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Thermodynamic equations are de®eloped for adsorption of multicomponent gas mix-
tures in microporous adsorbents based on the principles of solution thermodynamics.
The con®entional spreading pressure and surface area ®ariables, which describe 2-D
films, must be abandoned for adsorption in micropores, in which spreading pressure
cannot be measured experimentally or calculated from intermolecular forces. Adsorp-

( ) ( )tion is di®ided into two steps: 1 isothermal compression of the gas, 2 isothermal
(immersion of clean adsorbent in the compressed gas. Thermodynamic functions Gibbs

)free energy, enthalpy, and entropy from solution thermodynamics pro®ide a complete
thermodynamic description of the system. Applications are described for characteriza-
tion of adsorbents, gas storage at high pressure, mixture adsorption, enthalpy balances,
molecular simulation, adsorption calorimetry, and shape selecti®ity in catalysis.

Introduction
Brief history of adsorption thermodynamics

The concept of surface excess in adsorption was intro-
duced by J. Willard Gibbs, but the interpretation and appli-
cation of the Gibbsian version of thermodynamics of surfaces

Žwas impeded by the abstruse nature of his writing Gibbs,
.1928 . The thermodynamics textbook by Lewis and Randall

Ž .1923 exerted an enormous influence upon the development
of thermodynamics in the first half of the 20th century. How-
ever, their short section on thermodynamics of surfaces was
devoted entirely to the surface tension of liquid-vapor inter-
faces. The revision of Lewis and Randall by Pitzer and Brewer
Ž .Lewis et al., 1961 devoted an entire chapter to surface ef-
fects, which concluded with a five-page section on adsorption

Ž .of gases. In particular they defined the isosteric heat qst

 ln P
2q s RT 1Ž .st ž / T n

This definition of isosteric heat obtained by differentiating a
Ž .series of adsorption isotherms at constant loading n is still

used today. Unfortunately, Eq. 1 applies only to a pure, per-
fect gas and its connection with the enthalpy of the adsorbed
phase and its extension to the case of real gas mixtures has
led to considerable confusion. The terminology ‘‘isosteric
heat’’ intended to mean lines of constant loading is mislead-

ing, because the evolution of a heat of adsorption requires a
change in loading. The existence of other heats of adsorption

Žsuch as the ‘‘differential heat of adsorption’’ equal to q yst
.RT , the ‘‘equilibrium heat of adsorption’’ obtained by per-

forming the differentiation in Eq. 1 at constant spreading
Ž .pressure, and others Valenzuela and Myers, 1989 adds to

the confusion. Agreement within the adsorption community
on the thermodynamic definition and physical meaning of the
energy of adsorption is long overdue.

Important contributions to the thermodynamics of physical
adsorption by D. H. Everett, T. L. Hill, and L. E. Drain were

Ž .summarized by Young and Crowell 1962 . The thermody-
namics of physical adsorption on solid adsorbents is based on
the concept of an inert adsorbent and the introduction of two

Ž . Ž .new variables: surface area A and spreading pressure II .
Ž .A typical equation Eq. 15 of Chapter 3 from Young and

Crowell’s book is

dF syS dT qV dPq AdPqm dn 2Ž .s s s s s

where F sG qP A is a free energy and the subscripts refers s
to the surface phase. This 2-D, surface thermodynamics ap-

Žproach is standard in adsorption Ruthven, 1984; Yang, 1987;
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.Valenzuela and Myers, 1989; Suzuki, 1990 . The problem with
the 2-D approach is that it requires a series of assumptions of
unknown validity: inert adsorbent, pure perfect gas, negligi-
ble volume of adsorbed phase, and so on. More disturbing is
the impossibility of calculating or measuring the spreading
pressure inside a micropore. The external surface area of
nonporous solids can be measured by microscopy, but the
definition and measurement of the surface area of nanome-
ter-sized micropores is fuzzy.

The topic of adsorption has been omitted from chemical
engineering textbooks on thermodynamics since the first one

Ž .by Dodge 1944 . Phase equilibrium is properly concentrated
upon vapor-liquid systems because of their importance in dis-
tillation. Less attention is devoted to equilibria in liquid-liquid
and liquid-solid systems and adsorption thermodynamics was
ignored entirely until 1996. The reason for this neglect of
physical adsorption is that the fundamental equations of so-
lution thermodynamics developed for vapor-liquid equilibria
do not apply to adsorbed phases, which require special treat-

Ž .ment and the introduction of surface variables P and A as
Ž .described in recent editions of Smith et al. 1996, 2001 .

Ad©antages of solution thermodynamics
Innovations in adsorption technology such as pressure-

swing adsorption require chemical engineers to perform mass
and energy balances and calculate phase equilibria for ad-
sorption systems. The objective here is to show how the fa-
miliar principles of phase equilibria and solution thermody-
namics established for vapor-liquid equilibria can be applied
directly and rigorously to physical adsorption from gaseous
mixtures, while avoiding the undefined variables of 2-D sur-
face thermodynamics.

Since engineers and chemists have been measuring gas ad-
sorption in porous adsorbents for many years using the
metholodogy developed for thin films, the case needs to be
made that the solution thermodynamics approach is superior
not just in the nuances of interest to thermodynamic purists,
but also in everyday practical usage. Some of the advantages
of solution thermodynamics over the conventional 2-D ap-
proach are:
Ž . Ž1 Confusion over different heats of adsorption see

.above is eliminated by the solution thermodynamics ap-
proach. In solution thermodynamics, the enthalpy of the ad-
sorbed phase is measured relative to a well-defined reference
state and there is no confusion about different types of en-
thalpy.
Ž .2 The 2-D approach is based upon surface area, which

for microporous materials cannot be measured experimen-
tally or calculated theoretically. The suitability of approxi-

Žmate procedures such as the BET Point B method Young
.and Crowell, 1962 for estimating surface area has been ar-

gued for generations. A better characterization of an adsorb-
ent would be the maximum adsorption of a supercritical gas
such as argon at room temperature, or the enthalpy of im-
mersion of the adsorbent in a particular fluid.
Ž .3 The isosteric heat defined in conventional 2-D treat-

Ž .ments of adsorption has a singularity goes to infinity at the
Žpoint where the amount adsorbed reaches a maximum Salem

.et al., 1998; Siperstein et al., 2001 , whereas the integral en-

Table 1. Integral and Differential Thermodynamic Functions
for Single-Component Adsorption.U

Function Symbol Eq.
anP

Surface potential F y RT dfH f0

imm sFree energy of immersion DG Fq PV
 F

imm 2 sEnthalpy of immersion D H yT q PV
 T T P

 F
immEntropy of immersion DS y

 T P

f
a aIntegral free energy DG n RT ln qF

f8
ana a aIntegral enthalpy D H Dh dnH

0
a aD H yDG

aIntegral entropy DS
T

f
aŽ .Diff. free energy chem. potential D g RT ln

f8
 ln f

a 2Diff. enthalpy Dh y RT
 T an

aDh f
aDiff. entropy D s y R ln

T f8

UThe integral enthalpy and heat of immersion are related by D H as
D H imm q nahRy PV s and therefore D H asD H imm for a perfect gas at
low pressure. For a perfect gas, f s P and except for very high pressure
the Poynting term PV s is negligible. All functions are normally negative
in sign.

thalpy of solution thermodynamics is smooth and well-de-
fined under all conditions.
Ž .4 The conventional treatment of thin films is for adsorp-

tion of perfect gases on inert, planar solids at low pressures
of a few bars. The solution thermodynamics approach applies
to adsorption of fluid mixtures in porous materials at high
pressure up to 1,000 bars.
Ž .5 The solution thermodynamics approach leads naturally

to the immersional functions: free energy, enthalpy, and en-
tropy of immersion of the clean adsorbent in the bulk fluid.
The obvious physical significance of these functions simplifies
their application to the solution of practical problems. The
concepts of spreading pressure, differential entropy, and iso-
steric heat developed in the conventional 2-D approach are
difficult to understand, even for experts.
Ž .6 Experimental measurements of adsorption in porous

materials using volumetric or gravimetric methods require
careful attention to the placement of the Gibbs dividing sur-
face between the gas phase and the solid adsorbent. Conven-
tional 2-D treatments of adsorption do not apply to porous
materials.
Ž .7 Since the spreading pressure inside a micropore con-

taining a few dozen molecules cannot be calculated from in-
termolecular forces, theory cannot be compared with experi-
ment using the conventional 2-D approach. Solution thermo-
dynamics provide a simple connection between theoretical

Žabsolute variables total energy, total number of adsorbate
.molecules and experimental excess variables.

