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The Classification of Surfaces: The Problem

So you think you know what a surface is?

Define a suitable notion of equivalence of surfaces so that a complete list
of representatives, one in each equivalence class of surfaces, is produced,

each representative having a simple explicit description called a normal
form.
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The Classification of Surfaces: The Problem

So you think you know what a surface is?

Define a suitable notion of equivalence of surfaces so that a complete list
of representatives, one in each equivalence class of surfaces, is produced,
each representative having a simple explicit description called a normal
form.

The classification theorem says that, despite the fact that surfaces appear
in many diverse forms, every compact surface is equivalent to exactly one
representative surface, also called a surface in normal form.
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The Problem

Furthermore, there exist various kinds of normal forms that are very
concrete, for example, polyhedra obtained by gluing the sides of certain
kinds of regular planar polygons.
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The Problem

Furthermore, there exist various kinds of normal forms that are very
concrete, for example, polyhedra obtained by gluing the sides of certain
kinds of regular planar polygons.

There is also a finite set of transformations with the property that every
surface can be transformed into a normal form in a finite number of steps.
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The Problem

Furthermore, there exist various kinds of normal forms that are very
concrete, for example, polyhedra obtained by gluing the sides of certain
kinds of regular planar polygons.

There is also a finite set of transformations with the property that every
surface can be transformed into a normal form in a finite number of steps.

To make the above statements rigorous, one needs to define precisely

@ what is a surface
@ what is a suitable notion of equivalence of surfaces

© what are normal forms of surfaces.
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Figure : An abstract surface

The surface is covered by a finite number of open subsets.
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Abstract Surfaces

homeomorphism

open sets

Figure : An abstract surface

The surface is covered by a finite number of open subsets.

u, ¢)
¢ chart
Q E"

/ o(U) =QCE™

Two surfaces X1 and X5 are equivalent if each one can be continuously
deformed into the other. This means that there is a continuous bijection,
f: X1 — Xo, such that £~ is also continuous (a homeomorphism).
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The Classification of Surfaces: The Solution

Every proof of the classification theorem comprises two steps:
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The Classification of Surfaces: The Solution

Every proof of the classification theorem comprises two steps:

(1) A topological step. This step consists in showing that every compact
surface can be triangulated.

(2) A combinatorial step. This step consists in showing that every
triangulated surface can be converted to a normal form in a finite
number of steps, using some (finite) set of transformations.
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The Classification of Surfaces: The Solution

Every proof of the classification theorem comprises two steps:

(1) A topological step. This step consists in showing that every compact
surface can be triangulated.

(2) A combinatorial step. This step consists in showing that every
triangulated surface can be converted to a normal form in a finite
number of steps, using some (finite) set of transformations.

To clarify step 1, we have to explain what is a triangulated surface.
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The Solution

A technical way to achieve this is to define the combinatorial notion of a
2-dimensional complex, a formalization of a polyhedron with triangular
faces.

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012 7 /63



The Solution

A technical way to achieve this is to define the combinatorial notion of a
2-dimensional complex, a formalization of a polyhedron with triangular
faces.

Every surface can be triangulated; first proved by Radé in 1925.

Figure : Tibor Radd, 1895-1965
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The Solution

The proof is fairly complicated. The intuition behind it is unclear. The

most easily accessible proof (if not the shortest) is due to Carsten
Thomassen and uses graph theory.
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The Solution

The proof is fairly complicated. The intuition behind it is unclear. The

most easily accessible proof (if not the shortest) is due to Carsten
Thomassen and uses graph theory.

There are a number of ways of implementing the combinatorial step.
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The Solution

The proof is fairly complicated. The intuition behind it is unclear. The
most easily accessible proof (if not the shortest) is due to Carsten
Thomassen and uses graph theory.

There are a number of ways of implementing the combinatorial step.

Once one realizes that a triangulated surface can be cut open and laid flat
on the plane, it is fairly intuitive that such a flattened surface can be
brought to normal form. The details are tedious.
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The Solution

Distinct normal forms of surfaces can be distinguished by simple
invariants:
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The Solution

Distinct normal forms of surfaces can be distinguished by simple
invariants:

(a) Their orientability (orientable or non-orientable)

(b) Their Euler—Poincaré characteristic, an integer that encodes the
number of “holes” in the surface.
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The Solution

Distinct normal forms of surfaces can be distinguished by simple

invariants:

(a) Their orientability (orientable or non-orientable)
(b) Their Euler—Poincaré characteristic, an integer that encodes the
number of “holes” in the surface.

