Operations Manual
for the
FILMETRICS F50
Thin-Film Mapper

Revision 7.4.0.0
Copyright © 2013 by Filmetrics, Inc.
All Rights Reserved
Welcome

What is the F50 used for?
The Filmetrics F50 is used to measure the thickness of dielectrics, semiconductors, and thin metal films. Measured films must be optically smooth and between 100Å and 450 microns thick (depending upon F50 model). Optical constants (n and k) can also be measured on a variety of dielectric films. Commonly measured films include semiconductor process films such as oxides, nitrides, resists, and polysilicon, optical coatings such as hardness and anti-reflection coatings, flat panel display films such as polyimides, resist, and cell gaps, and the various coatings used in CD and DVD manufacture. Films that can not be measured include very rough films and opaque dielectric films.

Warning: Accurate measurements require suitable recipe settings and a valid baseline. Improper system setup or an aged lamp may also lead to errors. It is the user’s responsibility to ensure that this instrument is being used properly for its intended purpose. Please contact Filmetrics support for assistance with any questions.
Safety, Maintenance, and Care

This symbol indicates information or instructions that must be read and carefully followed to prevent hazards, injury to the operator, or damage to the instrument.

This symbol indicates a potential shock hazard. Areas marked with this symbol should be serviced by a trained service technician.

This symbol indicates that the product conforms to the WEEE (Waste in Electrical and Electronic Equipment) Directive 2002/96/EC.

This symbol indicates that the product meets the applicable EU safety, health and environmental protection directive requirements.

This label indicates the Model Number and Serial Number of the instrument. This information may be necessary when contacting Filmetrics for assistance.
Disclaimer: Use of this instrument in a manner inconsistent with the information and directions included in this manual may impair the protections designed into the product resulting in danger to the operator or damage to the instrument.

Installation Location: When deciding on a location for the instrument, ensure that the instrument is installed in a well-ventilated location. Enclosing the unit, or blocking the vent holes, may impair the performance of the instrument or damage the internal components.

Cleaning: The need for periodic cleaning of the system is based on the cleanliness of the environment in which the system is installed. Only the external surfaces are to be cleaned. Cleaning and maintenance of all internal components is to be performed by a trained service technician. Do not use aerosol, or spray, cleaners as they may contaminate the sensitive optical surfaces on the instrument.

Before performing any service on the instrument ensure that the main power is disconnected.

Cleanroom, or low lint, wipes should be used to wipe down the system. A mixture of Isopropyl Alcohol (IPA) and De-ionized Water (DI H2O) at 70% DI H2O: 30% IPA is to be used for cleaning. Undiluted IPA may be used, if the 70:30 DI and IPA mixture is not available, but extra care must be taken. Avoid using stronger solvents, such as acetone, as these may compromise the surface finish.

Avoid excessive pressure on any surface when cleaning. Excessive force may bend a component, which would damage the system, or cause the system to be out of alignment.

Start with the top of the system and work down. Use slow motions, in a straight line, from the back to the front of the surface being cleaned. Change the cleaning wipe periodically to avoid re-depositing material back onto the surface being cleaned. Allow all cleaned surfaces to dry completely before restoring power to the system.
CE Mandated Warnings

Please read the following instructions carefully to prevent potential shock or fire hazards. This manual should be retained for future use.

Bitte lesen Sie die nachstehende Anleitung sorgfältig durch um Stromschlag und Feuergefahr zu vermeiden. Diese Betriebsanleitung sollte für späteren Gebrauch sorgfältig aufbewahrt werden.

Preghiamo di leggere accuratamente, le sequenti Instruzioni, per evitare Prossiomi Incendi e Correnti.

Shock Hazard - Do Not Enter
Achtung Hochspannung - Nicht Berühren
Attenzione Corrent-Forte - Prego non toccare

The front panel's switch is not the power disconnect device. The power cord should be removed after use.

Der Kippschalter an der Vorderseite unterbricht nicht die Stromzuführung. Das Stromkabel sollte nach Gebrauch aus dem Gerät herausgezogen werden.
L’interutore nella parete frontale non blocca le Corrente. La Corrente viene.

Never expose the unit to water or liquids. Avoid direct sun.

Bringe das Gerät nicht mit Wasser oder einer anderen Flüssigkeiten in Berührung. Vermeide direkte Sonneneinstrahlung.
Evitare contatto con acqua oppure liquidi Infiammabili al Maccheggi. Auche entrate di Sole.
Do not insert any objects into the unit.
Keinen Gegenstand in das Gerät einbringen. Do non inseriamo any obietta into gli unità. Non mettere oggetti dentro la Macchina.

Do not use near open flame or heat.
Das Gerät nicht in der Nähe einer offenen Flamme oder Hitze benutzen. Non mettere la Macchina vicino a fuochi oppure Riscaldamenti.

The unit should never be enclosed or blocked.
Das Gerät darf nicht eingeschlossen oder blockiert werden. La Macchina non chinderla per nessun motivo.

Connect unit only to a properly measured supply. Use only the three wire cord which is provided with the unit.
Schließen Sie das Gerät nur an eine ordnungsgemäss vermessene Stromsversorgung an. Verwende nur ein dreiadriges Kabel, wie es auch mit dem Gerät ausgeliefert wird.
Montare solo con misura normata. Adoperando solo 3 cavi elettrici così come e fornita la Macchina.
Software Overview

The way that light reflects off a thin film is determined by the characteristics of the film, such as its thickness, optical constants, and roughness. The F50 is able to determine thin-film characteristics by first carefully measuring the amount of light reflected from the thin film over a range of wavelengths (i.e., by measuring the reflectance spectrum), and then analyzing this data by comparing it to a series of calculated reflectance spectra. Most of the features of the FILMapper software that runs the F50 can be divided into reflectance acquisition and reflectance analysis functions. The following pages outline the main features of the FILMapper software.

The basic steps for any F50 measurement are selecting and editing the film structure, taking a baseline measurement, and then making and evaluating the measurement. The details of each of these steps are explained below, followed by descriptions of other FILMapper functions.

The **Wafer Map Tab** is used to initiate mapping and to display measurement results. The map configuration and the film properties to be mapped are specified in the **Edit Recipe > Wafer Map** dialog box.

Wafer Map Tab

2. These tabs are used to select between the Wafer Map, **Measure**, and **History** windows.
3. Information about the Operator can be entered here for tracking purposes. Sample information is automatically determined when the wafer map is saved.

4. This section is used to determine how the map is displayed. The Replot button must be clicked to enact any changes selected.
 i. **Parameters to Display**: Allows the user to select which parameter (thickness, index, roughness, etc.) to display on the map.
 ii. **2D/3D**: Allows the user to select between two dimensional and three dimensional maps.
 iii. **Show Color**: Enables or disables the color bar on the left hand side of the map.
 iv. **Show Points**: Enables or disables displaying the measured points on the map.
 v. **Show Values**: Enables or disables displaying the
 vi. **Manual Color**: Allows the user to input a manually selected color scale.

5. Statistical analysis for the set of measurements taken.
 i. **Minimum** parameter value recorded for selected wafer, xmin.
 ii. **Maximum** parameter value recorded for selected wafer, xmax.
 iii. **Mean** (average) parameter value of all measurement locations,
 iv. **Std.Dev.** (Standard Deviation), or 1σ, is calculated using the following equation:
 , where is the mean and N is the number of measurements.
 v. **Uniformity** in percentage = (xmax – xmin)/2 *
 vi. **CTE** is the center to edge thickness variation calculated using a least squares linear fit of the average thickness of 10 radial regions. If the CTE is positive (> 0), then the thickness is greater around the wafer edge. If the CTE is negative (< 0), then the thickness is greater near the center of the wafer.
 vii. **Wedge** is a value given by the slope of a plane that best fits the variation in the parameter measured.
 viii. **Wedge Ang** is the direction of increasing measured value where x=1, y=0 is 0° (3 o’clock) and x=0, y=1 is 90° (12 o’clock).
 ix. **Valid** indicates how many locations have valid results out of the total number of measurement locations.

6. These options control the wafer map process.
 i. **Start** or Restart the mapping cycle.
 ii. **Stop** the mapping cycle.
 iii. **New** clears the measurement results and displays the points to be measured as determined by the settings in **Edit Recipe > Wafer Map** tab.
 iv. **Go To** to a specified location on the wafer.
 v. **Baseline** begins the baselining sequence.
 vi. Used to select saved recipes.
 vii. Opens the **Edit Recipe** window.

7. Graphical display of the wafer with points of measurement as well as a color scale for thickness summary. The top of the image is the edge closest to the stage mirrors.
1. Standard Windows menus, including; **File**, **Edit**, **Setup**, **Acquire**, and **Help**.

2. These tabs are used to select between the **Wafer Map**, **Measure**, and **History** windows.

3. Information about the **Operator** and **Sample** can be entered here for tracking purposes.

4. Displays the thickness of the film being solved for, as well as whether a sample is good or bad based on the settings in the **Alarms** tab.

5. Allows the user to **Measure** a sample, **Go To** a point on the wafer, **Baseline** the system, or **Analyze** an open spectrum.

6. Users may select saved recipes from the drop-down list, or open the **Edit Recipe** dialog box.
7. This box provides more details about the calculated thickness, as well as any additional parameters that were solved for, including **Roughness**, \(n \) and \(k \), and **Nonuniformity** as well as the **Goodness of Fit (GOF)**.

8. Graphical display for spectra. A click of the right mouse button while the cursor is within the graphical display opens the below menu for easy reading of cursor values in the main FILMapper window. The keyboard up/down and right/left arrows move the marker to a desired location.

The graph limits can be changed by double-clicking on the graph display. The text boxes along the bottom of the graph control the wavelength range, in nanometers, displayed on the screen. The two on the left represent the Reflectance (%) range, with the max being set in the upper box and the min being set in the lower. The boxes on the right are for Transmittance (%). Check the **Auto** checkbox to activate y-axis autoscaling. The lower value is always 0 for autoscaling; the maximum y-axis upper limit is 5000. The axes can be set to display in percent or as a decimal value (100% = 1).

Graph Options can be accessed and edited by double-clicking on the main graph window.
History Tab

2. These tabs are used to select between the **Wafer Map**, **Measure**, and **History** windows.

3. Used to alternate between the **Single Measurement** and **Measurement Trend** tab. Selecting the **Measurement Trend** tab will allow the user to see a plot of the measurement results versus measurement number.
When the **Measurement Trend** tab is selected in the **History** window, the right side of the screens graphs the results.

4. Shows the measurement results for the selected spectrum (must be in **Single Measurement** mode).

5. Displays the selected spectrum (in **Single Measurement** mode).

6. Displays statistics for all measurements included in the history file.

7. This list contains all spectra currently included in the history file. Right clicking anywhere is this box will allow the user to open the **Edit Columns** control panel.

Edit Recipe Window

The **Edit Recipe** window is used to define the film stack and to set analysis and acquisition parameters.
1. These buttons allow you to, in order from left to right:
 i. Open a saved recipe.
 ii. Start a new recipe.
 iii. Save the current settings.
 iv. Save the current settings as new recipe
 v. Delete the current recipe.

2. Opens a drop-down list for quick access to saved recipes.

3. **Author**, as defined by user login name and recipe modification date is indicated here.

4. Allows the user to select between the **Film Stack**, **Analysis Options**, **Alarms**, **Wafer Map**, and **Acquisition Settings** tabs.

5. The desired thickness units are chosen here. The choices include angstroms (Å, 10^{-10} m), nanometers (nm, 10^{-9} m), kilo-angstroms (kÅ, 10^{-7} m), microns (µm, 10^{-6} m), microinches, mils, millimeters (mm, 10^{-3} m), and **Custom Units**.
6. This is where the materials and parameters to be solved are defined.
Editing Film Recipes

The description of the nominal film structure, as well as the measurement parameters, is specified in the **Edit Recipe** dialog box. Hundreds of different film structures and their measurement specifications may be saved.

The **Edit Recipe** dialog box is accessed with the **Edit Recipe...** button on the **Measure Tab**, or the **Edit...** button on the **Wafer Map Tab**. The **Edit Recipe** dialog box lists an initial guess at the specifications of the film structure to be measured. These specifications include the number of films in the structure, the specifications of individual films (thickness and index), and the film parameters to be measured.

Adding, Changing, or Deleting a Structure

When the **Edit Recipe** dialog box is opened, it shows the stored specifications of the structure selected from the **Recipe: list**, along with any changes made since the recipe was loaded. Changes to the structure selected can be permanently stored by making the desired changes and then clicking on **Save**. New structures may be added to the **Recipe: list** by clicking on **Save As**. Similarly, a structure may be deleted (removed from the **Recipe: list**) by clicking on the **Delete** button.
Film Stack

The Film Stack tab is used to define the film structure and desired measurement units, as well as the starting guesses and constraints for thickness, \(n \) and \(k \). This is also where you determine your analysis method, Grid, FFT, or None, as well as any Nonuniformity that may be present in the sample. The [+ and -] above Composition, Thickness and Nonuniformity can be used to expand or hide solving options.

Setting Up a Film Stack

When measuring a layer, the specifications (thickness, \(n \), and \(k \)) of the known films (including the incident medium and substrate) must be entered into the proper fields in the Edit Recipe dialog box, as well as initial guesses for the values to be measured. The refractive index \((n) \) and extinction coefficient \((k) \) values for common materials can be selected from the drop-down menus on the right-hand side of the listed materials, or by left-clicking on the material and using the Search function. Note that if a generic index is selected, the software will instead prompt for a new index value.

If a material is being measured is not present in the material library there are three possible approaches to complete the recipe:
a) Choose a material in the library that is similar.
b) If the material is transparent (an insulator), select “Enter Refractive Index Value” from the material list and enter a value for the refractive index (n) will automatically be varied by FILMapper to account for dispersion effects, with the entered value being n at 632.8 nm).
c) Create a new material file using the Edit>Material Library... dialog box. Enter the refractive index values for n and k as a function of wavelength and save the files so that they may be selected as in the recipe. See Creating and Editing n and k Files for more information.

Choosing the Films to Be Measured

To measure a film's thickness, check the Meas box on the right-hand side of the Thickness field under the Film Stack tab in the Edit Recipe dialog box. When no boxes are checked, the theoretical spectrum for the specified layer stack and thicknesses will be displayed.

As with most measurements, the uncertainty of the measured data increases as the number of simultaneously measured values increases. Thus it is best to provide as much information about the film structure as possible.

Constraints

By setting constraints, the user can limit the possible values of the measured film properties. The constraints are set in conjunction with the values entered in the Range dialog box for Thickness. For example, if the initial guess of the measured thickness of a film is 100 nm and the thickness constraint is set at 50%, FILMapper will only consider possible thicknesses in the range 50 nm to 150 nm. The constraints for n and k are set using the n and k dialog boxes under Composition. These boxes are only visible when the Thickness and Composition options are expanded.

You can select between constraining by a percent of the thickness guess, or by a selected thickness by clicking on the % or measurement unit above the constraints dialog box. Constraining the measurement range can speed up analysis and can also help exclude non-physical solutions.

Custom Units

The Custom Unit function allows you to create your own custom unit for measurements if the metric you’d like isn't already available in the drop-down list.

The Edit Custom Units dialog box.
To determine the correct coefficient to use, you must first know the relationship between your unit and nanometers. For example, if your units are mg/ft² and it's been determined that 1 mg/ft² works out to a film thickness of 150 nm, then you would calculate your coefficient as follows, where \(X \) is the coefficient.

\[
1 \frac{mg}{ft^2} \times X \frac{nm}{mg} = 150 nm
\]

\[
X nm = \frac{150 nm}{1 nm}
\]

\[
X = 150
\]

Custom units can be saved as part of the Recipe file, and only one custom unit can be saved per recipe.

nk Model

When measuring the \(n \) and \(k \) of a film, the general dependence of these values upon wavelength must be specified. This dependence is determined by the type of material to be measured. For example, insulators, semiconductors, and metals all have a unique type of \(n \) and \(k \) wavelength dependence.

Dozens of models for these different dependencies have been proposed and used over the years. FILMapper uses a few of the most versatile and accepted models. For insulators the Cauchy model is used, for semiconductors either the Amorphous or Bridge-Lorentzian model, and for metals the Drude model.

There are also a number of special-purpose models for specific applications. These models, and starting coefficients values, are selected automatically when a material is chosen from the Material lists in the Edit Recipe dialog box. Other models may also be specified by selecting them from the nk Model drop-down menu under the Composition tab which is accessed by right clicking on the Meas checkbox when solving for optical constants is enabled.

Grid Search for Thickness

There are a number of methods that FILMapper can use to determine thickness. Each is a different trade-off between speed, accuracy, and robustness (i.e., the ability to find the best solution among many that are nearly as good). Because thickness can vary over many orders of magnitude and many near-solutions may exist, it is often best to use a very robust method to get close to the best solution, and then let a more accurate method take over.

One very robust method is the Grid method, which can be activated by selecting the Grid option in the Refine via drop-down menu. The Grid method searches the entire allowed thickness range (as defined by the initial guess and the constraints) to find the best initial thickness. However, on some very complex multilayer spectra, it is possible for the Grid method to give the wrong answer. In such cases it is best to use the Fourier Transform(FFT) method to determine initial thicknesses, or to provide them manually.
Fourier Search for Thickness

The FFT option in the Refine via drop-down list is an alternative option to let FILMapper choose an initial thickness for analysis. The Fourier Transform method analyzes the oscillations present in the spectrum and determines the film thicknesses based on the periodicity of those oscillations. It is generally somewhat less robust than the Grid method, but is better at finding the correct thickness in cases where the shape of the initial theoretical spectrum is different than the measured data (i.e., the reflectance spectrum is non-ideal in some way) or occasionally in cases where there is more than one film thickness is being measured.

Nonuniformity

Selecting this option enables modeling of thickness nonuniformity within the measurement spot. An initial guess for Nonuniformity must first be made, and then solving can be enabled or disabled by toggling the Meas box. If solving is not enabled, the software will assume the value provided for nonuniformity.
Note: Solving for nonuniformity can greatly increase solving time.

Search

The Search Materials dialog box is accessible by left-clicking on a material name in the Edit Recipe > Film Stack tab, or by selecting Search... from the material selection drop-down list.

Note: When clicking on a generic index file, the software will instead provide you with a dialog to enter a new index value.

This feature allows the user to search for materials by using either the material name, or a keyword for a certain class of materials. The search function will also show a brief Description of the material selected, as well as any Synonyms or Keywords related to the material file. When files have a Synonym, that means they are referencing the same material file under different names. So for example, if Silicon is
selected the file that will be shown in the **Film Stack** is Si, not Silicon, as that is the file both names are referencing. The **Similar Materials** box will list any materials that may have similar optical properties.

Analysis Options

Correct setting of the following options will help ensure accurate measurements. Many of the options are set automatically when film information is supplied in the **Edit Recipe** dialog box, and all of them can be saved so that subsequent measurements can be made as quickly and easily as possible. If **Robust (Adaptive; Thickness Only)** or **FFT (Thickness Only)** is checked, only the **Data Selection** settings will be accessible.

Data Selection

Wavelength Range
This sets the wavelength range that is to be analyzed. It may be set as either the entire range displayed on the graph or a fixed range as defined by the user. Wavelength range may also be changed by clicking and dragging the ends of the gray bar near the bottom of the graph area in the main FILMapper window. Moving the bar will cause the software to reanalyze the data in the newly selected wavelength range.
Smoothing
This function performs wavelength-dependent boxcar averaging on the measured spectra. This can improve signal-to-noise levels and can filter out oscillations that correspond to optical thicknesses (defined as thickness * refractive index) equal or greater than the specified value. This value should be lowered to increase smoothing, and raised to decrease smoothing. To eliminate smoothing, a very high value (for example, 1000 μm) should be entered.

