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The Lie group SE(3)
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Homogeneous Transformation Matrix
Coordinate transformation from {B} to {A}
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Homogeneous Coordinates
Description of a point   

(x, y, z)
Description of a plane

(t, u, v, s)

Equation of a circle
x2 + y2 + z2 = a2

Homogeneous coordinates
Description of a point   

(x, y, z, w)
Equation of a plane

tx + uy + vz + sw = 0
Equation of a sphere

x2 + y2 + z2 = a2 w2

tx + uy + vz + s = 0

(t, u, v)

Central ideas
Equivalence class
Projective space P3, 
and not Euclidean space R3

Mathematical and practical advantages
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Example: Translation
Translation along the z-axis through h
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Example: Rotation
Rotation about the x-axis through θ
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Example: Rotation
Rotation about the y-axis through θ

y

z

x

θ

z'
x'

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

θθ−

θθ

=θ

1000
0cos0sin
0010
0sin0cos

,yRot

Rotation about the z-axis through θ

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
θθ
θ−θ

=θ

1000
0100
00cossin
00sincos

,zRot

y

z

x

θ

y'

x'



Rigid Body Kinematics

University of Pennsylvania 7

Mobile Robots
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Example: Displacement of Points
Displace (7, 3, 2) through a sequence of:
1. Rot(z, 90)
2. Rot(y, 90) 
3. Trans(4, -3, 7) 
in the frame F: (x, y, z): 

Trans(4, -3, 7) Rot(y, 90) Rot(z, 90)
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Example: Transformation of Points
Successive transformations of (7, 3, 2):
1. Trans(4, -3, 7) 
2. Rot(y, 90) 
3. Rot(z, 90)
in a body fixed frame 

Trans(4, -3, 7) Rot(y, 90) Rot(z, 90)
x'
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SE(3) is a Lie group
SE(3) satisfies the four axioms that must be satisfied by the elements of an 
algebraic group:

The set is closed under the binary operation. In other words, if A and B are any two 
matrices in SE(3),  AB ∈ SE(3).  
The binary operation is associative. In other words, if A, B, and C are any three matrices ∈ 
SE(3), then (AB) C = A (BC). 
For every element A ∈ SE(3), there is an identity element given by the  4×4 identity 
matrix, I∈ SE(3),  such that AI = A.
For every element A ∈ SE(3), there is an identity inverse, A-1 ∈ SE(3), such that A A-1 = 
I.

SE(3) is a continuous group.
the binary operation above is a  continuous operation  ⎯  the product of  any two 
elements in SE(3) is a continuous function of the two elements
the inverse of any element in SE(3) is a continuous function of that element. 

In other words, SE(3) is a differentiable manifold.  A group that is a 
differentiable manifold is called a Lie group[ Sophus Lie (1842-1899)].
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Composition of Displacements
Displacement from {A} to {B}

Displacement from {B} to {C}

Displacement from {A} to {C}
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Note XAY describes the 
displacement of the body-fixed 
frame from {X} to {Y} in 
reference frame {X}
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Composition (continued)
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POSITION 1

POSITION 2

POSITION 3

{C}

Note XAY describes the 
displacement of the body-fixed 
frame from {X} to {Y} in 
reference frame {X}

Composition of displacements
Displacements are generally described 
in a body-fixed frame
Example: BAC is the displacement of a 
rigid body from B to C relative to the
axes of the “first frame” B. 

Composition of transformations
Same basic idea
AAC =  AAB 

BAC

Note that our description of 
transformations (e.g., BAC) is relative
to the “first frame” (B, the frame with 
the leading superscript).  
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Transformations associated 
with the Lie group SE(3)
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Differentiable Manifold

Definition
A manifold of dimension n is a set M which is locally 
homeomorphic* to Rn.

R2

dim 2
manifold

Homeomorphism:
A map f from M to N and its inverse, f-1 are 
both continuous.

Smooth map
A map f from U ⊂ Rm to V ⊂ Rn is smooth if 
all partial derivatives of f, of all orders, exist 
and are continuous. 

Diffeomorphism
A smooth map f from U ⊂ Rn to V ⊂ Rn is a 
diffeomorphism if all partial derivatives of f-1, 
of all orders, exist and are continuous.
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Examples
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Smooth Manifold

Differentiable manifold is locally homeomorphic to Rn

Parametrize the manifold using a set of local coordinate charts
(U, φ ), (V, Ψ ), …

Require compatibility on overlaps
C∞ related

Collection of charts covering M

Rn

dim n
manifold

φ

U V

Ψ

Rn
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Actions of SE(3)
M any smooth manifold 

Think  R3, SE(3), subgroups of SE(3)

A left action of SE(3) on M is a smooth map,  Φ: SE(3) × M → M, 
such that

Φ(I, x) = x,   x∈ M
Φ(A, Φ(B, x) ) = Φ(AB, x),            A, B ∈ SE(3),  x ∈ M
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Actions of SE(3)

1. Action of SE(3) on R3

Displacement of points,  p → Ap

2. Action of SE(3) on itself
Φ: SE(3) × SE(3) → SE(3) 
ΦQ: A → Q A Q-1

A denotes a displacement of a rigid body
ΦQ transforms the displacement A

Actions on the Lie algebra (later)
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What happens when you want to describe the displacement of the body-
fixed frame from {A} to {B} in reference frame {F}? 

Displacement is described in {A} by the 
homogeneous transform,  AAB. 

Want to describe the same displacement 
in {F}. The position and orientation of 
{A} relative to {F} is given by the 
homogeneous transform,  FAA. 

The same displacement which moves a 
body-fixed frame from {A} to {B}, will 
move another body-fixed frame from 
{F} to {G}:

FAG = FAA 
AAB

BAG
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What happens when you want to describe the displacement of the body-
fixed frame from {A} to {B} in reference frame {F}? 

Displacement is described in {A} by the 
homogeneous transform,  AAB. 

Want to describe the same displacement 
in {F}. The position and orientation of 
{A} relative to {F} is given by the 
homogeneous transform,  FAA. 

The same displacement which moves a 
body-fixed frame from {A} to {B}, will 
move another body-fixed frame from 
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What happens when you want to describe the displacement of the body-
fixed frame from {A} to {B} in reference frame {F}? 

Displacement is described in {A} by the 
homogeneous transform,  AAB. 

Want to describe the same displacement 
in {F}. The position and orientation of 
{A} relative to {F} is given by the 
homogeneous transform,  FAA. 

The same displacement which moves a 
body-fixed frame from {A} to {B}, will 
move another body-fixed frame from 
{F} to {G}:

FAG = FAA 
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BAG
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Rotational motion in R3

Specialize to SO(3)
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Euler’s Theorem for Rotations

Any displacement of a rigid body such that a point on the rigid 
body, say O, remains fixed, is equivalent to a rotation about a fixed 
axis through the point O.

The most general rigid body displacement can be 
produced by a translation along a line followed (or preceded) 
by a rotation about that line.

Later:    Chasles’ Theorem for Rotations
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Proof of Euler’s Theorem for Spherical Displacements

Displacement from {F} to {M}

P = Rp

Solve the eigenvalue problem (find the vector that is unaffected by R):

Rp = λ p
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The Axis/Angle for a Rotation Matrix
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R= Q Λ QT

Define

and look at the displacement in the new 
reference frame, {F’}.
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Recall

Any rotation is a left action of 
SO(3) on a canonical (?) 
element, Λ. 