The thermodynamic functions for adsorption developed in
the next section are summarized in Table 1, and a sample
calculation for the Langmuir model is given in the Appendix.
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The theoretical development section is followed by numerous
applications in adsorption technology.

Theory
Defining adsorption in porous materials

An adsorption system contains two macroscopic phases: a
gas phase and a solid phase. For typical adsorbents such as
zeolites or activated carbon, adsorption occurs inside the ad-
sorbent in micropores, mesopores, and macropores. Com-
mercial adsorbents are manufactured not as single crystals,
but as small particles which are usually shaped into larger
particles using binders. Adsorption occurs mainly within the
pores of the adsorbent, but may also occur on its external
surface and occasionally in the binder.

In order to divide the adsorbate molecules and their prop-
erties into two phases, it is necessary to distinguish adsorbed
molecules from gas-phase molecules. A methane molecule lo-

˚cated inside a micropore 4 A from its internal surface can
reasonably be classified as adsorbed. A methane molecule lo-

˚cated at a distance of 100 A from the surface of the adsor-
bent can reasonably be classified as belonging to the gas
phase. Ambiguity arises for intermediate cases. Is a methane

˚molecule located at a distance of 10 A from the surface of
the solid adsorbed? Fortunately, the problem of defining a
boundary between the adsorbed and gas phases was solved

Ž .by Gibbs 1928 , whose solution was to propose the construc-
tion of a mathematical dividing surface between the two
phases. Gibbs was intentionally vague about the exact loca-
tion of this dividing surface, which is advantageous because it
would be difficult to define a dividing surface within the mi-
cropores of an adsorbent.

Figure 1a shows the density profile close to the surface for
the case of single-component adsorption. The density of the

Ž g.adsorbate r is constant in the gas phase and constant
Ž .zero within the solid. The amount adsorbed within the in-

Ž a.terface n obviously depends upon the location of its
boundaries. Figure 1b illustrates the Gibbs model in which
the actual interface is replaced by a single dividing surface
located somewhere within the interfacial region. The gas

g Ž g.phase with volume V has a homogeneous density r up to
the dividing surface. The mass balance for adsorption is

nas ntyV gr g 3Ž .

Figure 1. Profile of gas density at gas-solid interface.

Ž t.The total amount of gas in the system n and its bulk den-
Ž g.sity r are measured experimentally. The volume of the gas

Ž g.phase V increases as the dividing surface in Figure 1b
Ž a.moves from left to right, while the amount adsorbed n de-

creases from a positive value to zero and finally becomes neg-
ative as the dividing surface enters the solid phase. Thus, the

Ž a. Ž .amount adsorbed n depends upon the location x of theo
dividing surface.

The location of the dividing surface is fixed by selecting a
reference gas for which the amount adsorbed is defined to be
zero

nas ntyV gr g s0 for He 4Ž . Ž .

It follows that

nt
gV s for He 5Ž . Ž .gr

Equation 4 provides a method of measuring adsorption rela-
Ž g.ti®e to helium by measuring the volume of the gas phase V

using helium as a reference component. V g, called the dead
space or void volume, is normally measured at the standard

Ž .conditions of room temperature and low sub-atmospheric
pressure. The Gibbs procedure of defining adsorption rela-
tive to a reference component is independent of whether he-
lium actually adsorbs. Helium was selected as the reference
gas, because it is a small, inert molecule, but a smaller inert

Ž .molecule if one existed would measure a slightly larger dead
space than helium. The point is that all experiments and the-
oretical calculations should be based upon the same refer-
ence state.

Ž g.Referring again to Figure 1b, the gas volume V is re-
Ž s.quired for volumetric experiments and the solid volume V

is required for gravimetric experiments. V g includes the pores
of the adsorbent, and V s is the skeletal volume of the ad-
sorbent. The skeletal volume, which is the total volume of the
solid minus its pore volume, is measured by the buoyancy
force exerted in helium gas. The volume displaced by the solid
Ž s.V is the slope on a plot of apparent weight vs. density of
helium. Thus, gravimetric and volumetric experiments are
based upon the same assumption: that helium gas does not
adsorb at the standard conditions of room temperature and
low pressure.

Instead of defining adsorption by Eq. 3, why not measure
the total amount of gas contained in the micropores? Unfor-
tunately, an experimental method for measuring the total
amount of gas adsorbed in the pores does not exist. The stan-
dard volumetric technique measures the total amount of gas
in the system but cannot distinguish between molecules in
the pores and molecules in the gas phase. The gravimetric
method also fails to measure total adsorption in the pores
because of the necessity for a buoyancy correction to the ap-
parent weight.

Adsorption measured relative to helium by Eq. 3 is called
Gibbs excess adsorption. The excess adsorption is the total
amount of gas in the pores minus the amount that would be
present if the pores were filled with gas at the equilibrium
bulk density.
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Thermodynamic properties of porous materials
According to the Gibbs model of adsorption depicted in

Figure 1b, any extensive thermodynamic function may be
written

Z ts Zaq Z g q Z s 6Ž .

The gas-phase portion is

Z g sV gr gz g 7Ž .

where r g is the molar density of the bulk gas and z g is the
molar value of Z in the bulk phase at the same values of the

Ž . gŽintensive variables T , P, y . The molar function z T , P,i
.y is determined from independent PVT measurements oni

the bulk gas. As explained in the previous section, V g is
determined from Eq. 5 using helium gas. Specifically, from
Eq. 7

n g sV gr g yi i

U g sV gr gu g

S g sV gr gs g

V g sV gr g ® g sV g 8Ž .

Ž s.The solid-phase term Z in Eq. 6 is determined from inde-
pendent measurements of the solid adsorbent in its pure
standard state.

From Eq. 6

nas nt y n g
i i i

U asU tyU g yU s

SasStyS g yS s

V asV tyV g yV ss0 9Ž .

a form which emphasizes the excess nature of the Gibbs
model for which the adsorbed phase is a mathematical plane

Ž a .of zero volume V s0 . According to Eq. 9, the energy of
Ž a.the adsorbed phase U includes the energy change of the

solid adsorbent relative to its standard state in addition to
the energy of the adsorbate molecules. A similar statement
applies to the entropy. Solution thermodynamics is unable to
distinguish energy changes in the solid from energy changes
of the adsorbate molecules.

Referring again to Figure 1b, the total volume is divided
Ž g.into two parts: the gas phase V and the condensed phase

Ž s.V . The condensed phase includes the adsorbed phase with
volume V as0 by definition. The Gibbs model ignores possi-
ble changes in the volume of the condensed phase in re-
sponse to increased pressure or because of swelling in the
case of polymeric adsorbents. Since the volumetric method is
based upon a constant value of V g and the gravimetric
method is based upon a constant value of V s, deformation or
swelling of V s would be revealed by lack of agreement of
volumetric and gravimetric isotherms. Experimental evidence
of such a discrepancy has not yet been found.

Another consideration is the variation of V g and V s with
temperature. Although both volumes are functions of tem-
perature, their temperature dependence is weak. V s in-
creases with temperature according to the temperature coef-

ficient of expansion of the solid, which is of order
Ž .Ž . y5 y3 y1 s1rV  Vr T s10 to 10 K . Changes in V may beP
significant when making gravimetric measurements over a
wide range of temperature. Molecular simulations of the he-

Ž .lium pore volume of silicalite Siperstein et al., 2001 indicate
that the pore volumes at 300 and 400 K are 0.175 and 0.146
cm3rg, respectively. The decrease in helium pore volume is
due to helium-solid intermolecular forces, not expansion or
contraction of the solid. Determinations of void volume
should always be accompanied by the temperature of the
measurement. At high pressure in the range 100]1,000 bar,
the adsorption isotherm is highly sensitive to the void vol-
ume.