Source Data
If more than one data set is present, this option tells the software whether to analyze the 0 degree reflectance data, transmittance data, 70 degree reflectance data, or some combination of the three.

Note: While every Filmetrics system is capable of opening and analyzing spectra with 70 degree reflectance data, only the F10-RTA is capable of collecting this data.

Enable FFT (Thickness Only)
The FFT (thickness only) solver is one of three analysis methods available in the FILMapper software.

This solver best suited for films greater than 250 nm thick, as well as multi-layered films. It is also an effective option when the index of refraction of the film isn’t well known. While this feature is selected there will be fewer options under the Analysis Options tab. You cannot solve for index, roughness, or nonuniformity with the FFT (thickness only) solver enabled. More information on the solver can be found here.

Enable Robust (Adaptive; Thickness Only)
The Robust (adaptive; thickness only) solver is the second of three analysis methods available within FILMapper. It is best suited for measuring the thickness of single-layer films greater than 150 nm thick.

This method can oftentimes successfully measure films when the data is affected by non-ideal properties, such as thickness nonuniformity, grading, and birefringence. Much like the FFT (thickness only) solver, enabling Robust (adaptive; thickness only) will limit the options available in the Analysis Options tab. You also cannot solve for roughness, nonuniformity or index with the Robust (adaptive; thickness only) solver enabled.

Exact Spectrum Matching
The Exact Spectrum Matching is the third of three analysis methods available in FILMeasure in FILMapper. This solver can be used to measure thickness, thickness nonuniformity, and roughness of single and multilayer films, and can additionally solve for index.

Unmodeled Backside Reflections
When measuring films in transparent substrates, reflectance off of the backside of the substrate may occur. Selecting Compensate for: Unmodeled backside reflections allows the software to shift the intensity of the reflectance curve to account for the additional light. This feature should not be used when measuring very thin films (< 100 nm).
Tilted Sample/Lost Light
Samples with non-coplanar surfaces scatter some of the light away from the collection optics. This option automatically compensates for the light lost due to nonplanarity.

Lock Identical Layers
Samples comprised of repeating layers can be more accurately measured by activating this option. By activating these options, all properties of any layers that initially have the same material or thickness are locked together.

Analysis Options: Advanced

Advanced Analysis Options for Spectrum Matching.

Convergence Criteria
This sets the minimum GOF between the measured and calculated spectra that is attained before the measurement routines consider the solution final. In most cases a value of 0.999 is sufficient. For cases where the desired GOF is not attainable, the value in the Maximum Iterations field limits the number of iterations performed by the analysis routine.

Solver Cycles
This option will enable multiple solver cycles, with the number of cycles being defined by the number entered in the text box. When using this option, the software will run through the model for a solution once, and then try again starting from the solution previously found. This can help find the best solution amongst a number of near-best solutions, which can be the case when solving for a large number of parameters (several thicknesses and/or refractive index). A greater number of cycles will lead to a longer solving time, however.
Display Details
This feature controls the wavelength at which n and k are displayed in the Measurement Details portion of the main screen. These values are only displayed if solving for n or k is selected in the Film Stack tab.

FFT Analysis Window
When the FFT solver is selected, the advanced options give you access to various settings to help optimize analysis performance. When Optimize Position is selected, the solver will check for the best possible GOF value in different areas across the spectrum in a wavelength range defined by the entered window size. For example, if a window size of 200 nm is selected, the solver will look at six different 200 nm sections of the spectrum, and then select the range that provides the best GOF.

If Optimize Size is selected, the solver will instead begin with a minimum window size as defined by the user. It will then start at the center of the analysis range, and then extend equally in both directions six times to find the best GOF. When Optimize Position and Size is selected, the software does both functions, resulting in measuring thirty-one different combinations of location and analysis range.
Wafer Map

This allows the user to specify the size and type of wafer to be analyzed, the configuration of the measurement spots, and data saving protocols.

Measurement Configuration

- **Wafer Diameter**: Diameter of wafer to be measured – choose from list
- **Coordinate System**: Polar, Rectangular, Linear, or Custom
- **Number of Points or Custom Name**: Choose from the list the number of points to be measured or select the name of the custom pattern file.
- **Edge Exclusion**: Distance from outermost points to the edge of the wafer
Indexing: Changes plot on screen to show appropriate index mark. Wafer should be oriented on the stage with the index mark on the edge opposite the mirrors (i.e. the top of the wafer in the map results is near the mirror).

Automatic Data Saving

If a File name is entered in the upper right corner of the **Wafer Map View>Map Information** field, then a new folder with that name will appear in the FILMapper\Map Results folder. If no name is specified, all saved data will appear in the **Map Results** folder.

Save Results to Disk: Automatically saves the map after completion of measurement. This comma delimited text file contains measurement coordinates and results.

Save Spectra: Saves the spectrum acquired at each point as a separate file. Each file is saved in measurement order, "0" being the first measurement. File extension is .fmspe by default, but can be set underneath the **Setup>Options>Wafer Map** tab. Each spectrum may be opened in the FILMapper **Measure Tab**.

Pattern Avoidance

The pattern avoidance feature enables the F50 to target areas on a patterned wafer that do not scatter light (i.e. avoid trench areas). If a measurement shows low reflectance, the stage will move to a nearby location where a pad is expected (as defined by the settings described below). This feature should not be selected when measuring blanket wafers.

Spot Size: The size of the measured spot.

Pattern Size: The size of the features to be avoided.

Rectangular, Radial: The pattern layout geometry.

Spacing: The center-to-center separation of elements making up the pattern.

Invalid Measurement Retry

Activating this feature allows the software to try up to 4 additional measurement locations, within the **Spot Size** specified from the designated location until a valid measurement is made. "Invalid" measurements are defined in the **Constraints** tab. This function is especially helpful when measuring non-uniform samples.

Additional Parameters To Be Mapped

Average Reflectance Ratio: This maps the average reflectance ratio, which is defined as the average reflectance between the **Starting Wavelength** and the **Ending Wavelength**, divided by the reflectance at the specified **Reference Wavelength**.

GOF (Solve for Goodness of Fit)

Enabling this feature saves **GOF** results with the map.
Full Wafer Reference Mode

This option allows you to choose whether or not to enable Full Wafer Reference Mode, or to let the software decide based on the parameters set to be solved for. A full wafer reference is suggested when mapping for optical constants, or very thin films (< 50nm).

Alarms

![Image of Edit Recipe window](image)

Minimum Valid GOF

Constraining the **Minimum Valid GOF** will exclude measurements where the calculated **GOF** does not reach the specified limit. A warning or “**Invalid**” result will appear if the GOF constraint is not met. Specify 0 to have all solutions reported.

Activate Alarms

When **Activate Alarms** is selected, an alarm will trigger if the measured thickness of the sample is outside the specified **Thickness Limits**.
Thickness Limits
Setting the minimum and maximum allowable thickness limits will trigger an alarm if the measured thickness is outside the limits when *Activate Alarms* is selected.

Acquisition Settings

This menu lets the user control *Measurement Timing*, *Spectrometer Type* (on EXR and UVX systems), and *Advanced Acquisition Settings*.

Measurement Timing

Use Recommended Sampling Time
Selecting this option uses the sampling time that has been automatically calculated by the software during the baseline procedure. The displayed value is the total sampling time and not necessarily the
integration time. To see the integration time and number of integration cycles go to the Help > Diagnostics menu.

Use Maximum Sampling Time

Users can set a maximum sampling time by selecting this option. By increasing sampling time the user may see a decrease in signal noise, but at the trade-off of a longer acquisition time.

Use Manually Set Parameters

Users can set the integration time per acquisition cycle and set a number of integration cycles over which to average. When using this option, the total sampling time is equal to the integration time multiplied by the number of integration cycles.

To set the integration time manually, set the sample on the stage and select Setup>Raw Signal... If the proper integration time is unknown, an initial value of 40ms is a good starting guess. The vertical scale of the spectrum extends from zero to 4095. Thus, a good working level is when the peak height of the sample being measured, or the reflectance standard, whichever is greater, is 3000-3500 counts. (Note: if the reference measurement saturates – Detector Saturation error – then spurious final measurements will result.) If the maximum signal is too low, increase the integration time. Too large an integration time will result in excessive dark current, so it is sometimes necessary to accept a smaller signal level to limit the dark current.

Note: If the integration time is changed, it will be necessary to perform the baseline procedure, or re-acquire the reflectance standard and background scans.

Spectrometer Type

EXR and UVX systems have two spectrometers (VIS/UV and NIR). Here the user can choose to use only one or both spectrometers.
Optics Configuration

The Optics Configuration dialog box is accessible through the Acquisition Settings tab under the Edit Recipe window. It is important to make sure that you remember to select the proper configuration for your measurements in order to obtain the best possible results. Not all options are available with all systems.
Advanced Acquisition Settings

Store Baseline settings in Recipe
This option allows the user to save the selected Optics Configuration, Baseline Name, and Reflectance Standard used with each individual recipe.

Continuous Measure Settings
This option allows the user to set an interval, in seconds, between measurements when using the Measure > Continuous Measure command from the Acquire Menu. By default this is set to 0.

Understand and Evaluating Measurement Results
This section covers information on the Display of Measured Spectra and a more in depth look at the Goodness Of Fit value.

Display of Measured Data
Once film stack and measurement information have been entered and a baseline has been taken, measurements may be made by clicking on the Measure button. After measurement, the measured and calculated reflectance spectra are displayed on the graph. The thicknesses of the films are listed in the results box. If any of the thickness values were measured, they are displayed in bold numbers.

The quality and accuracy of the result is determined by how well the measured spectrum matches with the calculated spectrum. In general, thickness information is determined by the number of oscillations, and index information is determined by the amplitude of the oscillations. In the case of the Robust (adaptive; thickness only) solver and Exact Spectrum Matching solver, a good result is one where the minima and maxima of the measured and calculated spectrum align. For the FFT (thickness only) solver,
this is when the measured intensity peaks overlap. See the Goodness of Fit and Troubleshooting - Thickness Modeling sections for more information.

Goodness of Fit

The accuracy of a calculation fit, and thus the reliability of the measurement, can be judged by the match between the measured and calculated spectra, which is quantified by the GOF value. GOF is a number between 0 and 1.

A perfect match between measured and theoretical spectra will result in a GOF of 1. To ensure accurate results the user may set a minimum acceptable GOF value by entering a number between 0 and 1 into GOF Error on the Alarms Tab in the Edit Recipe dialog box. A warning message will be displayed after each measurement where the GOF falls below the user-specified GOF Error. If the GOF is less than 1 there are several possible causes as follows:

a) **Nonuniformity** – Any variation of layer thickness, or presence of roughness, within the measurement spot will result in a reduction in reflectance. In severe cases the interference peaks may disappear entirely.

b) **Incorrect Structure Definition** – If the refractive index of one or more layers in the structure is different from what is described in the layer structure, than there will be some mismatch between the blue curve and the red curve.

c) **Graded Interfaces** – The amplitude of the peaks in the spectrum depends on both the size of the change in refractive index at each interface in the layer structure and the sharpness of the interface. For example, in many hardcoat samples there is some degree of layer intermixing at the interface, leading to a weaker than expected reflectance at that interface. In severe cases the peaks may disappear entirely.

Window Menu Items

This section describes the various functions available through the standard Windows File Menus.

- **File Menu**
- **Edit Menu**
- **Setup Menu**
- **Acquire Menu**
- **Help Menu**
File Menu

Open Spectrum... (Measure Tab only)
This command is used to open stored reflectance spectra, which are then displayed and can be analyzed for film properties.

Open History...
Previously saved history data containing measurements and statistics can be loaded with this command.

Open Wafer Map... (Wafer Map Tab only)
This command is used to open stored wafer maps, which are then displayed and can be analyzed for film thickness.

Open Difference Map... (Wafer Map Tab only)
This command allows users to display thickness differences between 2 maps (Map2-Map1). Film structure and map pattern must be the same for both map recipes. Press the Select Map button to browse for the map files.

Import: Recipe...
To import recipes that were previously exported, or created with an older version of FILMapper, use this command.

Import: Material...
Custom materials, either created by the user or provided by Filmetrics, can be imported using this command.

Import: License...
When the user purchases an upgrade for the system, Filmetrics will send a license file to the user. The license must be imported into the software before upgrades are effective.

Save Measured Spectrum... (Measure Tab only)
This command is used to save spectra for export or later analysis. All data is saved along with the corresponding wavelength data in comma-delimited format. Files can be saved in four different formats:

*.fmspe: This file can only be opened in FILMapper 5.0 or greater and is the preferred way to save spectra. Additional information from data acquisition is stored in this file.

*.spe: This file can be opened in all versions of FILMapper.

*.csv: This is a comma-delimited file that can be opened directly in Excel.

*.txt: This is a tab-delimited file, and can be opened with a text editor.

Save Screen to File... (Measure Tab only)
This command takes a screenshot of the FILMapper window.

Save Wafer Map... (Wafer Map Tab only)
This command is used to save measured wafer maps for export or later analysis.

Save n and k to files... (Measure Tab only)

Export: Recipe...
Recipes can be exported for use on other computers running FILMapper. The exported file will also automatically include any material files required by the recipe. To duplicate an analysis, all that is needed is the exported recipe and the spectrum being analyzed.

Export: Recipe for FILMapper 4...
This command will convert a recipe for use with FILMapper 4. This will not include material files or recipe features only available in FILMapper 7.

Export: SystemInfo File...
For certain upgrade purchases that can be done through software, the user will be required to send the SystemInfo file to Filmetrics, which can be exported using this command.

Edit Menu

This menu allows access to the [Material Library](#), as well as the [Map Pattern](#) editor.
Material Library

The material library is used to display information about existing materials as well as create new ones. Material files shipped with FILMapper have the file extension “.fibnk” and will only display limited information. User created material files can be plotted on a graph or viewed in table form.

A new material may be entered into the material library manually if refractive index (n) and extinction coefficient (k) are known as a function of wavelength for the new material.

To create a new material file:

- **a.** Select **Edit>Material Library...** menu item. The **Edit Material** dialog box will appear.

- **b.** Click **New...** to create a new material.

- **c.** Select the type of material you are ready to create (Dielectric, Photoresist, Semiconductor, Metal, or Other).

- **d.** Optimize the functionality of the file by entering index values over the entire wavelength spectrum of the system. The wavelength unit is nanometers. Enter index information every 20 to 50 nm, depending on the complexity of the data. In areas where n or k is quickly changing, more densely spaced the points should be entered.

- **e.** Alternatively, select the **Model>Custom** radio button and click the **Details** button. A **Custom Model Information** dialog box will appear. Select the appropriate model. Enter in the known
coefficients and click **OK**. Cauchy coefficients are displayed in microns. If they are entered in Å, FILMapper will automatically detect this and convert them to microns.

f. Click the save button to save the material. You will be asked for a file name, and you may select one of two file types:

* .fitnk: Compatible with FILMapper 4 and beyond.

* .nnn: Creates a *.nnn file and, if there is *k* in the material, a *.kkk file to contain material data. For files with both *n* and *k*, the two files must have the same filename, xmaterial.nnn and xmaterial.kkk for example, in order for FILMeasure to properly identify them. Compatible with FILMapper 7 and earlier.

Map Pattern... (Wafer Map tab only)

This allows the user to specify the measurement spots on the wafer. The pattern type specifies the pattern geometry. The pattern density and central exclusion features specify the exact distribution of the
measurement points on the wafer. A visual representation of the pattern is obtained by clicking Redraw. Save the new map pattern in the FILMapper\Patterns\Custom folder.

If the x-y coordinates for a specific pattern are known, the FILMapper software can recognize a text file of these coordinates once they are normalized, i.e. the points must be specified such that the center of the map is (0,0) and the outer edge values are (-1,0), (0,1), (1,0), and (0,-1). This can be done relatively easily in any spreadsheet software program. Save the new map pattern in the FILMapper\Patterns\Custom folder. Edit the first line of the text file to equal the number of points in the pattern.

All custom patterns must be saved in FILMapper\Patterns\Custom folder. To select the new pattern in the Edit Recipe>Wafer Map tab, select the Custom Coordinate System and the name of the pattern from the drop-down box.

Setup Menu

This menu contains the settings for manually obtaining the Standard/Background information, Display options, and the Raw Signal dialog. This is also where user access can be set through the Access Control option, as well as modifying some system Options.

Standard/Background

This control is used when manually taking and enabling/disabling Reflectance Standard and Background compensation.

Take Standard

This button allows the reflectance standard portion of the baseline measurement to be taken without having to re-take the background measurement.
Take Background
This button allows the background portion of the baseline measurement to be taken without having to re-take the reference measurement.

Use Standard
This checkbox allows the reflectance standard portion of the baseline correction to be enabled or disabled. This box is only available if a baseline has already been completed.

Subtract Background
This checkbox allows the background subtraction portion of the baseline correction to be enabled or disabled. This box is only available if a baseline has already been completed.

Display

![Image of FILMapper settings window]

Color Measurement Settings: Color Space
The color of a spectrum can be displayed and quantified on the main screen if a color space coordinate system is selected.

![Image of Reflectance Color]

When a **Color Space** is selected, the color of the spectrum and the coordinates appear on the main FILMapper window.

Color Measurement Settings: Observer
When a specific color space is chosen for display, this option allows the user to choose between the CIE 1931 2 degree observer and the CIE 1964 10 degree observer. Note that this variable is associated with
the CIE eye-response convention (see, for example, http://en.wikipedia.org/wiki/CIE_1931_color_space) and is unrelated to the illumination or collection angle of the measurement.

Color Measurement Settings: Illuminant
This setting refers to the **standard illuminant** being used by the software to help determine the results of the color analysis.

Color Measurement Settings: Fixed Luminance
The user can fix the luminance of the displayed color. Since antireflective coatings, for example, are inherently transmitting, the spectra has very little luminance and the coating color may appear black on screen. Fixing the luminance does not affect the color space coordinate results.

Number of Spectra
This sets the maximum number of spectra displayed simultaneously on the main FILMapper screen. If the maximum number of spectra is reduced to fewer than the number already on the screen, the most recently selected spectra will remain.

Spectra Transformation
On spectra where reflectance and transmittance information is present you can have the software display them as separate spectra (none), added together (sum), or the absorptance (1-R-T).

Graph Options
The background of the graph can be set to white or black using this option, as well as allowing the software to auto-position the legend box to avoid or minimize overlap with the displayed spectra.

Measurement Results: Significant Digits
The user can select the number of significant figures, from 1 to 7, that the results are displayed in. For example with the units set to Angstroms, if a result of 7213 Å will be displayed for 4 significant digits, it will be displayed as 7210 Å for 3 significant digits.

Displayed Controls
These checkboxes are used to determine which controls are listed on the right hand side of the FILMapper window.
Access Control

The software for the instrument incorporates password protection to limit access to the measurement software and settings. When the software is initially installed the access control is turned off. The software will automatically boot up with Engineer level access that enables access to all features of the program except turning on and off access control and adding and deleting users.

Turning on access control requires Supervisor level access. The software is delivered with one user, a supervisor, in the list of authorized users as shown below:

UserID: filmsuper

Password: filmetricsfff

To turn on access control, log in as filmsuper using the password shown above. The Activate Access Control checkbox should now be enabled. By placing a check mark in the Activate Access Control checkbox access control will be active. User ID and Password are case-sensitive.

To add an operator level user, select operator from the Access Level list box, type a user name and type an initial password for that user. Then click the Add User button. To add an engineer or a supervisor user follow the same procedure, but pick the appropriate access level from the list box before pressing the Add User button.

To delete a user, enter the UserID and press the Delete User button.

