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Abstract

The acceptance and use of standard scan-based Test Access Ports (TAPs),
such as the IEFE-1149.1-1990 standard, have begun to ease the task of sys-
tem testability and in-circuit diagnostics. The typical singular nature of
these TAPs along with the all-or-nothing manner in which test facilities are
accessed make such standard TAPs inappropriate for use in fault-tolerant
architectures. We propose three simple additions to standard scan practices
which allow scan techniques to be effectively utilized in fault-tolerant environ-
ments. Specifically, we advocate the incorporation of multiple-TAPs, port-
by-port selection control, and partial external scan. Multi-TAP construction
offers tolerance to faults in the scan path or circuitry. Port-by-port selec-
tion and partial external scan allow fault-diagnostics which are minimally
intrusive and in-operation reconfiguration for fault-masking and repair.

1 Introduction

With the standardization of Test Access Ports (TAPs) and boundary-scan techniques in
IEEE-1149.1-1990 [4], vendors are beginning to make components with scan-based TAPs
readily available. Nonetheless, the facilities offered by TAP interfaces such as the IEEE-
1149 standard are not well-suited for fault-tolerant system architectures. The singular
and serial nature of the scan path exposes a critical single point of failure in the test
system. Architects are forced either to use a few long serial scan chains or to use many
short scan chains. The former allows a fault in a scan path to affect a large number of
components while the latter requires significant wiring for the control of many scan paths.
Furthermore, standard TAPs provide no facilities for bringing small portions of the system
into test-mode while leaving the remainder of the system in normal operation. In fault-
tolerant architectures where the system can function without all components on-line, these
all-or-nothing testing modes can be inconvenient.

In this paper, we present three simple additions to standard scan practices which allow
scan techniques to be utilized effectively in a fault-tolerant setting. The basic techniques
introduced are:

1. Multi-TAP scan architecture — each component is given multiple Test Access Ports
allowing the component to be accessed from any of several scan paths.

2. Port-by-port selection — each channel (Section 3.2) on a component can be indepen-

dently disabled.
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Figure 1: Standard IEEE TAP and Scan Architecture

3. Partial-external-scan — each channel can be scanned in boundary-test mode inde-
pendently of the operation of other channels on the same component.

These additions are developed in Section 4.

We further show how the aforementioned additions combine to provide a scan architec-
ture which is well adapted for the class of fault-tolerant systems described in Section 3.
In particular, the additions allow:

1. Minimized impact of scan path faults on system diagnosability (Section 4.1)
2. Minimally intrusive in-operation fault-diagnosis (Section 5)
3. In-operation reconfiguration for:

e fault-masking (Section 6)

e repair (Section 7)

The paper opens with a brief review of standard TAPs and sparing based fault-tolerance
techniques.

2 Background

2.1 IEEE-1149.1-1990 TAP

The IEEE Standard TAP [4] defines a serial test interface requiring four dedicated I/0
pins on each component. The standard allows components to be daisy-chained so that
a single test path can provide access to many or all components in a system. The stan-
dard provides facilities for external boundary-scan testing, internal component functional
testing, and internal scan testing. Additionally, the TAP provides access to component-

specific testing and configuration facilities. Figure 1 shows the basic architecture for an
IEEE scan-based TAP.



In a system in which all components comply with the standard, boundary-scan testing
allows complete structural testing. Using the serial scan path, every I/O pin in the system
can be configured to drive a logic value or act as a receiver. Using the same serial scan
path, the value of every receiver can be sampled and recovered. This mechanism allows the
TAP to verify the complete connectivity of the components in the system. All connectivity
faults, shorted wires, stuck drivers or receivers, or open-circuits can be identified in this
manner [8] [17].

The scan path allows data to be driven into a component independent of the values
present on the component’s external I/O pins. The resultant values generated by the
component in response to the driven data can similarly be sampled and recovered via the
serial scan path. This facility permits functional in-circuit verification of the component.

The standard allows additional instructions which may function in a component-specific
manner. These instructions provide standard access to internal-component scan-paths.
Such internal paths are commonly used to allow a small number of test-patterns to achieve
high-fault coverage in components with significant internal state. Other common additions
are configuration registers and Built-In-Self-Test (BIST) facilities [10] [12] [11].

