
Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

As we begin to design and construct larger computers, the issue of fault tol-
erance becomes increasingly important. The number of components increases
with the size of the system. As the number of components increases, the length
of time between single component failures necessarily decreases. If the system
is incapable of operating correctly when components fail, the mean time to fail-
ures (MTTF) for the entire system decreases similarly. In the extreme case of
very large systems, the MTTF becomes intolerably small. Even in moderately
sized systems, this decrease in MTTF increases the frequency of downtime and
the need for repair.

Any system which hopes to acheive some measure of scalability must be
designed to offset the inevitable decrease of MTTF that accompanies increasing
system size. While technology and processing improvements will have some
affect on the achievable MTTF for single components, these improvements will
not occur at a sufficient pace for us to rely on them to keep the system MTTF
at an acceptable level. We are thus forced to seek other means to offset the
impending increase in the failure rate of the system.

Given that the MTTF for any component is essentially constant, we wish
to improve the system MTTF. This can effectively be done by designing the
system so that it can operate when some of the components in the system are
disfunctional. Multiple component failures must then accumulate in order for
the system to be rendered inoperative. The more faulty components the system
can tolerate simultaneously, the longer the MTTF.

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

Certainly, system failures are least tolerable when they are unanticipated.
The effect of component failures can be further ameliorated when the system
is capable of tolerating many faults and identifying the faults as they occur.
Knowing which components have failed allows the failures to be repaired
before the system is rendered inoperative. The downtime for component repair
can be scheduled and will thus be less costly and inconvenient than are sudden
and unexpected system failures.

In this paper, we describe a scheme for achieving a reasonable level of fault
tolerance in the network of a massively parallel MIMD computer by providing
multiple paths through the network between each pair of network endpoints.
Connections are arranged so that any of several distinct routing components at
each stage of routing can be used to route to the desired destination. We do
not concern ourselves with fault tolerance issues outside of the network. The
design presented is applicable across the wide range of networks constructed
using multiple routing stages, including all kinds of banyan-like networks [10]
and fat-tree networks [13] [6] [3].

In order for the network to be useful in the context of a large-scale parallel
computer, it must interface coherently with the network endpoints. For a large
parallel computer, each endpoint will consist of a processor and memory. A
typical network processor interface suitable for a shared-memory multiproces-
sor is shown in Figure 20.1. Here each network endpoint is a processor with its
own local memory and a cache-controller. The cache-controller is responsible
for coordinating the interactions of the network, the processor, and the local
memory as well as maintaining its local cache and keeping the cache coherent
with the rest of the network. The exact details of the connection between the
processor and the network are a separate architectural issue. In general, the
processor has some number of inputs from and some number of outputs to the
network. Multiple connections to and from the network are necessary in order
to prevent any single routing component or wire in the network from being
critical.

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

Processor
Controller

Cache

Memory

Processor
Controller

Cache

Memory

Network

Memory

Controller
CacheProcessor

The term critical is used throughout this paper to refer to a component or wire
when it must function properly in order for the system to operate correctly.
A component is non-critical if the system can continue to operate correctly,
perhaps with degraded performance, when the component fails.

In most current computer designs all components are critical. The most
notable exception is the memory systems of many modern computer systems.
Many computers use Error-Correcting Codes [15] [5] in their memory systems
to tolerate faults in memory components. The Symbolics LISP Machine and
Thinking Machine’s Connection Machine are examples of computers that use
ECC to protect their memory systems. The LISP Machine uses ECC on its
main memory [17] while the Connection Machine uses ECC on its Data Vault
disk memory [18].

In multistage routing networks, each routing component is effectively a small
crossbar. Traditional crossbars have inputs and outputs and can connect any
of the inputs to any of the outputs with the restriction that only one input can
be connected to each output at the same time. Each of the outputs is logically

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

Basic Crossbar (no connections)

Single Connections through Crossbar

Two Connections through Crossbar

distinct. That is, all of the outputs route in logically different directions. If
more than one input wishes to connect to the same output direction, all but one
of such inputs are blocked. The outputs in each logical direction each connect
to exactly one routing component in the next routing stage; this connection is
made over a single physical group of wires. The number of different routing
directions a routing component distinguishes, , is often referred to as the
component’s radix.

Figures 20.2 shows the simple 2 2 crossbar routing element and its possible
configurations. The input wires and output wires are orthogonal to each other.
Each input and output wire runs across the chip so that any input can be
connected to any output. Dots are used in Figure 20.2 to denote when two
wires are connected to each other. Multiple inputs can be connected to outputs
simultaneously as long as each input connects to a different output.