Fundamental equation for energy
Adsorption in microporous adsorbents falls naturally into

the framework of solution thermodynamics, with the distinc-
tion that the solvent is a solid. The starting point is the fun-
damental differential equation for the energy of a micro-

Žporous adsorbent containing C gaseous adsorbates Callen,
.1985

C

dUsTdSy PdVq m dn qmdm 10Ž .Ý i i
is1

The intensive variables of the condensed phase are the tem-
Ž . Ž .perature T , the pressure P , the chemical potentials of the

Ž .adsorbates m , and the chemical potential of the solid ad-i
Ž .sorbent m . The chemical potentials of the adsorbates are in

Jrmol and the chemical potential of the adsorbent is in Jrkg.
The extensive variables of the condensed phase are the inter-

Ž . Ž . Ž .nal energy U , entropy S , the amount number of mols of
Ž . Ž .each adsorbate n , and the mass of solid adsorbent m .i

Equation 10 is written for the solid phase plus the adsorbed
phase, that is, the entire condensed phase.

The particle-size distribution, composition, and structure
of the individual adsorbent particles are assumed to be uni-
form throughout the system. Thus, the external surface area
of the adsorbent and the extensive thermodynamic properties
are directly proportional to the mass of adsorbent present.
Stated mathematically

U hS, hV , hn , hm shU S, V , n , m 11Ž .Ž . Ž .i i

The total energy U of the solid phase is a first-order, homo-
geneous function of the variables S, V, n , and m; that is toi
say, doubling the values of S, V, n , and m at constant valuesi

Ž .of the intensive variables T , P, m , m doubles the value ofi
U. It follows from Eq. 11 and Euler’s theorem for homoge-

Ž .neous functions Callen, 1985 that

C

UsTSy PV y m n qmm 12Ž .Ý i i
is1

Adsorption thermodynamics deals with systems such as a
packed column or sample cell containing a fixed mass of ad-
sorbent. The solid phase is open with respect to the adsor-

January 2002 Vol. 48, No. 1 AIChE Journal148



bates, but closed with respect to the adsorbent. The re-
versible addition of solid adsorbent to the system correspond-
ing to the mdm term in Eq. 10 is not physically realizable, so
dms0 and the mass of adsorbent is a constant. The exten-

Ž .sive variables U,S,V,n are converted to extensive variablesi
per unit mass so that Eq. 12 may be written in the asymmet-
ric, but more useful, form

C

UsTSy PV q m n qm 13Ž .Ý i i
is1

ŽIn Eq. 13 and, henceforth, all extensive variables U,S,V,n ,i
.and so on are written per unit mass of adsorbent and called

mass extensi®e ®ariables. For the adsorbent in its pure stan-
dard state at the equilibrium pressure and temperature

U ssTS sy PV sqms 14Ž .

The pure solid is assumed to be incompressible so that V ss
V sU , U ssU sU , and S ssS sU , where the asterisk refers to the
clean adsorbent in ®acuo. However, the pressure affects the
enthalpy and free energy so H ss H sU q PV s, G ssG sU q

s s sU s Ž s.PV , and m sm q PV . The free energy G of the pure
Ž s.adsorbent is equal to its chemical potential m ; the units of

both are Jrkg. The PV s term is a Poynting correction which
Ž .accounts for hydrostatic pressure de Azevedo et al., 1999 .

Given the equilibrium values of T and P, any mass exten-
sive function of the adsorbed phase is obtained by subtract-
ing the function for the pure solid from the corresponding
function for the condensed phase

U asUyU s

SasSyS s

V asV yV ss0

nas n 15Ž .i i

Subtracting Eq. 14 from Eq. 13, and using Eq. 15

C
a a aU sTS q m n qF 16Ž .Ý i i

is1

where

Fs myms 17Ž . Ž .

Ž .is called the surface potential Sircar and Myers, 1973a or
grand potential. If no adsorption occurs, then msms and the
surface potential is zero. Writing Eq. 10 for the condensed
system containing a constant mass m of adsorbent

C

dUsTdSq m dn 18Ž .Ý i i
is1

The PdV term vanishes because V sV s is assumed constant.
For the same mass of adsorbent in its standard state

dU ssTdSs 19Ž .

Substracting Eq. 19 from Eq. 18, and using Eq. 15

C
a a adU sTdS q m dn 20Ž .Ý i i

iq1

Equations 16 and 20 are the integral and differential equa-
tions governing the adsorbed phase. Changes in the proper-

Ž S s.ties of the adsorbent from its standard-state values U , S
are included implicitly in U a and Sa. In surface thermody-
namics, the adsorbent is assumed to be inert so that its chem-

Žical potential is unperturbed by isothermal adsorption ms
s.m . Assuming the adsorbent to be inert is acceptable for ad-

sorption on the external surface of solid particles, but, for
microporous adsorbents, the concept of an inert adsorbent

Ž .must be abandoned. The surface potential F in Eq. 16 van-
ishes only in the trivial case of no adsorption.

Enthalpy and free energy
The Legendre transformations for the auxiliary functions
Ž .are Callen, 1985

HsUq PV

F sUyTS

Gs F q PV s HyTS 21Ž .

where H is enthalpy, F is Helmholtz free energy, and G is
Gibbs free energy. From Eq 16.

U asTSaqÝm naqFi i

H asTSaqÝm naqFi i

F asÝm naqFi i

GasÝm naqF 22Ž .i i

In Eq. 22 and, henceforth, summation over the C adsorbates
is implicit. The enthalpy is equal to the internal energy, be-
cause the volume of the adsorbed phase is zero. The
Helmholtz and Gibbs free energies are equal for the same
reason. The free energy of the adsorbed phase consists of
two parts: the free energy of na mols of each species in thei
equilibrium gaseous state plus an additional term, the surface

Ž .potential F , which is zero if no adsorption takes place.
This is the point at which surface thermodynamics diverges

from solution thermodynamics. Surface thermodynamics,
which is the standard approach adopted in monographs on

Ž .adsorption Ruthven, 1984; Suzuki, 1990; Yang, 1987 , as-
sumes an inert adsorbent with chemical potential which is
independent of loading. It is difficult at first to accept the
fact that the chemical potential of a porous adsorbent varies
with the isothermal loading of the adsorbate molecules. In
molecular simulation, it is generally assumed that the adsorb-
ent generates an invariant potential field. However, the exis-
tence of a potential field is not inconsistent with changes in
free energy, which contain both energetic and entropic con-
tributions. From the perspective of solution thermodynamics,
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the intimate contact of the adsorbate molecules with the
atoms of the porous material alters the chemical potential of
the solid. Consider the immersion of clean adsorbent in a
compressed gas held at constant pressure and temperature.
Since the variables pressure, temperature, and chemical po-
tential of the compressed gas are fixed during the immersion
process, the only intensive variable capable of change is the
chemical potential of the adsorbent.

Surface thermodynamics is valid when the surface area can
be measured experimentally. For example, the external sur-
face area of nonporous carbon black can be measured by mi-
croscopy. In this case, the model of an inert adsorbent with
adsorption occurring in a 2-D film on its external surface is
realistic. However, the concepts of surface area and spread-
ing pressure lose their physical meaning in porous adsorbents
such as zeolites.

From Eq. 22

H asU a 23Ž .

and

Gas F asU ayTSa 24Ž .

From Eqs. 20, 23, and 24, it follows that

dU asTdSaqÝm dna
i i

dH asTdSaqÝm dna
i i

dF asySadT qÝm dna
i i

dGasySadT qÝm dna 25Ž .i i

Ž .The surface potential F term in Eq. 22 for the integral
functions does not appear explicitly in the differential equa-
tions for the adsorbed phase.