Not so easy to define precisely the notion of orientability, and to prove
rigorously that the Euler—Poincaré characteristic is a topological invariant.
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Figure : Dog Logic
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Orientability

Let A and B be two bugs on a surface assumed to be transparent. Pick
any point p, assume that A stays at p and that B travels along any closed
curve on the surface starting from p dragging along a coin. A memorizes
the coin’s face at the begining of the path followed by B.

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012 11 / 63



Orientability

Let A and B be two bugs on a surface assumed to be transparent. Pick
any point p, assume that A stays at p and that B travels along any closed
curve on the surface starting from p dragging along a coin. A memorizes
the coin’s face at the begining of the path followed by B.

When B comes back to p after traveling along the closed curve, two
possibilites may occur:

© A sees the same face of the coin that he memorized at the beginning
of the trip.

@ A sees the other face of the coin.
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Orientability

Let A and B be two bugs on a surface assumed to be transparent. Pick
any point p, assume that A stays at p and that B travels along any closed
curve on the surface starting from p dragging along a coin. A memorizes
the coin’s face at the begining of the path followed by B.

When B comes back to p after traveling along the closed curve, two
possibilites may occur:

© A sees the same face of the coin that he memorized at the beginning
of the trip.

@ A sees the other face of the coin.

If case 1 occurs for all closed curves on the surface, we say that it is
orientable. This is the case for a sphere or a torus.
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Orientability

However, if case 2 occurs, then we say that the surface is nonorientable.
This phenomenon can be observed for the surface known as the Mobius
Sstrip.

Figure : A Mobius strip in R® (Image courtesy of Konrad Polthier of FU Berlin)
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Tools Needed for the Proof

This result was first proved rigorously by Brahana in 1921, but it had been
stated in various forms as early as 1861 by Mobius, by Jordan in 1866, by
von Dyck in 1888 and by Dehn and Heegaard in 1907.
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Tools Needed for the Proof

This result was first proved rigorously by Brahana in 1921, but it had been
stated in various forms as early as 1861 by Mobius, by Jordan in 1866, by
von Dyck in 1888 and by Dehn and Heegaard in 1907.

A rigorous proof requires: a precise definition of a surface and of
orientability, a precise notion of triangulation, and a precise way of
determining whether two surfaces are homeomorphic or not.
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Tools Needed for the Proof

This result was first proved rigorously by Brahana in 1921, but it had been
stated in various forms as early as 1861 by Mobius, by Jordan in 1866, by
von Dyck in 1888 and by Dehn and Heegaard in 1907.

A rigorous proof requires: a precise definition of a surface and of
orientability, a precise notion of triangulation, and a precise way of
determining whether two surfaces are homeomorphic or not.

This requires some notions of algebraic topology such as, fundamental
groups, homology groups, and the Euler—Poincaré characteristic.
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Main ldea of the Proof

Until Riemann’s work in the early 1850's, surfaces were always dealt with

from a local point of view (as parametric surfaces) and topological issues
were never considered.
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Main ldea of the Proof

Until Riemann’s work in the early 1850's, surfaces were always dealt with
from a local point of view (as parametric surfaces) and topological issues
were never considered.

The view that a surface is a topological space locally homeomorphic to the
Euclidean plane was only clearly articulated in the early 1930's by
Alexander and Whitney (although Weyl also adopted this view in his
seminal work on Riemann surfaces as early as 1913).
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Main ldea of the Proof

Until Riemann’s work in the early 1850's, surfaces were always dealt with
from a local point of view (as parametric surfaces) and topological issues
were never considered.

The view that a surface is a topological space locally homeomorphic to the
Euclidean plane was only clearly articulated in the early 1930's by
Alexander and Whitney (although Weyl also adopted this view in his
seminal work on Riemann surfaces as early as 1913).

After Riemann, various people, such as Listing, Mobius and Jordan, began

to investigate topological properties of surfaces, in particular, topological
invariants.
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Figure : James W Alexander, 1888- 1971 (left), Hassler Whitney, 1907-1989
(middle) and Herman K H Weyl, 1885-1955 (right)
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Invariants: various notions of connectivity, such as the maximum number
of (non self-intersecting) closed pairwise disjoint curves that can be drawn
on a surface without disconnecting it and, the Euler—Poincaré
characteristic.
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Invariants: various notions of connectivity, such as the maximum number
of (non self-intersecting) closed pairwise disjoint curves that can be drawn
on a surface without disconnecting it and, the Euler—Poincaré
characteristic.

These mathematicians took the view that a (compact) surface is made of

some elastic strechable material and they took for granted the fact that
every surface can be triangulated.
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Invariants: various notions of connectivity, such as the maximum number
of (non self-intersecting) closed pairwise disjoint curves that can be drawn
on a surface without disconnecting it and, the Euler—Poincaré
characteristic.

These mathematicians took the view that a (compact) surface is made of
some elastic strechable material and they took for granted the fact that
every surface can be triangulated.

