compose it with the map
Hp+q(F pC) −→ Hp+q(F pC/F p+1C) induced by the projection F pC −→ F pC/F p+1C.

We have exact sequences

0 // Cp,q−1 // Cp−r+1,q+r−2 // Cp−r+1,q+r−2/Cp,q−1 // 0

for all q and as in the proof of the zig-zag lemma (Theorem 2.22), the connecting map δ is
obtained from the following diagram

Cp−r+1,q+r−2 π //

d
��

Cp−r+1,q+r−2/Cp,q−1 // 0

0 // Cp,q i // Cp−r+1,q+r−1

as follows. We start with a cocycle [c] ∈ Cp−r+1,q+r−2/Cp,q−1, which means that c ∈
Cp−r+1,q+r−2 and dc ∈ Cp,q. This is equivalent to c ∈ Zp−r+1,q+r−2

r−1 . Next we pull back

[c] with c ∈ Zp−r+1,q+r−2
r−1 to b = c, push b down to db = dc, and finally pull it back to

a = dc ∈ Cp,q. Since dZp−r+1,q+r−2
r−1 = Bp,q

r−1, we see that δ maps the equivalence class [c]Cp,q−1

modulo Im dp−r+1,q+r−3
0,1 with c ∈ Zp−r+1,q+r−2

r−1 (an element of Hp+q−1(F p−r+1C/F pC)) to
dc ∈ Bp,q

r−1 modulo Im dCp,q−1 (an element of Hp+q(F pC)).

The projection map
Cp,q → Cp,q/Cp+1,q−1

induces the map on cohomology defined such that the equivalence class of a cocycle x ∈ Cp,q

(which means that dCp,qx = 0) modulo Im dCp,q−1 (an element of Hp+q(F pC)) is mapped
to the equivalence class of [x]Cp+1,q−1 modulo Im dp,q−1

0,1 (an element of Hp+q(F pC/F p+1C)).
Composing δ with the above map, we deduce that the equivalence class [c]Cp,q−1 modulo
Im dp−r+1,q+r−3

0,1 with c ∈ Zp−r+1,q+r−2
r−1 (an element of Hp+q−1(F p−r+1C/F pC)) is mapped to

the equivalence class [dc]Cp+1,q−1 modulo Im dp,q−1
0,1 , with dc ∈ Bp,q

r−1 (an element of the module
Hp+q(F pC/F p+1C)). It follows that

B′
p,q
r = Im (Hp+q−1(F p−r+1C/F pC) −→ Hp+q(F pC/F p+1C))

=
(
(Bp,q

r−1 + Cp+1,q−1)/Cp+1,q−1
)
/Im dp,q−1

0,1 . (∗2)
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By (∗1) and (∗2), we obtain

E ′
p,q
r = Z ′

p,q
r /B′

p,q
r
∼= (Zp,q

r + Cp+1,q−1)/(Bp,q
r−1 + Cp+1,q−1).

By the modular Noether isomorphism, since Zp,q
r ∩Cp+1,q−1 = Zp+1,q−1

r−1 and Bp,q
r−1 ⊆ Zp,q

r , we
obtain the isomorphism

E ′
p,q
r
∼= Zp,q

r /(Bp,q
r−1 + Zp+1,q−1

r−1 ) = Ep,q
r ,

proving the isomorphism between the Cartan–Eilenberg spectral sequence and the Serre–
Godement spectral sequence.

The way the Cartan–Eilenberg definition of the modules Z ′p,qr and B′p,qr encodes the more
explicit definition of the modules Zp,q

r and Bp,q
r in the Serre–Godement’s approach using maps

between carefully chosen cohomology groups is definitely very clever but quite mysterious
on a first encounter. This is why we chose to present the Serre–Godement approach first,
but we admit that such a choice is a matter of taste.

15.16 More on the Degeneration of Spectral

Sequences ~

First Proposition 15.17 about spectral sequences that degenerate at level r also holds, and
the proof is the same.

To draw further conclusions in situations that occur in practice, we need three technical
lemmas. Their proofs should be skipped on a first reading and they are only used to isolate
and formalize conditions frequently met in the spectral sequences of applications. We’ll
label them Lemmas A, B, C as their conclusions are only used to get useful theorems on the
sequences.

First observe that if for some r, there are integers n and p1 > p0 so that Eν,n−ν
r = (0)

whenever ν 6= p0, ν 6= p1, since Hp,q(Er) = H(Ep,q
r ) ∼= Ep,q

r+1, then Eν,n−ν
s = (0) for every s

with r ≤ s ≤ ∞. If the filtration is regular, then the filtration of Hn(C) is finite and since
Ep0,n−p0∞ and Ep1,n−p1∞ are the only possible non-zero composition factors, the filtration of
Hn(C) is of the form

Hn(C) = · · · = H(C)p0,n−p0 ⊇ H(C)p0+1,n−p0−1 = · · · = H(C)p1,n−p1 ⊇ (0). (∗)

By definition

Ep0,n−p0
∞ = H(C)p0,n−p0/H(C)p0+1,n−p0−1 = Hn(C)/H(C)p1,n−p1

Ep1,n−p1
∞ = H(C)p1,n−p1/(0) = H(C)p1,n−p1 ,

so
Ep0,n−p0
∞ = Hn(C)/Ep1,n−p1

∞ ,
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which is equivalent to the following exact sequence:

0 −→ Ep1,n−p1 −→ Hn(C) −→ Ep0,n−p0 −→ 0. (†)

Lemma 15.49. (Lemma A) Let Ep,q
2 =⇒ H (C) be a spectral sequence with a regular filtra-

tion. Assume there are integers r, p1 > p0, n, such that

Eu,v
r = (0) for





u+ v = n, u 6= p0, p1

u+ v = n+ 1, u ≥ p1 + r
u+ v = n− 1, u ≤ p0 − r;

see Figure 15.49. Then there is an exact sequence

Ep1,n−p1
r −→ Hn(C) −→ Ep0,n−p0

r . (A)

u

v

E r

E r
p   + r1

r = 2 plane 

nonzero E
r

u, n+1-up   ,n-p0 0 

1 1p   ,n-p

p    - r0 nonzero E
r

u, n-1-u

Figure 15.49: An illustration of the r = 2 plane associated with Lemma A when n = 1,
p0 = 0 and p1 = 1.