Operator and Engineer level users can change their passwords when they are logged in by entering their password into the password box and pressing the change button. Supervisor-level users can change their password or the password of any other user by selecting the appropriate access level, entering the appropriate UserID and the new password and pressing Add User. If the program finds that a user already exists, it will delete the old entry for that user and create a new entry.
We recommend that you create a new supervisor level user and delete the filmsuper user for maximum security. If all supervisor level users forget their passwords, it will be necessary to re-install the software and add all the users again.

Raw Signal

The **Raw Signal** dialog box allows the user to plot the raw (no baseline corrections applied) spectrometer signal on the main graph. No spectral smoothing is applied, and there are no saturation warnings. This is useful when adjusting the focus or when setting integration times manually.

Active Spectrometer

For systems with multiple spectrometers (EXR and UVX) these radio buttons allow you to select between collecting data from the short wavelength, long wavelength, or both spectrometers.
Integration Time
This sets the integration time of the spectrometer. Clicking **Update Recipe** transfers the listed integration time to the current recipe.

Start/Stop
This button starts/stops the acquisition of the spectrometer signal.

Graph Limits
This allows the user to either manually set or autoscale the graph limits.

Options
The **Options** menu allows the user to enable, disable, or modify several different settings within FILMapper. Users can also view which licenses are currently active on their system, and enable or disable them under the **Licenses** tab.

- General Settings
- Wafer Map
- Data Recording
General Settings

The General Settings tab is used to enable, disable, and modify various options in the software. Baseline Reminder allows the user to set an interval at which the system will alert them to re-baseline the system. It is set at one hour by default. The Selected Camera pull down menu allows the user to enable the Sample Cam on equipped systems, or choose between different cameras if there is more than one attached to the system. The Reference Signal Thresholds options are used by the software during the Baseline process. If, during the Acquire Reference step of the Baseline, the intensity of the reflectance standard goes above or below the percentages listed an error message will appear.
The **Wafer Map** tab allows the user to select the various options related to mapping process. **Wafer Map Rendering** allows the user to choose between either a full **Color** map, or a **Luminance** map which varies from white to dark blue. Users can also set whether or not to display invalid points, whether to use a linear interpolation between points, and what size font the results display as on the map.

Stage Motion allows the user to enable high speed motion controls, for faster mapping when the vacuum is in use. **Reference Location** allows the user to choose where on the sample to take the reference measurement. The default setting is automatic, and will take the reference measurement at (0,0) or a custom location can be defined.

When **Automatic Data Saving** is enabled under the **Edit Recipe > Wafer Map** tab, the options here are used to determine in what format the spectra are saved, and where on the computer they are saved.
Data Recording

The Data Recording tab allows for automatic saving of all spectra and results to a central file. The user can also select between having the software provide a prompt for which data to include in the history file when using Acquire>Continuous Measure or to include all measurements to history.

Acquire Menu

Acquire > Acquire One Spectrum
This function collects a single spectrum and displays it on the screen. No analysis is performed until the recipe is changed or the **Analyze** button is clicked.

Acquire > Acquire Continuously
This feature collects real-time data from the spectrometer. It is useful when searching for a specific location to measure (for example, locating a more uniform area of the sample, or one that exhibits interference fringes).

Acquire > Measure Once
This feature collects a spectrum, analyzes it and displays it on the screen. This is the same as pressing the **Measure** Button.

Acquire > Measure Continuously
This feature collects real-time spectrum data and analyzes it – similar to repeatedly pressing the Measure button. A measurement interval time can be set in the recipe using the **Advanced** options underneath the **Acquisition Settings** tab.

Batch Acquire
The Batch functions allow you to act on groups of spectra, rather than each individual spectrum.

Acquire > Batch > Acquire
This option allows you to acquire a pre-selected number of spectra. You can also choose to save the batched spectra as they are acquired.

Acquire > Batch > Measure
This option allows you to acquire and analyze a pre-selected number of spectra. You can also choose to save the batched spectra as they are acquired.
Acquire > Batch > Analyze Spectra
This option allows the user to select multiple spectra for analysis by the current recipe. If there are more spectra to be analyzed than the software is set to Display, the analyzed spectra can easily be retrieved from the History tab.

Acquire > Batch > Analyze All Spectra in Folder
This option will analyze every spectrum in a folder with the currently selected recipe. If there are more spectra to be analyzed than the software is set to Display, the analyzed spectra can easily be retrieved from the History tab.

Help Menu

Diagnostics
The diagnostics window gives information regarding the data taken during the baseline. Reference and background counts are shown (this is useful to see how much signal the system is getting; good signals typically are between 2500-3500 counts).
Help>Diagnostics shows the user information regarding the data taken during the baseline routine.

Help > About FILMapper
Information about the hardware and software versions and the system serial number can be found here. Please have this information available when calling Filmetrics for technical assistance.

Taking a Baseline
The baseline measurement allows the FILMapper software to take into account the response inherent to the F50 reflectance measurement hardware. It does this by measuring a reflectance standard, and then taking a “dark” reading. The light source should be allowed to stabilize at least ten minutes before the baseline is taken. When measuring films less than 1000Å thick, the baseline should be periodically re-taken every 20-30 minutes. For thicker films, a new baseline can be taken less often.

Baseline measurements may be started two ways:

1. Select the Baseline button in the Wafer Map or Measure Tab, which will guide the user through the baseline procedure, or
2. Select **Set Up>Standard/Background...** from the menu bar in the Measure Tab for manual access to the baseline functions.

The first step of the baseline measurement is to take a reference spectrum. This is done by placing a reflectance standard of similar reflectance to the test sample on the sample stage. The reflectance standard that is used should be selected from the **Reference Material** list. For reference materials not in the list, reflectance versus wavelength values may be entered into a comma-delimited text file with the extension “.rrr” (stored in the Material subfolder). Click OK when prompted.

The dark scan will be taken automatically. Most stages have a built-in tilted mirror or other reflector that is used to re-direct the incident light away from the collection optics.

When thin films (< 2000 Å, approximately) or n and k are being measured, a full wafer reference map will be required, and automatically measured. To determine if full wafer reference data is required, FILMapper checks the active **Recipe** settings. The pattern defined in that recipe will be used for the full wafer reference. If the map pattern, edge exclusion, or wafer diameter is changed, a new full wafer reference will be initiated. The full wafer reference map can be enabled or disabled underneath the **Edit Recipe>Wafer Map** tab.

After acquiring a baseline, the F50 is ready to begin making measurements. To verify that the system is working properly, you may select **Acquire>Single Acquire** from the Measure Tab menu bar, with the reflectance standard in place. You should see the reflectance spectrum of the reflectance standard.

Fast Fourier Transform Mode (FFT mode)

The FFT mode tends to be more robust when measuring very thick films or thick multi-layer stacks, where the total thickness is greater than 5 microns.

To activate FFT mode, select the select **FFT (thickness only)** button located on the **Analysis Options > Analysis Method** tab in the **Edit Recipe** box.
The Measure Tab shows a split screen with the measured spectrum on the top graph and the FFT spectrum on the bottom graph.

In FFT mode, instead of matching the measured reflectance spectrum with a calculated reflectance spectrum, FILMapper identifies the peaks in the FFT Spectrum and uses them to compute the layer thicknesses. The number of possible FFT peaks is \(n(n+1)/2 \) where \(n \) is the number of layers. Thus, for a two layer structure, we expect to see three peaks in the FFT spectrum.

The image above shows the screen just after measurement of a two layer stack using FFT mode. The upper graph shows a blue curve representing the reflectance spectrum of the sample. The lower graph shows a blue and red FFT spectrum. The blue FFT spectrum is computed from the measured reflectance. The red FFT spectrum is computed from the theoretical reflectance spectrum of a layer stack with the measured layer thicknesses. The small side lobes visible on either side of the two tall peaks are artifacts of the FFT process and can generally be ignored. The only time the side lobes will cause a problem is if a weak peak from a multi-layer sample is very close to a much stronger peak. If this case occurs FILMapper may lock onto one of the side lobes by mistake and it may not be possible to measure the layer thickness associated with the weak peak. Reducing the Constraint and/or increasing the guess for the thickness for the layer with the weak peak may be helpful in getting FILMapper to lock onto the weak peak. If the peak is too weak to reliably measure it is best to change the layer structure definition so that the layer corresponding to the weak peak is eliminated.

Along with the measured layer thicknesses, the Results text box displays important information about the measurement. This important information includes the Goodness Of Fit (GOF) and a description of which peaks were used to determine the measured layer thicknesses. In the figure above layer 1
thicknes is determined based on the position of the peak located at 4.780 microns and layer 2 thickness is determined using the peak corresponding to layers 1+2 (7.011 microns). Notice that the thickness of layer 2 is not exactly equal to 7.011-4.780 = 2.231 microns. FILMapper computes a thickness for layer 2 of 2.113 microns because it precisely accounts for the fact that layer 2 has a different refractive index than layer 1.

Discussion of GOF:
A perfect match between measured and theoretical FFT spectra will result in a GOF of 1. To ensure accurate results the user may set a minimum acceptable GOF value by entering a number between 0 and 1 into GOF Error on the Alarms settings in Edit Recipe. A warning message will be displayed after each measurement where the GOF falls below the user-specified GOF Error. If the GOF is less than 1 there are several possible causes as follows:

a) Nonuniformity – Any variation of layer thickness within the measurement spot will result in a reduction in the FFT peak heights. In order to permit easy visual interpretation of the FFT results FILMapper always scales the amplitude of the red curve so that it matches the blue curve. However, if the scaling factor is not 1.0, FILMapper reports a reduced GOF even if the red curve appears to exactly match the blue curve on the screen.

b) Incorrect Structure Definition – If the refractive index of one or more layers in the structure is different from what is described in the layer structure, then the FFT peak amplitudes in the blue curve will not match the peak heights in the red curve. The software will attempt to scale the red curve, but if there is more than one FFT peak present, the scaling will only result in one correct peak height. If you wish to view the impact of changing the refractive index of one or more layers, simply change the refractive index in the Edit Recipe dialog box and click Analyze (ReAnalyze). If there is only a single layer you will notice that the GOF will change, but the red curve should not change much. If there are multiple layers in the structure you will notice that the relative peak heights in the red curve will change when you click Analyze.

c) Graded Interfaces – The amplitude of the peaks in the FFT spectrum depends on both the difference in refractive index at each interface in the layer structure and the sharpness of the interface. In many common samples you will find that there is some degree of layer intermixing at the interface, leading to a weaker than expected reflectance at that interface. The FFT peak(s) associated with the intermixed interface will suffer a reduced amplitude and in severe cases the peaks may disappear entirely.
Making Measurements

Accurate measurements with the F50 rely on using the proper measurement setup. The basic steps for any F50 measurement are:

1) Selecting and editing the type of film to be measured
2) Taking a Baseline measurement
3) Clicking on the Measure button to acquire and analyze the measured spectrum.

Each example below will take you through this sequence of steps. In each example it is assumed that the hardware has been set up as described in the Quick Start Guide, and that you have first read through the Software Overview section to familiarize yourself with the basic controls.

The Measurement Assumptions, Hints for Improved Accuracy, and Troubleshooting sections describe techniques that should be followed for the most accurate measurements.

Focusing the Fiber

When the fiber-optic is fully inserted into the lens tube, the SS-3 is designed to provide optimal focus for subjects the same height as the silicon reflectance standard. If the object to be measured is a different height than the Si wafer please follow the procedure below to focus the fiber-optic.

Instructions for focusing for maximum signal are as follows:

A. Turn on the light source and start the FILMeasure program.

B. Go to the Set Up>Raw Signal... dialog box and set the integration time for 30 milliseconds and click Apply.

C. Place a reflective sample, such as a silicon reflectance standard or BK7 reflectance standard on the sample stage. You will now see the raw signal from the image sensor. If the signal saturates, reduce the integration time (step B).

Note Focus position is dependent on subject height. Make sure the surface you intend to measure is at the same height as the reflective sample.

E. Optimize the focus to maximize the measured signal by adjusting the fiber-optic cable position in the lens tube. To achieve this, move the fiber-optic cable slightly up the lens tube until maximum signal is obtained.

The screw on lens tube is actually a spring-loaded ball plunger and does not require tightening. Users should be aware that the fiber may slip out of focus if the stage or cable is moved. If one focus height is often used, the set screw can be tightened to reduce the chance of inadvertent slipping.

F. Adjust the tilt of the lens by rotating the screws on the RKM-F50 to maximize the raw signal, as in the previous step.
G. Close the **Set Up Raw Signal**... dialog box. Focusing is now complete.

Note When performing the baseline procedure, always make sure the top surface of the reference material is at the same height as the sample surface you intend to measure.

There is also a video demonstration of this procedure on YouTube, which can be found [here](#). An active internet connection will be needed to view the video.

Example A - Mapping Thickness Only

Measuring the Thickness of SiO2 on Silicon

For this example we will demonstrate only the measurement of SiO2 on silicon (the SiO2 on Silicon Test Sample provided with the F50 may be used), but this type of measurement has an extremely broad range of applications, including photoresists, hardcoats and polysilicon, to name just a few.

[Continue to Step 1...](#)

Example A - Preparing the Film Stack

Step 1: Select the film stack

Select the film stack to be measured, in this case “SiO2 on Si”, from the **Recipe**: list box on the main screen. If the stack to be measured does not exist, a new stack must be defined (see “**Editing Film Recipes**”).
Step 2: Edit the film stack

To edit the stack, click the Edit Recipe button to open the dialog box. Check to see that the film sequence matches that of the actual sample. If not, different films can be selected. Also enter your best guess for the thickness of the film to be measured, and check that only the SiO2 layer thickness is being measured.

Example Edit Recipe>Film Stack window for measuring SiO2 on Si

Continue to Step 3

Example A - Preparing the Map and Baseline

Step 3: Edit the mapping routine

Edit the Edit Recipe>Wafer Map tab for the desired set of measurement spots on the wafer.
Example Edit Recipe>Wafer Map Tab for specifying mapping parameters.

Step 4: Take a Baseline Measurement

Take a baseline measurement by first clicking on the Baseline button. A dialog box will appear to step you through the process. In the Acquire Reference dialog box, make certain to select the reference material that will be used (“Si” in this case). Then put the reference sample on the measurement stage and click OK. The dark measurement will automatically be made after this reference measurement.

Continue to Step 5

Example A - Making the Measurements and Map

Step 5: Make the Measurement at a Single Spot (only necessary on the first of a set of wafers)

Place your sample on the stage. After choosing an appropriate spot on the wafer using the Goto button, return to the Measure Tab and make the thickness measurement by clicking on the Measure button. FILMapper will then acquire the reflectance spectrum and calculate the corresponding thickness. If the
measurement was successful, the minima and the maxima of the calculated reflectance (the red line on the graph) will coincide in wavelength with the minima and the maxima of the measured reflectance (the blue line on the graph.) In most cases they will not overlap, but will be separated in amplitude.

Measured and calculated reflectance spectra when measuring the thickness of SiO2 on silicon.

If the calculated (red) and measured (blue) minima and maxima do not coincide, then the measurement was not successful. There are several possible causes of an unsuccessful measurement. The most common for this type of measurement are described in the Troubleshooting section.

Step 6: Map the Wafer
Having received an encouraging answer for the thickness at the specified spot, run the wafer mapping routine by clicking on the Map button. The program will revert to the Wafer Map Tab and will begin to display the thicknesses on the wafer as the measurements are being made. After the mapping is complete, a thickness color map will be generated and statistical analysis for the current set of measurements will be presented.
Color wafer map of SiO2 on silicon.

To switch the color map display between multicolor and a single-color shading, go to the Setup>Wafer Map Coloring... menu item.

Example B - Mapping Thickness and Optical Constants

Measuring the Thickness of Si3N4 on Silicon

For this example we will demonstrate mapping thickness and optical constants (n and k) of Si3N4 on silicon.

Continue to Step 1...

Example B - Preparing the Film Stack

Step 1: Select the film structure

Select the film stack to be measured, in this case “Si3N4 on Si”, from the Recipe: list box on the main screen. If the structure to be measured does not exist, a new structure must be defined (see “Editing Film Structures”).

Step 2: Edit the film structure

To edit the stack, click the Edit Recipe button to open the dialog box. Check to see that the film sequence matches that of the actual sample. If not, different films can be selected. Also enter your best guess for
the thickness of the film to be measured, and check that the Si3N4 layer thickness (d), n, and k are being measured.

Example Edit Recipe>Film Stack window for measuring thickness, n, and k of Si3N4 on Si.

Continue to Step 3...

Example B - Preparing the Map and Baseline

Step 3: Edit the mapping routine

Edit the Edit Recipe>Wafer Map tab for the desired set of measurement spots on the wafer. See page 18 for more information.
Step 4: Take a Baseline Measurement

Take a baseline measurement by first clicking on the Baseline button. A dialog box will appear to step you through the process. In the Acquire Reference dialog box, make certain to select the reference material that will be used (“Si” in this case). Then put the reflectance standard on the measurement stage and click OK. The dark measurement will automatically be made after this reference measurement. A full wafer reference measurement will be made (i.e. each point of the pattern specified in the active recipe will be measured).

Continue to Step 5...

Example B - Making the Measurement and Map

Step 5: Make the Measurement at a Single Spot (only necessary on the first of a set of wafers)

Place your sample on the stage. After choosing an appropriate spot on the wafer using the Go To... button, return to the Measure Tab and make the thickness measurement by clicking on the Measure button. FILMapper will then acquire the reflectance spectrum and calculate the corresponding thickness and optical constants. If the measurement was successful, the minima and the maxima of the calculated reflectance (the red line on the graph) will coincide in wavelength with the minima and the maxima of the measured reflectance (the blue line on the graph.)
Measured and calculated reflectance spectra when measuring the thickness, \(n \), and \(k \) of Si3N4 on silicon.

If the calculated (red) and measured (blue) spectra do not fall on top of each other, the resulting thickness, \(n \), and \(k \) values are incorrect. If the mismatch between measured data and calculation is only slight, the results reported will only be off by a small amount. If the measured and calculated spectra match, but the results are implausible, there may be a problem with the sample positioning and light collection. Causes and corrective actions to improve the measurement are listed in Case #5 and Case #6 in the Troubleshooting section.

Step 6: Map the Wafer

Having received an encouraging answer at the specified spot, run the wafer mapping routine by clicking on the Map button. The program will revert to the Wafer Map Tab and will begin to display the thicknesses on the wafer as the measurements are being made. After the mapping is complete, a thickness color map will be generated and statistical analysis for the current set of measurements will be presented. To view other parameters on the color map, select the parameters (i.e. refractive index) from the Display: drop-down box.
Measurement Assumptions

The following assumptions must be valid if accurate measurements are to be made with the F50:

1. Every film present in the structure is specified in the Edit Recipe dialog box. This includes every film present in the sample including so-called adhesion films, oxide films (unless they are less than 20 Å or greater than 500 microns thick), and films on the bottom surface of the substrate if the substrate is transparent.

2. If the film is nonuniform, it has been accounted for in the recipe.

3. The light source has been allowed to warm up for at least 5 minutes if measuring thickness of films greater than 250nm, or 15 minutes if measuring thickness of films less than 250nm, refractive index, or reflectance.

In addition, the following assumptions are made if optical constants and/or very thin films (<500 Å) are to be measured:

4. If any grading is present (i.e. the refractive index and extinction coefficient are constant as a function of depth and constant over the entire spot being measured), it has been accounted for in the recipe.

5. The sample is flat. (The vacuum chuck may help in this case when samples are warped.)
6. No changes to the measurement system (such as fibers being moved) or light source have occurred since the acquisition of the most recent baseline.

7. No significant changes in room temperature (> 5 degrees F) have occurred since acquisition of the most recent baseline.

If any of the above assumptions are not true, it may still be possible to make a measurement, but accuracy may be degraded.

Hints for Improved Accuracy

This section contains various tips to help improve accuracy in your measurements.