Two surfaces S; and S, were considered equivalent if S; could be mapped
onto S, by a continuous mapping “without tearing and duplication” and
5> could be similarly be mapped onto S;.
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Mobius and Jordan seem to be the first to realize that the main problem is
to find invariants (preferably numerical) to decide the equivalence of
surfaces, that is, to decide whether two surfaces are homeomorphic or not.

Figure : Bernhard Riemann, 1826-1866 (left), August Ferdinand Mébius,
1790-1868 (middle left), Johann Benedict Listing, 1808-1882 (middle right) and
Camille Jordan, 1838-1922 (right)
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Crucial Fact

Every (connected) compact, triangulated surface can be opened up and
laid flat onto the plane (as one connected piece) by making a finite
number of cuts along well chosen simple closed curves on the surface.
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Crucial Fact

Every (connected) compact, triangulated surface can be opened up and
laid flat onto the plane (as one connected piece) by making a finite
number of cuts along well chosen simple closed curves on the surface.

Consequently, every compact surface can be obtained from a set of convex
polygons (possibly with curved edges) in the plane, called cells, by gluing
together pairs of unmatched edges.
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Crucial Fact

These sets of cells representing surfaces are called cell complexes.
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Crucial Fact

These sets of cells representing surfaces are called cell complexes.

It is even possible to choose the curves so that they all pass through a
single common point.
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Crucial Fact

These sets of cells representing surfaces are called cell complexes.

It is even possible to choose the curves so that they all pass through a
single common point.

Every compact surface is obtained from a single polygon with an even

number of edges and whose vertices all correspond to a single point on the
surface.
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Crucial Fact

These sets of cells representing surfaces are called cell complexes.

It is even possible to choose the curves so that they all pass through a
single common point.

Every compact surface is obtained from a single polygon with an even
number of edges and whose vertices all correspond to a single point on the
surface.

A sphere can be opened up by making a cut along half of a great circle
and then by pulling apart the two sides and smoothly flattening the
surface until it becomes a flat disk (Chinese lantern).
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Symbolically: the sphere is a round cell with two boundary curves labeled
and oriented identically, to indicate that these two boundaries should be
identified.

a

Figure : A cell representing a sphere (boundary aa™?)
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To open up a torus, we make two cuts.

By deformation, we get a square with opposite edges labeled and oriented
identically:
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To open up a torus, we make two cuts.

By deformation, we get a square with opposite edges labeled and oriented

identically:

ol O b

Figure : A cell representing a torus (boundary aba=1b~1)
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To open up a torus, we make two cuts.

By deformation, we get a square with opposite edges labeled and oriented

identically:

ol O b

Figure : A cell representing a torus (boundary aba=1b~1)

The boundary can be described by the string aba=1b7!.
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264 VI. Topologie.

fallen. Die iibrigen Seiten 3, 4, die dabei in Kreise iibergegangen sind,

kénnen wir in der Weise anci indem wir
(Abb. 284) den Kreiszylinder
verbiegen.  Wir erhalten

schlieBlich die Fliche des

Torus, und der Rand der

Rechtecksfliche geht in ein

,kanonisches Schnittsystem'

des Torus iiber, wobei jede
' Kurve zwei Randstrecken

der Rechtecksfliche entspricht
(Abb. 285 und 275b). Umge-
kehrt: schneidet manden Torus
lings eines kanonischen Sy-
stems auf, so ergibt sich
stets eine Figur, die dem
Rechteck mit der angegebe-
nen Rinderzuordnung topo-
logisch dquivalent ist. Man
kann dieses Verfahren auf
alle ,,Brezeln ausdehnen.
Hat die Brezel den Zusam-
menhang 2p +1, so be-
steht das kanonische Schnitt-
system aus 2p Kurven. Die
Zerschneidung liefert also ein
4p-Eck mit einer bestimmten Rinderzuordnung. Fiir die Fille
h=5, 7, also p=2,3, ist die Konstruktion durch Abb. 286, 287
veranschaulicht.

Die Abbildung der Brezeln auf
4p-Ecke spielt sowohl in der Theorie
der stetigen Abbildungen (vgl. S. 284)
als auch in der Funktionentheorie
(vgl. S. 294) eine wichtige Rolle. In
beiden Anwendungen geht man davon
aus, daB die 4p-Ecke ecine regulire
Gebi intei der hyperboli
Ebene (bzw. fir p =1 der cuklidi-
schen Ebene) liefern, wie wir das auf

b, 2868, S. 228 crortert haben.

Wenn man die Rénderzuordnung
abindert, erhidlt man auBer den Brezeln noch eine groSe Anzahl
weiterer Flichen, von denen uns einige im folgenden beschiftigen
werden.

