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ARTICLE INFO ABSTRACT

Keywords: Across a range of neurological disorders, there is a growing appreciation for how the gut influences brain health,

mTBI but few ways of monitoring its effects. Although nutrition influences traumatic brain injury (TBI) recovery, its

E}et N influence on biomarkers—whether as an intervention or confounder—is poorly understood. Beyond specialized
lomarkers

diets, standard rodent diets may also affect brain function. Neuron-derived extracellular vesicles (NDEVs) offer a

brain-specific complement to circulating biomarkers, but their sensitivity to diet is unknown. In this study, we
isolated miRNAs from NDEVs from the serum of healthy and mild TBI (mTBI) mice fed a semi-synthetic or grain-
based diet. NDEV miRNAs encoded dietary differences based on injury condition, suggesting that NDEVs are
sensitive to dietary changes and may be able to track diet’s effect on TBI recovery. Additionally, we found that
diet influenced injury biomarkers, underscoring diet as a confounding variable for NDEV miRNA biomarkers.
Together, these findings highlight NDEVs as a promising tool for monitoring the effects of subtle dietary dif-
ferences on brain health and the importance of diet reporting to improve study reproducibility.

1. Introduction

For moderate-to-severe traumatic brain injury (TBI), protein bio-
markers aid in diagnosis and prognosis, but for mild TBI (mTBI), a
persistent challenge is balancing the relative mildness of the injury with
confounding factors [1]. In particular, diet, age, sex, polytrauma, and
exposure history affect the efficacy of common TBI biomarkers including
GFAP, UCHLI, t-tau, NfL, and S100B [2]. Circulating miRNAs and
extracellular vesicle (EV) encapsulated miRNAs are emerging biomarker
classes that may be more sensitive to mTBI, as in cancer [3]. Unlike
protein biomarkers, miRNA biomarkers’ robustness to biological, envi-
ronmental, and dietary factors is not well characterized.

There is an emerging appreciation for how diet composition and
dietary supplements affect TBI recovery, but less is known about how
they affect brain biomarkers. In the gut, TBI induces systemic inflam-
mation, gut dysbiosis, and mucosal barrier dysfunction [4]. TBI recovery
is particularly sensitive to dietary fat content through changes in
inflammation, plasma membrane permeability, and oxidative stress [5].

Moreover, dietary supplements (omega-3 fatty acids and vitamin D)
influence TBI biomarkers [6] and diet itself has far-ranging effects on
miRNA expression [7] and circulating neurological disease biomarkers
(e.g., [8,9]).

Beyond specialized diets and supplementation, differences among
standard diets also contribute to differences in gut health, affecting body
weight/composition, blood glucose, and gut microbiome diversity
[10,11]. Despite calls to report rodent diet selection [12], little is known
about how that selection influences neurological disease.

We sought to understand whether standard diet selection affects
mTBI biomarkers. In this study, we used track-etched nanopore
(TENPO) technology to isolate miRNAs from neuron-derived extracel-
lular vesicles from mice fed semi-synthetic or grain-based diet and then
subjected to mTBI, allowing us sufficient specificity and sensitivity to
study small, but significant, effects. We examined how diet affects
miRNA expression and influences mTBI biomarker identification and
generalization. This study calls attention to an often-overlooked exper-
imental factor influencing biomarker reproducibility.
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2. Methods
2.1. Animals

C57BL/6 mice (8-12 weeks old; male; Charles River Laboratories)
were socially housed 5 mice/cage with a 12 h light/dark cycle and ad
libitum food and water. We used 87 total mice. This study was approved
by the University of Pennsylvania’s Animal Care and Use Committee.

2.2. Closed-head controlled cortical impact

To administer mild traumatic brain injury (mTBI), we followed
previously established protocols [13]. We initiated anesthesia with 3.5
% isoflurane in oxygen and maintained it at 1.5-2 %. After confirming
anesthesia depth, we made a 1-cm incision on the mouse’s scalp to
expose the skull for sham and mTBI mice. For mTBI mice, we used the
Impact One Stereotactic Impactor (Leica) fitted with a 6-mm rubber tip
to administer a 3.5-m/s impact with 1-mm impact depth and 30-ms
dwell time over the left parietal bone, excluding mice for skull frac-
ture. We then sutured the scalp closed and placed the mouse in a heated
recovery cage until it exhibited normal alertness and ambulation before
returning it to the colony.

2.3. Diet regimen

This study used two diet formulations: grain-based Laboratory Diet
5001 (Animal Specialties and Provisions) and semi-synthetic AIN-76A
(Research Diets). Upon arrival, all mice were fed grain-based diet. Ten
days prior to sham or mTBI surgery, mice were fed either grain-based (N
= 27 sham; N = 28 mTBI) or semi-synthetic diet (N = 16 sham; N = 16
mTBI). Given the possibility that diet and mTBI could both affect
neuron-derived extracellular vesicle (NDEV) cargo, we focused our
design on whether diet differences prior to injury would have long-
lasting effects on NDEV biomarkers during injury recovery. Therefore,
we simplified our design, and post-surgery, returned all mice to grain-
based diet. Mice with fighting-related skin lesions were excluded.