Roughness.

Restricting the wavelength range of the analyzed reflection spectra.

Measuring thickness when the approximate thickness is not well known.

Measuring photosensitive films.

Roughness

Slight amounts of surface or interface roughness that may be present can decrease the GOF value of a measurement. Entering a value or solving for roughness can partially account for this roughness so that a better GOF may be achieved. Generally, roughness is only present when the sample surface looks hazy at the measurement spot. The fact that haze can be seen means that there is scattered light. (A perfectly smooth surface will scatter no light, and thus the measured spot will not be visible.) Usually roughness less than 2.5 nm will not be visible, while roughness greater than about 25 nm will be extremely hazy.

FILMapper assumes a Gaussian distribution of the surface height irregularities about the mean and it assumes that the roughness is small compared to the wavelength. FILMapper reports the rms roughness value.

Restricting the wavelength range of the analyzed reflectance spectrum

Occasionally spectra from measured films are adversely affected by factors such as absorbing dyes, birefringence, or nonuniformity – all of which are difficult to model properly. It is often still possible to make accurate thickness measurements of these films by analyzing only unaffected portions of the spectra. The portion of the spectrum that is used to calculate film properties is determined by in the recipe underneath the Analysis Options tab.

You can also adjust the wavelength analysis range in the main FILMeasure window using the gray bar at the bottom of the graph. Click and drag either end of the bar to a new position on the x-axis to adjust the analysis range.
Example of a non-ideal film (spectrum with no oscillations at lower wavelengths) that requires reduced wavelength range for accurate measurement.
Example of a reduced wavelength range for measuring thickness of non-ideal films.

Measuring thickness when the approximate thickness is not well known

Unless otherwise specified, FILMapper will determine a film’s thickness by finding the best answer within about 1000 Å of the initial (user supplied) value. If the approximate thickness of the film is not known to better than about 1000 Å, then the Grid method or the Fourier Transform method of determining approximate thickness may be applied. See Editing Film Structures for more details.

Measuring photosensitive films

For layers such as unexposed photoresist that cannot be exposed to short-wavelength light, a filter may be inserted in the slot on the light source.

Troubleshooting

For error messages or hardware problems encountered with your Filmetrics instrument, please use the chart below to best diagnose your problem. For help with modeling, see Troubleshooting - Thickness Modeling.

Question 1: Are you able to start FILMeasure without an error message?

No: Continue to **Question 2.**

Yes: Continue to **Question 1-1.**
Question 1-1: What sort of problem are you seeing?
1: The lamp doesn't turn on or the fan isn't working properly. See the Non-Operating Box, Lamp, or Fan Troubleshooting Guide.
2: I get an error message when I click on something. Continue to Question 1-1-2.
3: Measurement results are wrong or unstable, after they had been good. See the Measurement Results are Incorrect or Unstable Troubleshooting Guide.
4: Measurement and/or baseline takes longer than it used to. See the Slow Operation Troubleshooting Guide.

Question 1-1-2: If you're still seeing an error after you've power cycled and installed new software, then select the description which most closely describes your error.
1: The error occurs during the baseline. See the Error Message During Baseline Troubleshooting Guide.
2: Some other error. See the Error Messages -Miscellaneous Troubleshooting Guide.

Question 2: Are you able to launch FILMeasure but it shows an error?
Yes: Continue to Question 2-1.
No: Then you need to install the software that come with your new system, or you can request new software. See the Software Reinstallation Guide.

Question 2-1: Does the error message start with "No Filmetrics instruments detected...."?
Yes: See the Non-Operating Box, Lamp, or Fan Guide.
No: Continue to Question 2-1-2.

Question 2-1-2: Does the instrument have a motorized stage?
Yes: See the Stage Motion Troubleshooting Guide.
No: See the Error Messages -Miscellaneous Troubleshooting Guide.

Power Cycling

Over the years we've found that about a third of support issues can be resolved by simply power cycling the Filmetrics system and computer. Follow the simple steps below to power cycle your instrument. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Step 1: Shut down Filmapper (it's OK in the rare case that you can't).

Step 2: Unplug all electrical connectors from the back of your Filmetrics box.

Step 3: Restart your computer, giving it time to load all drivers.

Step 4: Reconnect the electrical connections to your Filmetrics box. (Make sure that the power cord is getting power, and that any switch near the power connector is turned on.)

Step 5: Restart Filmapper
Software Reinstallation Guide

Follow the steps below to reinstall FILMapper. Further assistance may be received by contacting us using the methods described in the Contact Information section. Warning: Upgrading software versions may result in slightly different (<1%) measurement results due to continual improvement of our solving algorithms and material files.

Step 1: Shut down FILMapper (it's OK in the rare case that you can't).

Step 2: Unplug all electrical connectors from the back of your Filmetrics system.

Step 3: Are you installing this software on a computer which already has FILMapper installed?
 Yes: Go to Step 4.
 Yes: Jump to Step 6.

Step 4: Make a backup copy of your recipe and material files:
 FILMapper versions 1 thru 4: Backup the directory C:\Program Files\FILMapper
 FILMapper versions 5 and up:
 On Windows XP: Backup the directory C:\Documents and Settings\All Users\Application Data\Filmetrics
 Note: The application Data folder may be hidden by default.
 On Windows 7/8/Vista: Backup the directory C:\Program Data\Filmetrics
 Note: The Program Data folder may be hidden by default.

Step 5: Uninstall the current version of software:
 On windows XP: Click Start > Control Panel > Add or Remove Programs > FILMapper > Uninstall
 On Windows 7/Vista: Click the Start orb > Control Panel > Programs and Features > FILMapper > Uninstall
 On Windows 8: Control Panel > More settings > Programs and Features > FILMapper > Uninstall

Step 6: Run the software installer and follow installer instructions.
 Note: you will need administrative privileges to install the software.

Step 7: Reconnect your Filmetrics system.
 Note for Windows XP: The "New Hardware Found" wizard may appear if your instrument has a USB connection. You must click "Next and complete the driver installation process. This dialog box may appear multiple times depending on the system configuration.
 Note for Windows 7/8/Vista: An Information balloon may appear over the taskbar while drivers are being installed. Please wait until the balloon indicates the drivers have been installed before starting FILMapper.

Step 8: Run the software to verify the installation was successful.
Non-Operating Box, Lamp, Or Fan

Follow the steps below to troubleshoot symptoms of a non-operating spectrometer, light source, or fan. These are usually caused by having too much or not enough light. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Step 1: Does the green LED on the right side of the front panel illuminate?
 Yes: Jump to Step 3.
 No: Go to Step 2.

Step 2: Is the power cord fully inserted into the back of the unit and a powered wall outlet? If your unit has a rear power switch, is it on?
 Yes: Go to Step 3
 No: Plug into a powered outlet or switch on the unit.

Step 3: Does the LED light on the light source switch illuminate when switched on?
 Yes: go to Step 4
 No: Possible faulty switch or faulty indicator lamp, contact Filmetrics.

Step 4: Is the cooling fan spinning? Determine this by listening to the cooling fan which is located directly below the light source. (You'll need to get close to hear the fans on systems built after 2010.) For F50 systems the chassis cooling fan is louder than the light source cooling fan. You'll need to get close to the light source to hear the light source cooling fan.
 Yes: Go to Step 5.
 No: The cooling fan needs replacement, contact Filmetrics. Note: a bad cooling fan can draw enough power to prevent the light source and box from operating properly.

Step 5: Does the light source illuminate?
 Yes: Go to Step 6
 No: The lamp has burned out. Please replace the lamp following the instructions here. A spare lamp is included with most systems and additional lamps may be purchased on our website www.filmetrics.com Note: users can confirm a halogen bad lamp by removing it and checking it for electrical continuity.

Step 6: The following steps are to troubleshoot a box that is not being detected by the FIMetrics software. This could be a software driver or (rarely) a hardware problem. To see what hardware your computer is detecting, look in the windows device manager. (instructions on how to access the Device Manager are included at the end of this document.)

 In the Device Manager, which device do you see?

 "Filmetrics Measurement Instrument" or similar: In this case the system should be operation correctly. If not, please contact Filmetrics.
"Unknown Device" or similar: The hardware appears to be operating properly, but the drivers for the hardware are not installed. If you have already power cycled and installed the most current Filmetrics software, please contact Filmetrics for further assistance.

Neither of the above: The hardware is not working properly. Go to Step 7

Step 7: Try a new USB cable and plug it into a different USB port. Does this fix the problem?
Yes: Either the USB cable or port was bad.
No: The USB controller inside the FILMetrics box may be bad. Please contact Filmetrics.

Accessing Device Manager in Windows 7:
1. Click on the Start Orb.
2. In the Star Search box type: device manager. Press enter.
3. Select Device manager from the list.
4. You should see a Filmetrics Measurement Instrument tab. Expand the tab and the appropriate driver should be listed for the Filmetrics instrument.

Accessing Device Manager in Windows XP:
1. Click Start.
2. Click on Control Panel
3. In the Control Panel double-click the Systems icon.
4. In the Systems Properties window click on the Hardware tab.
5. In the Hardware tab click the Device Manager button.
6. You should see a Filmetrics Measurement Instrument tab. Expand the tab and the appropriate driver should be listed for the Filmetrics instrument.

Error Message during Baseline
Follow the steps below to troubleshoot error messages encountered while taking a baseline. These are usually caused by having too much or not enough light. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Step 1: Which error message are you seeing while taking a baseline?
Received light signal is too bright: If you are manually setting the integration time (see Measurement Timing) then you need to reduce the integration time. Otherwise you can reduce the light source intensity by using a flattening or neutral density filter. Optical filters can be purchased on our website, www.filmetrics.com.
Baseline Failure. Reference and background spectra are almost the same: This error is often caused by using the reference sample during the background step or vice versa, and is easily corrected by taking retaking the baseline while providing the proper material for the proper step. If this is not the case, go to Step 2.
Spectrometer peak intensity is x% of previous reference intensity: This error is often caused by using the incorrect reference sample and is easily corrected. If this is not the case, jump to Step 5.

Step 2: Does the light source illuminate?
Yes: Go to Step 3.
No: Check the Non-Operating Box, Lamp, Or Fan Troubleshooting Guide.
Step 3: Check to see if there is a broken or misconnected fiber. With the light source on, confirm that the illumination fiber is screwed into the light source securely, and that plenty of light is exiting the fiber at the far end near where the sample is placed. The light can be seen by placing paper (e.g., business card) near the sample location (do not look directly into the fiber if you are using a UV source). If plenty of light is seen, next check the return fiber by removing it from the spectrometer input and connecting it to the light source (removing the other fiber first of course). You should see light at the far end as before, but it may be 3-4 times smaller and dimmer. Did you see light at the sample end using both fibers in the light source?

- **Yes:** The fiber appears to be good. Replace the fibers securely in their original positions (there will be a white band on the light source fiber if the two ends are different) and go to Step 4.
- **No:** The fiber optic may be broken. Replacements can be purchased on our website, www.filmetrics.com

Step 4: Does your system have multiple spectrometers (i.e. EXR or UVX)?

- **Yes:** Check the Acquisition Settings tab under Edit Recipe to make sure that your fiber optic configuration matches the enabled spectrometers. Do this by making sure that each enabled spectrometer has a fiber attached to it (or disable a spectrometer that is not being used).
- **No:** If you are still experience problems, please contact us using the [Contact Information](http://www.filmetrics.com) section.

Step 5: Was the correct reference selected from the drop-down list?

- **Yes:** Go to Step 6.
- **No:** Re-baseline using the correct reference.

Step 6: Has the light source lamp recently been changed?

- **Yes:** This error is an expected response, no further action required
- **No:** Go to Step 7.

Step 7: Has the optical configuration been altered (i.e. switching from standard spot size to small spot optics or a contact probe)?

- **Yes:** This error is an expected response, no further action required
- **No:** If you are still experiencing problems, please contact us using the [Contact Information](http://www.filmetrics.com) section.

Measurement Results are Incorrect or Unstable.

Follow the steps below to troubleshoot when measurement results are incorrect or unstable after the results had been good for some time. Additional help troubleshooting general measurement issues may be found in the Troubleshooting: Thickness Modeling section. Further assistance may be received by contacting us using the methods described in the [Contact Information](http://www.filmetrics.com) section.

Step 1: First confirm that you have selected the correct recipe for the sample that you are measuring (i.e., the same recipe that previously was giving good measurements). *Note that this troubleshooting guide does not cover instances where recipe parameters have been changed.*
Step 2: Confirm that the light source is turned on and that the fibers are securely tightened into the light source and the spectrometer input. Place a piece of paper at the sample measurement location and confirm that you can see a light beam. Can the light beam be seen?
 - Yes: Jump to **Step 4**
 - No: Go to Step 3

Step 3: Is there light coming out of the light source? (If you are checking a UV light source, put on the goggles that were supplied with the light source before checking.)
 - Yes: It appears the fiber may be broken. Replacements can be purchased on our website www.filmetrics.com
 - No: Replace the lamp following the instructions [here](http://www.filmetrics.com). A spare lamp is included with most systems and additional lamps may be purchased on our website www.filmetrics.com

Note: Users can confirm a halogen bad lamp by removing it and checking it for electrical continuity.

Step 4: Perform a new baseline, paying particular attention to making sure that you are using the proper reference and that it is clean and right side up.

Step 5: Put a known-good sample on the stage and perform a measurement. If the measurement is still not correct, go to Step 6.

Step 6: Your lamp may be weak and needs to be replaced. The best way to tell is to replace it with the instructions found [here](http://www.filmetrics.com). A spare lamp is included with most systems and additional lamps may be purchased on our website www.filmetrics.com

Step 7: It may be that the stage optics have become unfocused. Please refer to the Focusing The Fiber section.

If you are still experiencing problems with a slow baseline after the proceeding steps, please contact us using the methods described in the Contact Information section.

Slow Operation Troubleshooting Guide

Follow the simple steps below to troubleshoot slow system operation. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Step 1: When did you experience the slow operation?
 - During a baseline: Go to Step 2.
 - When I click Measure: Jump to **Step 7**.

Step 2: Slow baselines are generally caused by a low light level, which can have several causes. Does the light source illuminate (be sure it is switched on, and that the shutter is open on UV systems)
 - Yes: Go to Step 3.
 - No: Check the Non-Operating Box, Light, or Fan Troubleshooting Guide.
Step 3: Check to see if there is a broken or misconnected fiber. With the light source on, confirm that the illumination fiber is screwed into the light source securely, and that plenty of light is exiting the fiber at the far end near where the sample is placed. The light can be seen by placing paper (e.g., business card) near the sample location (do not look directly into the fiber if you are using a UV source). If plenty of light is seen, next check the return fiber by removing it from the spectrometer input and connecting it to the light source (removing the other fiber first of course). You should see light at the far end as before, but it may be 3-4 times smaller and dimmer. Did you see light at the sample end using both fibers in the light source?

Yes: The fiber appears to be good. Replace the fibers securely into their original positions on the spectrometer box and light source (there will be a white band on the light source fiber if the two ends are different) and go to Step 4.

No: The fiber optic may be broken. Replacements can be purchased on our website, www.filmetrics.com

Step 4: Does your system have multiple spectrometers (i.e. EXR or UVX)

Yes: Check the Acquisition Settings tab under Edit Recipe to make sure that your fiber optic configuration matches the enabled spectrometers. Do this by making sure that each enabled spectrometer has a fiber attached to it (or disable a spectrometer that is not being used).

No: Go to Step 5.

Step 5: It may be that your lamp is old and needs to be replaced. The best way to tell is to replace it with the instructions found [here](http://www.filmetrics.com). A spare lamp is included with most systems and additional lamps may be purchased on our website www.filmetrics.com.

Step 6: It may be that the stage optics have become unfocused. Please refer to the [Focusing The Fiber](http://www.filmetrics.com) section.

If you are still experiencing problems with a slow baseline after the proceeding steps, please contact us using the methods described in the [Contact Information](http://www.filmetrics.com) section.

Step 7: Unless the slow operation during measurement is a new problem, please confirm that your computer meets the minimum system requirements as listed here. If it doesn't, please upgrade your computer. Otherwise, go to Step 8.

Step 8: A measurement that takes a long time generally means that there is a large amount of processing being required to find a solution and this is usually cause by a non-optimal recipe setting. Please first confirm that you have selected the correct recipe for the film stack you are measuring.

Step 9: Open the recipe and make sure that you are not solving for too many parameters. Solving for one or two thicknesses or a thickness and index should only take a second or two, but in some circumstances the solving time can be increased 5-10x for each additional parameter. Solving for nonuniformity (or adding it to increase accuracy of other parameters) can be especially time consuming.
Step 10: If you are solving for more than one thick layer (i.e., >10 um), you can speed up the solving process by reducing the thickness constraint range (which can be safely reduced even more by using an accurate nominal thickness guess) or by switching from using the Grid solver to the FFT solver in the recipe.

If you are still experiencing problems with a slow measurement after the proceeding steps, please contact us using the methods described in the Contact Information section.

Stage Motion Troubleshooting Guide

Follow the steps below to troubleshoot stage motion problems. This guide only applies to Filmetrics systems that communicate via USB. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Step 1: Does the stage move at all when the software starts?
- **Yes:** Jump to Step 7.
- **No:** Go to Step 2.

Step 2: Disconnect the power from the system. Remove the top cover by removing the small screws on the sides and lifting the cover up slightly and pulling forward. Are the connectors fully seated into the headers on the board? (See Figures 1, 2, and 3.)
- **Yes:** Go to Step 3.
- **No:** Insert the connector into the header.

Step 3: Are the motor controller and driver boards fully seated in the respective connector sockets? (See Figures 1, 2, and 3.)
- **Yes:** Go to Step 4.
- **No:** Insert the board into the socket.
Step 4: Are there any signs of damage inside the enclosure (e.g. burn marks, physical damage, etc...)?
 Yes: Report the damage to Filmetrics.
 No: Go to Step 5.

Step 5: Turn off power to the system and note the amount of force required to rotate the rotary stage (very little) and the linear stage. Now turn on power. Are both stages now more difficult to move?
 Yes: Go to Step 6.
 No: The motor driver board and/or the motor controller board probably failed, contact Filmetrics.

Step 6: Start the software. Are the linear motor and rotary motor moving?
 Yes: Go to Step 7.
 No: There could be a communication problem with the motor controller. This is most commonly caused by wiring, connector, or grounding problems inside the unit. Contact Filmetrics.

Step 7: Is the light source switched on?
 Yes: Go to Step 8
 No: Switch the light source on.

Step 8: Does the lamp illuminate?
 Yes: Go to Step 9
 No: Switch the light source on.

Step 9: Does the light come out of the end of the fiber (test using a piece of paper under the lens)?
 Yes: Go to Step 10
 No: The fiber needs replacement, contact Filmetrics.
Step 10: Follow the instructions under the *Focusing the Fiber* section, then continue to Step 11.

Step 11: Perform a baseline and move the measurement spot to (0, 0). Does the light spot land on the center of the chuck?
- **Yes:** Jump to **Step 13**.
- **No:** Go to Step 12.

Step 12: Is there an offset in X-Axis (side-to-side direction) between the light spot and center of the chuck?
- **Yes:** Adjust by loosening the screw on the RKM-F50 and gently moving the arm right or left. (See Figure 4-2).
- **No:** Go to Step 13.

Step 13: Are there any objects in the base of the actuator that would interfere with the motion?
- **Yes:** Remove the object(s) from the actuator.
- **No:** Go to Step 14.

Step 14: Check if the stage motion follows the sequences below:
1. Small rotation first CCW direction and then CW direction.
2. Small linear move toward the back (to check the limit switch in the back). You should see the optical spot pass the chuck center.
3. Large linear move toward the front of the tool (to check the limit switch in the front).
4. Large linear move toward the back again so that the optical spot moves to the chuck center.
5. Small rotation first CCW then CW to check rotational limit switch.
Is there something wrong with the sequence of stage motion?