Abb. 284.

Abb. 285,
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A surface (orientable) with two holes can be opened up using four cuts.
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A surface (orientable) with two holes can be opened up using four cuts.

Such a surface can be thought of as the result of gluing two tori together:
take two tori, cut out a small round hole in each torus and glue them
together along the boundaries of these small holes.

Make two cuts to split the two tori (using a plane containing the “axis” of
the surface), and then two more cuts to open up the surface.
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A surface with two holes can be represented by an octagon with four pairs
of matching edges:
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A surface with two holes can be represented by an octagon with four pairs
of matching edges:

ai b2

o

aq b2
bl a2

Figure : A cell representing a surface with two holes (boundary
arbiay thr tasbyay thyt)
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A surface with two holes can be represented by an octagon with four pairs
of matching edges:

ai b2

o

aq b2
bl a2

Figure : A cell representing a surface with two holes (boundary
a1bia; by tazbray thyt)

A surface (orientable) with three holes can be opened up using 6 cuts and
is represented by a 12-gon with edges pairwise identified.
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Normal Form of Type |

An orientable surface with g holes (a surface of genus g) can be opened

up using 2g cuts. It is represented by a regular 4g-gon with edges pairwise
identified. The boundary of this 4g-gon is of the form

alblal_lbl_lagbzaz_lbz_l e agbgaglbéfl,
called type (I).
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Normal Form of Type |

An orientable surface with g holes (a surface of genus g) can be opened
up using 2g cuts. It is represented by a regular 4g-gon with edges pairwise
identified. The boundary of this 4g-gon is of the form

arbia; th tagbray byt - agbgaglbgl,
called type (I).
The sphere is represented by a single cell with boundary
aa (ore);

this cell is also considered of type (I).
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We can think of a surface of type (l) as the result of attaching g handles
onto a sphere.
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We can think of a surface of type (l) as the result of attaching g handles

onto a sphere.
)

Fig. 6.7: Connected sum with a torus versus attaching a handle.

Figure : Attaching handles

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012 27 / 63



We can think of a surface of type (l) as the result of attaching g handles

onto a sphere.
)

Fig. 6.7: Connected sum with a torus versus attaching a handle.

Figure : Attaching handles

1

The cell complex, aba=1bh~1, is called a handle.
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Cell Complexes

Since our surfaces are already triangulated, we may assume that they are
given by a finite set of planar polygons with curved edges.
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Cell Complexes

Since our surfaces are already triangulated, we may assume that they are
given by a finite set of planar polygons with curved edges.

Cell complex = a finite set, F, of faces, each face, A € F, being assigned

a boundary, B(A), a string of oriented edges from some finite set, E, of
edges.
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Cell Complexes

Since our surfaces are already triangulated, we may assume that they are
given by a finite set of planar polygons with curved edges.

Cell complex = a finite set, F, of faces, each face, A € F, being assigned
a boundary, B(A), a string of oriented edges from some finite set, E, of
edges.

To deal with oriented edges: the set, E~1, of “inverse” edges.
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Cell Complexes

Since our surfaces are already triangulated, we may assume that they are
given by a finite set of planar polygons with curved edges.

Cell complex = a finite set, F, of faces, each face, A € F, being assigned
a boundary, B(A), a string of oriented edges from some finite set, E, of
edges.

To deal with oriented edges: the set, E~1, of “inverse” edges.

B: F — (EUE~1)*, assigns a string or oriented edges,
B(A) = ajay - - - ap, to each face, A € F, with n > 2.
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Cell Complexes

Also need the set, F_1 of inversely oriented faces A~%. Convention:

B(A™Y) = a,1---ayta; ! if B(A) = ajay---a,. We do not distinguish
between boundaries obtained by cyclic permutations.

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012 29 / 63



Cell Complexes

Also need the set, F_1 of inversely oriented faces A~%. Convention:

B(A™Y) = a,1---ayta; ! if B(A) = ajay---a,. We do not distinguish
between boundaries obtained by cyclic permutations.

We call A and A1 oriented faces.
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Cell Complexes

Also need the set, F_1 of inversely oriented faces A~%. Convention:

B(A™Y) = a,1---ayta; ! if B(A) = ajay---a,. We do not distinguish
between boundaries obtained by cyclic permutations.

We call A and A1 oriented faces.

Every finite set, K, of faces representing a surface satisfies two conditions:

(1) Every oriented edge, a € EU E~1, occurs twice as an element of a
boundary.

(2) K is connected.

Jean Gallier (Upenn) The Classification Theorem for Surfaces
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Cell Complexes

A finite (nonempty) set of faces with an assignment of boundaries
satisfying conditions (1) and (2) is called a cell complex.
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Cell Complexes

A finite (nonempty) set of faces with an assignment of boundaries
satisfying conditions (1) and (2) is called a cell complex.