2.2 Fault tolerance from sparing

Fault-tolerant architectures can take advantage of system reconfiguration to mask, or
hide, the effects of failures of components or subsystems. As long as the system has
functional units available to assume all required tasks, operation can continue unaffected
by the presence of masked faulty components. Faulty components must be identified in
a timely manner and masked in order for the benefits of reconfigurability to be realized.
System performance will, of course, generally degrade as components fail.

Figure 2 shows an abstract system composed of three different kinds of functional units
and I/0O connections. As faults occur, the system can be reconfigured to avoid the faulty
components or links. As long as the system has the minimal configuration shown with the
example as a non-faulty sub-graph, it is still functionally complete.

3 Operational models

3.1 Fault model

For the sake of discussion, we assume a simple structural fault model. Basic functional
units can fail in some manner which can be reliably identified with a finite number of static
test patterns. These test patterns may involve the use of internal scan paths inside the
basic functional units. Connections between functional units are made with wires. The
wires and component input/output interfaces may have transient faults due to crosstalk,
or noise. Similarly, wires and component i/o structures may develop permanent faults in
the form of shorted wires, open connections, or stuck-at wires.

3.2 Fault-tolerant system model

Abstractly, a system is composed of many subsystems, each of which performs some
function necessary for the composite system to perform properly. In a reconfigurable,
fault-tolerant system, any of a number of physically distinct components can perform
any given function which is required by the system. During normal operation a subset,
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Shown above (left) is an abstract system with redundant functional units
that can take advantage of reconfiguration to remain operational when in-
terconnection channels or components fail. A, B, and C represent three
different kinds of functional units, each of which is replicated. I represents
I/O connections which are also replicated. The arrows represent channels
connecting functional units. Aslong as the system has a non-faulty subgraph
as shown on the right, the system may continue to operate.

Figure 2: Fault-Tolerant Example



perhaps even all, of the functional components will perform the necessary tasks. When
faults arise, the system can be reconfigured such that the faulty portion is not used.
Operation is redirected to non-faulty components and the faulty components are ignored.
Hayes develops this kind of fault-tolerant system in detail in [9].

For simplicity, let us think of a functional unit as a single integrated circuit component.
Functional units are interconnected in order to realize the overall behavior of the system.
Units are connected to each other via bundles of wires, referred to as channels. We aim to
construct a sparing architecture where faulty components can be avoided. Each functional
unit must be interconnected to multiple functional units capable of performing each task
needed by the functional unit. When an adjacent functional unit, or its interconnection
channel, is identified as faulty, the non-faulty functional unit can be reconfigured to avoid
the faulty unit. Aslong as at least one adjacent functional unit capable of performing each
different task remains connected to each non-faulty component via non-faulty channels,
functional operation may continue.

It is easiest to think of each IC component in the system as a separate such functional
unit interconnected by channels composed of wires. However, in general, the boundaries
of functional units may be placed elsewhere. A single IC may contain multiple functional
units, or a collection of ICs may serve as a single functional unit. Consequently, channels
may be composed of traces on printed circuit boards, silicon or metal inside ICs, cables
between boards, optical connections over fiber or free-space, or some combinations thereof.

4 Fault-tolerant testability additions

4.1 Multi-TAP

Supporting multiple test access ports on a single component is a simple extension of the
redundant resource and interconnect ideas. With multiple test access ports, a component’s
scan capabilities can be accessed through any of multiple serial scan paths. This allows
the component to be tested and reconfigured even when there are faults along one of
its scan paths. Further, with multiple TAPs on a single component, scan paths can be
arranged so that a minimum number of components are severed from the scan test system
by multiple scan-path faults. For instance, we can arrange the scan paths in a system with
dual-TAP components such that no two components are on the same pair of scan paths.
This guarantees that two faulty scan paths will make at most one component inaccessible.
Figure 3 shows a gridded topology which has this property.