Yes: Contact Filmetrics. Please explain the motion sequence. A short video is preferable.

No: This guide relates to issues of stage motion and apparently does not apply to the user's situation. Please contact Filmetrics for additional support.

Error Messages - Miscellaneous Troubleshooting Guide

This guide provides extended information on error messages a user may encounter on rare occasion while using our software. Further assistance may be received by contacting us using the methods described in the Contact Information section.

Error during spectrum analysis/ unable to analyze spectrum.

This error is generally caused by a problem with the recipe constraints. Try adjusting the solver wavelength range, thickness constraint range, or starting thickness value. Also make certain that the starting thickness values have been entered using the correct units of measure specified for the recipe.

Spectrum saturated.

This error indicates that the sample measured is more reflective than the spectrometer was expecting. Reflectance data may not be accurate as a result. Take a new baseline to fix this problem.

Troubleshooting Thickness Modeling

In all cases it has been assumed that the user has read the Measurement Assumptions section, and that each criterion has been met.

Case #1: No oscillations, or portions of oscillations, are present in the measured reflectance spectrum.

Case #2: The measured reflectance spectrum has periodic oscillations across the entire screen, but its minima and maxima do not match up with the calculated reflectance.

Case #3: Two or more different, but nearly the same, thickness readings are obtainable from the same measurement location.

Case #4: Poor matches between the measured and calculated reflectance spectra when measuring thickness and optical constants.

Case #5: Several different answers, or one unreasonable answer, are found when measuring thickness and optical constants, even though a good match is found between the measured and calculated reflectance spectra.

Case 1: No oscillations, or portions of oscillations, are present in the measured reflectance spectrum.

There can be several possible causes.

1. The film may just be very thin (<200 Å), thus presenting no discernible oscillations or only one identifiable minima or maxima. The FFT solver will not be able to accurately analyze films without at least
one discernible full oscillation, in general meaning a film less than 0.2 microns thick. Use one of the Spectrum Matching solver methods (Robust, Exact) to analyze very thin films.

2. If the film is very rough, non-uniform in thickness over the measurement area, or has a graded interface it may not support coherent optical interference and thus it may not be able to be measured. Try moving to a different measurement spot for a better signal.

3. An improper baseline measurement was taken, for example a thickness standard is presented as a reflectance standard. Re-baseline the system while taking care to select the proper reflectance standard and reference file.

Case 2: The measured reflectance spectrum has periodic oscillations across the entire screen, but its minima and maxima do not match up with the calculated reflectance.

The most common cause is that the initial thickness guess was considerably different than the actual film thickness, and due to the constraints on possible thicknesses, FILMapper was unable to find the correct answer.

To better understand this, it helps to know that the number of oscillations on the screen is proportional to the film thickness. For example, if the measured spectrum has roughly twice the number of the oscillations that the calculated spectrum has, then the measured film is roughly twice the thickness of the calculated thickness. Using this information, the initial thickness guess and the thickness constraints can be set more appropriately in the Edit Recipe dialog box. Another possible cause is found in **Case #3** (incorrect dispersion).

Case 3: Two or more different, but nearly the same, thickness readings are obtainable from the same measurement location.

When this occurs usually the measured and calculated spectra match somewhat, but not very well across the entire spectra (i.e., the measured and calculated spectra match exactly only over a small wavelength range and then gradually walk off one another outside this wavelength range). When thickness is the only value being measured, this is normally caused by the refractive index of the measured layer not matching that used by FILMapper, especially when the film is greater than one micron thick. Unless more accurate index values can be obtained, the best way to solve this problem is to restrict the wavelength range used in the analysis.

Case 4: Poor matches between the measured and calculated reflectance spectra when measuring thickness and optical constants.

There can be many causes of this problem, including those listed in **Case #1** and **Case #2** above. Most commonly when a poor fit between the spectra occurs, it is because:

1) The components of the film structure are not all included in the Edit Recipe>Film Stack dialog box. Adjust the recipe accordingly and reanalyze the spectrum.

2) Very inaccurate initial guesses for the film thickness(es) have been listed. Try a new nominal starting guess, or expand the thickness constraint range.
3) The optical constants listed in the Edit Recipe>Film Stack dialog box are far from the actual optical constants in the material. Try selecting a different but similar material file if one is present, for example switching from Acrylic to Acrylic - 2.

4) The film being measured has properties that are not taken into account by FILMapper. Examples of these properties are graded interfaces and non-uniform films. You can enable solving for these conditions in the recipe.

Note: Enabling Nonuniformity solving will increase solving time.

Case 5: Several different answers, or one unreasonable answer, are found when measuring thickness and optical constants, even though a good match is found between the measured and calculated reflectance spectra.

This normally occurs when a large number of properties are being measured on a very thin film. In general, the thinner a film is the less unique information that can be obtained from it. To understand this, see Theory of Operation. To solve the problem, you can either:

A. Decrease the number of variables solved for.
B. Increase the amount of data provided to the solver (analyzing reflectance and transmittance at the same time, or using the multi-spectral solver).
C. Enable multiple Solver Cycles under the Edit Recipe>Analysis Options> Advanced dialog.
Advanced Features

This section describes several advanced features available within FILMapper. This includes the creation of new map files, editing those files within Windows Excel, and how to create and edit n and k files.

Creating New Map Patterns

Editing Map Files Using Excel

Creating and Editing n and k Files

Creating New Map Patterns

To create a new wafer map pattern, go to the [Wafer Map Tab](#) and select **Edit > Map Pattern...** Once selected, a new window appears which allows parameters to be adjusted to create a custom wafer map.
1. Select the shape of the wafer to be either **Round** or **Square**.

2. Select how the measurement points are distributed on the sample. The alignment can be **Radial (Polar)**, **Rectangular**, or **Linear**.

3. Control the measurement point density. The **# of Spots from Center to Outer Edge** specifies how many points are placed in a line between center and edge. The **Central Exclusion** specifies how much of the center (if any) should be excluded from measurement.

4. Select how many spots are in each quarter section of the ring (when the Radial pattern type is selected). When **Manual Spots per Quadrant** is not selected, **Ring 1** is automatically set to 1, and **Each additional ring** is automatically set to 2.

5. Select whether the measurement points should span the **Center to Edge**, or the **Edge to Edge** (only available when the Linear pattern type is selected).
6. Use **Redraw** to refresh the wafer map based on the current settings to make sure the map is correct.

7. **Save** the wafer map to a file, for subsequent use in a **Recipe**.

The user can also open an **Existing Pattern** for editing, or **Import** one that has been **created using Excel**.

Editing Map Files Using Excel

Map files can be edited further using Microsoft Excel in order to create more complex patterns. The *.*.pat file created by FILMapper can be imported into Excel for editing and saved as a comma-delimited file. The newly edited file can then be opened using FILMapper to create more intricate map patterns. The example below shows how to create an “X” pattern starting with the default pattern.

Example: Creating an “X” map pattern starting with the default map pattern

Step 1: Create a new map file

In the map window, go to select **Edit>Map Pattern...** Using a Round wafer type and a Radial pattern type, select 3 for **# Spots from center to Outer Edge**. Select **Manual Spots per Quadrant** and use 2 for **Ring 1 and Each additional ring**.

Save this default map pattern as **Custom**.

Step 2: Import the map pattern into Excel

Using Excel, open the file **Custom.pat**. This file can be found in **C:\Program Files\FILMapper\Patterns\Custom**. (Note: If the file does not appear, in the **Open** dialog box, choose All Files (*.*) under File Type.)

You will be prompted to import this file; when prompted select **Delimited** and click **Next**. When prompted, only select **Comma** for the **Delimiters**.

Step 3: Edit map pattern in Excel

Starting in the fourth row, the values are stored as x-y coordinate values, as a fraction of the radius of the wafer. To create the “X” pattern, delete the highlighted rows shown in Figure 4.1, so that there are no empty rows between values. Also delete the first two rows by selecting rows 1 and 2 and selecting **Delete** from the **Edit** menu.
For FILMapper to analyze this map correctly, the value in the third row must be changed to reflect the total number of measurement points that will be taken. In this example, the number should be changed to 9.

Step 4: Save map pattern

After the modifications have been made, select **File>Save**. Check to make sure that the **File Name** box is “**CustomEdit.pat**” (note that quotation marks must be used to enclose the filename in Excel to force the extension to *.nnn* or *.kkk*) and that the **File Type** is **CSV (Comma delimited) (*.csv)**. Then click **Save**.
Step 5: Load map pattern in FILMapper

In FILMapper, click the Set Up button next to the Recipe pull-down menu if you are in the Wafer Map Tab, or Edit Recipe if you are in the Measure Tab. Click the Wafer Map tab and select Custom for the Coordinate System. Under Custom Name, all the names of custom map files will be listed. Here, select Custom Edit, and then click OK.

In the Wafer Map Tab, you should now see the “X” pattern you created.

![Figure: “X” pattern created using Excel.](image)

Note: If the wafer map does not show up as described, open the file C:\Program Files\FILMapper\Patterns\custom\Custom.pat using a text editor, such as Microsoft Notepad. Check to see that the first row does not contain a comma. If it does, delete the comma and save the file.
Creating and Editing n and k Files

Creating new n and k files

New n and k files can be created by going to Edit>Material Library... Clicking the New button will allow the user to define a new material file. Once clicked, while the Default Model is selected, the user can manually enter wavelength versus n or wavelength versus k values.

The user can also select Custom Model. While this is selected, clicking on the Model... button allows the user to create n and k files using predefined mathematical models.

Once completed, clicking Save As... will save the new file as a custom material for later use.

Creating n and k files from a calculated spectrum

Files for n and k can be created directly from a calculated spectrum, where n and k are measured. Once a spectrum is analyzed, go to File>Save Measured n and k... This will save your n and k files as a custom material which can be loaded into the user recipe.

Editing n and k files

Existing material files can be edited by going to Edit>Material Library... There, the user can load a material file by clicking Open. Values can then be changed manually. Clicking Save will save over the original file for later use. Use Save As to save the edited file under a new name.

Converting Microsoft Excel files into FILMapper n and k files

For wavelength versus n or wavelength versus k data saved in Excel (*.xls) format, the data can be directly saved as material files that can be read by FILMapper.

For .nnn and .kkk files.

For both n and k files, the data should follow the format shown below, where the wavelength values, in units of nanometers, are in the first column, and the n or k values are in the second. Note that the version number (cell B1) refers to version of the file. For this cell, you can use 1. The material number (cell B2) refers to what material category the file corresponds to. The material categories (and their corresponding numbers) are: metal (1), semiconductor (2), insulator (3), photoresist (4), and other (5). By putting the correct value for the material number, the file will automatically be sorted into the correct category when selecting the material in the Edit Recipe window.

To save the file created by Microsoft Excel, go to File>Save As... For Save as Type: choose CSV (Comma delimited) (*.csv). For n files, save the file as “FILENAME.nnn”, and for k files, save the file as “FILENAME.kkk” (FILENAME represents the name you wish to call the file; note that quotation marks must be used to enclose the filename in Excel to force the extension to .nnn or .kkk). The file can then be saved to the desktop, and Imported using the File>Import>Material File option.
The data should follow the format of shown below, where the wavelength values, in units of nanometers, are in the first column, index of refraction \(n \) in the second, and extinction coefficient \(k \) in the third.

The first few columns of the file should be identical to the figure below the only exception being cell B3 which should contain a number describing the material category. The material categories (and their corresponding numbers) are: metal (1), semiconductor (2), insulator (3), photoresist (4), and other (5).

To save the file created by Microsoft Excel, go to File>Save As... For Save as Type: choose CSV (Comma delimited) (*.csv). Save the file as “FILENAME.fitnk” (FILENAME represents the name you wish to call the file; note that quotation marks must be used to enclose the filename in Excel to force the extension to .fitnk). The file can then be saved to the desktop, and Imported using the File>Import>Material File option.
Theory of Operation

This section describes how the instruments work and includes the theory the measurements are based on, specifics about the hardware, and more detail about the baseline measurement.

Measurement Theory

Thickness Measurement Details

Hardware Operation

The Baseline Measurement

Measurement Theory

Our instruments measure thin-film characteristics by either reflecting or transmitting light through the sample, and then analyzing this light over a range of wavelengths. Because of its wave-like properties, light reflected from the top and bottom interfaces of a thin film can be in-phase so that reflections add, or out-of-phase so that reflections subtract. Whether the reflections are in- or out-of-phase (or somewhere in between) depends on the wavelength of the light, as well as the thickness and properties of the film (e.g., reflections are in-phase when $\lambda = (2n*d)/i$, where λ is the wavelength, n is the refractive index, d is the film thickness, and i is an integer). The result is characteristic intensity oscillations in the reflectance spectrum (see Figure below). In general, the thicker the film, the more oscillations there are in a given wavelength range.

![Example of reflectance spectrum with oscillations.](image-url)
The amplitude of the oscillations is determined by the refractive index and extinction coefficient of the films and substrate. Therefore, by analyzing the period and amplitude of these oscillations, our instruments can determine thickness of multiple thin films.

Thickness Measurement Details

Optical thin-film thickness measurements require the successful completion of two tasks: acquisition and then analysis of an accurate reflectance spectrum. To determine film thickness, FILMapper calculates a reflectance spectrum that matches as closely as possible the measured spectrum. FILMapper begins with an initial guess for what the reflectance spectrum should look like theoretically, based on the user’s input of a film structure for the sample. Then FILMapper varies the parameters it is solving for until the calculated reflectance spectrum matches the measured data. Mathematically, this procedure is complicated by the fact that as the thickness of the films in the calculation is varied there can be many near matches. Therefore, an approach that simply homes in on a solution by finding successively better approximations will not work unless the starting guess for optical thickness is within approximately 1000 Å if the actual thickness.

FILMapper avoids homing in on a false solution by searching the entire acceptable thickness range to determine the thickness that gives the best possible match between the measured and calculated spectra. The thickness range searched is determined by the initial guess for thickness together with the thickness constraint. Since the time to find a solution is proportional to the range of thicknesses being searched it is beneficial to provide an initial guess for the thickness of the films to be measured.

F50 Hardware Operation

The F50 performs two distinct functions: data acquisition and data analysis. Data analysis specifics are discussed in the [Software Overview] section. In this section we describe how the F50 acquires accurate spectral reflectance data.

Light is supplied by a tungsten-halogen bulb that generates light from approximately 375 nm to 3000 nm. This light is delivered to and collected from the sample through a fiber-optic cable bundle and a lens. The intensity of the reflected light is measured at 512 different wavelengths with a spectrometer. The F50 spectrometer uses a diffraction grating to disperse the light and a linear photodiode array to measure the light at the different wavelengths. The photodiode array operates by integrating the current generated by light falling on each of the 512 pixels. After a user-selectable integration time, the accumulated charge in each photodiode is read by the computer. Because a longer integration time results in a larger charge, it is the integration time that determines the sensitivity of the spectrometer. Adjustment of the integration time is used to obtain the proper signal level. Too short an integration time results in a weak, noisy signal, while too long of an integration time results in a saturated signal.

The Baseline Measurement

The baseline measurement allows the FILMapper software to take into account the response inherent to the reflectance measurement hardware. It does this by measuring a reflectance standard and by taking a “dark” reading. In any optical system there are many components whose characteristics vary with wavelength (e.g., the output of the light source and the sensitivity of the spectrometer). However, when reflectance measurements are made, only variations in reflectance vs. wavelength due to the sample
under test are of interest. Therefore, FILMapper must perform a calibration to determine the spectral response of the system. This is done by making a measurement of a reflectance standard that has known reflectance characteristics. Note that it is not necessary for the reflectance standard to be the same as the substrate upon which films to be measured reside. The only purpose served by the reflectance standard is to permit calibration of the optical system. For example, it is possible to use a Si wafer as the reflectance standard and then measure films on GaAs, InP, glass, plastic, etc.

After the reference measurement is made a dark reading is taken. A non-zero dark level is due to current leakage inherent to photodiodes, which causes each photodiode in the array to slowly charge up even when no light enters the spectrometer. Thus, in order to make an accurate measurement of the light entering the spectrometer, it is necessary to subtract this “dark” current contribution. This is the purpose of the background reading, which measures the magnitude of the dark current for a given integration time. When a “dark” measurement is made, a spectrum is measured that represents the signal generated by the spectrometer when a sample of zero reflectance is measured. To simulate a sample with zero reflectance during a “dark” measurement, a specularly reflecting sample can be held at an angle with the light source turned on, or in many cases the light source may simply be turned off momentarily during the dark measurement.

Due to drift in the light source and temperature of the spectrometer electronics, it is a good idea to take a baseline periodically.
How to Contact Us

We welcome suggestions from our users on ways to improve our software and hardware. Please send us any suggestions you may have for improvements in the help file or new features you would like to see in the software.

We may be reached by phone at +1-858-573-9300, by fax at +1-858-573-9400, by the Contact Us Now form on our website, or by e-mail at support@filmetrics.com.
Appendices
This section contains information on various topics as listed below:

Performance Specifications

How to Replace the Light Bulb

Application Note: Silicon Nitride

Automation and Data

Software License Agreement

Performance Specifications

<table>
<thead>
<tr>
<th></th>
<th>F50-UVX</th>
<th>F50-UV</th>
<th>F50-EXR</th>
<th>F50</th>
<th>F50-NIR</th>
<th>F50-XT</th>
<th>F50-XXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength Range:</td>
<td>200-1700 nm</td>
<td>200-1100 nm</td>
<td>380-1700 nm</td>
<td>380-1050 nm</td>
<td>950-1700 nm</td>
<td>1440-1690 nm</td>
<td>1580-1650 nm</td>
</tr>
<tr>
<td>Thickness Measurement Range*:</td>
<td>5 nm-250 µm</td>
<td>5 nm-40 µm</td>
<td>15 nm-250 µm</td>
<td>20 nm-100 µm</td>
<td>100 nm-250 µm</td>
<td>0.2 µm-450 µm</td>
<td>10 µm-1 mm</td>
</tr>
<tr>
<td>Thickness Req’d to Measure n and k*:</td>
<td>50 nm and up</td>
<td>100 nm and up</td>
<td>300 nm and up</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy*:</td>
<td>The greater of 0.4% or 2 nm (5 nm for F50-XT and F50-XXT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision¹:</td>
<td>0.1 nm</td>
<td>0.2 nm</td>
<td>1 nm</td>
<td>2.5 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stability²:</td>
<td>0.07 nm</td>
<td>0.12 nm</td>
<td>1 nm</td>
<td>2.5 nm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spot Size:</td>
<td>Standard 1.5mm, Optional down to 20 µm</td>
<td>600 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Source:</td>
<td>Deuterium & Tungsten-Halogen</td>
<td>Tungsten-Halogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power Requirements:
100-240 VAC, 50-60 Hz, 230 Watts

Dimensions:
14W x 19D x 11H (in).
35.5W x 48.3D x 28H (cm).

Weight:
35 lbs. (16 kg).
Speed (typical, with vacuum chuck):

<table>
<thead>
<tr>
<th>Sample Size:</th>
<th>200 mm Chuck</th>
<th>300 mm Chuck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size:</td>
<td>≤ 200 mm diameter</td>
<td>≤ 300 mm diameter</td>
</tr>
<tr>
<td>Speed:</td>
<td>5 points - 5 sec.</td>
<td>5 points - 8 sec.</td>
</tr>
<tr>
<td></td>
<td>25 points - 14 sec.</td>
<td>25 points - 21 sec.</td>
</tr>
<tr>
<td></td>
<td>56 points - 29 sec.</td>
<td>56 points - 43 sec.</td>
</tr>
</tbody>
</table>

* Material dependent.