Proof. The remarks above and the first hypothesis yield sequence (†). In the proof of The-
orem 15.46, we saw that

Im dp0−t,n−p0+t−1
t = Bp0,n−p0

t+1 /Bp0,n−p0
t .

If r < t, then p0 − r ≥ p0 − t. Set u = p0 − t and use the third hypothesis to conclude that

Eu,n−1−u
r = Ep0−t,n−1−(p0−t)

r = (0).
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By definition dp0−t,n−p0+t−1
t : E

p0−t,n−1−(p0−t)
t → Ep0,n−p0

t . But since E
p0−t,n−1−(p0−t)
r = (0),

this map becomes dp0−t,n−p0+t−1
t : (0)→ Ep0,n−p0

t . So Im dp0−t,n−p0+t−1
t = (0). Since we have

Im dp0−t,n−p0+t−1
t = Bp0,n−p0

t+1 /Bp0,n−p0
t ,

we conclude that Bp0,n−p0

t+1 = Bp0,n−p0
t . By repeating this argument for t+ 1, we deduce that

Bp0,n−p0
t is constant for t ≥ r. Since the remark at the end of Section 15.15 implies that

lim−→r
Bp,q
r = Bp,q

∞ , we can adapt the proof of Proposition 15.15 to deduce that Bp0,n−p0∞ =

Bp0,n−p0
r . Since

Ep0,n−p0
r = Zp0,n−p0

r /Bp0,n−p0
r = Zp0,n−p0

r /Bp0,n−p0
∞

Ep0,n−p0
∞ = Zp0,n−p0

∞ /Bp0,n−p0
∞ ,

and since Zp0,n−p0∞ ⊆ Zp0,n−p0
r , we obtain an injection Ep0,n−p0∞ ↪→ Ep0,n−p0

r .

If r ≤ t, then p1 + r ≤ p1 + t. Set u = p1 + t and use the second hypothesis to conclude
that

Eu,n+1−u
r = Ep1+t,n+1−(p1+t)

r = (0).

By definition dp1+t,n−p1−t+1
t : E

p1+t,n+1−(p1+t)
t → Ep1+2t,n−p1−2t+2

t , which by the above equality
becomes dp1+t,n−p1−t+1

t : (0) → Ep1+2t,n−p1−2t+2
t . Hence Ker dp1+t,n−p1−t+1

t = (0). Since the
proof of Theorem 15.46 showed that

Ker dp1+t,n−p1−t+1
t = Zp1+t,n−p1−t+1

t+1 /Bp1+t,n−p1−t+1
t ,

we deduce that Zp1+t,n−p1−t+1
t+1 = Bp1+t,n−p1−t+1

t . However we know that

Bp1+t,n−p1−t+1
r ⊆ Bp1+t,n−p1−t+1

t ⊆ Bp1+t,n−p1−t+1
∞ ⊆ Zp1+t,n−p1−t+1

∞ ⊆ Zp1+t,n−p1−t+1
t+1 ,

which we rewrite as

Bp1+t,n−p1−t+1
r ⊆ Bp1+t,n−p1−t+1

t ⊆ Bp1+t,n−p1−t+1
∞ ⊆ Zp1+t,n−p1−t+1

∞ ⊆ Bp1+t,n−p1−t+1
t .

From this last string of containments we deduce that

Bp1+t,n−p1−t+1
t+1 = Bp1+t,n−p1−t+1

t , r ≤ s ≤ ∞.

Since the proof of Theorem 15.46 also provides the identity

Zp1,n−p1
t /Zp1,n−p1

t+1 ' Bp1+t,n−p1−t+1
t+1 /Bp1+t,n−p1−t+1

t = (0),

we conclude that Zp1,n−p1
t is constant for r ≤ t < ∞. We can then apply the regularity

argument of Theorem 15.46 to conclude that Zp1,n−p1
r = Zp1,n−p1∞ . Since

Ep1,n−p1
r = Zp1,n−p1

r /Bp1,n−p1
r = Zp1,n−p1

∞ /Bp1,n−p1
r

Ep1,n−p1
∞ = Zp1,n−p1

∞ /Bp1,n−p1
∞ ,

and since Bp1,n−p1
r ⊆ Bp1,n−p1∞ , we obtain a surjection Ep1,n−p1

r −→ Ep1,n−p1∞ , and if we combine
(†), our injection for p0, n− p0, and the surjection for p1, n− p1, we get sequence (A).
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Lemma 15.50. (Lemma B) Suppose that Ep,q
2 =⇒ H (C) is a spectral sequence with a regular

filtration. Assume that there are integers s ≥ r, p, n, such that

Eu,v
r = (0) for





u+ v = n− 1, u ≤ p− r
u+ v = n, u 6= p and u ≤ p+ s− r
u+ v = n+ 1, p+ r ≤ u and u 6= p+ s;

see Figure 15.50. Then there is an exact sequence

Hn(C) −→ Ep,n−p
r −→ Ep+s,(n+1)−(p+s)

r . (B)

u

v

Er
p + r

r = 2 plane 

nonzero E
r

u, n+1-u

p, n-p

p - r nonzero E
r

u, n-1-u

p+s-r

nonzero E
r

u, n-u E p+s, n+1-(p+s)
r

Figure 15.50: An illustration of the r = 2 plane associated with Lemma B when n = 1,
p = 1, and s = 3.

Proof. We apply dp,n−pr to Ep,n−p
r and land in Ep+r,n−p−r+1

r which is (0) by Hypothesis (3).
Thus, Ker dp,n−pr = Ep,n−p

r . Also, Ep−r,n−p+r−1
r is (0) by the first hypothesis, so the image of

dp−r,n−p+r−1
r is (0). Since

Hn,n−p(Ep,n−p
r ) = Ker dp,n−pr /Im dp−r,n−p+r−1

r = Ep,n−p
r /(0) ∼= Ep,n−p

r+1

we conclude that Ep,n−p
r = Ep,n−p

r+1 . Repeat, but with dr+1; as long as r+1 < s we can continue
using hypotheses (1) and (3). Thus we obtain Ep,n−p

r = Ep,n−p
s . Now apply dp,n−pt to Ep,n−p

t

where t ≥ s + 1. Hypothesis (3) shows our map is zero and similarly the map dp−t,n−p+t−1
t
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is zero by Hypothesis (1). So for all t, with ∞ > t ≥ s + 1, we get Ep,n−p
t = Ep,n−t

t+1 . As the
filtration is regular, we apply Proposition 15.15 to obtain Ep,n−p

s+1 = Ep,n−p
∞ .

