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Abstract. The prediction of multicomponent adsorption equilibria from single-component adsorption
experiments is a challenging and important problem. Predictions based upon the assumption of an ideal
adsorbed solution (IAS) may give unacceptable errors, especially in the case of large differences in the size
or the polarity of the adsorbate molecules. These differences in molecular properties generate differences
in the chemical potential of the solid (ψ) that may be used to predict activity coefficients for nonideal
adsorbed solutions (NIAS). The ψ plots for pure-gas isotherms identify ideal solutions and provide reliable
predictions of mixture equilibria for nonideal adsorbed solutions.
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Introduction

The assumption of an ideal adsorbed solution (Myers and Prausnitz, 1965) provides a thermodynamically
consistent method of predicting mixture equilibria from single-gas adsorption isotherms of any mathemat-
ical form. The problem is that one cannot decide in advance which mixtures are ideal. Although there is
a strong correlation between nonideal adsorbed solutions and the differential enthalpies of the pure gases
(Siperstein and Myers, 2001), accurate enthalpy data are usually unavailable.

New Definition of Ideal Adsorbed Solution (IAS)

Single-component adsorption is actually a binary mixture; binary adsorption is actually a ternary mixture.
Therefore it should be possible to define an “activity coefficient” for the interaction of the solid with a pure
gas. Since the gas and solid in which it adsorbs are in different states, the standard methods of solution
thermodynamics for the definition of activity coefficients do not apply.

The chemical potential of the solid is the grand potential of adsorption Ω (Myers, 2002):

Ω = −RT
∫ P

0

n

P
dP (constant T ) (1)



The reference state for the chemical potential is the clean adsorbent in vacuo. Define:

ψ = − Ω
RT

(2)

ψ is a positive variable with the same units (mol kg−1) as the amount adsorbed. An ideal adsorbed solution
is one for which the chemical potentials of the solid are the same for the individual pure components. Two
gases with equal values of ψ interact with the surface in the same way and therefore their adsorbed solution
must be ideal. Figure 1 shows an example for ethylene and ethane adsorbed on Nuxit activated carbon
(Szepesy and Illes, 1963). The reduced chemical potentials of the solid coincide (within 2%) for adsorption
of the individual gases and their adsorbed solution is ideal (within 2%) as shown on Figure 2.
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Figure 1. ψ plot for adsorption of pure gases on
activated carbon at 20◦C. —: C2H6. ◦: C2H4.

Figure 2. Comparison of IAS with experiment for
binary adsorption on Nuxit activated carbon at
20◦C. �: C2H6; ◦: C2H4.

Effect of Energetic Heterogeneity

If ideal adsorbed solutions have equal values of ψ, then the degree of nonideality of an adsorbed mixture
should be proportional to the difference ∆ψ for the pure components.

Any model of heterogeneity for the gas-solid interaction energy requires a choice for its distribution.
The symmetrical beta distribution is chosen here because of its flexibility, which ranges from a uniform
distribution (no. 1 on Figure 3) to a Gaussian-like distribution (no. 3 on Figure 3). A discrete distribution
with two energies (no. 4 on Figure 3) is also shown. All four distributions have equal values for their
average and standard deviation. Assuming Langmuir’s equation for each gas-solid interaction energy,
the adsorption isotherms for pure components and mixtures may be written as integrals over the energy
distribution:

n1(P, y1) =
m1Γ(2a)
[Γ(a)]2

∫ 1

0

(
C1(z)Py1

1 + C1(z)Py1 + C2(z)Py2

)
[z(1 − z)]a−1dz (3)

n2(P, y2) =
m2Γ(2a)
[Γ(a)]2

∫ 1

0

(
C2(z)Py2

1 + C1(z)Py1 + C2(z)Py2

)
[z(1 − z)]a−1dz (4)

where Γ is the gamma function and the parameter a ≥ 1 determines the shape of the beta distribution as
shown on Figure 3. The chemical potential of the solid is:

ψ(P, y1) =
m12Γ(2a)
[Γ(a)]2

∫ 1

0

ln[1 + C1(z)Py1 + C2(z)Py2][z(1 − z)]a−1dz (5)



-1 -0.5 0 0.5 1
0

0.5

1

1.5

(ε − ε)/kT

p(
∆ε

/k
T

) 1

2

3
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

γ i

ψ/m = 0.3

ψ/m = 1

ψ/m = 3

γ
1

γ
2

Figure 3. Distributions for energy of adsorption.
(1): uniform (a = 1); (2): intermediate (a = 2);
(3) Gaussian-like (a = 10); (4) discrete (two ener-
gies). σ = 1/(2

√
3) for all distributions.