Figure 20.3 shows how a square network with 16 inputs and outputs can be
constructed using the 2 2 crossbar routing elements shown in Figure 20.2.
Input and output nodes are shown on separate sides of the network to keep
the diagram simple; each pair of input and output nodes can represent a sin-

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

gle component. The highlighted path through the network shows the path a
connection would take from processor 6 to processor 16.

Each network endpoint must have multiple input connections to the network
in order to prevent any single wire or routing component in the first stage of
routing from being critical. Network inputs from a single endpoint should con-
nect through many different physical components to maximize fault tolerance.
For banyan-style multistage networks, all inputs to the first routing stage are
logically equivalent. That is, connections through all inputs to the first stage
routers are capable of reaching the same destination with the same routing
specification. Thus, inputs from the same endpoint can easily be spread across
multiple routing components. In tree structures, such as fat-trees, only small
sets of inputs are logically equivalent. In order to obtain maximal fault toler-
ance in tree topologies, there must be at least as many components composing
each set of logically equivalent inputs as there are input connections for each
endpoint.

With inputs from each endpoint, failures can isolate an endpoint from
the network in the worst-case in which all faults concentrate around a single
endpoint. More than failures can be sustained as long as no more than 1
failures are concentrated around a single endpoint. Whether or not the complete

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

loss of an endpoint from the network is sufficient to cause the entire system to
fail depends on the fault tolerance of the computational paradigm being used.

Additional wiring constraints can be utilized to minimize the effects of
multiple component failures. Consider, for example, Figures 20.4 and 20.5.
These two figures show the connection of processors to the first stage of routing
components where each processor’s inputs are attached to different physical
routing components. In Figure 20.4, if the first two routing components in the
first stage of routers fail, four processors are cut off from the network. However,
in Figure 20.5, if the first two routing components fail, only one processor is
isolated from the network. In fact with the configuration in Figure 20.5, any two
component failures in the first stage of routing will isolate at most one processor
from the network; similarly, any three component failures will isolate at most
two processors from the network. For this simple case where each processor
has two inputs to the network, the additional wiring constraint used to generate
the wiring pattern in Figure 20.5 is: no two processors sharing one first stage
router should also share a second first stage router. In a more general sense, the
wiring in Figure 20.5 degrades more slowly than that of Figure 20.4 because the
inputs have a greater fan-out or expansion into the network. A more formal
characterization of expansion is provided in [12]. In contrast, it is possible
to isolate one input in the expansive wiring (Figure 20.5) by any two faulty
routers in the first stage; in the non-expansive wiring (Figure 20.4), two faulty
routers in the first stage will only isolate an input when the routers fail as one
of the four sets of pairs. In fact, it is possible to lose as many as half of the
routing components in the Figure 20.4 without severing any endpoints from the
network. The non-expansive case degrades less gracefully, but is less likely to
degrade in a manner that isolates endpoints.

Considering the traditional approach to multistage networks, we see that a
single faulty component or wire in the network will prevent some inputs from
reaching some outputs. That is, all the components and wires involved in
routing between two network endpoints are critical to the functionality of
the network. This can easily be seen by reviewing Figure 20.3. Each route
between a given input and output can traverse exactly one path. If a single wire
or component fails, some input will be isolated from some output.

To avoid making the internal network wires and routing components criti-
cal, we must redesigned the crossbar to provide redundant paths through the

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

Multipath Crossbar (no connections)

Logically Equivalent Connection Pairs

network. We can give each crossbar element multiple logically equivalent out-
puts in each logical direction. Two or more outputs are considered logically
equivalent, when they can be reached with the same routing sequence and
they connect to logically equivalent inputs. A router distinguishing logically
distinct destinations with outputs in each logical direction will have a total
of outputs. The number of logically equivalent outputs in each logical
direction from a routing component, , is referred to as the dilation of the
router. Outputs going in the same logical direction can be connected to dis-
tinct physical routing components. The number of possible paths through the
network can, up to a point, expand at each routing stage. No single wire or
routing component within the network remains critical.

If we consider that any connection entering the network can start through any
of routing components in the first stage and that the number of paths increases
through the network, it is easy to see that the number of input connections
provides a tighter bound on the worst-case number of tolerable failures than

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

one would derive considering only internal routing component failures. The
same kind of consideration can be applied to the number of outputs provided to
each endpoint by the network. Section 20.6 expands this reasoning to provide
a quantification of the number of paths through the network.