2.4. Serum collection

We euthanized mice with a lethal dose (250 mg/kg) of sodium
pentobarbital and collected whole blood via cardiac puncture. The blood
coagulated at room temperature for 30-60 min before centrifugation at
433xg for 15 min at 4C to isolate serum. We stored serum at —80C before
processing.

2.5. Neuron-derived extracellular vesicle isolation

We used Track-Etched NanoPOre (TENPO) technology with 3 pm
pores to isolate GluR2 + extracellular vesicles (EVs) as previously
described [14-16]. TENPO was selected for its higher specificity for
neuron-derived EVs via surface marker capture, and its ability to mini-
mize contamination from background EVs and non-EV nanoparticles,
which was necessary to accurately assess diet-induced changes [14-16].
We pooled serum from 2 to 3 mice per sample to form 500 pL serum
samples with N = 10 (sham-grain), N = 9 (mTBI-grain), and N = 8
(sham-synthetic; mTBI-synthetic) as previously described [17]. Pooling
was necessary for consistent chip performance and downstream RNA
extraction efficiency, allowing us to measure weakly expressed markers
in response to mild injury and diet. We lysed EVs on chip using QIAzol
(Qiagen) to enrich for RNAs.

2.6. miRNA isolation & sequencing
We purified miRNAs using the miRNeasy Kit (Qiagen), and generated

a miRNA library for sequencing using the QIAseq miRNA Library Kit
(Qiagen). We sequenced using the NovaSeq 6000 SP Kit (Illumina; Next-
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Generation Sequencing Core, University of Pennsylvania). We demulti-
plexed and aligned the FASTQ files to the Mus musculus genome using
Qiagen’s GeneGlobe Analysis Portal and exported the expression
matrices to RStudio.

2.7. Differential gene expression

We used DESeq2 (v1.44.0) for R (v4.4.1) to normalize read counts.
We excluded samples that failed library preparation and had a total read
count < 10 across all miRNAs, and excluded miRNAs with an average
read count < 1/sample. For semi-synthetic diet miRNAs, we reanalyzed
data presented in [17].

2.8. Functional enrichment analysis

We identified enriched pathways using miRNet v2.0. We matched
miRNAs to target genes in miRTarBase v8.0 and pathways in the Kyoto
Encyclopedia of Genes and Genomes (KEGG). We performed a hyper-
geometric test to identify significantly enriched genes and their corre-
sponding pathways with false-discovery rate < 0.1.

2.9. Statistical analysis

Data are presented as mean =+ standard error (SE). Wald’s Test was
used for differential expression analysis. We corrected for multiple
comparisons using false-discovery rate. We used logistic regression to
classify mTBI and derive AUCs, and used DeLong’s Test to compare
AUGs. Statistical analysis was performed using R (v4.4.1). Data were
plotted using GraphPad Prism v10.4.0.

3. Results

Using TENPO technology (Fig. 1A), we identified five differentially
expressed miRNAs from neuron-derived EVs relating to grain-based or
semi-synthetic diet. miR-151-3p was differentially expressed regardless
of injury condition (Fig. 1B; log2 fold change (log2FC) + SE=1.0 £ 0.3
(sham) and 1.1 + 0.4 (mTBI)), miR-7a-5p and miR-184-3p were differ-
entially expressed in sham only (Fig. 1C-D; log2FC + SE = -0.9 + 0.3
and 2.2 + 0.8, respectively), and miR-8117 and miR-340-5p were
differentially expressed in mTBI only (Fig. 1E-F; log2FC + SE = —1.9 +
0.6 and 0.9 £ 0.2, respectively); diet modifies EV content based on
injury. We then considered the pathways those miRNAs regulated: the
aggregate miRNAs associated with diet differences for sham (miR-151-
3p, miR-7a-5p, miR-184-3p) versus mTBI (miR-151-3p, miR-8117, miR-
340-5p). Pathways common to sham and mTBI were related to oxygen
homeostasis and circadian rhythms, whereas those related to sham were
predominantly associated with insulin, blood pressure and sodium
levels, and diabetes (Fig. 1G). mTBI pathways were related to a range of
factors, including axonal growth and guidance, vascular and epithelial
integrity, and cell division (Fig. 1G).