Equations 22 and 25 are the basic integral and differential
equations for the adsorbed phase. Any extensive property of
the condensed phase is the sum of the property in the ad-

Ž a a .sorbed phase H , S , and so on plus the corresponding
property of the solid adsorbent in the absence of adsorption
Ž s s .H , S , and so on as described by Eqs. 14 and 19.

Surface potential
The surface potential, which is the chemical potential of

the solid adsorbent relative to its pure standard state, is ob-
tained from Eq. 22

FsGayÝm na 26Ž .i i

Differentiating and substituting Eq. 25 for dGa gives

dFsySadT yÝnadm 27Ž .i i

This equation is analogous to the Gibbs-Duhem equation for
a liquid mixture with the yVdP term replaced by dF. At
constant temperature, Eq. 27 reduces to the Gibbs adsorp-

tion isotherm

dFsyÝnadm constant T 28Ž . Ž .i i

Replacing chemical potential by fugacity

dFsy RTÝnad ln f constant T 29Ž . Ž .i i

Since surface potential is a state function, the integration for
F is independent of the path. The thermodynamic consist-
ency of experimental data may be tested by comparing values

Ž .of F obtained for different paths Myers and Sircar, 1972 .
Integrating for pure-component adsorption from the unad-
sorbed state at zero pressure where msmssmsU and Fs0

na
P

Fsy RT df constant T 30Ž . Ž .H fP s 0

For a perfect gas

na a d ln PP n aFsy RT dPsy RT dn constant TŽ .H H aP d ln n0 0

31Ž .

In the solution thermodynamics approach, the chemical po-
tential of the nonvolatile adsorbent is determined indirectly
by integrating the chemical potential of the gas. An analo-
gous integration is used to calculate the chemical potential of
a strong electrolyte in aqueous solution from the change in

Žchemical potential of the water vapor de Azevedo et al.,
.1999 .

The concept of the adsorbent as a solvent suggests that its
chemical potential at the limit of zero loading should be given
by Raoult’s law. At the limit of zero pressure, the slope of the
adsorption isotherm is given by Henry’s law: nas KP. Since

Žthe adsorbed gas obeys Henry’s law, the solvent the solid
.adsorbent follows Raoult’s law over the same dilute range

RT RT
s s aFsmym s ln x s ln 1y xŽ .

M M

RT
a afy x fy n RT 32Ž .

M

where x s is the mol fraction of solid adsorbent, x a is the mol
fraction of adsorbate, and na is mols of gas per unit mass of

Ž .adsorbent. The unknown molecular weight of the adsorbent
Ž .M cancels in the result. At the limit of zero pressure, the
surface potential decreases in direct proportion to the amount
adsorbed. The limiting relation Fsy naRT may be com-
pared to the corresponding equation for a 2-D perfect gas
from surface thermodynamics: P As naRT. Thermodynam-

Žics is indifferent to the name of the property the P A prod-
.uct or the chemical potential of the adsorbent , but the physics

of adsorption in micropores is best described within the
framework of solution thermodynamics because spreading
pressure in a micropore is undefined.
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Degrees of freedom and independent ©ariables
The number of degrees of freedom from the Gibbs phase

rule is

F sCq2y P 33Ž .

where C is the number of chemical components present and
P is the number of phases. Since one component is the ad-
sorbent

F sCq3y P sCq3y2sCq1 34Ž .

if C is the number of adsorbates present. For example, for
binary adsorption, there are three degrees of freedom. The
natural independent variables for the integral functions are
T , P, y ; the dependent variables are then na, D H a, DSa, F,1 i
and so on. The natural independent variables for the differ-
ential functions are T , na, na; the dependent variables are1 2
then P, y , and so on.1

Equality of chemical potentials at equilibrium
Up to this point it has been assumed without proof that

Ž a.the chemical potential in the adsorbed phase m is equal to
Ž g.the chemical potential in the gas phase m . Here, the as-

sumed equality of chemical potentials is verified by minimiz-
ing the Gibbs free energy of the total system at constant tem-
perature and pressure. From Eq. 6

GtsGaqG g qG s 35Ž .

Since these are extensive functions per unit mass of adsorb-
ent, G s is the chemical potential of the adsorbent in its stan-
dard state

dGss dmssyS sdT qV sdP 36Ž .

Differentiating Eq. 35

dGts dGaq dG g q dGs 37Ž .

From Eq. 25

dGasySadT qÝmadna 38Ž .i i

Ž .For the bulk gas phase Sandler, 1998

dG g syS gdT qV gdPqÝm gdng 39Ž .i i

Minimizing Gt at constant T and P under the constraint

nt s naq n g sconstant 40Ž .i i i

gives

dGtsÝmadnaqÝm gdng sÝ m g yma dng s0 41Ž .Ž .i i i i i i i

Since equality of chemical potentials m g sma corresponds toi i
Ž t .equilibrium dG s0 , the use of the notation m for thei

chemical potential in either phase is justified.

Determination of ©oid ©olume
The measurement of Gibbs excess variables according to

ŽEq. 9 requires prior determination of the void volume dead
.space of the apparatus using Eq. 5

nt
gV s for He 42Ž . Ž .gr

The standard procedure is to measure the void volume using
Ž .pure helium gas at low pressure and room temperature T8

by assuming that helium does not adsorb. nt is the total num-
ber of mols of helium admitted to the sample cell per unit
mass of adsorbent; V g is the specific void volume of the ap-
paratus measured in cm3 per unit mass of adsorbent; r g is
the helium density. At low pressure, use of the perfect-gas
law in Eq. 42 gives

ntRT8
gV s for He 43Ž . Ž .

P

The experimental determination of dead space is based on
Eq. 43. The theoretical value is calculated from statistical
thermodynamics, which at the limit of low pressure gives for
the excess adsorption

BP
an s 44Ž .

RT8

where B is called the adsorption second virial coefficient
Ž .Steele, 1974

1
yEŽ r .rkT 8w xBs e y1 dr 45Ž .Hm

E is the gas-solid potential energy of a single molecule, and
m is the mass of a representative sample of solid adsorbent.
The integration is performed over the gas phase including
the pore volume. In order for theory to mimic experiment,
the second virial coefficient for helium must be zero so that

1
g yEŽ r .rkT 8V s e dr for He 46Ž . Ž .Hm

E is the gas-solid potential energy of a helium atom. The
integration in Eq. 46 is performed over the entire condensed
phase as well as the gas phase, since the exponential vanishes
within the solid where where f ™`.

Integral and differential properties of the adsorbed phase
The integral functions free energy, enthalpy, and entropy,

which arise naturally from solution thermodynamics, are
missing from the traditional surface thermodynamics ap-
proach based upon spreading pressure, 2-D films, isosteric
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heat, and other differential quantities. A special feature of
the integral functions is that their natural independent vari-

Ž .ables temperature, pressure, and gas-phase composition are
controllable experimentally. The integral functions are
needed for engineering calculations and are useful for char-
acterization of adsorbents, as shown below. The integral
functions for the adsorbed phase are defined relative to the
perfect-gas reference state at the same temperature

DGasGayÝnam 8sD H ayTDSa
i i

D H as H ayÝnah 8i i

DSasSayÝnas 8 47Ž .i i

The quantities mT, hT, and sT refer to the molar values in thei i i
perfect-gas reference state. The integral free energy and en-

Ž a a.thalpy DG , D H are measured in joules per kilogram of
adsorbent. Substituting for Ga in Eq. 47 from Eq. 22

DGasÝna m g qmT qFŽ .i i i

 F
Ta a g 2D H sÝn h y h yTŽ .i i i  T T P , y i

 F
Ta a gDS sÝn s y s y 48Ž .Ž .i i i  T P , y i

The overline notation for partial molar variables in the bulk
g g gŽ . Ž .gas phase h , s is omitted for the chemical potential mi i i

since its partial molar character is understood. The expres-
sion for DSa is obtained by combining Eq. 47 with the partial
differential of Eq. 27 with respect to temperature; then D H a

sDGaqTDSa.
The equations for DGa, D H a, and DSa contain two parts:

Ž .1 changes for isothermal compression of the gaseous ad-
sorbates from their perfect-gas reference states to the equi-

Ž .librium pressure; 2 changes for isothermal, isobaric adsorp-
Ž .tion F and its derivatives . Consider isothermal immersion

of clean, evacuated adsorbent into the compressed gas; the
free energy of immersion is

DG imm s GayÝnam g q G syG sU 49Ž . Ž .Ž .i i

DG imm is the change in the free energy of the condensed
phase caused by adsorption, measured relative to compressed
gas and evacuated adsorbent. The first term on the righthand
side of Eq. 49 is the free energy of adsorbed gas relative to
bulk compressed gas; the second term is the free energy of

Ž .the adsorbent in its standard state T , P relative to the evac-
Ž .uated state T ,in ®acuo . Combining Eqs. 47]49 and observ-

Ž s sU . sing that G yG s PV

DG imm sFq PV s

 F
imm 2 sD H syT q PV

 T T P , y i

 F
immDS sy 50Ž .

 T P , y i

Ž s.At low pressure, the Poynting correction PV for the en-
thalpy and free energy may be ignored. Thus, disregarding

Ž s.the PV nuisance term, the surface potential is equal to the
free energy of immersion. The free energy of immersion is
negative because adsorption is spontaneous. The enthalpy of

Ž imm.immersion D H may be measured directly by calorimetry
Ž .see below or indirectly by differentiating the surface poten-
tial according to Eq. 50. Since the heat of immersion is
exothermic, D H imm is negative in sign. Since the adsorption
process is associated with a loss of entropy, the entropy of

Ž imm.immersion DS is also a negative quantity. The free en-
ergy and enthalpy of immersion in a pure liquid can be used

Žto predict adsorption from liquid mixtures Sircar and Myers,
.1973b .

Ž .The surface potential F and associated immersional
Ž imm imm imm.functions DG ,D H ,DS are more closely related to

Ž athe adsorption process than the integral functions DG ,
a a.D H , DS in Eq. 48, which contain an additional term for

isothermal compression of the bulk gas

PyiTcomp a g a a RDG sÝn m ym s RTÝn ln qÝn gŽ .i i i i i iTP
Tcomp a g a RD H sÝn h y h sÝn hŽ .i i i i i

PyiTcomp a g a a RDS sÝn s y s sy RÝn ln qÝn s 51Ž .Ž .i i i i i iTP

The compression terms for the bulk gas are obtained from
Ž . Ž R R R.partial pressures Py and from residual functions g ,h , si i i i

Ž .Smith et al., 2001 which vanish for a perfect gas.
The integral and immersional functions derived from solu-

tion thermodynamics are related to the molar and differen-
tial functions generated by 2-D surface thermodynamics. The
integral functions in Eq. 48 are converted to molar variables
by dividing each function by the total amount adsorbed nast
Ý na

i i

DGa
a a aD g s sDh yTD sant

D H a
aDh s ant

DSa
aD s s 52Ž .ant

The molar integral functions D g a and Dha have units of
Jrmol.

The differential functions for component i in a multicom-
ponent mixture are obtained from the integral functions. Dif-
ferentiation of the functions DGa, D H a, and DSa in Eq. 47
gives

aDG fiTa aD g s sm ym s RT lni i i Ta n fai iT ,n j

aD H  ln fiTa a 2Dh s s h y h sy RTi i ia a a n  Ta n ,ni T ,n i jj

aDS  fiTa aD s s s s y s sy RT ln 53Ž .i i i Ta
a a n  T fai i n ,nT ,n i jj
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Ž a a. a Ž a a.a aThe relations s  G r n sm and S r n si T ,n i i T ,ni j
Ž a . a ay m r T necessary for the derivation of Eq. 53 werei n ,ni j

obtained from the total differential for Ga in Eq. 25. The
independent variables for the differential functions are tem-

Ž a. Tperature and mol numbers n . f is fugacity and f is thei i i
Ž .standard-state fugacity 1 bar . The overline notation in these
aŽ .functions such as Dh is used to distinguish differentiali

Ž a.functions from molar integral functions Dh ; the differen-
tial character of the chemical potential is implicit. The differ-

a aential functions D g and Dh have units of Jrmol and, likei i
the integral and molar integral functions, are based on the
perfect-gas reference state. For a pure bulk fluid, the partial
molar and molar functions are equal. The molar and differ-
ential functions for the adsorbed phase are unequal, even for
a pure adsorbate.

The relationships in Eq. 53 are similar to those for partial
molar quantities in a bulk fluid. However, for a bulk fluid,
the partial molar derivatives are at constant pressure; for an
adsorbed fluid, the partial derivatives are at constant loading.

A sample calculation of the integral, immersional, molar
integral, and differential functions summarized in Table 1 is
provided in Appendix A. The immersional functions of Eq.
50 are more closely related to the adsorption process than
the other functions, which contain additional terms for
isothermal compression of the gas.

Differential enthalpy and isosteric heat
Confusion about the meaning of isosteric heat is

widespread in the adsorption literature. For example, Eqs.
Ž .29]46 in the revised version of Lewis et al.’s 1961 textbook

gives the following relation between the differential entropy
Ž .and the isosteric heat qst

q fstaD s s y R ln 54Ž .TT f

Equation 54 has a sign error: the first term should be
Ž . Ž .y q rT cf. Table 1 . Errors like this one could be avoidedst
by replacing the ill-defined isosteric heat with the differential
enthalpy of adsorption. Differential enthalpy is not a heat of
adsorption, the value of which would depend upon the path.
Differential enthalpy is a state function which can be mea-

Ž .sured either by calorimetry see below or by differentiating a
series of adsorption isotherms at constant loading

 ln fia 2Dh sy RT 55Ž .i
a a T n ,ni j

For a pure, perfect gas

 ln P
a 2Dh sy RT 56Ž .

 T an

Except for the minus sign, this equation is identical to Eq. 1.
The isosteric heat is a positive quantity by definition, but the

Ž .differential enthalpy of adsorption is negative exothermic .
The integral enthalpy can be calculated by differentiating

Ž .the surface potential F T , P, y according to Eq. 48, or byi

integrating the differential enthalpies; for example, from Eq.
53 for a binary mixture

a a a a ad D H sDh dn qDh dn const. T 57Ž . Ž . Ž .1 1 2 2

Since D H a is a state function, the integral is independent of
the path and the differential enthalpies are related by
Maxwell-type equations

a aDh Dh1 2
s 58Ž .a a n  na a2 1T ,n T ,n1 2

ŽThe differential mixture enthalpies whose absolute values are
.called isosteric heats in the literature of adsorption are func-

tions of loading and can be measured experimentally or pre-
Ždicted from single-gas adsorption data Siperstein and Myers,

.2001 . For pure-component adsorption, the integral is

ana a aD H s Dh dn const. T 59Ž . Ž .H
0

a aŽ .The differential enthalpy Dh is a function of loading n ,
but its variation with temperature is weak and the assump-
tion of its constancy over a moderate range of temperature is
a useful approximation. For pure-component adsorption of a

aperfect gas, Eq. 56 gives for constant Dh

aP Dh 1 1
aln s y constant n 60Ž . Ž .T TP R T T

Ž .which provides the function P T given a reference point
TŽ T. Ž a.P T at the same loading n .