As mentioned for the network inputs, the redundant outputs from eachrouting
component should be connected to as many distinct physical routing compo-
nents as possible to maximize fault tolerance. Expansion is just as important for
connections between routers in subsequent routing stages within the network
as it was for input connections. [12] characterizes this notion of expansion.

Figure 20.6 shows a 4 2 crossbar routing component with 2 outputs in each
logical direction. Up to two inputs can be simultaneously routed in each logical
output direction. Figure 20.7 shows a 16 16 multipath network constructed
from the redundant output 4 2 crossbar routers shown in Figure 20.6. For
comparison with Figure 20.3, all the wires which could be used to route a

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

connection between processor 6 and processor 16 are highlighted. Figure 20.7
illustrates that there are always multiple links between routing stages which
can make the connection; additionally, there are multiple routing components
at each stage that could be used to make the connection.

Redundant paths through the network also improve network routing perfor-
mance by reducing the probability that connections will block each other within
the network. [7] shows the effects of these multiple paths on network routing
statistics for a specific configuration. Knight and Sobalvarro describe tools for
making more general performance comparisons in [8].

As is the case with network inputs, there must be multiple output connections
from the network to each endpoint. Multiple output connections prevent any
single wire or routing component from being critical.

Using the crossbar routing component described in the previous section, each
routing component would supply multiple outputs to each endpoint. From
a fault tolerance perspective, this is non-optimal since this means a single
component failure would sever multiple outputs to a single endpoint. If each
endpoint had output connections and a crossbar router with a dilation of
were used, an endpoint could be isolated from the network by only faults.
To maximize the number of tolerable faults for a given number of output
connections (), the dilation () must be minimized. At the final routing stage,
then, fault tolerance is maximized by using crossbar routing elements with a
single output in each logical direction.

Using crossbar routers with a single output in each logical direction in the
final stage of the routing network will give the network slightly inferior routing
performance to a similar configuration in which crossbar routers with multiple
outputs per logical direction are used in the final routing stage. However, the
improvement in fault tolerance is considerable and generally worth the tradeoff.

Note that the last stage of the network in Figure 20.7 was constructed using
standard crossbar routing components like the ones shown in Figure 20.2.
Using these crossbars with a dilation of one, two separate routing components
can provide an output to each endpoint. If the 4 2 crossbars with a dilation of
2 had been used in the final stage, then a single component would be providing
outputs to each network endpoint; this single component would then be critical
for the network to be fully operational.

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

To quantify the fault-tolerant properties of these networks we can count the
number of components in each routing stage which are available to route
a connection between any pair of endpoints. In the previous sections five
parameters have been used to characterize the multistage network: the number
of input connections per endpoint (), the number of outputs to each endpoint
(), the number of inputs to each crossbar router (), the switch radix (), and
switch dilation (). Assuming all the routing components are identical, we
can roughly quantify the number of paths through the network. Let be the
number of routing stages in the network. The number of paths between a single
source destination pair expands further away from the source into the network
at the rate of dilation, . Thus, we have , the number of paths to stage
given by Equation 20.1.

1 (20.1)

After a point in the network, the paths will have to diminish in order to connect
to the proper destination. Looking backward from the destination node, we see
that the paths must grow as the network radix, . This constraint is expressed
in Equation 20.2.

1 (20.2)

These two expansions must, of course, meet at some point inside the network.
This occurs when and are equal. We may call this turning point stage

. can be determined as follows:

1 1

1 ln ln ln ln
ln ln

1 ln () ln

ln
(20.3)

Once Equation 20.3 is solved for , we can quantify the number of connections
into each stage of the network by Equation 20.4.

1

min 1 1

1
(20.4)

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

1 2 3 4 5
2 4 8 4 2

Note that Equation 20.4 expresses the maximum achievable number of paths
between stages for a single source-destination pair. Not all wiring patterns will
actually achieve this maximum between every pair of sources and destinations.
In any case, Equation 20.4 provides a good first-order estimate of the number
of paths available. The total number of distinct paths between each source and
destination simply grows as Equation 20.1 and is thus given by Equation 20.5.

1 (20.5)

For the sake of example, consider the network in Figure 20.7 (
2, 4 4). Solving Equation 20.3 for , we find 3.

The number of connections into each stage can then be calculated as shown
in Table 20.1. The total number of paths is simply 2 23 16. Noting
Figure 20.7, we see it does achieve this maximum path expansion for the
highlighted path; the paths between all other source and destination pairs in
Figure 20.7 also achieve this path expansion.