Next by Hypothesis (2) with u = p+ (s− r) (provided s > r, otherwise there is nothing

to prove), we see that Im d
p+s−r,n−(p+s−r)
r is (0). Since the proof of Theorem 15.46 provides

the identity

Im dp+s−r,n−(p+s−r)
r = B

p+s,(n+1)−(p+s)
r+1 /Bp+s,(n+1)−(p+s)

r ,

we conclude that

B
p+s,(n+1)−(p+s)
r+1 = Bp+s,(n+1)−(p+s)

r .

Should s > r + 1, we continue because

(0) = Im d
p+s−(r+1),n−(p+s−(r+1))
r+1 .

This gives

B
p+s,(n+1)−(p+s)
r+2 = B

p+s,(n+1)−(p+s)
r+1 .

Hence, we get

Bp+s,(n+1)−(p+s)
s = Bp+s,(n+1)−(p+s)

r

by repetition. However

Ep+s,(n+1)−(p+s)
s = Zp+s,(n+1)−(p+s)

s /Bp+s,(n+1)−(p+s)
s = Zp+s,(n+1)−(p+s)

s /Bp+s,(n+1)−(p+s)
r

⊆ Zp+s,(n+1)−(p+s)
r /Bp+s,(n+1)−(p+s)

r = Ep+s,(n+1)−(p+s)
r ,

since Zp,q
s ⊆ Zp,q

r whenever s ≥ r. Thus we obtain the inclusion

Ep+s,(n+1)−(p+s)
s ⊆ Ep+s,(n+1)−(p+s)

r .

Lastly, by Hypothesis (1), E
p−s,(n−1)−(p−s)
r = (0); so Proposition 15.15 implies that

E
p−s,(n−1)−(p−s)
t = (0) for every t ≥ r. Take t = s, then d

p−s,(n−1)−(p−s)
s vanishes, and by

adapting the argument in the previous paragraph we find that

Bp,n−p
s+1 = Bp,n−p

s .

But then we obtain an inclusion

Ep,n−p
s+1 ↪→ Ep,n−p

s .

However, when doing the proof of Theorem 15.46 we found that

Ker dp,n−ps = Zp,n−p
s+1 /Bp,n−p

s .

Since Bp,n−p
s+1 = Bp,n−p

s , we may rewrite the previous identity as

Ker dp,n−ps = Zp,n−p
s+1 /Bp,n−p

s+1 = Ep,n−p
s+1 .
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Therefore we get the exact sequence

0 −→ Ep,n−p
s+1 −→ Ep,n−p

s
dp,n−ps−→ Ep+s,(n+1)−(p+s)

s ,

which in view of the fact that Ep,n−p
s+1 = Ep,n−p

∞ can be rewritten as

0 −→ Ep,n−p
∞ −→ Ep,n−p

s
dp,n−ps−→ Ep+s,(n+1)−(p+s)

s . (†)

And now we have a surjection Hn(C) −→ Ep,n−p
∞ , because Eu,n−u

∞ = (0) when u ≤ p +
s − r (r 6= p) by Hypothesis (2). If we combine the exact sequence (†) with the inclusion

E
p+s,(n+1)−(p+s)
s ⊆ E

p+s,(n+1)−(p+s)
r and the surjection Hn(C) −→ Ep,n−p

∞ , we get sequence
(B).

In a similar manner one proves

Lemma 15.51. (Lemma C) If Ep,q
2 =⇒ H (C) is a spectral sequence with a regular filtration

and if there exist integers s ≥ r, p, n, such that

Eu,v
r = (0) for





u+ v = n+ 1, u ≥ p+ r
u+ v = n, p+ r − s ≤ u 6= p
u+ v = n− 1, p− s 6= u ≤ p− r,

(as shown in Figure 15.51), then there is an exact sequence

Ep−s,(n−1)−(p−s)
r −→ Ep,n−p

r −→ Hn(C). (C)

Although Lemmas A, B, C are (dull and) technical, they do emphasize one important
point: For any level r, if Ep,q

r lies on the line p + q = n, then dr takes it to a group on the
line p+ q = n+ 1 and it receives a dr from a group on the line p+ q = n− 1. From this we
obtain immediately

Corollary 15.52. (Corollary D) Say Ep,q
2 =⇒ H (C) is a regularly filtered spectral sequence

and there are integers r, n such that

Ep,q
r = (0) for

{
p+ q = n− 1
p+ q = n+ 1.

Then Ep,n−p
r = Ep,n−p

∞ , and the Ep,n−p
r are the composition factors for Hn(C) in its filtration.

Here are some applications of Lemmas A, B, C.

Theorem 15.53. (Zipper Sequence) Suppose Ep,q
2 =⇒ H (C) is a spectral sequence associ-

ated with a regular filtration and there exist integers p0, p1, r with p1 − p0 ≥ r ≥ 1 such that
Eu,v
r = (0) for all u 6= p0 or p1. Then we have the exact zipper sequence

· · · −→ Ep1,n−p1
r −→ Hn(C) −→ Ep0,n−p0

r −→ Ep1,n+1−p1
r −→ Hn+1(C) −→ · · ·

Dually, if there are integers q0, q1, r with q1 − q0 ≥ r− 1 ≥ 1 such that Eu,v
r = (0) for v 6= q0

or q1, then the zipper sequence is

· · · −→ En−q0,q0
r −→ Hn(C) −→ En−q1,q1

r −→ En+1−q0,q0
r −→ Hn+1(C) −→ · · ·
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u

v

E r

p + r

r = 2 plane 

nonzero E
r

u, n+1-up, n-p

p+r-s nonzero E
r

u, n-1-u

nonzero E
r

u, n-uE r

p-r

p-s, n-1-(p-s)

Figure 15.51: An illustration of the r = 2 plane associated with Lemma C when n = 1,
p = 0, and s = 3.