Next, we identified mTBI biomarkers based on diet and evaluated
their generalizability. miR-203-3p and miR-122-5p were differentially
expressed by mice fed semi-synthetic diets (Fig. 2A-B; log2FC + SE =
—1.7 £ 0.5 and 1.5 + 0.4, respectively) and miR-8117 was differentially
expressed for grain-based diet (Fig. 2C; log2FC + SE = —1.8 &+ 0.6). We
trained logistic regression models to distinguish sham from mTBI based
on semi-synthetic (miR-203-3p and miR-122-5p) or grain-derived (miR-
8117) diet, and evaluated their performance in the training set (diet
used to train the model), and in the testing set (diet not used to train the
model) (Fig. 2D). Each of the three miRNAs distinguished sham from
mTBI in the training set with high AUC (AUC > 0.75), but only miR-122-
5p and miR-8117 were superior to random guessing (95 % CI [0.55,1]
and [0.53,1], respectively; Fig. 2D). However, none of the differentially
expressed miRNAs generalized to the alternative diet; none were
significantly better than random guessing (Fig. 2D).
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Fig. 1. Diet affects miRNAs from neuron-derived extracellular vesicles in sham and mTBI mice. (A) TENPO for isolating NDEVs from serum (BioRender). (B-F)
miRNAs differentially expressed based on diet. (G) KEGG Pathways for differentially expressed miRNAs. * indicates q < 0.1.

4. Discussion

In this study, we considered how standard rodent diets influence the
brain’s molecular fingerprint at baseline and in mild traumatic brain
injury (mTBI). We found that diet produced injury-dependent and -in-
dependent changes in miRNAs from neuron-derived extracellular vesi-
cles (NDEVs). Moreover, we found that injury biomarkers depended on
diet selection and did not generalize well between diets. This study
highlights how diet can influence brain biomarker presentation, with
implications across neurological conditions.

Emerging studies are beginning to understand how standard rodent
diets affect gut and brain health. Semi-synthetic diets, such as AIN-76A
and AIN-93, have consistent and well-defined nutritional composition
relative to grain-based diets, which have diverse grain and protein
sources and variable nutritional content [12]. AIN-76A specifically has
high sucrose content, which can contribute to glucose intolerance and
insulin dysfunction [12], as we observed through pathway analysis.
Grain-based diets contain increased soluble fiber, which is fermented
into short-chain fatty acids (SCFAs) [11], whereas semi-synthetic diets
rely on less-fermentable cellulose for fiber [11]. SCFAs play a key role in
systemic inflammation [18], and TBI reduces fecal SCFAs, while dietary
SCFA supplementation improves TBI recovery [19]. Furthermore, semi-
synthetic diets affect kynurenine pathway metabolites, which connect

the immune and nervous systems, and are affected by TBI [20]. Our
prior work defined neuroimmunity’s central role in postacute mTBI
biomarkers [17], and, in the present work, diet selection affected miR-
151-3p, miR-8117, and miR-340-5p in mTBI mice, producing poten-
tially neuroimmune effects evidenced by the associated pathways,
including neurotrophin, T-cell receptor, MAPK, and ErbB signaling.

A challenge in identifying biomarkers for dietary intervention and
neurological disease is brain specificity: many markers of metabolic
dysfunction or inflammation cannot be causally linked to the brain [21].
For example, although high fat diets increase nonspecific markers of
inflammation (MCP-1) and exacerbate TBI's cognitive deficits [22],
identifying a pharmacological target is less obvious. Here, we leveraged
NDEVs to gain neuronal specificity. For semi-synthetic diet, miR-203-3p
and miR-122-5p differentiated mTBI and sham mice. miR-203-3p was
previously identified as a diagnostic biomarker for TBI [15,17], and
contributes to regulation of neuroinflammation [23]. Similarly, miR-
122-5p is upregulated in neurological disease and is involved in
neuronal apoptosis and neuroinflammation [24]. miR-8117, which
differentiated sham from mTBI in grain-fed mice, is downregulated in
microglial EVs associated with postoperative pain [25]. Despite the lack
of generalizability in the specific miRNA biomarkers we identified, they
share neuroimmune mechanisms. Together, these results emphasize the
potential importance of using neuroimmune miRNAs in brain-health
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Fig. 2. Diet affects identification and efficacy of mTBI biomarkers. Neuron-derived EV miRNAs differentially expressed based on head injury exposure fed the (A-B)
semi-synthetic diet and (C) grain-based diet. (D) AUCs for injury-dependent miRNAs across diets. * indicates q < 0.1.

management post-TBIL.

Given that diet is often considered a predisposing factor or even a
treatment for neurological disease [2,5], we explored if diet-related
biomarker differences were accompanied by diet-related neuro-
cognitive differences. We found no significant difference in novelty
memory or open field exploration based on diet in either injury condi-
tion (data not shown). We did, however, observe that mice fed semi-
synthetic diet exhibited increased aggression and fighting with their
cagemates relative to grain-fed mice, despite identical housing, envi-
ronmental conditions, and distribution of injury conditions within a
cage. The extent this aggressive social phenotype could influence
miRNA expression in NDEVs is not clear, but these observations suggest
that future studies should consider social interactions and cognitive
function as additional measures to correlate with NDEV content.

In this work, we used neuron-derived extracellular vesicles to isolate
the effects of diet on neuronal signaling with and without brain injury.
We find it is both important to consider diet as a confounding factor for
TBI biomarkers and that NDEVs provide an opportunity to surveil and
mechanistically understand how diet affects the brain.
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