When adding redundant scan access to a component, there are several issues which must
be addressed to assure us that we can realize the potential benefits of having multiple
TAPs. We must address the issue of resource contention between the scan paths, e.g.
two scan paths cannot both perform a boundary scan through the same component at the
same time. We must always have the ability to control a component’s scan paths from
a non-faulty path. This means we must be able to minimize or eliminate any potential
for interference from any faulty path(s). We can achieve these goals using two simple
techniques:

1. Resource conflict resolution in favor of the most recent requester

2. Sparse encoding of scan instructions
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Figure 3: Mesh of Gridded Scan Paths

4.1.1 Conflict resolution

Presumably, access to the scan paths is being coordinated at some level in the system.
If everything is working properly, there should never be a resource conflict within a com-
ponent. However, we are concerned with assuring that reasonable behavior will result
even when parts of the system are not behaving properly. We give each TAP its own
instruction register and bypass register. These registers behave exactly as in a standard
TAP [4]. Differences in TAP behavior arise when multiple TAPs attempt to access the
same scan registers. This would occur whenever the different TAPs attempted to load
in instructions that referenced the same scan paths on chip. The simple conflict resolu-
tion scheme we propose is to give the TAP loading an instruction most recently access to
the path. When the new instruction is loaded, the instruction in any conflicting TAP is
reset to the bypass instruction. Since each TAP has its own bypass register, there will
be no conflict for access to the bypass register. Assuming we can sufficiently minimize
the chances that a faulty scan path can successfully load a non-bypass instruction into its
instruction register, this scheme satisfies our fault-tolerance criterion. The scheme allows
a non-faulty scan path to wrest a component’s scan resources away from a faulty scan
path. Figure 4 shows a possible architecture for a component with two test access ports.

4.1.2 Sparse scan instruction encoding

The boundary-scan protocol for loading instructions is sufficiently involved as to prevent
a faulty scan path from successfully loading an instruction in most cases. However, we
would like a stronger guarantee that faulty behavior will not interfere with non-faulty
access to a component. Simple faults, such as stuck-at faults on the clock (TCK) or mode
(TM™s) lines will prevent a path from being able to load an instruction. A stuck-at fault
in the data lines or data-path of a component (TDI, TDO) will force the downstream
component TAPs to see all zeros or ones, making it possible for faults in the data lines
to cause instructions with all zeros or ones to be loaded. Of course, stuck-at faults are
not the only kind of fault our system must contend with. Sparse instruction encoding is a
simple way to make the chance that a faulty path can load a valid instruction arbitrarily

small.
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The basic idea in sparse encoding is to make the number of legal encodings small in
comparison to the number of possible encodings. The non-legal instruction encodings all
get treated as bypass instructions so that they cannot interfere with the normal operation
of the component. Error correcting and detecting codes in common use for data storage
and transmission [7] [15] are common examples of sparse encodings. In this application,
we are concerned with detecting errors and preventing them from corrupting non-faulty
operation, not correcting errors. If, for example, we used a simple instruction encoding
scheme which computes an m-bit checksum on an n-bit data word, the space of possible
instruction words is 2"t™ whereas the space of legal instruction codes is 2. If we assume
that the clock and mode bits behaved in exactly the correct manner to load in an instruc-
tion, but that the data lines held random data, the chances of a legal code word getting

loaded are:

number of legal codes 2n m

Prandom toad = - = =
random-od number of possible codes  27+™

Of course, when choosing a checksum, one should make sure that the all zero and all one
code words are not legal, checksummed instruction encodings.

McHugh and Whetsel propose adding parity to instruction encodings [13] to identify
corrupted instruction words. Sparse encoding is a more general encoding scheme which
allows stronger protection against data corruption.

4.1.3 Costs

Reviewing the dual-TAP example shown in Figure 4, we see that the additional costs

associated with a multi-TAP component are:

e Four additional I/0 pins per additional TAP

e One additional instruction and bypass register per additional TAP

e One additional output MUX per additional TAP

e One conflict resolution unit

e Additional input MUXes for each shared register path
For most modern components, the limited resource is I/O pins rather than silicon area.
As such, the additional I/O pins will generally be the first order cost associated with a
Multi-TAP controller. Note that the size of the conflict resolution unit is proportional to
the product of the number of potentially shared resources and the number of TAPs.