For example, a torus is represented by a single face with boundary
aba=lb71l.
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Cell Complexes

A finite (nonempty) set of faces with an assignment of boundaries
satisfying conditions (1) and (2) is called a cell complex.

For example, a torus is represented by a single face with boundary
aba=lb71l.

Surprise: the definition of a cell complex allows other surfaces besides the
familiar ones: nonorientable surfaces.
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Nonorientable Surfaces

a a
bl ) b
Qa a

(a) (b)

Figure : (a) A projective plane (boundary abab). (b) A projective plane
(boundary aa).

We have to glue the two edges labeled a together. This requires first
“twisting” the square piece of material by an angle 7, and similarly for the
two edges labeled b.
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There is no way to realize such a surface without self-intersection in R3.
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There is no way to realize such a surface without self-intersection in R3.

The above surface is the real projective plane, RP?.
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There is no way to realize such a surface without self-intersection in R3.
The above surface is the real projective plane, RP?.

RP? can be realized in R3 as the cross-cap.
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§ 47. Die projektive Ebene als geschlossenc Flache. 277

projektive Ebene stets in dieser Weise in vier Dreiecke zerlegenl. In
der EuLErschen Formel hat man jetzt E =3, K =6, F =4 zu setzen

und erhilt wieder s —2. -
Wie wir die Ringfliche und die KLEIN- /‘
sche Fliche aus ihren Quadratmodellen durch )
Zusammenheftung erhalten haben, so wol-
len wir auch mit dem Quadratmodell der
projektiven Ebene verfahren. Zu diesem
Zweck verzerren wir das Quadrat zunichst
in die Gestalt einer Kugelfliche, aus der ein
Kleines Viereck ABCD herausgeschnitten
ist (Abb.303). Wir haben 4B mit CD und
DA mit BC zusammenzuheften. Das wird
moglich, wenn wir die Fliche in den Punkten 4 und C heben und bei
B und D senken und A und C sowie B und D cinander nihern (Abb. 304).
SchlieBlich erhalten wir cine geschlossene Fliche mit einer Strecke als
Durchdringungslinie (Abb. 305). Sie ist topologisch der projektiven
Ebene dquivalent. “c

Abb. 303

Abb. 304, Abb. 305.

Es gibt cine algebraische Fliche, die diese Gestalt besitzt (Abb. 306).
Thre Gleichung ist

(- kyy?) (2 4 3° 4 21 — 2202 + 59 = 0.

Die Fliche steht im mit einer
Konstruktion. Wir gehen aus von einem Punkt P auf irgendeiner
Fliche F, die in P konvex it ist. Fiir alle Nor itte dieser

Fliche in P (vgl. S.162, 163) konstruieren wir die Kriimmungskreise in P.
Diese Kreisschar iiberstreicht dann gerade die in Abb. 306 dargestellte
Fliche, ihre Durchdringungsstrecke ist ein Stick der in P errichteten
Normalen der Ausgangsfliche; die angefiihrte Gleichung bezieht sich

* Die in Abb. 301 und 302 i intei der projektiven Ebene
hatten wir S. 131, 132 durch Projektion des Oktaeders erhalten.
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Orientability

Orientability: a subtle notion.
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Orientability

Orientability: a subtle notion.

Given a cell complex, K, an orientation of K is obtained by choosing one
of the two oriented faces A, A~! for every face A € F; denote it A°.
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Orientability

Orientability: a subtle notion.

Given a cell complex, K, an orientation of K is obtained by choosing one
of the two oriented faces A, A~ for every face A € F; denote it A°.

An orientation is coherent if every edge a in E U E~! occurs at most once
in the set of boundaries of the faces in {A° | A € F}.

A cell complex, K, is orientable if is has some coherent orientation.

The complex with boundary aba=b~! (a torus) is orientable, but the
complex with boundary aa (the projective plane) is not orientable.
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Normal Form of Type Il

Every surface with normal form of type (l) is orientable.

Jean Gallier (Upenn)
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Normal Form of Type Il

Every surface with normal form of type (1) is orientable.

Every nonorientable surface (with g > 1 “holes”) can be represented by a
2g-gon where the boundary of this 2g-gon is of the form

diaiagap - - - dgdg,

called type (I1).
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Normal Form of Type Il

Every surface with normal form of type (I) is orientable.

Every nonorientable surface (with g > 1 “holes”) can be represented by a
2g-gon where the boundary of this 2g-gon is of the form

diaiagap - - - dgdg,

called type (I1).