Proof. Write s = p1 − p0 ≥ r and apply Lemmas A, B and C (check the hypotheses using
u+ v = n). By splicing the exact sequences of those lemmas, we obtain the zipper sequence.
Dually, write s = 1 + q1 − q0 ≥ r, set p0 = n− q1 and p1 = n− q0. Then Lemmas A, B and
C again apply and their exact sequences splice to give the zipper sequence.

The name “zipper sequence” comes from the picture in Figure 15.52. In it, the dark
arrows are the maps Ep0,n−p0

r −→ Ep1,n+1−p1
r and the dotted arrows are the compositions

Ep1,n+1−p1
r −→ Hn+1 −→ Ep0,n+1−p0

r (one is to imagine these arrows passing through the
Hn+1 somewhere behind the plane of the page). As you see, the arrows zip together the
vertical lines p = p0 and p = p1.

Theorem 15.54. (Edge Sequence) Suppose that Ep,q
2 =⇒ H (C) is a spectral sequence

associated with a regular filtration and assume there is an integer n ≥ 1 such that Ep,q
2 = (0)

for every q with 0 < q < n and all p (no hypothesis if n = 1). Then Er,0
2
∼= Hr(C) for

r = 0, 1, 2, . . . , n− 1 and

0 −→ En,0
2 −→ Hn(C) −→ E0,n

2 −→ En+1,0
2 −→ Hn+1(C)

is exact (edge sequence). In particular, with no hypotheses on the vanishing of Ep,q
2 , we have

the exact sequence

0 −→ E1,0
2 −→ H1(C) −→ E0,1

2

d0,1
2−→ E2,0

2 −→ H2(C).



676 CHAPTER 15. SPECTRAL SEQUENCES

(Level r in the spectral sequence)

p = p0 p = p1

p

q

Figure 15.52: Zipper Sequence.

Proof. First, since Ep,q
r+1
∼= Hp,q(Er), if Ep,q

k = (0) for some k, then Ep,q
l = (0) for all l ≥ k. In

particular, we have Ep,q
l = (0) for every q with 0 < q < n and all p, for all l ≥ 2. Since we have

a cohomological (first quadrant) spectral sequence all the differentials dr,0l : Er,0
l → Er+l,−l+1

l

vanish for all l ≥ 2, so Ker dr,0l = Er,0
l . All differentials dr−l,l−1

l : Er−l,l−1
l → Er,0

l vanish if
2 ≤ l ≤ n, by hypothesis. Consequently, if 2 ≤ l ≤ n,

Er,0
l+1
∼= Ker dr,0l /Im dr−l,l−1

l = Er,0
l /(0) = Er,0

l .

If r ≤ n < l, then all differentials dr−l,l−1
l : Er−l,l−1

l → Er,0
l also vanish (since r − l < 0), so

Er,0
l+1
∼= Ker dr,0l /Im dr−l,l−1

l = Er,0
l /(0) = Er,0

l .

Thus we proved that for any r such that 0 ≤ r ≤ n and all l ≥ 2,

Er,0
l
∼= Er,0

2 .

Since the filtration is regular, by Proposition 15.15, we get

Er,0
∞
∼= Er,0

2 , 0 ≤ r ≤ n.

But the only non-zero term on the diagonal r = p+q with r < n is Er,0
∞ by our hypothesis

on the vanishing. This is exactly the condition for the spectral sequence to degenerate at
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the second term for q(n) = 0, for that specific n, so the proof of Proposition 15.17 implies
that Er,0

2
∼= Er,0

∞ = Hr(C) when 0 ≤ r ≤ n− 1.

Since En,0
2
∼= En,0

∞ , we get an injection En,0
2 −→ Hn(C). Apply Lemma A with p0 =

0, p1 = n, r = 2 to find the sequence

0 −→ En,0
2 −→ Hn(C) −→ E0,n

2 . (∗)

Next in Lemma B take r = 2, s = n + 1 ≥ 2, and p = 0. Sequence (B) splices to (∗) to
yield

0 −→ En,0
2 −→ Hn(C) −→ E0,n

2 −→ En+1,0
2 . (∗∗)

And lastly, use Lemma C with r = 2, s = n+ 1 ≥ 2, the n of Lemma C to be our n+ 1 = s
and p = n+ 1. Upon splicing Lemma C onto (∗∗) we find the edge sequence

0 −→ En,0
2 −→ Hn(C) −→ E0,n

2 −→ En+1,0
2 −→ Hn+1(C),

as claimed.

Obviously, the edge sequence gets its name from the fact that the Ep,q
2 which appear in

it lie on the edge of the quadrant in the picture of E2 as points (of the first quadrant) in the
pq-plane.

There is a notion of a morphism of spectral sequences ; see Mac Lane [37] (Chapter XI,
Page 320), Weibel [63] (Section 5.2, Page 123), and McCleary [44] (Section 3.1). We do not
need this notion for our exposition.

15.17 Problems

Problem 15.1. Finish the proof of Proposition 15.15 by proving that Ep,q
∞ is a direct limit

of the mapping family.

Problem 15.2. Using the definition of dnT in Definition 15.28, check that dn+1
T ◦ dnT = 0.

Problem 15.3. Give the details of the proof (in Section 15.9) that the connecting map
δp+q : Hp+q(F pC/F p+1C) → Hp+q+1(F p+1C/F p+2C) can be viewed as the map dp,q1 from
Ep,q

1 = Zp,q
1 /(dCp,q−1 + Cp+1,q−1) to Ep+1,q

1 = Zp+1,q
1 /(dCp+1,q−1 + Cp+2,q−1).

Problem 15.4. Prove Proposition 15.19.

Hint . Use the exact sequences

0 // Zn // Fn // Bn+1 // 0

0 // Bn // Zn //Hn // 0.
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Problem 15.5. Prove Proposition 15.26.

Problem 15.6. Prove that
Hq(G∗(Uv)) ∼= Hq(Uv,F),

where Hq(Uv,F) is the qth module of sheaf cohomology of the restriction of the sheaf F to
Uv (see just after Proposition 15.28).

Problem 15.7. Prove that the functor F 7→ Čp(X,F) is exact on presheaves (see just after
Proposition 15.32).

Problem 15.8. Prove Proposition 15.34.

Problem 15.9. Prove Proposition 15.38.

Problem 15.10. Prove Theorem 15.40.