Heat capacity
A useful and frequently used approximation is that the dif-

a aŽ . Ž .ferential Dh and integral D H enthalpies of the ad-
sorbed phase are independent of temperature, at least over
some modest interval of temperature. With this approxima-
tion, the heat capacity at constant loading from Eq. 70 sim-
plifies to

a H
Ta aC s s n c 61Ž . Ž .Ýp i p i

a T n ii

so that the heat capacity of the adsorbate is equal to its heat
capacity in the perfect-gas state. If in addition the gas phase
is ideal, the heat capacity of the system follows from Eq. 6

C t sC g qC aqC s s n g cT q na cTŽ . Ž .Ý Ýp p p p i p i pi i
i i

qC sU s nt cT qC sU 62Ž . Ž .Ýp i p pi
i

The heat capacity of the adsorbent in its pure standard state
Ž s. Ž sU .C is equal to its heat capacity in ®acuo C . Thus, thep p
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Žheat capacity of the entire system condensed phase and gas
.phase may be estimated from the heat capacity of the evacu-

ated solid adsorbent and the ideal-gas heat capacities of the
Ž .adsorbates Sircar, 1991 .

Equation of state
The intensive variables pressure, temperature, and gas-

Žphase composition determine the gas-phase properties den-
.sity, molar enthalpy, chemical potential, and so on , the

solid-phase properties in ®acuo, and the adsorbed-phase
properties from Eq. 9. The equation of state for the adsorbed

Ž .phase is the surface potential F T , P, y . From Eq. 31, thei
adsorption isotherm for a pure, perfect gas is

P  F
an sy 63Ž .

RT  P T

The integral enthalpy from Eq. 48 for a pure, perfect gas is

 F
a 2D H syT 64Ž .

 T T P

The surface potential of an adsorbent in a pure liquid deter-
mines the selectivity for adsorption from liquid mixtures
Ž . < <Sircar and Myers, 1973b : the higher the value of F in a
pure component, the greater its preferential adsorption from
liquid mixtures. The surface potential is also required for cal-

Žculations of mixed-gas adsorption Siperstein and Myers,
.2001 .

Example. The equation of state at the limit of zero pres-
sure is given by Eq. 32: Fsy naRT. Using Eq. 63

a an  n
lim s 65Ž .

P  PP ™ 0 T

a Ž .which is true if and only if n s K T P. Thus, the equation
of state predicts Henry’s law for the adsorption isotherm.
From Eqs. 59 and 64

a a ln n Dh
lim s . 66Ž .2 T RTP ™ 0 P

Equation 66 for calculating the zero-pressure limit of the dif-
ferential enthalpy from the temperature coefficient of ad-
sorption should be more accurate than the usual procedure
of extrapolating Eq. 56 or differentiating Henry constants
Ž .Valenzuela and Myers, 1989

d ln K
a 2lim Dh s RT . 67Ž .

dTP ™ 0

Applications
Characterization of adsorbents

Table 1 summarizes the integral and differential thermody-
namic equations needed for characterization of adsorbents
and for engineering calculations.

Adsorption of gas mixtures
Equations 48 and 50 apply to multicomponent adsorption

of an imperfect gas, but the integration for the surface poten-
tial term according to Eq. 29 requires experimental, isother-
mal mixture data for the loading as a function of fugacity.
Similarly, the integration for the integral enthalpy by Eq. 57
requires differential enthalpies for adsorbed mixtures. Exper-
imental mixture isotherms and enthalpies are seldom avail-
able so reliable methods of predicting mixture data from sin-

Žgle-gas adsorption isotherms are essential Siperstein and
.Myers, 2001 .

Adsorption at high pressure
At high pressure, according to Eq. 3, the total amount of

Ž t.gas contained in the micropores n tends toward a limit
called the saturation capacity, while the density in the gas

Ž g.phase r increases without limit. Eventually, when the
density in the gas phase increases with pressure at the same

Ž t p.rate as the absolute density in the pores nrV , the excess
Ž a.adsorption n passes through a maximum and then begins

to decline with pressure. At very high pressure, when the ab-
solute density in the pores is equal to the bulk-gas density,
the excess adsorption is zero. Although adsorption loses its
potential for storage and separation applications under these
conditions, high-pressure adsorption has been studied exten-

Ž .sively Benard and Chahine, 2001 .´
Once the adsorption isotherm has passed through a maxi-

mum, the amount adsorbed becomes an invalid independent
variable because it is not single-valued. The differential en-

Ž .thalpy isosteric heat and differential entropy have no mean-
ing under these conditions. However, the integral functions
Ž a a a.DG , D H , DS , for which the independent variable is the
pressure, are well defined even when the excess amount ad-
sorbed passes through a maximum and declines to negative
values.

Enthalpy and entropy balances
The solution thermodynamics approach to adsorption gives

the thermodynamic properties of the entire system as the sum
over the gas, adsorbed, and solid phases. The most important
property is the enthalpy for energy balances; calculations of
lost work and efficiency are based upon entropy balances.
The enthalpy and entropy functions for the entire system are
given by Eq. 6

H ts H g q H aq H s

StsS g qSaqS s 68Ž .

Gas Phase. The thermodynamic properties for the gas
phase are conveniently calculated from perfect-gas heat ca-

Ž .pacities and residual functions Smith et al., 2001

TT Tg g RH s n h q c dT q hŽ .HÝ i i p ii
T 8i

dT PTT Tg g RS s n s q c y R ln q s 69Ž . Ž .HÝ i i p ii T P8T 8i
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h8 and s8 are molar enthalpy and molar entropy, respectively,
Ž . Ž .at the reference temperature T8 and standard pressure P8 .

cT is the ideal-gas heat capacity. hR and s R are the residualp
enthalpy and entropy, respectively, at temperature T ; the
residual functions are zero for a perfect gas. As usual, the

Ž g g g.mass extensive variables H , S , n refer to a unit mass of
solid adsorbent.

Adsorbed Phase. Similarly, the thermodynamic properties
for the adsorbed phase are calculated from ideal-gas heat ca-
pacities and the integral functions of Eq. 48

Ta a aH s n h 8q c 8 dT qD HŽ .HÝ i i p i
T 8i

dTTa a aS s n s 8q c 8 qDS 70Ž .Ž .HÝ i i p i TT 8i

Solid Adsorbent. The thermodynamic properties of the
solid adsorbent in its standard state at the equilibrium tem-
perature and pressure are

UTUs s s sH s H q C dT q PVŽ .H p
T 8

dTUTUs s sS sS q C 71Ž .Ž .H p TT 8

where the asterisk refers to the properties of the adsorbent
per unit mass in ®acuo. Equation 71 is not based on the as-
sumption that the solid adsorbent is inert; isothermal changes
in the enthalpy or entropy of the solid adsorbent induced by
adsorption are included in the D H a and DSa functions for
the adsorbed phase.

Calorimetry
The differential enthalpy of adsorption defined in Eq. 53

can be measured by calorimetry. An isothermal batch
calorimeter consists of a dosing cell and a sample cell con-
nected through a valve. When the valve is opened, an incre-
ment of gas expands from the dosing cell into the sample cell
and a portion of the increment adsorbs. The total energy of
the calorimeter is

U tsU g qU aqU sqU cell 72Ž .

cellŽ .U T includes the walls of the sample and dosing cells and
sŽ .the valve. U T is the energy of the adsorbent in its standard

state. According to the first law for a closed system

dU ts dU g q dU as dQ 73Ž .

Equation 73 and the following equations are for constant
temperature. The differentials dU s and dU cell vanish under
isothermal conditions and no work is done on the composite
system. The mass balance is

nts n g q nasconst. 74Ž .

so

dng sy dna 75Ž .

Combining Eqs. 23, 47, 53, 73 and 75 for the case of single-
component adsorption

dQ dU g
aDh s q y h8 76Ž .a gdn dn

Ž g g.In general, the derivative dU rdn depends upon the equa-
tion of state of the bulk gas, but for a perfect gas U g s n gu8
and

dU g

su8s h8y RT 77Ž .gdn

For a perfect gas, Eq. 76 simplifies to

dQ
aDh s y RT 78Ž .adn

Since adsorption is exothermic, the differential heat dQrdna

is negative.
The measurement of the differential enthalpy of adsorp-

tion from mass and energy balances applied to a calorimeter
is straightforward compared to derivations for the measure-

Žment of the ill-defined isosteric heat Young and Crowell,
.1962; Siperstein et al., 1999 .