Normal form of type (I1): glue g projective planes, i.e. cross-caps
(boundary aa), onto a sphere.
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Normal Forms

In summary: two kinds normal forms (or canonical forms). These cell

complexes K = (F, E, B) in normal form have a single face A (F = {A}),

and either
() E={a1,...,ag,b1,...,bg} and
B(A) = a1bra; by " -+ aghga bt

where g > 0, or
() E={a1,...,ag} and

B(A) = aja; - - - agag,

where g > 1.
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Canonical complexes of type (I) are orientable, whereas canonical
complexes of type (ll) are not.
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Canonical complexes of type (I) are orientable, whereas canonical
complexes of type (ll) are not.

a/' bl -
by a as ay
a2 b2 as as
b2 [¢5) as
(a) (b)

Figure : Examples of Normal Forms: (a) Type I; (b) Type II.

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012

37 /63



Euler—Poincaré characteristic

Given a cell complex, K = (F, E, B), let ngp = the number of vertices,
n1 = the number of elements in E (edges), and ny = the number of
elements in F (faces).
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Euler—Poincaré characteristic

Given a cell complex, K = (F, E, B), let ngp = the number of vertices,

n1 = the number of elements in E (edges), and ny = the number of
elements in F (faces).

The Euler—Poincaré characteristic of K is

X(K) =ng — ni + no.

—

= |

Figure : Leonhard Euler, 1707-1783 (left) and Henri Poincaré, 1854-1912 (right)

Jean Gallier (Upenn)
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A complex in normal form has a single vertex and a single face.
Jean Gallier (Upenn)
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A complex in normal form has a single vertex and a single face.

Normal form of type |, 2g edges,

x(K)=2-2g.

Normal form of type Il, g edges,
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A complex in normal form has a single vertex and a single face.

Normal form of type |, 2g edges,

x(K)=2-2g.

Normal form of type Il, g edges,

@ x(sphere) = 2 (since g = 0; e = aa~ 1),

@ x(torus) = 0 (since g = 1; aba=1bh71),

@ x(2-hole torus) = —2 (since g = 2; a1b1a; 'b; *arbaa, tbyt),
Q x(projective plane) =1 (since g = 1; aa),

O x(Klein bottle) = 0 (since g = 2; aabb).
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Cell Complexes and Triangulations

Every cell complex K defines a topological space |K| obtained by a
quotient process (identification of edges). Not clear that |K]| is surface.
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Every cell complex K defines a topological space |K| obtained by a
quotient process (identification of edges). Not clear that |K]| is surface.

We can prove that |K| is a surface by showing that every cell complex can
be refined to a triangulated 2-complex.
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Cell Complexes and Triangulations

Every cell complex K defines a topological space |K| obtained by a
quotient process (identification of edges). Not clear that |K]| is surface.

We can prove that |K| is a surface by showing that every cell complex can
be refined to a triangulated 2-complex.

A triangulated 2-complex K is a 2-complex satisfying some extra
conditions so that |K]| is a surface.
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Theorem 1

Every cell complex K can be refined to a triangulated 2-complex.

Jean Gallier (Upenn)
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Theorem 1

Every cell complex K can be refined to a triangulated 2-complex.

by
B

ba

a @ @ a o W
by
b B
by
a « « as  Qq ay
a o m a @ o
by
- B B -
by
as  Qq ay [e3 « g
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Theorem 1 implies that for every cell complex K, the space |K| is a
compact surface.
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Theorem 1 implies that for every cell complex K, the space |K| is a
compact surface.

Theorem 2

Given any two finite triangulated 2-complexes K1 and Ky, if |K1| and |K>|
are homeomorphic, then K1 and K> have the same character of
orientability and x (K1) = x(K2).
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Distinct canonical complexes are inequivalent

The fact that x(K1) = x(K2) follows form the fact that homeomorphic

spaces have isomorphic homology groups, and that for a finite simplicial
complex K of dimension m,

m

X(K) =) 1)”%—2( 1)P r(Hy(K)),

p=0

where n, is the number of p-simplicies in K.
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Distinct canonical complexes are inequivalent

The fact that x(K1) = x(K2) follows form the fact that homeomorphic
spaces have isomorphic homology groups, and that for a finite simplicial
complex K of dimension m,

m

X(K) =) (- ”np—Z( 1)P r(Hy(K)),

p=0

where n, is the number of p-simplicies in K.

Consequence: any two distinct canonical complexes are not
homeomorphic.
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Combinatorial form the classification theorem

Theorem 3

Every cell complex K can be converted to a cell complex in normal form
by using a sequence of steps involving a transformation (P2) and its
inverse: splitting a cell complex, and gluing two cell complexes together.
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Transformation P2

Figure : Transformation (P2)
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First, (P2) is applied to the one-cell with boundary aba=!b to obtain a cell
complex with two faces with boundaries, abc and c~ta=1b.