Problem 15.11. Complete the proof of Proposition 15.41 by checking that {Qi,j} is indeed
a Cartan–Eilenberg resolution and a double complex.

Problem 15.12. Prove Proposition 15.43.

Problem 15.13. Prove Proposition 15.44.

Problem 15.14. Prove that if we let

Z ′
p,q
r = k−1(Im ir−1 : Dp+r,q−r+1 → Dp+1,q)

B′
p,q
r = j(Ker ir−1 : Dp,q → Dp−r+1,q+r−1),

for r ≥ 2, then
E ′

p,q
r = Z ′

p,q
r /B′

p,q
r .

Problem 15.15. Prove that

Z ′
p,q
r = k−1(Im ir−1 : Dp+r,q−r+1 → Dp+1,q) = (Zp,q

r + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C)

B′
p,q
r = j(Ker ir−1 : Dp,q → Dp−r+1,q+r−1) = (Bp,q

r−1 + (Cp+q ∩ F p+1C))/(Cp+q ∩ F p+1C),

where Zp,q and Bp,q
r−1 are defined as in Definition 15.19.

Problem 15.16. Prove Lemma C (Lemma 15.51).
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−⊗M -functor, 76
right-exact, 77

0-simplex, 168, 169
1-simplex, 168, 170, 180, 182, 186
2-simplex, 168, 170, 177, 182, 186
3-simplex, 184
M ⊗− functor, 76
δ-functor, 439

isomorphism, 440
morphism, 440
universal, 441

Z-graded module, 562
Ab-category, 361

additive functor, 361
direct sum, 362
zero object, 362

Ext′ group Ext′nR (A,B), 403
Hom(A,R), 68
Hom(A,−)-functor

left-exact, 75
Hom(C,D) of chain complexes, 491
Hom(f,R), see dual linear map
HomR(−, A)-functor, 72

left-exact, 74
HomR(A,−)-functor, 74
HomR(A, f)(ϕ)

push forward, 74
HomR(f, A)(ϕ)

pull back, 72
∂-functor, 441

isomorphism, 443
morphism, 442
universal, 443

R-fundamental class
compact orientable manifold, 251

R-fundamental class of M , 238
at the subspace A, 238
relationship to R-orientation, 241

R-linear forms, see Hom(A,R)
R-module

divisible, 390
flat, 385
flat resolution, 398
free resolution, 398
injective, 385
injective resolution, 401
left acyclic resolution, 398
projective, 385
projective resolution, 398
rank, 395
right acyclic resolution, 401

R-orientability, 241
R-orientation, 238

family of generators, 239
OX-module, 500
OX-module cohomology, 500
m-cell, 138
n-dimensional ball Dn, 206
n-dimensional open ball IntDn, 206
n-dimensional sphere Sn, 206
n-manifold

R-fundamental (homology) class, 238
R-orientability, 241
R-orientable, 238
compact and convex subset, 239

n-simplex, 168
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boundary, 168
boundary face, 168
dimension, 168
face, 168

p-boundary, 180
p-chains

ordered, 190
p-cycle, 180
p-fine sheaf, 524

partition of unity, 524
p-simplex, 178

ordered, 190
Čech p-boundaries, 303
Čech p-cochains, 300

Čech p-boundaries, 303
Čech p-cocycles, 303
alternating, 304
coboundary map, 300
coefficients in K, 637

Čech p-cocycles, 303
Čech cochain complex, 642
Čech cohomology

relationship to de Rham cohomology, 309
relationship to singular cohomology, 316

Čech cohomology Ȟp(X,F), 309
Čech cohomology Ȟp(U ,F), 304
Čech complex, 303
Čech resolution, 633

relationship to Čech complex, 633
Čech–de Rham complex, 298, 309
Čech–de–Rham complex, 310
Čech–de–Rham double complex, 640
“Ext” groups Ext′nR (A,B), 424
“Ext” groups Ext0

R(A,B), 400
“Ext” groups Ext1

R(A,B), 400
“Ext” groups ExtnR(A,B), 400, 424
“Tor” groups TorR0 (A,B), 401
“Tor” groups TorR1 (A,B), 401
“Tor” groups TorRn (A,B), 400, 424
“Tor” groups Tor′Rn (A,B), 425

n-manifold, see topological manifold

abelian category, 367
δ-functor, 439
∂-functor, 441
analysis of α, 369
coimage, 368
enough injectives, 411
enough projectives, 411
exact sequence, 368
image, 368
injective erasing, 444
injective object, 388
projective coerasing, 453
projective object, 387
short exact sequence, 368
standard factorization, 369

abstract complex, 169
connected, 172
dimension, 169
subcomplex, 176

abstract simplex, 169
dimension, 169

additive category, 362
cokernel, 365
kernel, 364

additive functor
coerasable, 444
contravariant exact, 372
contravariant left exact, 372
contravariant right exact, 372
erasable, 444
exact, 372
left exact, 372
right exact, 372

adjunction map, see attaching map
adjunction space, 207
affine combination, 167
affine space

points, 167
affinely independent, 167
Alexander duality, 554

connection to Alexander–Lefschetz dual-
ity, 553
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Alexander–Lefschetz duality, 552
compact support, 556
connection to Poincaré duality, 552

Alexander–Pontrjagin duality, 553
Alexander–Spanier

presheaf of p-cochains, 527
Alexander–Spanier cohomology, 528

cup product, 541
relationship to classical Čech cohomology,

548
Alexander–Spanier cohomology compact sup-

port, 541
Alexander–Spanier complex, 528
Alexander–Spanier relative p-cochains, 532
Alexander–Spanier relative cohomology, 532
arrow, 358
attaching map, 207
attaching space, see adjunction space

Baer Embedding Theorem, 391
Baer Representation Theorem, 389
Betti number, 197, 198, 225
Betti numbers, 268
bicomplex, 612
bigraded module, 562
Bootstrap Lemma, 248
Bootstrap Method

for n-manifolds, 248
boundary

of p-simplex, 178
of a simplex, 168, 177

bounded below, 599
bounded filtration, 603
bounded subspace, 540

cap product, 253, 255
coefficients in G

relative version, 270
coefficients in G (R-module), 270
relative cohomology, 256
relative homology, 256