4.1.4 Compatibility

As noted above, in the fault-free case, if both scan paths through a component do not
attempt to access the same component register, the multi-TAP component will behave
identically to a standard single-TAP component. Multi-TAP components place an addi-
tional burden on the software to assure that the scan paths through a given component
never attempt to load conflicting instructions. In the faulty case, as long as there is a
non-faulty path through a component, the faulty-free path can be used as a standard
TAP as long as the faulty path does not manage to load a conflicting instruction. A
standard single-TAP component may be used in a system or scan path with multi-TAP
components, but the single-TAP component is susceptible to any faults in its single TAP
or TAP control lines.



4.2 Port-by-port selection

Adding the ability to disable each channel into a component on a port-by-port basis
allows us to mask faulty channels and components from the system. The semantics of
disabling a channel in this manner imply that the component will ignore the channel
throughout the time in which the channel is disabled. This means the component will not
acknowledge any activity on the disabled channel, and the component will always choose
to avoid the disabled channel when seeking service. Sections 5, 6, and 7 go into further
detail on the utility of this addition. From the scan path, port selection/deselection is
accessed as an internal component configuration register.

4.3 Partial external scan

Once we have a way to selectively remove some ports on a component from normal
operation, it makes sense to be able to perform scan testing on each component on a
port-by-port basis. This capability gives us a finer granularity control over the scan paths
allowing us to perform scan tests on subsets of the system while the rest of the system
remains in operation.

To support partial external scan, the component needs to handle additional instructions
aimed at selecting the appropriate subset of the normal boundary-scan path. Additional
MUXes in the boundary-scan path will be necessary to bypass the portions of the normal
boundary path which are not being scanned during a particular partial scan operation.

5 Fault identification

Assuming we have some initial warning that faults may exist in the system, the com-
ponent TAP and scan path provide the facility for localizing faults and determining with
higher accuracy the nature of the fault. The initial theory can come from warning signs
such as bad checksums on data, protocol violations, unusually poor performance, or peri-
odic testing. The facilities existing for formulating fault theories are seldom sufficient to
pin-point the source or extent of the error. They often cannot distinguish which compo-
nent is at fault or even whether the problem is in a component or in the interconnection.
Further, the existence of transient errors on the wires makes it necessary to distinguish
between physical faults and a noisy environment.

In the most naive case, we could move the entire system into test mode and use the
standard boundary and internal scan facilities to test the integrity of every connection
and every component. In this manner, all structural faults in the interconnection can be
identified and all functional component faults matching our model (Section 3.1) can be
determined. Real faulty wires and components can be differentiated from transient faults
and overloaded system operation which can trigger false fault theories.

However, if the system is large, the impact of removing the entire system from normal
operation for testing can be significant. The larger the system, the higher the rate of
single component faults and the larger the amount of hardware that must be removed
from service for diagnosis. For sufficiently large systems, it is often neither economical nor
practical to remove the entire system from service.

With the additions described in Section 4, we can make the testing significantly less
intrusive. The addition of port-by-port selection and partial external scan provides fine-
grain control of scan testing. At a given time, we can isolate a minimal subset of the



system that is suspected faulty and perform functional and scan testing. By disabling the
channels of all components connected to a physical set of wires and performing scan tests
on just those channels on those components, we can quickly determine the integrity of the
interconnection in question. Similarly, by disabling all channels on components connected
to a given component, we can isolate the single component in question from the network
to perform functional testing on that single component. In both cases, the rest of the
system may continue normal operation while testing occurs.

This scheme provides a capability for fault-identification and localization which is min-
imally intrusive. The information gained from this scan testing provides detailed informa-
tion about the nature and extent of suspected faults. With this information, the system
is in a much better position to diagnose the extent of faults, perform reconfiguration to
avoid faults, and assess the risks associated with continued operation.