In the previous section we identified a number of parameters which characterize
multistage networks (, , , ,). Additionally, the network is characterized
by the number of endpoints it supports (). While these parameters have
been discussed separately, they are certainly not free to be specified completely
independent of one another. The bandwidth into the network from the endpoints
must match the bandwidth into the first stage of routing. The bandwidth
between network stages must match. The bandwidth out of the network must
match the output bandwidth to the endpoints. The number of processors is
usually a power of the radix of the crossbar routers.

Square networks (i.e.,) are often good configurations [10], especially
when all endpoints are being treated equally. Square networks are usually
constructed from square crossbar routing elements (i.e.,). Bandwidth
matching is moderately easy in these cases. Rectangular networks with
are often desirable because they offer less network congestion, since the number

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

of inputs is less than the number of outputs. However, for a given network
structure, the smaller the number of inputs to the network from each endpoint
(), the less fault-tolerant the network. A square network (i.e., one in which
the total number of inputs and outputs are equal) can gain the same advantages
as the rectangular network, by only utilizing a fraction of the inputs at a given
time. The network has the improved fault tolerance of the square network with
the decreased congestion of a rectangular network.

Once we have constructed a network with redundant paths as described, there
still remains the issue of how these paths are utilized. Standard multistage
networks (e.g., the network of Figures 20.3) have the general advantage that
they are self-routing. That is, messages can be routed from source to destination
using only a few bits of data from the message stream to perform routing at
each stage in the network. Switching and arbitration to set up paths through
the network can occur asynchronously at each routing element involved in
a connection through the network without any global arbitration. It is not
necessary to have global knowledge of the state of the network.

The distributed self-routing properties of multistage networks should be
preserved when constructing networks with redundant paths. To achieve self-
routing and fault tolerance in multipath networks, we use a circuit-switched,
source-responsible, random-oblivious routing scheme.

Since the network can have faulty components while remaining functional,
we must provide a mechanism for establishing when a connection succeeds in
traversing the network. Likewise, when more connections need to be routed to
a given logical output direction of a routing component than there are outputs in
that logical direction, connections must be dropped due to the lack of available
resources; this blocking case must also be detected. To deal with both these
cases where a message can be lost in the network, we use a source-responsible
protocol and provide a mechanism to obtain connection status. After a message
has been sent, each routing component reports back to the source the outcome
of its attempt to transmit the message. If all the routing components and the
destination report that the connection was made as requested, the source knows
that the complete connection through the network succeeded. When one of
the routing components reports that it dropped the message or when a routing

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

component fails to respond properly, the source knows that the connection
failed and must be retried.

At each switching stage, one of three things can happen. In the case in which
there is exactly one output connection available in the desired logical output
direction, the connection will obviously get routed through the available output.
In the case where no outputs in the desired logical output direction are available,
the connection must be dropped. When more than one output in the requested
direction are available, the routing component randomly selects which output
to use. Thus, all connections which can be made through a given component
are made.

The routing component itself does not know the location of any faults in the
network and so cannot route to avoid them; instead, the routing component
routes obliviously to a logically correct output. If a connection through the
network fails due to congestion or faulty components, the source will know of
the failure and attempt to make the connection again. Since the choice of output
ports is random at each routing stage, it is likely that subsequent connections
through the network will take different paths. With this random routing, it is
generally possible to get a complete connection through the network in a small
number of attempts even when the network has multiple faults. Considering
a network with two inputs from each endpoint, in the worst case one of the
routing components in the first stage fails. On average, two attempts will be
required to complete a connection through the network. Since the number
of components available for a connection expands towards the middle of the
network, it will generally require even less retries to avoid faulty components
further inside the network.

Fault localization in the network is facilitated by the connection status returned
by each routing component. The data returned can include a checksum on
the data sent through the routing component as well as an indication of which
of the outputs, if any, was actually used in routing the connection. With a
knowledge of the logical direction in which the connection was destined, the

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

actual output port utilized at each stage of routing, and the point in the network
where the connection was lost, the fault can be localized to the connection
between exactly two components in the network. The fault can then lie in
either component or in the wire connecting them. Information from additional
failures can be used to further localize the fault as necessary.

Each endpoint only has connection information from its own network trans-
actions. This necessarily means each endpoint has only a limited amount of
information about faults in the network. A higher-level protocol should be
used to monitor the global network state so that repairs can be scheduled as
necessary.