1 1σ of 100 measurements of 500 nm SiO$_2$-on-Si. Average of 1σ over 20 successive days.

2 2σ of daily average of 100 measurements of 500 nm SiO$_2$-on-Si over 20 successive days.

Specifications subject to change without notice.
Application Note - Si3N4

Theoretical Underpinnings

The refractive index of a single layer film is related primarily to the depth of the minima found in the measured reflectance. The reflectance at the interference fringe minima of a film deposited onto Si is zero when the refractive index is near 1.97. The reflectance at the fringe minima for a film with a refractive index of 2.00 is the same as that for a film with a refractive index of 1.94. Therefore, it can be difficult to unambiguously determine the refractive index from a reflectance measurement. However, for most films the user knows that the refractive index is either always greater than or always less than 1.97 so there is no uncertainty. Silicon nitride is one of the few rare films whose refractive index spans this critical range. Fortunately, there is a solution for silicon nitride that allows us to determine which of the two possible refractive index values is correct. This is done by measuring both \(n \) and \(k \) for silicon nitride and by realizing that silicon nitride with a refractive index larger than 1.97 has measurable absorption (non-zero \(k \)) at wavelengths less than 420 nm. Thus, to get good results for \(n \) the widest possible wavelength range should be used (especially going down to short wavelengths) and the user should simultaneously measure both \(n \) and \(k \).

Continue to Discussion of \(n \) and \(k \) Measurement.

Discussion of Si3N4 \(n \) and \(k \) Measurement

Silicon nitride is a dielectric material commonly used in semiconductor fabrication processes. The refractive index of stoichiometric Silicon Nitride is 2.05 at 633 nm. However, in practice the refractive index of deposited films can vary from 1.7 or less (films containing excess hydrogen or oxygen) to as high as 2.5 or more (Si rich films). The measurement of \(n \) and \(k \) is complicated by the fact that this refractive index range (1.7 to 2.5) spans a critical range for films deposited on Si substrates. In order to get an unambiguous result for measurement of \(n \), the structure description should be set by choosing “Si3N4 (Si Rich)” as the material for the silicon nitride layer. To confirm that the proper model is chosen, go to the options tab and note that the model displayed is “Si3N4”. If the Si3N4 model is not displayed in the \(nk \) Model list and Si3N4 is not in the list of models, then newer software is required. It is important that both \(n \) and \(k \) be measured simultaneously (put a check mark for \(n \) and for \(k \) in the Edit Recipe>Film Stack dialog box). When using the Si3N4 model the constraints for \(n \) and \(k \) should be set to large values (at least 5). If the film is very thin (less than 50 nm), it may be necessary to set the material to “Si3N4” or “Si3N4-thin”, instead of “Si3N4 (Si Rich)”, to get reproducible results, but this should only be used as a last resort.

Continue to Step by Step Instructions for measuring Si3N4.

Step-by-step instructions for measuring silicon nitride on Si

1. Start FILMapper and click the Edit Recipe button.

2. Set the material for the Medium to “Air”.

3. Set the material for Layer 1 to “Si3N4 (Si Rich)”.
4. Enter a guess for the layer thickness of the silicon nitride into the thickness box for Layer 1.

5. Put check marks in the d, n, and k check boxes for Layer 1.

6. Set the constraint for d to 75%.

7. Set the constraint for n to 5 and the constraint for k to 5.

8. Set the material for the Substrate to “Si”.

9. Select Grid from thickness solver options pull down menu under Thickness.

10. Go to the Analysis Options tab.

11. Make sure there is no check mark for Compensate for: > Unmodelled Back-side reflections.

12. Under Advanced Analysis Options, set the number of Iterations to “600” and set GOF greater than to “0.999”.

13. Under Data Selection select Fixed Range and enter “From: 200” and “To: 1100”.

14. Click Save As and give the recipe a name.

15. Follow the instructions in Example B for measuring thickness and optical constants.

Light Bulb Replacement

NOTE: These instructions apply to VIS, NIR, and EXR systems only. Please see the separate users manual for the Deuterium & Tungsten-Halogen light source on UV and UVX systems.

![Warning Symbol]

** Warning: Hazardous voltages are present within the unit. Never attempt any maintenance without disconnecting the power cord.

Step by step:

1. Exit FILMapper program and turn off your computer.

2. Disconnect power cable from the F50 from the back of the unit.

3. The U-shaped cover is held down with eight #6-32 button-head cap screws (four on either side of the lid). Unscrew them with a 5/64 hex wrench.

4. Gently lift and separate the cover and slide it out from below the stage.
Warning: Caution, avoid touching any interior components, other than the lamp, lamp base, and housing.

5. Loosen lamp set screw (counter clockwise).

6. Insert new lamp fully into lamp housing. Do not touch the lamp glass.

7. Secure lamp with setscrew (clockwise). Do not over tighten.

8. Plug new lamp into the lamp power connector. Do not test lamp with lid removed.

9. Replace the lamp housing and screws. This is imperative, as the cover should NOT be left off during use. Insert cord into wall supply and restore power to the unit.

10. The lamp should illuminate and the fan should turn when power is restored. The light switch on the front of the F50 box must be turned on.
Software Automation

Measurements can be automated and additional data analysis can be performed by user-supplied software. The mechanism by which this occurs is either by using the FIRemote class, which is part of FILMapper.exe or by using the FIRemoteMapCOM dll. Accessing the FIRemote class directly using a .NET programming language such as Visual Basic .NET or C# offers the most flexibility, but requires the user be familiar with the Microsoft .NET software development environment. Alternatively, the FIRemoteMapCOM dll can be referenced from Microsoft Office programs and simple software procedures can be implemented there instead. The FIRemoteMapCOM dll includes fewer methods.

Methods, Property and Events:

- New
- AcquireSpectrum
- ActivateChannelDisplayTab
- AnalyzeSpectrum
- AuthenticateRefBac
- BaselineAcquireBackgroundAfterRef
- BaselineAcquireReference
- BaselineAcquireReferenceT
- BaselineAcquireReferenceUsingOldSampleReflectance
- BaselineAcquireSpectrumFromSample
- BaselineCommit
- BaselineSetRefMat
- BaselineShowDialog
- GUIVisible
- HistoryDeleteAllResults
- MeasChannelGuid
- MeasChannelGuids
- MeasChannelHWName
- MeasChannelHWSerialNumber
- MeasChannelName
- Measure
- NumberOfChannels
- NumberOfSpectrometers
- NumberOfSubSystems
- OpticsConfiguration
- OpenSpectrum
- OpenSpectrumFromBuffer
- RecipeInfo
- SaveSpectrum
- SaveSpectrumToBuffer
- SetAnalysisWavelengthRange
- SetMaterial
- SetN
- SetRecipe
- SetRoughness
- SetThickness
SpectrometerDiagnostics

Less-Commonly-Used Methods

The following methods are only rarely used. Methods which refer to a System are used with the F32 and F37 thin film monitoring systems. Many methods accept either a measSystem or a measChannel guid. However, some methods are relevant only to a single channel. If you supply a measSystem guid as the argument for one of these methods, an exception will be thrown.

ActivateMonitorDisplayTab
BaselineExistsAndIsAuthenticated
GeneralPurposeIOIsSupported
GeneralPurposeIOReadValue
GeneralPurposeIOWSetValue
MeasSystemGuid
MeasSystemGuids
MeasSystemHWNName
MeasSystemName
NumberOfSystems
SetRecipeModeToSpectrumAnalysis
SetRecipeSpectrumAnalysis
ShutdownRequestedHandler
ShuttingDown
SystemAutoSave
SystemAutoSaveBaseFileNameAndPath
SystemMeasure
SystemStartMonitoring
SystemStopMonitoring
SystemMeasurementCompletedEventHandler

FiLMapper-Related Methods

WaferMapAllFinished
WaferMapCreateMapFile
WaferMapCreatePattern
WaferMapCurrentFileName
WaferMapCurrentWaferID
WaferMapDisableMapButtons
WaferMapMeasurementControlsPanelLocation
WaferMapNew
WaferMapNextFileName
WaferMapNextWaferID
WaferMapOpen
WaferMapRecipeGetPattern
WaferMapRecipeSaveResultsToDisk
WaferMapRecipeSetPattern
WaferMapResultsFolder
WaferMapStart
WaferMapStateChangedHandler
FIRemoteMapCOM dll

The dll is automatically included whenever FILMeasure or FILMapper is installed. Since the dll references the corresponding .exe file it is located inside the FILMeasure or FILMapper folder in the Program Files (or Program Files (x86) on 64-bit systems) path. The best way to learn how to use the dll is to examine the example Excel workbook that is included with the software. The workbook has the same name as the dll, but has the extension .xlsm and is located in the same folder as the dll. When you open the .xlsm file for the first time, you will see a warning banner as shown below.

You must click the Enable Content button in order to allow the code associated with the buttons on the worksheets to run. If you do not see the security warning when you open the spreadsheet, then you may need to modify settings in Excel using the Trust Center. The exact procedure varies, depending on which version of Excel you are using.

To see the example source code, click the Developer tab on the ribbon. Then click Visual Basic and double-click the ThisWorkbook object.

Reference for FIRemote Class:

Methods, Properties, and Events:

```vbnet
Public Sub AcquireSpectrum(ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single)  
arguments – Same as FIRemote Class
```

Remarks: See remarks for **AcquireSpectrum()** in FIRemote Class.

```vbnet
Public Sub Measure(ByVal formatSummaryAsRtf As Boolean, ByRef measLayerThickness() As Single, ByRef measGOF As Single, ByRef summary As String)  
formatSummaryAsRtf – The measurement summary can be formatted as either plain text or as rtf. Formatting the summary as rtf is advantageous if it will be displayed to the user because then the full set of information including bold font and colors will be included.

measLayerThickness – Array containing thickness of all layers. Thickness of Layer 1 is in index 1 in the array.

measGOF – Measured Goodness Of Fit parameter.

Summary – Same as text which appears in Results area in Measure tab.
Remarks: See remarks for **Measure()** in FIRemote Class.
```

```vbnet
Public Sub SetRecipe(recipeName As String)
```
Arguments and Remarks – See documentation for **SetRecipe** in FIRemote Class.

FIRemote Class

FIRemote is exposed as a public assembly and is accessible using the Microsoft .NET programming environment. The best way to learn how to use the FIRemote class is to look at the example program and source code which are automatically installed as part of the FILMapper software. Assuming that the FILMapper program is installed in the default location, the example software can be found in `C:\Program Files\Filmetrics\FILMapper\SourceCode\FIRemoteTest\` (look in `C:\Program Files (x86)` if 64-bit operating system). Additionally, an executable, FIRemoteTest.exe, is located in the FILMapper folder. All of the available commands can be tested using FIRemoteTest.exe.

In order to set up a development environment for running and debugging code, the file system must be set up so that the FILMapper.exe is located in the same folder as the client program that is being developed. Since FILMapper expects to find its dependent files in the same directory as the executable, this means that the entire contents of the FILMapper folder must be copied to the build output folder. For example, if the software development environment output folder is located in `C:\SourceCode\TestSln\TestPrj\bin\Debug\`, then all the files and subfolders from `C:\Program Files\Filmetrics\FILMapper\` must be copied to `C:\SourceCode\TestSln\TestPrj\bin\Debug\`.

Some of the methods listed in the following reference a SystemGuid. In the terminology used in this document, a Measurement System is an object comprising one or more measurement channels, but with operations that can be performed simultaneously on all the channels in the system. The SystemGuid is used to distinguish between multiple simultaneously connected measurement systems. Examples of measurement systems with multiple measurement channels include the F32 and F37. Documentation for methods applying only to such measurement systems can be found in the Less Commonly Used Methods section. In addition, some methods will accept either a SystemGuid or a ChannelGuid. Such methods thus will execute an operation either on a single channel, or simultaneously on all channels of a system.

Note that the FIMeasResults object which is returned by the Measure and AnalyzeSpectrum methods has a large number of member functions and properties. Since the names are all self-explanatory, we have not attempted to list all of the members here. The reader should use the Object Browser which is built into Microsoft Visual Studio in order to discover the available properties and methods.

New

```csharp
Public Sub New(ByVal showFILMeasureGUI As Boolean) (deprecated)
Public Sub New(ByVal showFILMeasureGUI As Boolean, ByRef theConstructorWarning As ConstructorWarning, ByRef warningMessage As String) (deprecated)

Public Sub New(ByVal guiType As GraphicalUserInterfaceType, ByVal guiStartupState As GraphicalUserInterfaceStartupState, ByVal guiWindowStartupState As FormWindowState, ByRef theConstructorWarning As ConstructorWarning, ByRef warningMessage As String)
```
guiType – Determines if the FIRemote user interface and associated objects will be constructed at startup. If guiType is set to None, then the startup process is accelerated and memory usage is minimized. However, the user interface cannot be displayed at a later time if it is not constructed during the startup process. If guiType is set to Standard, then the normal graphical user interface is constructed during the startup process.

guiStartupState – Determines whether or not the FIRemote user interface is displayed at startup. Note that this argument has no effect if guiType = None. If guiStartupState is set to Hidden, then the user interface will not be visible on screen at the completion of the startup process. If the user interface was constructed at startup, it can be displayed at a later time by setting GUIVisible = True.

guiWindowStartupState – If guiStartupState is set to Shown then the FIRemote User interface window will appear on the screen at the completion of the startup process. Note that this argument has no effect if guiType = None. The state of the window is controlled by guiWindowStartupState. You can set the state to Maximized, Normal, or Minimized.

theConstructorWarning – Returned value of type ConstructorWarning (None or StartupRecipeLoadFailure).

warningMessage – Returned warning message string. Empty if None.

Remarks: You can suppress the display of the FIRemote user interface by setting guiType appropriately. Typically, you would show the user interface during software development in order to aid in the testing and debugging process. However, there are some applications where it is useful to be able to show and hide the user interface while the software is running. This is accomplished with the GUIVisible Property. The constructor warns if the startup recipe has problems loading and a default recipe is loaded instead.

Return to Index...

AcquireSpectrum

Public Sub AcquireSpectrum(ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single)
Public Sub AcquireSpectrum(ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single, ByVal flushPipeline As Boolean)
Public Sub AcquireSpectrum(ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single, ByRef secondarySpecWavelengths() As Single, ByRef secondarySpecData() As Single, ByRef primarySpecIsReflectance As Boolean)
Public Sub AcquireSpectrum(ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single, ByVal secondarySpecWavelengths() As Single, ByRef secondarySpecData() As Single, ByVal flushPipeline As Boolean, ByRef primarySpecIsReflectance As Boolean)
Public Sub AcquireSpectrum(ByVal measChannelGuid As Guid, ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single)
Public Sub AcquireSpectrum(ByVal measChannelGuid As Guid, ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single, ByVal flushPipeline As Boolean)
Public Sub AcquireSpectrum(ByVal measChannelGuid As Guid, ByRef primarySpecIsReflectance As Boolean, ByRef spectrumWavelengths() As Single, ByRef spectrumData() As Single, ByVal flushPipeline As Boolean, ByRef primarySpecIsReflectance As Boolean)

measChannelGuid – The GUID of the measurement channel for which a spectrum should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

spectrumWavelengths – Array to contain wavelengths of measured spectrum data points.

spectrumData – Measured reflectance or transmittance data points.

secondarySpecWavelengths – For systems that can simultaneously acquire reflectance and transmittance such as the F10-RT, array to contain wavelengths of measured secondary spectrum data points. For all other systems, the returned argument is Nothing.

secondarySpecData – For systems that can simultaneously acquire reflectance and transmittance such as the F10-RT, array to contain the measured secondary spectrum data points. For all other systems, the returned argument is Nothing.

flushPipeline – If set to True (default), any data currently being acquired is ignored and new data is acquired. If set to False, data currently being acquired is returned when acquisition is finished.

primarySpecIsReflectance – Indicates whether the primary spectrum data is Reflectance or Transmittance.

Remarks: It is important that you catch exceptions which may occur as a result of calling this method. See the example program for details.

Return to Index...

ActivateChannelDisplayTab

Public Sub ActivateChannelDisplayTab(ByVal measChannelGuid As Guid)

measChannelGuid – The GUID of the measurement channel of the corresponding Measurement Tab to be selected.

Remarks: After execution, the active tab in the FILMeasure GUI will be the specified Measurement Tab. This method should only be executed if multiple measurement channels exist.
AnalyzeSpectrum

Public Function AnalyzeSpectrum(ByVal formatSummaryAsRtf As Boolean) As FIMeasResults
Public Function AnalyzeSpectrum(ByVal formatSummaryAsRtf As Boolean, ByVal addToHistory As Boolean) As FIMeasResults
Public Function AnalyzeSpectrum(ByVal measChannelGuid As Guid, ByVal formatSummaryAsRtf As Boolean) As FIMeasResults
Public Function AnalyzeSpectrum(ByVal measChannelGuid As Guid, ByVal formatSummaryAsRtf As Boolean, ByVal addToHistory As Boolean) As FIMeasResults

measChannelGuid – The GUID of the measurement channel for which a spectrum should be analyzed and optionally added to history. If multiple measurement channels exist, the measChannelGuid must be specified.

formatSummaryAsRtf – The measurement summary returned by the .ResultsSummary property of the FIMeasResults object can be formatted as either plain text or as rtf. Formatting the summary as rtf is advantageous if it will be displayed to the user because then the full set of information including bold font and colors will be included.

addToHistory – Normally, each analysis result is added to the collection of results displayed in the History area of FILMeasure. In some cases, it may be advantageous to suppress the addition of a result to the History area. One example where this may be needed is the case where you wish to analyze a spectrum with two different measurement recipes and then add only the best result to the History.

Remarks: The most-recently acquired spectrum can be analyzed by calling this function.

AuthenticateRefBac

Public Sub AuthenticateRefBac()
Public Sub AuthenticateRefBac(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a baseline should be recovered. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: Calling this method is equivalent to clicking Baseline... to display the Baseline dialog and then clicking Recover Last Baseline... to recover an old baseline spectrum. Note that there are many situations where an exception may be generated by calling this method. See the example program for details.
BaselineAcquireBackgroundAfterRef

Public Sub BaselineAcquireBackgroundAfterRef()
Public Sub BaselineAcquireBackgroundAfterRef(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a background should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: This method provides a means to automate what is most commonly called step #3 of the Baseline procedure (step #4 for F10-RT, “Reflection Only” or “Reflection and Transmittance”, step #2 for F10RT “Transmittance Only”). As the name of this method implies, you must have previously acquired a reference spectrum.

[Return to Index...](#)

BaselineAcquireReference

Public Sub BaselineAcquireReference()
Public Sub BaselineAcquireReference(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a reference should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: This method provides a means to automate what is most commonly called step #2 of the Baseline procedure. Calling BaselineAcquireReference may generate an exception. There are a number of rules required for successful execution of this method. Unless the acquisition timing mode in the recipe is set to Manual, you must first call BaselineAcquireSpectrumFromSample. Alternatively, you could call the variant of this method which accepts a user-supplied reflectance value if you know the sample reflectivity and wish to skip step #1.

[Return to Index...](#)

BaselineAcquireReferenceT

Public Sub BaselineAcquireReferenceT()
Public Sub BaselineAcquireReferenceT(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a Transmittance reference should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: This method should only be called for the F10-RT. It provides a means to automate step #3 of the Baseline procedure for “Reflectance Only” or “Reflectance and Transmittance” modes, or step #1 of the Baseline procedure for “Transmittance Only” mode. No sample should be positioned on stage when called.
BaselineAcquireReferenceUsingOldSampleReflectance

Public Sub BaselineAcquireReferenceUsingOldSampleReflectance()
Public Sub BaselineAcquireReferenceUsingOldSampleReflectance(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a reference should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: This method provides a means to automate steps 1 and 2 of the Baseline procedure by assuming that the sample reflectance is unchanged from what it was the last time a baseline procedure was performed. Note that an exception may be thrown in some situations including the case where no prior baseline spectrum exists.