Cartan–Eilenberg injective resolution of com-
plex, 647

catagory
pre-additive, 361

category, 357
(right) T -acyclic object, 432, 437
abelian, 367
additive, 362
adjoint functor, 342
arrow, 358
coproduct, 364
equivalence, see isomorphism
equivalent, 341
functor, 358
Hom-set, 358
isomorphism, 358
left equivalence, 366
map, 358
morphism, 358

codomain, 358
coimage, 368
composition, 358
domain, 358
epic, 360
monic, 360
range, 358

morphsim
image, 368

object, 357
product, 364
quotient object, 366
right equivalence, 365
subobject, 365

category of OX-modules Mod(X,OX), 500
cellular chain complex, 220

boundary maps, 220, 223
incidence numbers, 223

homology, 220
cellular cochain complex, 232

coboundary maps
cellular cohomology

relationship to singular cohomology, 232
cellular cohomology modules, 232
cellular homology
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coefficients in G (R-module), 224
relationship to singular homology, 220, 225

cellular homology module, 220
chain complex, 80, 489

chain map, 82
contractible, 193
exact sequence, 411
homotopy equivalence, 408
morphism, 90
negative, 80
positive, 80, 489

chain homotopy, 83
chain map, 82

chain homotopy, 83
classical Čech cohomology, 542

p-cochain, 542
relative p-cochain, 546
relative cohomology modules, 547

classical Čech cohomology
cohomology modules, 548
relative cohomology modules, 548

classical Čech cohomology Ȟp(U ;G), 304
classical Čech cohomology Ȟp(X;G), 309
classification theorem compact surfaces, 203
closed m-cell, 207
coboundary homomorphism, 150
cobounded subspace, 540
cochain complex, 79, 489, 575

acyclic, 79
coboundary, 79
coboundary map, 575
cochains, 79
cocycles, 79
cohomology space, 79
filtered, 575
negative, 79
positive, 79, 489

cochain complex with differential of degree r,
567

cohomology module, 567
coeffaçable functor, see coerasable functor
coerasable functor, 444

coherent topology
coherent union, 207
cohomology

de Rham, 96
cohomology group, 79

coboundary, 79
cohomology class, 79

cohomology groups
cocycle, 79

cohomology groups RnT (IA), 414
right derived functor, 422

cohomology groups RnT (PA), 415
right derived functor, 422

cohomology groups with compact support
coefficients in G, 271

coimage, 368
coimage of homorphism, 344
Coker, see cokernel
cokernel, 60
cokernel of homomorphism, 344
colimit, 291
combination

affine, 167
convex, 168

compact pair (X,A), 541
compact pair in (X,A), 132
compatible filtration and coboundary map,

575
compatible filtration and grading, 576
complementary index of spectral sequence, 660
complex, 171
complex projective space, 136

cellular homology, 221
homology groups, 137
singular cohomology, 162

connected
complex, 172

constant presheaf, 279
constant sheaf, 285
contractible chain complex, 193
contractible space, 117
contravariant functor, 72, 359
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HomR(−, A), 72
convex combination, 168
covariant functor, 72, 359
−⊗M , 76
M ⊗−, 76
Hom(A,−), 74

cup product, 159, 161
G-coeffiecient generalization, 162
relative cohomology, 163
simplicial cohomology, 201

CW complex
p-skeleton, 210
p-skeleton, 214
alternative definition, 216
attaching map, 210, 214
cellular chain complex, 220
characteristic map, 215, 216
closure-finiteness, 216
definition, 214
dimension, 210, 214
finite, 210
subcomplex

de Rham cohomology, 96, 97
differential complex, 96
exterior differentiation, 96
Mayer–Vietoris cohomology sequence, 99
Mayer–Vietoris sequence, 99
Poincaré duality, 104
right T -acyclic resolution, 438

de Rham cohomology with compact support,
98

de Rham complex, 96
de Rham theorem, 525, 526
deformation retraction, 118
degenerate spectral sequence, 608
degree of a map, 221

relationship to boundary map, 223
degree of filtration, 576
derived couple, 654
diagram chasing, 89
differentiable singular p-cochains, 518
differentiable singular p-simplex, 518

differentiable singular cohomology, 518
differential complex, see cochain complex, 96
differential form

closed, 97
exact, 97

differential module, 563
coboundaries, 563
cocycles, 563
differential, 563
filtered, 563

differential sheaf, 627
cohomology, 627
double complex, 628

direct limit, 288
map version, 294, 295
universal mapping property, 290

direct mapping family, 288
map, 292, 294

direct sum, 362
directed set, 288

cofinal subset, 288
double complex, 612
dual linear map f>, 68
dual module, see Hom(A,R)

edge sequence, 675
effaçable functor, see erasable functor
Eilenberg–Zilber theorem, 491
embedding, 138, 556

Alexander horned sphere, 138
end of spectral sequence, 660
epic, 351, 360

left equivalence, 366
quotient object, 366

epimorphism, 360
equivalence

of sequences, 177
erasable functor, 444
espace étalé, see stalk space of presheaf
Euler–Poincaré characteristic, 268
Euler–Poincaré characteristic, 195, 197, 198,

225, 227
S2, 227
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Sn, 227
RP2, 227
RPn, 227
n-torus T n, 227
definition, 197

exact couple, 652
derived couple, 655
induced by filtration, 653

exact sequence, 60, 344
short exact, 60

exact sequence of presheaves, 355
exact sequence of sheaves, 355
excision axiom

coefficients in G, 147

faithful
functor, 371

family of support, 524
filtered complex, 575
filtered differential module, 563
filtered module, 561
filtration

R-module, 561
cochain complex, 575
positive, 598

filtration index of spectral sequence, 660
fine sheaf, 522
five lemma, 65
flasque sheaf, 501
flat