() = (b) — (c)

Figure : Example of elementary subdivision (P2) and its inverse
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First, (P2) is applied to the one-cell with boundary aba=!b to obtain a cell
complex with two faces with boundaries, abc and c1a=1p.

() = (b) — (c)

Figure : Example of elementary subdivision (P2) and its inverse

Then, these two faces are glued along the edge labeled b using (P2)~1.
Get a complex with boundary aacc: a Klein bottle.
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2 Memic cLock {

Figure : Metric Clock
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The Final Theorem

Theorem 4

Two compact surfaces are homeomorphic iff they agree in character of
orientability and Euler—Poincaré characteristic.
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The Final Theorem

Theorem 4

Two compact surfaces are homeomorphic iff they agree in character of
orientability and Euler—Poincaré characteristic.

There is a generalization of Theorem 4 to surfaces with boundaries.
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Universal Covering Spaces of Surfaces

We can tile the plane with copies of the fundamental rectangle shown in
blue (torus, boundary aba=1b71) :
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Universal Covering Spaces of Surfaces

We can tile the plane with copies of the fundamental rectangle shown in
blue (torus, boundary aba=1b71) :

a a a

b b b b
a a a

b b b b
a a a

b b b b
a a a

Figure : Tiling of the plane with tori

Jean Gallier (Upenn) The Classification Theorem for Surfaces October 31, 2012 49 / 63



Every other tile is obtained by translation. This set of translations forms a
group G generated by two translations (translate left one square, translate
up one square).
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Every other tile is obtained by translation. This set of translations forms a
group G generated by two translations (translate left one square, translate
up one square).

The torus T2 = quotient of R? under the action of the group G; quotient

map
7 R% 5 T2

makes the plane R? a universal cover of the torus (as a smooth
2-manifold).
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Every other tile is obtained by translation. This set of translations forms a
group G generated by two translations (translate left one square, translate
up one square).

The torus T2 = quotient of R? under the action of the group G; quotient

map
7 R% 5 T2

makes the plane R? a universal cover of the torus (as a smooth
2-manifold).

The map 7 can be used to transfer the metric of R? onto the torus (as a
flat torus).
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Can we do something similar with the 2-hole torus?

The 2-hole torus is defined by the cell (8 vertices) whose boundary is

alblal_lbl_lazbgaglbgl.
3] b2
bl/\\h
a

1 b2
bl a2

Figure : A cell representing a surface with two holes
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Can we do something similar with the 2-hole torus?

The 2-hole torus is defined by the cell (8 vertices) whose boundary is
alblal_lbl_lagbgaglbgl.

a1 b2
/m\\

aq bg
bl a2

Figure : A cell representing a surface with two holes

Unfortunately, it is impossible to tile the plane with octagons!
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If we allow curved edges, we can do it! Move to a hyperbolic space, such
as the Poincaré disc (the interior of the unit disc).
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If we allow curved edges, we can do it! Move to a hyperbolic space, such
as the Poincaré disc (the interior of the unit disc).

In such a space, lines are arc of circles orthogonal to the boundary of the
unit circle. Reflections become inversions.
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If we allow curved edges, we can do it! Move to a hyperbolic space, such
as the Poincaré disc (the interior of the unit disc).

In such a space, lines are arc of circles orthogonal to the boundary of the
unit circle. Reflections become inversions.

It is possible to find a hyperbolic octogon whose angles are /4, and to
use inversions to fit other octagons to tile the hyperbolic plane.
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(a) (b) ©

Figure 1.12. Bigger octagens in hyperbolic space have smaller angles.
Between a tiny, Euclidean-like octagon with large angles {a)} and a very
large one with arbitrarily small angles (c) there must be one with angles
exactly /4 (b).

Figure : Finding a hyperbolic octagon (from Thurston)
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Figure 1.13. A tiling of the hyperbolic plane by regular octagons. (a)
A tiling of the hyperbolic plane by identical regular octagons, seen in the
Poincaré disk projection. (b) To get the small octagon from the big one,
reflect in L, then in M.

Figure : Tiling with hyperbolic octagons (from Thurston)
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There is a group G of inversions that maps the fundamental domain to
any other tile. The 2-hole torus S = quotient of the hyperbolic plane H?
under the action of the group G.
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There is a group G of inversions that maps the fundamental domain to
any other tile. The 2-hole torus S = quotient of the hyperbolic plane H?
under the action of the group G.

The quotient map
m:H> =S

makes H2 a universal cover of S (as a smooth 2-manifold). The metric of
the hyperbolic space (a space of negative curvature) can be transferred to
the surface S.
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There is a group G of inversions that maps the fundamental domain to
any other tile. The 2-hole torus S = quotient of the hyperbolic plane H?
under the action of the group G.