BaselineAcquireSpectrumFromSample

Public Sub BaselineAcquireSpectrumFromSample()
Public Sub BaselineAcquireSpectrumFromSample(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a sample spectrum should be acquired. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: This method provides a means to automate what is most commonly called step #1 of the Baseline procedure.

BaselineCommit

Public Sub BaselineCommit()
Public Sub BaselineCommit(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of the measurement channel for which a new baseline should be committed. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: Call this method to finalize the baseline procedure and commit the acquired spectra for use as a new baseline measurement.

BaselineSetRefMat

Public Sub BaselineSetRefMat(ByVal theRefMat As String)
Public Sub BaselineSetRefMat(ByVal measChannelOrSystemGuid As Guid, ByVal theRefMat As String)

measChannelOrSystemGuid – The GUID of the measurement channel for which the reference material should be assigned. If multiple measurement channels exist, the measChannelGuid must be specified.

theRefMat – The reference material as it would normally appear in the list of reference materials shown in the Baseline dialog.

Remarks: This method should be called prior to acquiring a reference spectrum

Return to Index...

BaselineShowDialog
Public Sub BaselineShowDialog(ByRef dialogCanceled As Boolean)

dialogCanceled – True if user has canceled the dialog.

Remarks: Calling this method will cause the baseline dialog box to be displayed on the screen

Return to Index...

GUIVisible
Public Property GUIVisible As Boolean

Remarks: Setting this property to True will cause the FIRemote user interface to be displayed on the screen. Note that this will normally cause the user interface window to appear on top of any other windows. If you wish to keep another window on top of the FIRemote user interface window, it may be necessary to call .BringToFront on that other window. If the FIRemote object is constructed with guiType set to None then an exception will be thrown if GUIVisible is set to True.

Return to Index...

HistoryDeleteAllResults
Public Sub HistoryDeleteAllResults()

Remarks: All measurement results in the History tab are deleted. If the FIRemote object has no user interface (guiType = None in New()), then there is no measurement history and this function has no effect.

Return to Index...

MeasChannelGuid
Public ReadOnly Property MeasChannelGuid(ByVal measChannelIndex As Integer) As Guid
Public ReadOnly Property MeasChannelGuid(ByVal measSystemGuid As Guid, ByVal measChannelIndex As Integer) As Guid

`measSystemGuid` – The GUID of a measurement system.

`measChannelIndex` – The zero-based index of the measurement channel.

Remarks: Returns the GUID of the specified channel. Note this can be used to obtain the GUID used by all methods requiring a `measChannelGUID`. Also note that the relationship between `measChannelIndex` and `MeasChannelGuid` is not static. Future versions of FILMeasure will dynamically reorder this list in response to an equipment connect/disconnect event. You should not rely on the order of the channels in the list when attempting to perform a command on a certain channel.

Return to Index...

MeasChannelGuids
Public ReadOnly Property MeasChannelGuids() As Collection(Of Guid)

Remarks: Returns a collection of GUID for each measurement channel that exists.

Return to Index...

MeasChannelHWName
Public ReadOnly Property MeasChannelHWName(ByVal measChannelGuid As Guid) As String

`measChannelGuid` – The GUID of the measurement channel for which the channel hardware name should be returned.

Remarks: The hardware name is composed of a system name string and a serial number string separated by a colon. Example: F20:09A006.

Return to Index...

MeasChannelHWSerialNumber
Public ReadOnly Property MeasChannelHWSerialNumber(ByVal measChannelGuid As Guid) As String
Public ReadOnly Property MeasChannelHWSerialNumber(ByVal measChannelGuid As Guid, ByVal spectrometerIndex As Integer) As String
Public ReadOnly Property MeasChannelHWSerialNumber(ByVal measChannelGuid As Guid, ByVal subsystemIndex As Integer, ByVal spectrometerIndex As Integer) As String

`measChannelGuid` – The GUID of the measurement channel.
spectrometerIndex – The spectrometer index (to specify which of multiple spectrometers in the channel).

subsystemIndex – The subsystem index (to select among multiple subsystems in the channel).

Remarks: Returns the controller hardware serial number of the specified spectrometer. If the spectrometer or subsystem are not specified, the default index = 0 will be used. If there are multiple subsystems, a hyphen followed by the subsystem ID is appended to the hardware serial number. Example for single subsystem: 09A006. Example for multiple subsystem: 09A007-1

Return to Index...

MeasChannelName

Public ReadOnly Property MeasChannelName(ByVal measChannelGuid As Guid) As String

measChannelGuid – The GUID of the measurement channel for which the channel name should be returned.

Remarks: By default the channel name is the empty string.

Return to Index...

Measure

Public Function Measure(ByVal formatSummaryAsRtf As Booleanl) As FIMeasResults
Public Function Measure(ByVal formatSummaryAsRtf As Booleanl, ByVal addToHistory As Booleanl) As FIMeasResults
Public Function Measure(ByVal measChannelGuid As Guid, ByVal formatSummaryAsRtf As Booleanl) As FIMeasResults
Public Function Measure(ByVal measChannelGuid As Guid, ByVal formatSummaryAsRtf As Booleanl, ByVal addToHistory As Booleanl) As FIMeasResults

measChannelGuid – The GUID of the measurement channel for which a spectrum should be acquired and analyzed. If multiple measurement channels exist, the measChannelGuid must be specified.

formatSummaryAsRtf – The measurement summary returned by the .ResultsSummary property of the FIMeasResults object can be formatted as either plain text or as rtf. Formatting the summary as rtf is advantageous if it will be displayed to the user because then the full set of information including bold font and colors will be included.

addToHistory – Normally, each analysis result is added to the collection of results displayed in the History area of FILMeasure. In some cases, it may be advantageous to suppress the addition of a result to the History area. One example where this may be needed is the case where you wish to analyze a spectrum with two different measurement recipes and then add only the best result to the History.
Remarks: Calling this function is equivalent to clicking the Measure button in FILMeasure. Note that if the Measure button is disabled when you call this function, an exception will be thrown.

NumberOfChannels

Public ReadOnly Property `NumberOfChannels()` As `Integer`

Remarks: Number of measurement channels that exist.

NumberOfSpectrometers

Public ReadOnly Property `NumberOfSpectrometers(ByVal measChannelGuid As Guid)` As `Integer`

`measChannelGuid` – The GUID of the measurement channel.

Public ReadOnly Property `NumberOfSpectrometers(ByVal measChannelGuid As Guid, ByVal subsystemIndex As Integer)` As `Integer`

`measChannelGuid` – The GUID of the measurement channel.

`subsystemIndex` – The subsystem index (to specify which of multiple subsystems in the channel).

Remarks: The number of spectrometers in the specified subsystem. If subsystemIndex is not provided, the default index = 0 will be used.

NumberOfSubSystems

Public ReadOnly Property `NumberOfSubSystems(ByVal measChannelGuid As Guid)` As `Integer`

`measChannelGuid` – The GUID of the measurement channel.

Remarks: The number of subsystems that compose the specified measurement channel.

OpticsConfiguration

Public Property `OpticsConfiguration()` As `OpticsConfigSystemTypes [Get/Set]`

Public Property `OpticsConfiguration(ByVal measChannelGuid As Guid)` As `OpticsConfigSystemTypes [Get/Set]`

`measChannelGuid` – The GUID of the measurement channel for which the OpticsConfiguration is to be get/set. If multiple measurement channels exist, the measChannelGuid must be specified.
Remarks: If the OpticsConfigSystemTypes is not be compatible with the hardware an exception will be thrown.

Return to Index...

OpenSpectrum

Public Sub OpenSpectrum(ByVal filenameAndPath As String)

Public Sub OpenSpectrum(ByVal filenameAndPath As String, ByVal measChannelGuid As Guid)

filenameAndPath – The full path and filename (including extension) of the spectrum. If the file cannot be opened, an exception will be thrown.

measChannelGuid – The GUID of the measurement channel for a spectrum is to be opened. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: Unlike the behavior when a spectrum is opened in FILMeasure, the software will not automatically analyze the spectrum after opening it. If analysis of the spectrum is desired, then the Analyze function must be called.

Return to Index...

OpenSpectrumFromBuffer

Public Sub OpenSpectrumFromBuffer(ByVal theBuffer As Byte())

Public Sub OpenSpectrumFromBuffer(ByVal theBuffer As Byte(), ByVal measChannelGuid As Guid)

theBuffer – Byte array containing spectrum. Data in this array must have been created by SaveSpectrumToBuffer method.

measChannelGuid – The GUID of the measurement channel for a spectrum which is to be opened. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: See remarks after *SaveSpectrumToBuffer*

Return to Index...

RecipeInfo

Public ReadOnly Property RecipeInfo() As FIRecipeInfo

Public ReadOnly Property RecipeInfo(measChannelOrSystemGuid) As Guid)

As FIRecipeInfo

measChannelGuid - The GUID of the measurement channel associated with a measurement recipe. If multiple measurement channels exist the measChannelOrSystemGuid must be specified.
Remarks: The FIRecipeInfo object contains an assortment of information about the recipe including information about the film stack, if appropriate.

SaveSpectrum

Public Sub SaveSpectrum(ByVal filenameAndPath As String)
Public Sub SaveSpectrum(ByVal filenameAndPath As String, ByVal ifTextFormatWriteYDataAsPercent As Boolean)

filenameAndPath – The full path and filename (including extension) of the spectrum. The file format is determined by the extension. Valid file extensions are the same as the extensions listed in the Save Spectrum dialog windows accessed via the File->Save Measured Spectrum menu item in FILMeasure.

ifTextFormatWriteYDataAsPercent – If this version of SaveSpectrum without this parameter is called, the result is the same as calling the version with this parameter and setting its value to True. Thus, the only reason to call the second variant of the function is if the spectrum is being saved as a text format (either .txt or .csv) and the value of this parameter is set to False.

SaveSpectrumToBuffer

Public Sub SaveSpectrumToBuffer(As Byte())

Remarks: This function allows the caller to rapidly retrieve the complete set of data contained in a spectrum, thereby avoiding the time that would be consumed if the spectrum were saved to a file. This may be useful in cases where the caller wishes to rapidly acquire a number of spectra and store them up for later saving to file or analysis. The contents of the buffer should be considered opaque. Any changes to the data in the buffer may render the data unusable and/or may not be compatible with future versions of FILMeasure.

SetAnalysisWavelengthRange

Public Sub SetRecipeSetAnalysisWavelengthRange(ByVal measChannelGuidmeasChannelOrSystemGuid As Guid, ByVal startWavelength_nm As Single, ByVal endWavelength_nm As Single)
Public Sub SetAnalysisWavelengthRange(ByVal startWavelength_nm As Single, ByVal endWavelength_nm As Single)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the measChannelOrSystemGuid must be specified (since each measurement channel has its own active recipe).

startWavelength_nm – Starting wavelength for spectrum analysis.
endWavelength_nm – Ending wavelength for spectrum analysis.

Remarks: Setting the wavelength range will also switch the recipe into using a specified wavelength range instead of using the entire wavelength range visible on the spectrum graph.

Return to Index.

SetMaterial

Public Sub SetMaterial(ByVal measChannelOrSystemGuid As Guid, ByVal layerNumber As Integer, ByVal materialName As String)
Public Sub SetMaterial(ByVal layerNumber As Integer, ByVal materialName As String)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the measChannelOrSystemGuid must be specified (since each measurement channel has its own active recipe).

layerNumber – The layer number for which to modify the material.

materialName – String containing name of the material.

Remarks: You can alter the material of a layer in the current recipe using the method. An exception will be thrown if the layer number is out-of-bounds or the material does not exist.

Return to Index.

SetN

Public Sub SetN(ByVal measChannelOrSystemGuid As Guid, ByVal layerNumber As Integer, ByVal refractiveIndex As Single)
Public Sub SetN(ByVal layerNumber As Integer, ByVal refractiveIndex As Single)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the measChannelOrSystemGuid must be specified (since each measurement channel has its own active recipe).

layerNumber – The layer number for which to set the refractive index.

refractiveIndex – New refractive index value for layer.

Remarks: You can alter the material of a layer in the current recipe using the method. An exception will be thrown if the layer number or refractive index are out-of-bounds.
SetRecipe

Public Sub SetRecipe(ByVal measChannelOrSystemGuid As Guid, ByVal recipeName As String)
Public Sub SetRecipe(ByVal recipeName As String)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the *measChannelOrSystemGuid* must be specified (since each measurement channel has its own active recipe).

recipeName – The recipe name to be selected must exist in the list of recipes. Note that you can select recipes contained in subfolders by specifying the relative path, using the backslash character ‘\’ to separate folder names as is conventional in path naming.

Remarks: The current spectrum will not be automatically reanalyzed when a new recipe is selected. To reanalyze the spectrum you must call *AnalyzeSpectrum*.

SetRoughness

Public Sub SetRoughness(ByVal measChannelOrSystemGuid As Guid, ByVal layerNumber As Integer, ByVal roughness_nm As Single)
Public Sub SetRoughness(ByVal layerNumber As Integer, ByVal roughness_nm As Single)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the *measChannelOrSystemGuid* must be specified (since each measurement channel has its own active recipe).

layerNumber – The layer number for which to modify the roughness.

roughness_nm – Roughness value which will appear in the Layers tab of the recipe for the specified layer. Units are nanometers.

Remarks: You can alter the roughness of a layer in the current recipe using the method. An exception will be thrown if the layer number or roughness are out-of-bounds.
SetThickness

Public Sub SetThickness(ByVal measChannelOrSystemGuid As Guid, ByVal layerNumber As Integer, ByVal thickness_nm As Single)
Public Sub SetThickness(ByVal layerNumber As Integer, ByVal thickness_nm As Single)

measChannelOrSystemGuid – The GUID of the measurement channel or system. If multiple measurement channels exist, the measChannelOrSystemGuid must be specified (since each measurement channel has its own active recipe).

layerNumber – The layer number for which to modify the thickness.

thickness_nm – Thickness value which will appear in the Layers tab of the recipe for the specified layer. Units are nanometers.

Remarks: You can alter the thickness of a layer in the current recipe using the method. An exception will be thrown if the layer number or roughness are out-of-bounds.

Return to Index

SpectrometerDiagnostics

Public ReadOnly Property SpectrometerDiagnostics() As FISpecDiagnosticsInfo()
Public ReadOnly Property SpectrometerDiagnostics(ByVal measChannelGuid As Guid) As FISpecDiagnosticsInfo()
Public ReadOnly Property SpectrometerDiagnostics(ByVal measChannelGuid As Guid, ByVal subsystemIndex As Integer) As FISpecDiagnosticsInfo()

measChannelGuid – The GUID of the measurement channel.

subsystemIndex – The subsystem index (to select among multiple subsystems in the channel).

Remarks: Returns an array of objects containing information about the spectrometers. Information includes integration time, peak raw signal intensities of reference and background spectra, etc.

Return to Index

ActivateMonitorDisplayTab

Public Sub ActivateMonitorDisplayTab()
Public Sub ActivateMonitorDisplayTab(ByVal measSystemGuid As Guid)

measSystemGuid – The GUID of the measurement System. If multiple measurement channels exist, the measChannelGuid must be specified (since each measurement channel has its own active recipe).
Remarks: This function is provided to permit synchronization of the FILMeasure user interface with the user interface of a client program.

BaselineExistsAndIsAuthenticated

```vbnet
Public Function BaselineExistsAndIsAuthenticated(ByRef authenticationIsPossible As Boolean) As Boolean
Public Function BaselineExistsAndIsAuthenticated(measChannelOrSystemGuid As Guid, ByRef authenticationIsPossible As Boolean) As Boolean
```

authenticationIsPossible – If baseline is not authenticated, it is possible to authenticate it when authenticationIsPossible = True.

Remarks: In some cases, it is desirable to check whether the baseline is already authenticated and if not whether it is possible to authenticate it. The client software has the option of automatically authenticating the baseline if that is desirable.

GeneralPurposeIOIsSupported

```vbnet
Public ReadOnly Property GeneralPurposeIOIsSupported() As Boolean
```

Remarks: Primary purpose of this property is to permit the example program to hide or show the General Purpose IO controls. This property will be True for equipment that has the General Purpose IO hardware.

GeneralPurposeIOReadValue

```vbnet
Public Function GeneralPurposeIOReadValue() As Byte
```

Remarks: Returns a single byte containing the current values of the general purpose IO logic input signals. Bit value of 1 means that the input voltage is in the logic high state. These input signals are only available on certain types of equipment.

GeneralPurposeIOSetValue

```vbnet
Public Sub GeneralPurposeIOSetValue(newValue As Byte)
```

newValue - New values for the output bits.
Remarks: Sets the output state of the general purpose IO logic output signals. Setting a bit to 1 will set the corresponding output to the logic high state. These output signals are only available on certain types of equipment.

MeasSystemGuid

Public ReadOnly Property MeasSystemGuid(ByVal measSystemIndex As Integer) As Guid

measSystemIndex – The zero-based index of the system.

Remarks: Returns the GUID of the specified system. Note this can be used to obtain the GUID used by all methods requiring a measSystem GUID. Also note that the relationship between measSystemIndex and MeasSystemGuid is not static. Future versions of FILMeasure will dynamically reorder this list in response to an equipment connect/disconnect event. You should not rely on the order of the systems in the list when attempting to perform a command on a certain system.

MeasSystemGuids

Public ReadOnly Property MeasSystemGuids() As Collection(Of Guid)

Remarks: Returns a collection of GUIDs containing one item for each measurement system that exists.

MeasSystemHWName

Public ReadOnly Property MeasSystemHWName(ByVal systemGuid As Guid) As String

systemGuid – The GUID of a measurement system.

Remarks: The hardware name is composed of a system name string and a serial number string separated by a colon. Example: F37:09A006

MeasSystemName

Public ReadOnly Property MeasSystemName(ByVal systemGuid As Guid) As String

systemGuid – The GUID of a measurement system.

Remarks: The default system name is the empty string.
NumberOfSystems

Public ReadOnly Property NumberOfSystems() As Integer

Remarks: Number of measurement systems that exist.

SetRecipeModeToSpectrumAnalysis

Public Sub SetRecipeModeToSpectrumAnalysis()
Public Sub SetRecipeModeToSpectrumAnalysis(ByVal measChannelOrSystemGuid As Guid)
Public Sub SetRecipeModeToThickness()
Public Sub SetRecipeModeToThickness(ByVal measChannelOrSystemGuid As Guid)

measChannelOrSystemGuid – The GUID of one of the measurement channels in a multiple channel system or the GUID of the system. If multiple measurement channels exist, the measChannelGuid must be specified.

Remarks: If Spectrum Analysis recipes are supported by the hardware or add-on licenses, then the Measure tab in the user interface will display a tab control that allows the user to switch modes. The tab associated with the Spectrum Analysis recipe mode is labeled “AR” or “Spectrum”. The other tab is labeled “HC” or “Thickness” or “Thickness, n, k, r”. Calling SetRecipeModeToSpectrumAnalysis or SetRecipeModeToThickness is the same as clicking on the Spectrum or Thickness tab in the user interface.

SetRecipeSpectrumAnalysis

Public Sub SetRecipeSpectrumAnalysis(ByVal recipeName As String)
Public Sub SetRecipeSpectrumAnalysis(ByVal measChannelOrSystemGuid As Guid, ByVal recipeName As String)
Public Sub SetRecipeThickness()
Public Sub SetRecipeThickness(ByVal measChannelOrSystemGuid As Guid, ByVal recipeName As String)

measChannelOrSystemGuid – The GUID of one of the measurement channels in a multiple channel system or the GUID of the system. If multiple measurement channels exist, the measChannelGuid must be specified.

recipeName – The recipe name to be selected must exist in the list of recipes. Note that you can select recipes contained in subfolders by specifying the relative path, using the backslash character ‘\’ to separate folder names as is conventional in path naming.