Molecular simulation of adsorption
Ž .The grand canonical partition function McQuarrie, 1976

Ž .used in grand canonical Monte Carlo GCMC simulations is

Js eyEjŽN ,V .rkTe NmrkT 79Ž .Ý
j , N

Ž . Ž .The independent variables are volume V temperature T ,
Ž .and chemical potential of the adsorbate molecules m . The

grand potential GGsUyTSymN is related to the partition
function by

GGsy kT ln J V , T , m 80Ž . Ž .

For bulk fluids, GGsy PV. For 2-D surface thermodynamics,
GGsyP A, where P is spreading pressure and A is surface
area. Within the framework of solution thermodynamics, the
grand potential of an adsorbed phase is equal to its surface
potential, GGsF.

The volume is a simulation box containing a representive
sample of the microporous adsorbent. The dependent vari-

Ž .ables are the specific potential energy f in Jrkg and the
Ž . Ž t.specific total absolute amount of adsorbate in the pores n

in molrkg. These total variables must be converted to excess
Ž a.functions, especially the excess amount adsorbed n and the

Ž a.integral enthalpy D H , for comparison with experiment. For
single-gas adsorption, from Eqs. 8 and 9
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nas ntyV gr g 81Ž .

and

U asU tyV gr gu g yU s 82Ž .

V g is calculated from the adsorption second virial coefficient
Ž .of helium, Eq. 46. The potential energy f is the total en-

ergy of gas-gas and gas-solid interactions relative to the per-
fect-gas reference state and the solid adsorbent in ®acuo

f sU ty ntu8yU s 83Ž .

A combination of Eqs. 81]83 with Eqs. 23 and 47 gives

D H asf q PV g y ntRT yV gr ghR 84Ž .

R Žwhere h is the residual enthalpy in the bulk gas phase Smith
. Ret al., 2001 . For a perfect gas, h s0.

Equations 81 and 84 are key equations for converting simu-
lation variables to experimental variables. The correction term

Ž g.containing the pore volume V is sometimes negligible at
low temperature and low pressure, but dominates at very high

Ž a.pressure and causes the excess amount adsorbed n to pass
Ž g.through a maximum. The density factor r in the correc-

tion term of Eq. 81 suggests that the difference between ab-
solute and excess functions is zero at low pressure since
lim r g s PrRT. Actually, the Henry’s constants and theP ™ 0
zero-pressure differential enthalpies differ for absolute and

Ž .excess adsorption Talu and Myers, 2001 and the magnitude
of the difference increases with temperature.

w t xThe absolute differential energy fr n may be calcu-T
t Žlated directly from fluctuations in f and n Nicholson and

.Parsonage, 1982 , but there is no simple relationship between
athis simulation variable and the differential enthalpy Dh of

aexperiment. The most direct conversion is the definition Dh
Ž a a.s D H r n using excess variables from Eqs. 81 and 84.T

Shape selecti©ity in catalysis
Ž .The Henry constant K defined by

na

K s lim 85Ž .
PP ™ 0

can be related to free energy by combining Eqs. 48 and 51

an
a aDG s n RT ln qF . 86Ž .

KP8

Using Eq. 32

a aDG n
aD g s s RT ln y1 . 87Ž .a ž /n KP8

Ž a . aSince the limit at infinite dilution n ™0 is D g sy`, a
standard state must be chosen. For example, for Ar on sili-

Žcalite at 32.68C, the Henry constant K s0.00173 molr kg
. Ž . akPa Dunne et al., 1996 . For P8s100 kPa and n s0.001

molrkg, D g asy15.64 kJrmol. Selecting a small, but other-

wise arbitrary, loading for the standard state in the adsorbed
phase

D g asy RT ln K qconst. 88Ž .

Comparison of two adsorbates in identical standard states
gives

K1a aD g yD g sy RT ln 89Ž .1 2 K2

The comparison in Eq. 89 is independent of the standard
state chosen for the adsorbed state. This equation was used

Ž .recently Schenk et al., 2001 to compare the Gibbs free en-
ergies of formation of various alkane molecules in zeolites
using Monte Carlo calculations. For example, the free energy
of formation of 3,3,5-trimethylheptane relative to n-decane
at 415 K is 33 kJrmol in MFI, but near zero in FAU or in the
gas phase. Thus, MFI strongly favors the formation of n-de-
cane relative to 3,3,5-trimethylpentane, because the shape of

Žn-decane is commensurate with the pore shape Schenk et
.al., 2001 .

Conclusions
Adsorption in microporous adsorbents can be treated as a

particular case of solution thermodynamics in which the sol-
vent is a solid adsorbent. Spreading pressure and surface area
variables is unnecessary.

An obvious difference between adsorbed and bulk fluids is
the relative importance of the interfacial region. In vapor-
liquid equilibrium, two macroscopic phases are separated by
a gas-liquid interfacial region which is too small to influence
the thermodynamic properties of either phase. In adsorption

Žequilibrium, two macroscopic phases gas and solid adsorb-
.ent are separated by a gas-solid interfacial region, which may

contain more molecules than the bulk gas phase.
A subtle difference between adsorbed and bulk fluids is

observed in the differential variables. For a pure bulk fluid,
the partial molar variables are identical to the molar quanti-

Ž .ties, for example, the partial molar enthalpy  Hr n isT , P
Ž .equal to the molar enthalpy Hrn . For adsorbed fluids, the

differentials are not partial molar variables because the pres-
sure is not held constant for the differentiation. Conse-

Ž .quently, for a pure adsorbed fluid see Figure 4 , the differ-
Ž . Ž .ential entropy D s is not equal to the molar entropy DSrn .
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Notation
Asspecific surface area, m2rkg

Ž .Asconstant in Eq. A2, Jr mol ?K
Bsadsorption second virial coefficient, cm3rg
Bsconstant in Eq. A2, Jrmol
T Ž .c sheat capacity of perfect gas, Jr mol ?Kp
Csconst. in Eq. A2, Pay1

Ž .C sspecific heat capacity, Jr kg ?Kp
Ž s.U Ž .C sheat capacity of solid adsorbent in ®acuo, Jr kg ?Kp

Esenergy, J
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f sfugacity, Pa
F sspecific Helmholtz free energy, Jrkg
Gsspecific Gibbs free energy, Jrkg

DGasintegral free energy of adsorbed phase, Jrkg
Ž .GGsgrand potential UyTSymN , Jrkg

g smolar Gibbs free energy, Jrmol
g R sresidual Gibbs free energy of ith gaseous component, Jrmoli

D g asmolar integral free energy of adsorbed phase, Jrmol
aD g sdifferential free energy in adsorbed phase, Jrmol
hsmolar enthalpy, Jrmol

h8smolar enthalpy of perfect gas, Jrmol
gh spartial molar enthalpy in gas phase, Jrmol

hR sresidual enthalpy of ith component in gas phase, Jrmoli
Dhasmolar integral enthalpy of adsorbed phase, Jrmol

aDh sdifferential enthalpy in adsorbed phase, Jrmol
Hsspecific enthalpy, Jrkg

D H asintegral enthalpy of adsorbed phase, Jrkg
ksBoltzmann constant, 1.3806=10y23 JrK

Ž .K sHenry constant, molr kg ?Pa
msmass of adsorbent, kg
Msmolecular weight, kgrmol
Nsnumber of molecules
nsspecific amount adsorbed, molrkg
P spressure, Pa

P8sstandard pressure, 1 bar
q sisosteric heat, Jrmols t
Qsspecific heat absorbed by system, Jrkg

Ž .Rsgas constant, 8.3145 Jr mol ?K
Ž .ssmolar entropy, Jr mol ?K

Ž .s8smolar entropy of perfect gas, Jr mol ?K
g Ž .s spartial molar entropy in gas phase, Jr mol ?K
R Ž .s sresidual entropy of ith component in gas phase, Jr mol ?Ki
a Ž .D s smolar integral entropy of adsorbed phase, Jr mol ?K
a Ž .D s sdifferential entropy in adsorbed phase, Jr mol ?K