Figure 4. Activity coefficients for ∆σ = 2, a = 1.
Solid lines: Eq. (9). Points: symmetrical approxi-
mation, Eqs. (13) and (14).

m12 is the harmonic mean of the capacities at pore filling for the individual components of the mixture:

1
m12

=
1
2

[
1
m1

+
1
m2

]
(6)

The constant C varies with the distribution of the gas-solid interaction energy:

Ci(z) = Coi exp[ti(z − 0.5)] (7)

The variable t depends upon the standard deviation (σ) and the shape (a) of the continuous distributions
plotted on Figure 3:

σi =
ti

2
√

2a+ 1
(8)

Adsorbed-phase activity coefficients are defined by the deviation from ideality:

γi =
Pyi

P ◦
i (ψ)xi

(9)

The activity coefficients calculated from these equations are functions of composition and ψ as shown
on Figure 4. Components with equal values of σ are ideal; the activity coefficients depend only on the
difference in the standard deviations of the pure components. If the standard deviations of the two species
are different, then the local selectivity will vary with the local energies and the mixture will become
segregated, with a different composition at each position. The overall composition of the solution is:

x1 =
n1

n1 + n2
(10)

Although the adsorbed solution is locally ideal, the energetic heterogeneity generates activity coefficients
for the overall composition-averaged solution. It can be shown that γi < 1 except when both components
have the same standard deviation, in which case Eqs. (3) and (4) reduce to Langmuir’s equation for an
ideal binary mixture.
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Figure 5. ψ plots. Reduced chemical potential
of adsorbent for single-gas adsorption isotherms,
a = 1. (1): σ = 0; (2): σ = 1.52; (3): σ = 2.29;
(4): σ = 2.96.

Figure 6. Variation of activity coefficients with ψ
for ∆σ = 1. Values of ge at x = 1

2
. Long dashes:

Gaussian; short dashes: discrete; solid line: uni-
form distribution. ◦: Eq. (16).

The excess Gibbs free energy of mixing in the adsorbed phase is:

ge

RT
= x1 ln γ1 + x2 ln γ2 (11)

Assume that ge is quadratic in composition and symmetrical about x = 1
2 so that:

ge

RT
= K(ψ)x1x2 (12)

The activity coefficients are then:
ln(γ1) = K(ψ)x2

2 (13)

ln(γ2) = K(ψ)x2
1 (14)

Activity coefficients are compared with Eqs. (13) and (14) on Figure 4. The agreement of theory with
the quadratic approximation is good but the function K(ψ) must still be determined. Define a reduced
chemical potential ψR = ψ/m at a reduced pore filling θ = (n/m) = 1

2 for single gas adsorption. Let
component no. 1 have energetically heterogenous gas-solid interactions with σ1 > 0 and let component
no. 2 be energetically homogeneous so that σ2 = 0. Remarkably, it can be shown that at the limit of pore
filling:

lim
ψ→∞

K = −4δ12 (15)

exactly, where δ12 = |ψ1R−ψ2R| evaluated at θ = 1
2 as shown on Figure 5. The value of δ12 increases with

the standard deviation of the heterogeneous component. Eq. (15) is valid for all four distributions shown
on Figure 3 and applies to any symmetrical distribution of gas-solid energies.

At finite values of chemical potential, the activity coefficients depend upon the shape of the distribution
as shown on Figure 6. An approximate fit of all of these distributions is provided by:

ge

RT
= −4δ12 x1x2

[
1 − e−α12ψ

]
(16)



where α12 ≡ (1/m12) exp(−δ12). Eq. (16) is plotted on Figure 6 for comparison with the distributions
shown on Figure 3. In the Henry’s law region of low pore filling where ψ → 0, the limits are ge = 0
and γi = 1 as required for an ideal solution. In the region of pore filling where ψ → ∞, the limit
ge/RT = −4δ12 x1x2 applies to all symmetrical energy distributions.