Remarks: Same as SetRecipeModeToSpectrumAnalysis or SetRecipeModeToThickness, but caller specifies name of recipe to load during recipe mode switch.
ShutdownRequestedHandler

```csharp
Public Delegate Sub ShutdownRequestedHandler(ByVal e As Windows.Forms.FormClosingEventArgs)
Public Event ShutdownRequested As ShutdownRequestedHandler
```

e – The standard argument type for a form about to close.

Remarks: The client software can prohibit closing of the software by setting `e.Cancel` to `True`. Alternatively, the client software may wish to perform certain actions prior to allowing the FIRemote class to shut down.

[Return to Index...](#)

ShuttingDown

```csharp
Public Event ShuttingDown()
```

Remarks: Client software can add an event handler for this event in order to facilitate performing any necessary shut-down actions. This event is primarily used in order to permit client software to react to closing of the FIRemote user interface.

SystemAutoSave

```csharp
Public Property SystemAutoSave() As Boolean
Public Property SystemAutoSave(ByVal systemGuid As Guid) As Boolean
```

`systemGuid` – The GUID of a measurement system.

Remarks: You can set or get the state of the AutoSave setting using this property. Note that setting a new state for `SystemAutoSave` will not affect an on-going monitor process, but will take effect the next time a new set of data starts being collected.

[Return to Index...](#)

SystemAutoSaveBaseFileNameAndPath

```csharp
Public Property SystemAutoSaveBaseFileNameAndPath() As String
Public Property SystemAutoSaveBaseFileNameAndPath(ByVal systemGuid As Guid) As String
```

`systemGuid` – The GUID of a measurement system.

Remarks: You can set or get the base filename and path for the AutoSave file using this property. The full filename is generated by appending a date and time stamp to the base filename. Note that setting a new filename will not affect an on-going monitor process, but will take effect the next time a new set of data starts being collected.
SystemMeasure

Public Function SystemMeasure() As FIMeasResultValuesOnly
Public Function SystemMeasure(ByVal deleteAccumulatedDataBeforeMeasure As Boolean) As FIMeasResultValuesOnly
Public Function SystemMeasure(ByVal systemGuid As Guid) As FIMeasResultValuesOnly
Public Function SystemMeasure(ByVal systemGuid As Guid, ByVal deleteAccumulatedDataBeforeMeasure As Boolean) As FIMeasResultValuesOnly

deleteAccumulatedDataBeforeMeasure – There is no analog for this parameter in the user interface. Setting this parameter to True causes any existing accumulated data points to be deleted before the measurement is performed.

systemGuid – The GUID of a measurement system.

Remarks: Acquire and measure on all channels in a system. Measurement is performed simultaneously on all channels. Measured results are contained in an FIMeasResultValuesOnly object.

SystemStartMonitoring

Public Sub SystemStartMonitoring()
Public Sub SystemStartMonitoring(ByVal systemGuid As Guid)

systemGuid – The GUID of a measurement system.

Remarks: This function starts a monitoring process

SystemStopMonitoring

Public Sub SystemStopMonitoring()
Public Sub SystemStopMonitoring(ByVal systemGuid As Guid)

Remarks: This function stops a monitoring process.

SystemMeasurementCompletedEventHandler

Public Delegate Sub SystemMeasurementCompletedEventHandler(ByVal systemGuid As Guid, ByVal theResults As FIMeasResultValuesOnly)
Public Event SystemMeasurementCompleted As SystemMeasurementCompletedEventHandler

systemGuid – The GUID of a measurement system.

Remarks: This event is raised upon completion of a SystemMeasure task and after each measurement during a SystemMonitor process. You should avoid performing lengthy operations (such as writing data to a file) in the handler for this event because the monitor process will be halted until the handler function exits. If execution of a lengthy operation is needed, you should invoke a different thread to perform the operation. If the event is raised as a result of completing a SystemMeasure task, then you will need to exercise care to avoid creating a threading deadlock. A deadlock will occur if you invoke the thread which called SystemMeasure in the handler for this event because that thread will not return from SystemMeasure until all the event handlers have finished executing. See the FIRemoteTest example program to see one way to avoid the deadlock problem.

Return to Index...

WaferMapAllFinished

Public Event WaferMapAllFinished(ByVal theData As FIWaferMapData, errorCode As FIWaferMapResultsErrCode, errorMessage As String)

theData – The results of the finished wafer map
errorCode - Indicates if the wafermap ended normally or there is an error.
errorMessage - A string describing any error which may have happened while measuring the wafermap

Remarks: This event is raised when a wafer map is completed, paused, or aborted. The handler of this event must check theData to determine if the map is actually completed. If a wafer map is paused or aborted, then theData will be Nothing. In addition, errorCode and errorMessage will contain any error information about the wafer map such as whether any of the spectra were saturated.

Return to Index...

WaferMapCreateMapFile

Public Sub WaferMapCreateMapFile(ByVal theData As FIWaferMapData, mapID As String, theFileNameAndPath As String)

theData – Data to be saved into the map file.
mapID - Id for the map to be saved.
theFileNameAndPath - Name of the file, including path and file name extension.

Remarks: This method creates a wafer map file (.fimap) in the specified location. Calling this method may cause the software to overwrite an existing file if the name is the same as an existing file.

Return to Index...
WaferMapCreatePattern

Public Sub WaferMapCreatePattern(ByVal theWaferType As FIWaferType, width As Single, height As Single, x() As Single, y() As Single, numPoints As Integer, patternFileName As String)

theWaferType – Specify if the shape of the wafer is round or rectangular.
width - The width of a rectangular wafer or the diameter of a round wafer.
height - The height of a rectangular wafer or the diameter of a round wafer.
x - *x* values of all the locations in the pattern.
y - *y* values of all the locations in the pattern. Should have the same number of elements as the *x* array.
numPoints - Total number of locations in the pattern. Should be equal to the length of *x* and *y*.
patternFileName - Name of the pattern file to be created. Not including path or file name extension.

Remarks: This method creates a pattern file (.pat) in the folder for custom pattern files. Calling this method may cause the software to overwrite an existing pattern file if the name is the same as an existing pattern file name.

[Return to Index...](#)

WaferMapCurrentFileName

Public ReadOnly Property WaferMapCurrentFileName() As String

Remarks: Get the file name of the current wafer map.

[Return to Index...](#)

WaferMapCurrentWaferID

Public ReadOnly Property WaferMapCurrentWaferID() As String

Remarks: Get the file ID of the current wafer map.

[Return to Index...](#)

WaferMapDisableMapButtons

Public Property WaferMapDisableMapButtons() As Boolean

Remarks: Get or set the disable state of the map buttons (Start, Stop and New) on the WaferMap tab.

[Return to Index...](#)
WaferMapMeasurementControlsPanelLocation

Public ReadOnly Property WaferMapMeasurementControlsPanelLocation() As Point

Remarks: Return the location of the center location of the rectangular area containing Start, Stop and New buttons. An exception will be thrown if the graphical user interface is was not created at startup.

[Return to Index...](#)

WaferMapNew

Public Sub WaferMapNew()

Remarks: This method deletes the current wafer map and creates an empty wafer map.

[Return to Index...](#)

WaferMapNextFileName

Public Property WaferMapNextFileName() As String

Remarks: Get or set the wafer map name for the next measurement. Changing this value while a measurement is running will not affect WaferMapCurrentFileName until WaferMapNew method is called. However, after WaferMapNew is called, but before WaferMapStart is called, changing WaferMapNextFileName will update WaferMapCurrentFileName.

[Return to Index...](#)

WaferMapNextWaferID

Public Property WaferMapNextWaferID() As String

Remarks: Get or set the wafer map ID for the next measurement. Changing this value while a measurement is running will not affect WaferMapCurrentWaferID until WaferMapNew method is called. However, after WaferMapNew is called but before WaferMapStart is called, changing WaferMapNextWaferID will update WaferMapCurrentWaferID.

[Return to Index...](#)

WaferMapOpen

Public Sub WaferMapOpen(ByVal fileNameAndPath As String)

fileNameAndPath - Name of the file, including path and file name extension.
Remarks: This method opens an existing wafer map file (.fimap).

WaferMapRecipeGetPattern

```vbscript
Public Sub WaferMapRecipeGetPattern(By Ref patternFileType As FI WaferMapPatternType, ByRef patternName As String)

patternFileType - Variable to receive the coordinate type of current pattern.

patternName - Variable to receive current pattern name. If PatternFileType is Custom, then the received value is the current pattern file name in the folder for custom pattern files without path or file name extension; Otherwise, it will be the selected number of measurement locations in that coordinate system.

Remarks: This method gets pattern type and file name of the pattern file (either pre-defined or customer-created) used in current recipe. patternFileType and patternName in this method follow the same format as those in method WaferMapRecipeSetPattern and hence could be supplied to that method in order to go back to a previously used pattern.
```

WaferMapRecipeSaveResultsToDisk

```vbscript
Public Property WaferMapRecipeSaveResultsToDisk() As Boolean

fileNameAndPath - Name of the file, including path and file name extension.

Remarks: Get or set the state of the “Save results to disk” checkbox in the WaferMap tab of a recipe.
```

WaferMapRecipeSetPattern

```vbscript
Public Sub WaferMapRecipeSetPattern(ByVal patternFileType As FI WaferMapPatternType, ByVal patternName As String)

patternFileType - Specify the coordinate type of the pattern.

patternName - If PatternFileType is Custom, then patternName is the pattern file name in the folder for custom pattern files without path or file name extension; Otherwise, patternName is the number of measurement locations available for that coordinate system.

Remarks: This method sets the pattern in the current recipe from an existing pattern file. The pattern file is specified by the combined information from patternFileType and patternName. If they mismatch (which means the pattern file cannot be found in the folder for its category) then an exception will be thrown.
```
WaferMapResultsFolder

Public Property WaferMapResultsFolder() As String

Remarks: Get or set the name of the folder (including path) where wafer map files are automatically saved at the completion of a wafer map if WaferMapRecipeSaveResultsToDisk is set to True.

WaferMapStart

Public Sub WaferMapStart()

Remarks: This method starts a new measurement of wafer map. If the wafer map has been paused, then calling this method will resume the wafer map.

WaferMapStateChangedHandler

Public Delegate Sub WaferMapStateChangedHandler(theCommandStates As Filmetrics.FIRemote.FIWaferMapCommandStates)
Public Event WaferMapStateChanged(theCommandStates As FIWaferMapCommandStates)

theCommandStates - Lists the current states of the buttons on WaferMap panel.

Remarks: This event is raised when the state of the buttons in the wafer map operation control area (Start, Stop, New, etc.) has changed.

WaferMapStop

Public Sub WaferMapStop()

Remarks: This method pauses the current measurement. The paused measurement can be resumed by calling WaferMapStart().

End User Software License

Important – Read carefully: This Agreement (“Agreement”) is a legal agreement between you (both you, individually and your company entity) and Filmetrics, Inc. (“Licensor” or “Filmetrics”) The FILMapper software (the “Software”) subject to this Agreement and any accompanying documentation is for your use solely and exclusively with a device manufactured by or for Filmetrics (“Filmetrics Device”).
By downloading, installing, copying or otherwise using the Software you expressly agree to be bound by all of the terms of this Agreement. This Agreement is displayed for you to read prior to using the Software. If you choose not to accept, or do not agree with all of the provisions of this Agreement, do not download, install or use the Software but, instead delete it and, if applicable, request from the authorized Filmetrics distributor from whom you purchased the Software, a full refund of any fees you paid for the Software.

LICENSE

This license agreement ("license") permits you to use one copy of the Software on any single computer. The Software is owned by Filmetrics and is protected by United States copyright law and international treaty provisions. Therefore, this software should be treated as any other copyrighted material except that you may either: (1) make one copy of the Software for archival backup purposes, or (2) copy the Software to a single hard disk in all cases, solely for use with a Filmetrics Device. If the Software is used on a networked computer system where more than one computer can access the Software provisions must be made to insure that the number of concurrently executing copies of the Software cannot exceed the number of licenses.

You may transfer the Software and all rights under this Agreement to another party together with a copy of this Agreement if the other party agrees to accept the terms and conditions of this Agreement. If you transfer the Software, you must at the same time either transfer all copies (including any prior versions) in any form to the same party or destroy any copies not transferred.

RESTRICTIONS

You may not use, disclose, distribute, copy, modify, rent, lease, loan, resell, network or transfer the Software, or any copy, modification or merged portion thereof, in whole or in part, to any third party except as expressly specified in this Agreement. You agree to provide reasonable security precautions to prevent unauthorized access to or use of the Software as proscribed herein. You agree not to decompile, reverse engineer, disassemble or otherwise reduce the Software to a human perceivable form and you agree not to permit any person or entity to do so. You shall not remove, alter, cover, or obscure any confidentiality, trade secret, proprietary, or copyright notices, trademarks, proprietary, patent, or other identifying marks or designs from any component of the Software, and you shall reproduce and include in all copies of the Software the copyright notice(s) and proprietary legend(s) of Filmetrics and its licensors as they appear in the Software.

SOURCE CODE

If source code to the Software was supplied to you, then you may modify and use that source code in place of the executable version of the Software, but no further rights to distribution or use are granted. You acknowledge that you have no obligation to create modifications of the Software source code ("Licensed Revisions") nor to disclose such Licensed Revisions to Licensor. You acknowledge that by making Licensed Revisions, the underlying Software may not be compatible with any future versions of the Software that Licensor might offer (in Licensor’s sole discretion), and you agree to assume such risk. Continuing for the term of this Agreement, you hereby grant to Licensor and its affiliates a limited non-transferable, non-exclusive, worldwide, fully paid-up, royalty-free license (with the right to sublicense) to make, use, sell, offer to sell, import, export and otherwise distribute such Licensed Revisions under any of your patents that, if not authorized, would be directly or indirectly infringed by the manufacture, use, sale, offer to sell or other distribution of the Licensed Revisions. You may not combine or distribute the
Software or Licensed Revisions with Open Source Software (as defined below) or with software developed using Open Source Software (e.g., tools) in a manner that subjects the Software and Licensed Revisions or any portion thereof to any license obligations of such Open Source Software. "Open Source Software" means any software licensed under terms requiring that other software combined or distributed with such software: (i) be disclosed or distributed in source code form; (ii) be licensed on terms inconsistent with the terms of this Agreement.

TERM
This Agreement is effective until terminated. You may terminate it at any time by destroying the Software together with all copies, modifications and merged portions in any form. This Agreement will immediately and automatically terminate without notice if you fail to comply with any term or condition of this Agreement. You agree upon termination to cease using and promptly destroy the Software and Licensed Revisions together with all copies in any form.

GOVERNMENT LICENSEE
If you are acquiring the Software on behalf of any unit or agency of the United States Government, the following provisions apply:
The Government acknowledges the licensor’s representation that the Software and its documentation were developed at private expense and no part of them is in the public domain. The Software is a "commercial item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of "commercial computer software" and "commercial computer software documentation," as such terms are used in 48 C.F.R. 12.212 (SEPT 1995). All U.S. Government licensees and end users acquire the Software with only those rights set forth herein.

EXPORT LAW ASSURANCES
You acknowledge and agree that the Software is subject to restrictions and controls imposed by the United States Export Administration Act (the “Act”) and the regulations thereunder. You agree and certify that neither the Software nor any direct product thereof is being or will be acquired, shipped, transferred or re-exported, directly or indirectly, into any country prohibited by the Act and the regulations thereunder or will be used for any purpose prohibited by the same.

DISCLAIMER OF WARRANTIES. EXCEPT TO THE EXTENT OF ANY LIMITED WARRANTY PROVIDED BY THE SELLER, THE SOFTWARE IS FURNISHED "AS-IS", AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, LICENSOR MAKES NO WARRANTY, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS. LICENSOR DOES NOT WARRANT THAT THE SOFTWARE IS FREE FROM BUGS, VIRUSES, ERRORS OR OTHER PROGRAM LIMITATIONS. YOU AGREE TO USE YOUR INDEPENDENT JUDGMENT IN DEVELOPING YOUR PRODUCTS. YOU ACKNOWLEDGE AND AGREE THAT LICENSOR IS UNDER NO OBLIGATION TO INSTALL, MAINTAIN OR SUPPORT THE SOFTWARE, OR PROVIDE UPGRADES OR NEW RELEASES THEREOF, SHOULD LICENSOR PROVIDE ANY ASSISTANCE LICENSOR MAKES NO WARRANTIES WITH RESPECT TO ANY SUCH ASSISTANCE. YOU ASSUME THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE SOFTWARE AND ANY SYSTEMS OR PRODUCTS YOU DESIGN USING THE SOFTWARE.

EXCLUSION OF DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY LAW, IN NO EVENT SHALL LICENSOR, OR ITS EMPLOYEES, OFFICERS, DIRECTORS, AGENTS, AFFILIATES OR ANY APPLICABLE
LICENSOR (TOGETHER THE “REPRESENTATIVES”), BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO, DAMAGES FOR ANY LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS OR LOST PROFITS, SAVINGS OR REVENUES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY, IN CONNECTION WITH OR ARISING OUT OF THIS AGREEMENT, THE SOFTWARE, THE LICENSED REVISIONS EVEN IF LICENSOR REPRESENTATIVES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF A REMEDY SET FORTH HEREIN IS FOUND TO HAVE FAILED OF ITS ESSENTIAL PURPOSE. IN NO EVENT SHALL LICENSOR’S AGGREGATE LIABILITY UNDER THIS AGREEMENT EXCEED USD $500.00 OR THE FEES PAID BY YOU FOR THE SOFTWARE UNDER THIS AGREEMENT. THE LIMITATIONS OF DAMAGES SET FORTH ABOVE ARE FUNDAMENTAL ELEMENTS OF THE BASIS OF THE BARGAIN BETWEEN LICENSOR AND YOU.

GENERAL
This Agreement will be governed by the laws of the State of California, U.S.A. without regard to its conflict of law provisions. If a court of competent jurisdiction finds any provision of the Agreement to be unenforceable, that provision will be enforced to the maximum extent possible to effectuate the intent of the parties, and the remainder of the Agreement will continue in full force and effect. Failure of Licensor to enforce any terms of this Agreement shall not be deemed or considered a waiver of future enforcement of that or any other term in this Agreement and no consent, waiver, or excuse by Licensor, express or implied, constitutes a subsequent consent, waiver or excuse. You acknowledge that you have read this Agreement, understand it and agree to be bound by its terms and conditions. You further agree that it is the complete and exclusive statement of the agreement between us which supersedes any proposal or prior agreement, oral or written, and any other communications between us in relation to the subject matter of this Agreement. This Agreement shall be modified only by a written instrument signed by a duly authorized representative of Licensor, or from time to time, Licensor may modify or change the terms and conditions of this Agreement and supersede the terms of any prior version of this Agreement, in connection with any supplemental, different or new terms that might apply to an update or upgrade of the Software made available by Licensor, in Licensor’s sole discretion. Your continued use of the Software after you download and accept the new, additional or changed terms applicable to such update or upgrade will indicate your agreement to the change to this Agreement. You may not sell, assign, transfer, delegate, convey, pledge, encumber or otherwise dispose of, by operation of law or otherwise, the Software, Licensed Revisions or this Agreement, or any rights or obligations hereunder. Licensor may assign this Agreement, and any or all of its rights and duties under this Agreement, without prior notice to you or your consent. You hereby warrant and represent that you have obtained all authorization and other applicable consents required empowering you to enter into this Agreement. Rights and obligations under this Agreement which by their nature should survive, will remain in effect after termination or expiration of this Agreement.