The approach predominantly used to achieve fault tolerance in multistage rout-
ing networks is to construct a network with more switching stages than are
actually required to uniquely specify the destination ([11], [2], [16], [1] et. al.).
The set of destination specifications that reach the same physical destination
defines a class of equivalent paths. Since any of several paths can reach the
destination, it is possible to choose a path which avoids any single fault in the
network. Most of these schemes require the processor to choose its own path
through the network. These schemes almost exclusively assume each endpoint
has a single input and a single output connection to the network. BBN’s large
Butterfly Plus computers actually implement this extra stage approach to fault
tolerance.

An alternative approach for fault tolerance is to simply provide multiple
redundant networks ([4], [9]). The endpoint chooses a network over which to
make the connection. The networks route the connections independently and
reconverge at the destination endpoint. This approach does provide multiple
input and output connections. Again, the endpoints are responsible for choosing
fault-free paths.

Kruskal and Snir also propose a network with redundant paths using switches
similar to ours in [9]. They, however, do not develop any of the details of the
network. They suggest the redundant outputs from a routing element all go to
the same physical component; this, of course, undermines many of the benefits
of the dilated network.

Leighton and Maggs [12] suggest a related multipath network. Their theo-
retical work was influential to our design. In contrast to ours, their work details
packet-switched routing of data presented synchronously into the network.

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

2

2

2

2

8
 4x4
 Crossbar
(dilation 2)

4

4

4x4 Crossbar
 (dilation 1)

4x4 Crossbar
 (dilation 1)

They use a much more complicated routing scheme which requires approxi-
mately 4 log (where is the switch radix) steps in order to route a single
connection and an intricate routing switch. Our network routes in log
steps, but does so using oblivious routing. With the additional arbitration in
their network, Leighton and Maggs can guarantee that they can simultaneously
route the maximum number of packets allowed by the network’sphysical topol-
ogy. Our network simply relies on the probabilistic properties of the data and
network in order to route a large portion of connections simultaneously.

RN1 is a custom CMOS routing component constructed to provide simple
high-speed switching for fault-tolerant networks. RN1 has eight nine-bit wide
input channels and eight nine-bit wide output channels. These nine-bit wide
channels provide byte wide data transfer with the ninth bit serving as a signal
for the beginning and end of transmissions. RN1 can be configured in either
of two ways, as shown in Figure 20.8. The primary configuration is a 8 4
crossbar router with a dilation of two. In this configuration, all 8 input channels
are logically equivalent. Alternately, the component can be configured as a pair
of 4 4 crossbars, each with 4 logically equivalent inputs and a dilation of one.

Simple routing is performed by using the first two bits of a transmission to
indicate the the desired output destination. If an output in the desired direction
is available, the data transmission is routed to one such output. Otherwise,
the data is ignored. In either case, when the transmission completes, the RN1
routing component informs the sender of the connection status so that the sender
will know whether or not it is necessary to retry the transmission. When both

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

outputs in the desired output direction are available, the component randomly
chooses which port to use.

Figure 20.9 shows a 16 16 multipath network constructed from the RN1
routing component. A single physical RN1 routing component would imple-
ment two of the 4 4 crossbars in the second and final routing stage. To
achieve the desired fault tolerance, each of the 4 4 crossbars in a single RN1
package should be connected to a different set of four network endpoints. As
with Figures 20.3 and 20.7, the wires available for routing a connection from
processor 6 to processor 16 are highlighted in Figure 20.9.

The RN1 routing component is described further in [7] and [14].

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

A high degree of fault tolerance is essential in order to build functional mas-
sively parallel computer systems. Fault tolerance can be achieved in the in-
terconnection network by providing multiple paths through the network and
multiple input and output connections to the network endpoints. Multiple paths
can be realized utilizing crossbar routing components which provide multiple
connections in each logical output direction. In the multipath scheme, paths
through the network can be selected in a simple self-routing manner allowing
cheap, low-latency interconnection. Multipath routing has the advantageous
side-effect of improving the routing performance of the network. Fault recov-
ery is facilitated by a simple source-responsible connection protocol utilizing
connection status information from routing components in the network. Faults
and blocking within the network can be handled in a uniform manner. The
RN1 routing component implements this fault-tolerant scheme and forms the
basis for fault-tolerant multistage networks.

Tom Leighton offered valuable suggestions which helped develop schemes for
avoiding critical components at the network inputs and outputs. Thanks to
Andy Berlin, Mike Bolotski, Max Hailperin, Pat Sobalvarro, and David Yu for
reading and proofing drafts of this paper.

This research is supported in part by the Defense Advanced Research Projects
Agency under contract N00014-87-K-0825.

Shared Memory Mulitprocessing, Edited by Norihisa Suzuki, MIT Press 1992
International Symposium on Shared Memory Multiprocessing, 1991