Ž .Ssspecific entropy, Jr kg ?K
a Ž .DS sintegral entropy of adsorbed phase, Jr kg ?K

T stemperature, K
T8sroom temperature; reference temperature, K
usmolar internal energy, Jrmol
Usspecific internal energy, Jrkg
®smolar volume, m3rmol

V sspecific volume, m3rkg
V g sspecific void volume of system, m3rkg
V s sspecific volume of solid adsorbent, m3rkg

xsmol fraction in condensed phase
xsdistance perpendicular to Gibbs dividing surface, m
y smol fraction of ith adsorbate in gas phasei
mschemical potential of adsorbent, Jrkg

ms schemical potential of pure adsorbent in std. state, Jrkg
m schemical potential of ith adsorbate, Jrmoli
Jsgrand canonical partition function
Psspreading pressure, Nrm
r smolar density, molrm3

f sspecific gas-gas q gas-solid potential energy, Jrkg
Fssurface potential, Jrkg

Subscript
isrefers to ith adsorbate component

Superscripts
asrefers to adsorbed phase

compsrefers to isothermal compression of gas
g srefers to gas phase

immsrefers to isothermal immersion of pure adsorbent in com-
pressed fluid

8srefers to value in perfect-gas standard state
ssrefers to pure solid

sU srefers to pure solid in ®acuo
tsrefers to total value for system
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Appendix
The enthalpy, free energy, and entropy functions are calcu-

lated for the Langmuir model of adsorption of a pure, per-
fect gas. Although the Langmuir model seldom fits experi-
mental data quantitatively, it predicts qualitatively the behav-
ior of the thermodynamic functions in microporous adsorb-
ents. The Langmuir adsorption isotherm is

mCP
an s A1Ž .

1qCP

na is specific loading in molrkg, m is the saturation capacity
in molrkg, P is the pressure, and C is a function of tempera-
ture

1
ArR yBrRTCs e e A2Ž .

P8

where A and B are constants: it is shown below that A is the
Ž .molar integral entropy at saturation and B is the constant

differential enthalpy of adsorption. P8 is the standard-state
pressure. Assuming a perfect gas, the surface potential is ob-
tained by substituting Eq. A1 in Eq. 31

Fsy mRT ln 1qCP A3Ž . Ž .

From Eqs. 48 and 51

P
a aDG s n RT ln qF A4Ž .

P8

Using Eq. A3

P
a aDG s n RT ln y mRT ln 1qCP A5Ž . Ž .

P8

Ž R .From Eqs. 48 and 51 for a perfect gas h s0

 F
a 2D H syT A6Ž .

 T T P

Using Eqs. A2 and A3

D H as naB A7Ž .

From Eqs. 47, A5, and A7

P
a a a a aTDS sD H yDG s n Bq mRT ln 1qCP y n RT lnŽ .

P8

A8Ž .

Having calculated the integral functions DGa, D H a, and DSa,

the molar integral functions are obtained by dividing by na

DGa P m
aD g s s RT ln y RT ln 1qCPŽ .a an P8 n

D H a
aDh s s Ban

TDSa m P
aTD s s s Bq RT ln 1qCP y RT ln A9Ž . Ž .a an n P8

Equation A9 shows that the constant B in Eq. A2 is equal to
the molar integral enthalpy, which, in general, varies with
loading, but is a constant for the Langmuir model. In prepa-
ration for calculating the differential functions, the pressure
is eliminated from Eq. A5 using A1

am 1 n
a aDG sy mRT ln q n RT ln ?a amy n CP8 my n

A10Ž .

Using Eq. 53

P
aD g s RT ln

P8

aDh s B

P
aTD s s By RT ln A11Ž .

P8

Taking the limit as P ™` and na ™ m in Eq. A9 gives for
the molar integral entropy

B
alim D s s q R ln CP8 s A A12Ž . Ž .

TP ™`

which shows that the constant A in Eq. A2 is the molar inte-
gral entropy at saturation. Experimental data for adsorption

Žof gases near their critical temperatures in zeolites Myers
.and Siperstein, 2001 gives values in the range y10R to

y12 R for the molar integral entropy at saturation. This is
comparable to a typical value of y10R for the entropy of

Žcondensation of liquids at their normal boiling points Smith
.et al., 2001 .

Finally, the immersional functions are calculated from Eq.
50 using A3

DG imm sy mRT ln 1qCPŽ .
mBCP

immD H s
1qCP

mBCP
immTDS s q mRT ln 1qCP A13Ž . Ž .

1qCP

The nuisance term PV s in Eq. 50 is negligible at low pres-
sure. All three functions are negative in sign. The equation
for the enthalpy of immersion has the same functional form
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Figure A1. Langmuir adsorption isotherm at 298.15 K.
Differential enthalpy sy28 kJrmol; capacity s 5 molrkg;
molar integral entropy at saturationsy10.5R.

as the adsorption isotherm. The expression for the entropy of
Ž immimmersion contains two terms of opposite sign TDS s

imm imm. immD H yDG so that TDS has a minimum. For ad-
sorption of subcritical fluids, condensation of the vapor at its
vapor pressure may occur first, before the minimum is
reached.

( a a a)Figure A2. Integral functions DG , D H , D S at
298.15 K relative to perfect-gas reference
state.
Constants same as Figure A1.

a a a( )Figure A3. Differential D g , D h , D s and molar
( a a a)functions D g , D h , D s at 298.15 K rela-

tive to perfect-gas reference state.
Constants same as Figure A1.

Numerical example
Let constants Asy10.5R, Bsy28 kJrmol, and ms5

molrkg; let variables P8s1 bar and T s298.15 K. From Eq.
A2, Cs2.214 bary1.

( imm immFigure A4. Immersional functions D G , D H ,
imm)D S at 298.15 K relative to compressed

gas and clean adsorbent.
Constants same as Figure A1.
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Ž .The Langmuir adsorption isotherm Eq. A1 is plotted on
Figure A1. The integral thermodynamics functions for the

Ž a a a.adsorbed gas DG , D H , DS from Eqs. A5, A7 and A8 are
plotted on Figure A2. Values for all three functions are rela-
tive to the perfect-gas reference state at 298 K and 1 bar.
The inset in Figure A2 shows that the DGa and TDSa func-

Ž . ations intersect at low pressure 0.01 bar , because DS has
zero slope at the origin.

The differential and molar integral functions from Eqs. A9
and A11 are plotted on Figure A3. The differential Gibbs

aŽ .free energy D g is equal to the chemical potential of the
Ž a.gas m . Notice that the differential and molar functions are

unequal. The Langmuir model has the unusual property that
the molar and differential enthalpies are equal. For a real
system, the differential enthalpy is neither constant nor equal
to the molar enthalpy. Furthermore, for a real system, the

aŽ . Ž .differential enthalpy Dh is undefined goes to infinity at
high loading approaching the saturation capacity.

The immersional functions from Eq. A13 are plotted on
Figure A4. For subcritical fluids, these functions terminate at
the vapor pressure. For supercritical fluids, there is no limit
to the pressure, but the Langmuir model does not account
for excess variables according to Eq. 3 and therefore fails at
high pressure.

This example shows that the behavior of the integral func-
Ž a a a.tions DG , D H , DS plotted on Figure A2 and their dif-

ferentials plotted on Figure A3 is complex, even for the
Langmuir model. However, the immersional functions
Ž imm imm imm.DG , D H , DS on Figure A4 have simple shapes,
finite non-zero slopes at the origin, and no singularities. The
free energy of immersion is the equation of state for the ad-
sorbed phase according to Eq. 63. The immersional functions
are clearly defined physically as the change accompanying the
isothermal, isobaric contact of clean adsorbent with com-
pressed fluid.
Manuscript recei®ed Mar. 23, 2001, and re®ision recei®ed July 9, 2001.
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