Eq. (16) is a one-parameter equation for predicting activity coefficients of nonideal adsorbed solutions
(NIAS) from single-gas adsorption isotherms. The activity coefficients are functions of ψ and adsorbed-
phase composition:

ln(γ1) = −4δ12
[
1 − e−α12ψ

]
x2

2 (17)

ln(γ2) = −4δ12
[
1 − e−α12ψ

]
x2

1 (18)

The activity coefficients depend on the difference in standard deviations of the two components. The
activity coefficients of a binary mixture with σ1 = 3 and σ2 = 1 are the same as the activity coefficients of
a binary mixture with σ1 = 2 and σ2 = 0 because ∆σ is the same for both mixtures.

Comparison of NIAS with Simulations

Reduced chemical potentials for simulations of adsorption of nonpolar Lennard-Jones molecules in a
spherical cavity (diameter 1.14 nm) are plotted on Figure 7. The molecular diameters of the large and
small molecules are 0.513 and 0.382 nm, respectively. For this binary mixture, δ12 = |ψ1R − ψ2R| = 0.202.
Activity coefficients from the simulation (Dunne and Myers, 1994) are compared with NIAS on Figure 8.
These so-called entropic effects are caused by the difference in size of the adsorbate molecules.
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Figure 7. Simulated ψ plots at 50◦C. Solid line:
large molecule; dashed line: small molecule.

Figure 8. Activity coefficients at 50◦C, 1000 kPa.
Simulations: ◦: large molecule; �: small molecule.
Solid lines: NIAS, Eqs. (17) and (18), δ12 = 0.202.

Comparison of NIAS with Experiment

Reduced chemicals potentials for adsorption of carbon dioxide and propane in NaX (FAU) are shown on
Figure 9. The large difference in chemical potentials is due to the difference in interaction energies of the
two molecules with the exchangeable Na+ ions: carbon dioxide possesses a large quadrupole moment but
propane is nonpolar. NIAS is compared with experiment (Siperstein and Myers, 2001) on Figure 10.
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Figure 9. Psi plots for adsorption in NaX at 20◦C.
Solid line: CO2; dashed line: C3H8.

Figure 10. Comparison of NIAS with experiment
for adsorption in NaX at 20◦C. ◦: CO2; �: C3H8.

Table 1 summarizes a comparison of NIAS predictions with experiment. The mixtures which are in fact
ideal are correctly identified by the equality of their ψ plots for the pure components. For nonideal solutions,
the NIAS predictions are a considerable improvement over IAS predictions. In two cases, Eqs. (17) and
(18) fit the experimental data but the value of δ12 cannot be determined from the single-gas adsorption
isotherms. This complication arises for mixture pairs with large differences in polarity and size. Fortunately,
the inability of NIAS to predict the δ12 constant is apparent in the ψ plots for the pure gases, which intersect
at values of pore filling below θ = 1

2 . Mixtures for which the δ12 constant can be predicted have differences
in chemical potential which increase smoothly with pore filling as shown on Figures 5, 7 and 9.

Table 1. Comparison of NIAS predictions with experiment

Gas 1 Gas 2 Adsorbent T (K) δ12
Error, %

Ref.
NIAS IAS

CO2 C3H8 NaX (FAU) 293 0.613 9.0 29.3 Siperstein and Myers, 2001
CO2 C2H4 NaX (FAU) 293 0.122 4.8 7.4 ”
CO2 C2H6 NaX (FAU) 293 0.613 9.6 17.2 ”
C2H4 C2H6 NaX (FAU) 293 0.217 4.8 13.0 ”
SF6 C2H6 NaX (FAU) 293 0.0 4.1 4.1 ”
C2H6 CH4 silicalite (MFI) 293 0.0 3.2 3.2 ”
SF6 CH4 silicalite (MFI) 293 0.040 4.9 9.1 ”
CO2 C3H8 H-mordenite 303 1.050∗ 6.6 29.8 Talu and Zwiebel, 1986
H2S C3H8 H-mordenite 303 1.500∗ 4.3 34.3 ”
H2S CO2 H-mordenite 303 0.0 11.5 11.5 ”
C2H6 C2H4 Nuxit AC 293 0.0 1.8 1.8 Szepesy and Illes, 1963

∗: cannot be predicted from single-gas isotherms
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