The quotient map
m:H> =S

makes H2 a universal cover of S (as a smooth 2-manifold). The metric of
the hyperbolic space (a space of negative curvature) can be transferred to
the surface S.

The above process can be generalized to any smooth surface S of genus
g > 3, so that the hyperbolic plane H? is a universal cover of S.
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There is a group G of inversions that maps the fundamental domain to
any other tile. The 2-hole torus S = quotient of the hyperbolic plane H?
under the action of the group G.

The quotient map
m:H> =S

makes H2 a universal cover of S (as a smooth 2-manifold). The metric of
the hyperbolic space (a space of negative curvature) can be transferred to
the surface S.

The above process can be generalized to any smooth surface S of genus
g > 3, so that the hyperbolic plane H? is a universal cover of S.

The torus and the Klein bottle have R? as universal cover. The sphere 52
is the universal cover of RP?.
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There is a group G of inversions that maps the fundamental domain to
any other tile. The 2-hole torus S = quotient of the hyperbolic plane H?
under the action of the group G.

The quotient map
m:H> =S

makes H2 a universal cover of S (as a smooth 2-manifold). The metric of
the hyperbolic space (a space of negative curvature) can be transferred to
the surface S.

The above process can be generalized to any smooth surface S of genus
g > 3, so that the hyperbolic plane H? is a universal cover of S.

The torus and the Klein bottle have R? as universal cover. The sphere 52
is the universal cover of RP?.

This provides a kind of global parametrization for any smooth surface S.
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Figure : Just Checking
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Main steps of the proof

Sketch of the steps of the proof of Theorem 3. This proof follows Seifert
and Threlfall (1934), which is basically Brahana's original proof (1921).
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Main steps of the proof

Sketch of the steps of the proof of Theorem 3. This proof follows Seifert
and Threlfall (1934), which is basically Brahana's original proof (1921).

Variants of this proof appear in Ahlfors and Sario, and Massey.
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Main steps of the proof

Sketch of the steps of the proof of Theorem 3. This proof follows Seifert
and Threlfall (1934), which is basically Brahana's original proof (1921).

Variants of this proof appear in Ahlfors and Sario, and Massey.

Step 1. Elimination of strings aa—! in boundaries.
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Main steps of the proof

Sketch of the steps of the proof of Theorem 3. This proof follows Seifert
and Threlfall (1934), which is basically Brahana's original proof (1921).

Variants of this proof appear in Ahlfors and Sario, and Massey.
Step 1. Elimination of strings aa—! in boundaries.

Step 2. Vertex Reduction.
The purpose of this step is to obtain a cell complex with a single vertex.
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Step 3. Reduction to a single face and introduction of cross-caps.

First reduce to a single face. If some boundary contains two occurrences of
the same edge a, i.e., it is of the form aXaY, where X, Y denote strings of
edges, with X, Y # ¢, we show how to make the two occurrences of a
adjacent.
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Step 3. Reduction to a single face and introduction of cross-caps.

First reduce to a single face. If some boundary contains two occurrences of
the same edge a, i.e., it is of the form aXaY, where X, Y denote strings of
edges, with X, Y # ¢, we show how to make the two occurrences of a
adjacent.

a a a

bt

a

@ (b) ©

Figure : Grouping the cross-caps
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Step 4. Introduction of handles.
The purpose of this step is to convert boundaries of the form
aUbVa~1Xb~1Y to boundaries cdc™1d~! YXVU containing handles.
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Step 4. Introduction of handles.
The purpose of this step is to convert boundaries of the form
aUbVa~1Xb~1Y to boundaries cdc™1d~! YXVU containing handles.

Step 5. Transformation of handles into cross-caps.

One of the last obstacles to the canonical form is that we may still have a
mixture of handles and cross-caps. If a boundary contains a handle and a
cross-cap, the trick is to convert a handle into two cross-caps.
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Figure : Grouping the handles
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Fundamental Groups of Surfaces

For an orientable cell complex K (of type (I)), the fundamental group
71(K) is the group presented by the generators {ai, by, ..., ag, bg}, and
satisfying the single equation

aibia; byt aghga byt =1.

When g = 0, it is the trivial group reduced to 1.
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Fundamental Groups of Surfaces

For an orientable cell complex K (of type (I)), the fundamental group
m1(K) is the group presented by the generators {ay, by, ..., ag, bg}, and
satisfying the single equation

arbray bt agbgag_lbg_1 =1

When g = 0, it is the trivial group reduced to 1.

For a nonorientable cell complex K (of type (I1)), the fundamental group
m1(K) is the group presented by the generators {ay,...,ag}, and
satisfying the single equation

aiay---agag = 1.
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