R-module, 385
flat module, 373
flat resolution

TorRn (A,B), 400
of R-modules, 398

free resolution
R-modules, 398

Freyd–Mitchell embedding theorem, 371
fully faithful

functor, 371
functor, 72, 358, 371

additive, 361

contravariant, 72, 359
covariant, 72, 359
left-exact, 74, 75

Hom(A,−), 75
HomR(−, A), 74

natural transformation, 418
right-exact, 77
−⊗M , 77

fundamental class
existence, 249

generalized Jordan curve theorem, 555
Generalized Jordan curve theorem in Rn, 139
Generalized Jordan curve theorem in Sn, 138
genus of surface, 203
geometric realization, 169, 171, 177, 199

closed star, 171
definition, 170
of a triangulation), 175
star, 171
topology, 171

geometrically independent, 167
germ

of a continuous function, 322
of a stalk, 322

Godement resolution, see canonical flasque
resolution

good cover, 100
finite type, 100

graded module, 79, 562
degree, 81
from filtration, 567

graded module gr(H(M)), 568
composition factors, 568

graded module gr(M), 567
graded vector space, 97
Grothendieck, 649

Spectral sequence of composed functors,
649

hereditary ring, 458
Hom-set, 358
homology group, 81
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boundary, 81
chain, 81
cycle, 81

homology groups LnT (IA), 414
left derived functor, 422

homology groups LnT (PA), 414
left derived functor, 422

homotopic maps, 117
relative homology, 122

homotopy
deformation retraction, 118

homotopy (with fixed ends), 117
homotopy axiom

coefficients in G, 147
homotopy equivalent pairs of spaces, 122
homotopy equivalent topological spaces, 119

image, 368
image of homomorphism, 344
index of filtration, 576
inductive limit, see direct limit
injective

R-module, 385
Baer Embedding Theorem, 391
Baer Representation Theorem, 389

injective erasing
abelian category, 444

injective map of presheaves, 346
injective map of sheaves, 346
injective module, 373
injective object, 388
injective resolution

Ext′nR (A,B), 424
Ext′nR (A,B), 403
chain homotopy, 405
cohomology groups RnT (IA), 414
Comparison Theorem, 410
homology groups LnT (IA), 414
left derived functor LnT , 422
map, 405
morphism, 405
of R-modules, 401

chain homotopy, 405
map, 405
morphism, 405

right derived functor RnT , 422
injective resoluton

Horseshoe Lemma, 412
injective sheaf, 498
isomorphism of presheaves, 351
isomorphism of sheaves, 351

Jordan curve theorem
generalization, 555

Jordan–Brouwer separation theorem, 138

Künneth formula, 490
Künneth formula for Hom, 492
Künneth formula for chain complexes, 490
Künneth formula for cochain complexes, 490
Künneth formula for topological spaces, 491
kernel of homomorphism, 344
Klein bottle

triangulation, 175
Kronecker index, 255
Kronecker map for cohomology, 483

Lefschetz duality, 553
left acyclic resolution

R-module, 398
left derived functor LnT , 422

long exact sequence homology, 430
lemma (L), 661, 663, 665, 666
lemma(L), 664
level of spectral sequence, 589, 659
locally constant function, 285
locally finite

open cover, 511
locally zero function, 528
long exact sequence of relative homology

coefficients in G, 146
long Mayer–Vietoris cohomology sequence, 99

map, 358
map of stalks, 325
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Mayer–Vietoris in relative singular cohomol-
ogy, 158

Mayer–Vietoris in relative singular homology,
148

Mayer–Vietoris in singular cohomology, 154
Mayer–Vietoris sequence, 99

relatives ingular cohomology, 158
relatives ingular homology, 148
singular cohomology, 154

Mayer–Vietoris sequence for cohomology
compact support, 102

Mayer–Vietoris sequence for singular homol-
ogy, 130

mod 2 orientation, 241
Modular Noether isomorphism, 572
module

Z-graded, 562
bigraded, 562
differential, 563
filtered, 561
flat, 373
graded, 562
injective, 373
projective, 373

monic, 347, 360
right equivalence, 365

subobject, 365
monic of presheaves, 347
monomorphism, 360
morphism, 358

codomain, 358
composition, 358
domain, 358
range, 358

natural transformation, 418
normal topological space, 209

object, 357
open

simplex, 168
open m-cell, 207
open cover

equivalent, 305
locally finite, 511
nerve, 542
ordered nerve, 542

ordered chain complex, 542
refinement, 305, 535

projection, 535
open cover for (X,A), 535

refinement, 536
projeciton, 536

ordered p-chains, 190
ordered p-simplex, 190
ordered relative simplicial homology groups,

190
ordered simplicial chain complex, 190
orientation

of a simplex, 177
orientation bundle, 241
oriented

simplex, 177

paracompact, 298, 309, 310, 511
fundamental system of neighborhoods, 520

paracompactifying, 524
Poincaré Duality, 258
Poincaré Duality for Coefficients in a Module,

272
Poincaré duality, 104
polyhedron, see geometric realization
polytope, see geometric realization
positive chain complex, 489
positive cochain complex, 489
presheaf
Hom(F ,G), 287
constant, 279
definition, 279
epic, 351
injective map, 346
isomorphic, 281
isomorphism, 351
map, 279
monic, 347
restriction, 287
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stalk at x, 322
stalk space, 327
subpresheaf, 347
surjective map, 351

presheaf cokernel, 349
pcoker, 349

presheaf image PIm ϕ, 354
presheaf kernel, 345
presheaf map, 279

composition, 281
injective, 281
surjective, 281

presheaf morphism, see presheaf map
project resolution

left derived functor LnT , 422
projective

R-module, 385
projective coerasing

abelian category, 453
projective module, 373
projective object, 387
projective resolution

ExtnR(A,B), 400, 424
TorRn (A,B), 424
Tor′Rn (A,B), 425
chain homotopy, 404
cohomology groups RnT (PA), 415
Comparison Theorem, 406
homology groups LnT (PA), 414
Horseshoe Lemma, 411
map, 404
morphism, 404
of R-modules, 398

chain homotopy, 404
map, 404
morphism, 404

right derived functor RnT , 422
proper map, 257, 540
pull back, 72
push forward, 74

quotient object, 366

real projective plane
triangulation, 175

real projective space, 136
cellular homology, 224
homology groups, 137
singular cohomology, 162

reduced homology
coefficients in G (R-module), 145
good pair, 127

reduced homology groups, 125
augmented chain complex, 125

reduced relative homology
long exact sequence, 127

reduced relative singular homology
coefficients in G, 146

reduced singular cohomology, 155
reduced singular relative homology groups,

126
regular filtration, 599
relative n-manifold, 553
relative p-boundaries, 121
relative p-cycles, 121
relative Alexander–Spanier p-cochains, 532
relative Alexander–Spanier cohomology, 532
relative homology

excision axiom, 128
long exact sequence, 124
reduced groups, 126

relative ordered simplicial chain complex, 190
relative simplicial chain complex, 188
relative simplicial homology groups, 188
relative singular homology modules

coefficients in G, 146
right T -acyclic resolution, 432
right acyclic resolution

of R-modules, 401
right derived functor RnT , 422

T -acyclic object, 432
long exact sequence cohomology, 426

ringed space, 374
OX-module, 500
complex analytic manifold, 376
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isomorphism, 375
locally isomorphic, 376
map, 375
morphism, 375
smooth manifold, 376
structure sheaf, 374
topological manifold, 376

separating subspace, 138
sheaf

p-fine, 524
canonical flasque resolution, 503
cohomology groups, 499
constant sheaf, 285
definition, 282
direct factor, 503
direct image, 375
epic, 351
fine, 522
flasque, 501
global section, 283
gluing condition, 282
injective, 498
injective map, 346
isomorphic, 287
isomorphism, 351
map, 287
monopresheaf condition, 283
monospresheaf condition, 282
morphism

support, 524
restriction, 287
ringed space, 374
section

support, 524
section above U , 283
soft, 519
subpresheaf, 347
surjective map, 351
trivial sheaf, 283

sheaf cohomology, 499
equivalence to Čech cohomology, 514

equivalence to Alexander–Spanier coho-
mology, 528

equivalence to de Rham cohomology, 525,
526

equivalence to singular cohomology, 518
sheaf cokernel, 349

scoker, 349
sheaf image SIm ϕ, 354
sheaf morphism, 287

support, 524
sheaf of continuous sections, 284
sheaf of locally constant functions, 285
sheaf of modules over X, 500
sheaf space

seestalk space of topological space, 333
sheafification

of a presheaf, 327
short exact sequence, 60

split, 62
short five lemma, 64
short split exact sequence, 62
simplex, 169

barycentric coordinates
boundary, 168
boundary face, 168
definition, 168
dimension, 168
face, 168
face opposite ai, 168
interior, 168
open, 168
opposite orientation, 177
oriented, 177
proper face, 168
vertices, 168

simplicial p-chain
boundary, 178
boundary map, 179
coefficients in G (R-module), 187
definition, 178
elementary, 178
group, 178
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simplicial p-th homology group, 180
homologous, 180

simplicial cohomology
coboundary morphism, 199
cup product, 201
relationship to singular cohomology, 200

simplicial cohomology groups, 199
simplicial complex

p-boundary, 180
p-cycle, 180
definition, 169
Euler–Poincaré characteristic, 197

simplicial homology, 165
coefficients in G, 187

simplicial map, 176, 187
simplicial relative cohomology groups, 199
singular p-boundaries, 115
singular p-chain, 114

boundary homorphism, 114
coefficients in G (R-module), 143

singular p-chains
cup product, 159

singular p-coboundaries, 151
singular p-cochains, 149

differentiable, 518
singular p-cocycles, 151
singular p-cycles, 115
singular p-simplex, 113
U -small, 129
ith face, 113
back face, 159
boundary, 114
differentiable, 114, 518
front face, 159
in U , 114

singular chain
cap product, 253

singular chain complex of (X,A), 121
boundary morphism, 121

singular chain group, 114
singular cochain

cap product, 253

compact support, 256
singular cochain group Sp(X;R), 149
singular cochain group Sp(X;G), 152
singular cochain with compact support, 256
singular cohomology, 151

n-torus, 162
cap product, 255
coboundary homomorphism, 150
coefficients in G (R-module), 152
complex projective space, 162
cup product, 161
excision axiom, 157
homotopy axiom, 156
Kronecker index, 255
real projective space, 162
reduced groups, 155
relationship to cellular cohomology, 232
unit sphere, 162

singular cohomology groups with compact sup-
port, 256

singular cohomology module, 151
singular cohomology ring, 161

degree, 162
singular homology, 109, 115

n-torus, 137
additivity axiom, 134
axiom of compact support, 133
cap product, 255
excision axiom

coefficients in G, 147
homotopy axiom, 124

coefficients in G, 147
Kronecker index, 255
Mayer–Vietoris sequence, 130
reduced homology, 125

coefficients in G, 145
relationship to cellular homology, 220, 225
unit disk, 134
unit sphere, 135

singular homology module, 115
coefficients in G (R-module), 144

singular relative cohomology, 156
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long exact sequence, 157
singular relative homology group, 121, 122
soft sheaf, 519
spectral sequence, 589, 659

as iteration of derived couple, 656
bounded below, 599
edge sequence, 675
equivalence of construction, 658
equivalence of constructions, 667
existence, 591
filtered differential module, 573, 574
zipper sequence, 674

Spectral sequences, 575
sphere

triangulation, 173
stalk

definition, 322
map, 325
set of equivalence classes, 322

stalk space
of R-modules, 342

map, 342
restriction, 344

of A-modules, 343
map, 343

of a presheaf, 327, 329
of a topological space, 333

map, 333
morphism, 333
sheaf map, 334

of commutative rings, 343
map, 343
restriction, 344

sheafification, 327
substalk space, 347

standard n-simplex, 112
vertices, 112

star, 171
closed, 171

strongly convergent spectral sequence, 666
subcomplex, 176
subobject, 365

subspace
bounded, 540
cobounded, 540

surjective map of presheaves, 351
surjective map of sheaves, 351
system of coefficients, 636

tautly embedded pair, 550
tensor product of complexes, 490
topological manifold, 141

chart, 141
topological space

bounded finite type, 225
finite type, 225

topological sum, 133, 207
torsion numbers, 197
torsion subgroup, 196
torus

triangulation, 174
total complex, 612
total differential, 613
total grading index of spectral sequence, 660
transporter, 390
triangulable topological space, 171
triangulation, 199

universal δ-functor, 441
universal ∂-functor, 443
Universal Coefficient Theorem for Cohomol-

ogy, 471
Universal Coefficient Theorem for Homology,

458

vector space
gradation, 97

weakly convergent spectral sequence, 666

zero object, 362
zig-zag lemma for cohomology, 85

connecting homomorphisms, 89
zipper sequence, 674