6 Reconfiguration

When faulty functional units or interconnections are identified, the fault can be masked
by reconfiguring the system to avoid the faulty component. Again, the scan-based TAP
provides an effective interface to this reconfiguration. The ability to disable a component’s
usage of a channel, described previously, provides one effective means of fault avoidance.
If an entire unit is faulty, leaving every channel on every component connected to the
faulty component in a disabled state will remove the unit from the functional portion of
the system so that it cannot interfere with correct operation. Similarly, if faults occur in
the wires, drivers, or receivers of an interconnection channel, disabling the channel on all
affected components will effectively excise the faulty connection from the system.

This mechanism of disabling individual channels works effectively for reconfiguration
for exactly the same reasons it was necessary for fine-grained diagnosis. The fault-tolerant
model assumes that other channels remain enabled and connected to functional units
which will provide functionally equivalent service to the ones whose channels are disabled.
The semantics of disabling a channel imply that the component will ignore the channel
throughout the time in which the channel is disabled.

Further, if a functional unit provides sparing within itself, the scan mechanism can be
used to reconfigure the unit to swap spares. For some I/O limited components, there is
plenty of additional room for function inside a component whose size is dictated by the
pin-limited I/0. In these cases, it may make sense to provide redundant structures on the
component. Faults in a structure can then be masked by reconfiguring the component to
use an alternate, functional structure on the component.

7 Repair

The combination of accurate fault-localization coupled with the ability to perform re-
configuration, allows us to realize systems where the fault-repair loop can be closed without
human or mechanical intervention, at least up to the fault-level provided by the sparing
architecture. Programs monitoring the system integrity are empowered to test theories
about faults and reconfigure the system to best mask the effects of failures. Further, with
a knowledge of the minimal requirements necessary for complete system operation along
with an accurate idea of the fault status of the machine, the overall system integrity can
be assessed.

10
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The dilated routing component shown here can route connections in one
of two logical directions from any of its four equivalent input ports. Two
physical output ports serve each logical direction.

Figure 5: Dilated Routing Component

When outside intervention is necessary to repair the system, these same facilities of
channel disabling and channel based scan allow for in-operation replacement. If all the
channels on all components into a physically replaceable subsystem are disabled, it is
possible to replace the physical subsystem without any further interruption of system op-
eration. Of course, the electrical and mechanical design of the system must also be suitable
for live replacement (e.g. Tandem Non-Stop computer systems [1], Stratus fault-tolerant
computer systems [18], Thinking Machines CM5 [16]). Once replaced, scan testing can de-
termine the interconnection and functional integrity of the replaced component. When the
replacement is properly installed and identified as functional, the disabled channels into
the replaced subsystem can be re-enabled allowing the subsystem to return to full-service.

8 Example

As an example, let us consider a fault-tolerant multistage routing network built using di-
lated routing switches such as the RN1 routing component [14]. Consider one constructed
from 4 x 2 dilation 2 routing components (See Figure 5). Each routing component has
four equivalent input channels and four output channels which are divided into two logical
output directions. Messages are routed from any of the four input ports to one of the
two output ports in the desired logical direction. Each of the 8 ports in and out of the
dilated routing component defines a separate channel which can be independently enabled,
disabled, and scanned.

These components can be configured into a network with multiple paths between all
endpoints as shown in Figure 6. In Figure 6 all of the paths between a pair of endpoints
are highlighted; in a similar manner, there are many paths between every pair of network
endpoints. At each stage, each routing component involved in making the connection
can utilize either of its equivalent outputs to route the connection. This network has the
desired structure described in Section 3.2. If a channel or component becomes faulty, it
can be avoided by disabling the ports connecting to the faulty channel or component. If
multiple faults exist, the system can continue normal operation as long as there is at least
one path between every pair of endpoints. This network and its design issues are described
further in [5] [2] [3].

In this network, the first sign of faults would come from failed message checksums
or network protocol violations [6]. If these errors persisted, monitoring software would
formulate a theory about possible faults in the network. However, if a checksum comes

11
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Figure 6: Fault-Tolerant Multipath Network

back corrupted, it is often unclear where it is being corrupted. Any of the wires or
components associated with a connection through the network could be at fault for the
bad checksum. Since there is a pair of outputs in each logical output direction, one
output of each pair may be disabled at any time for testing or fault avoidance without
sacrificing the functional correctness of the routing network. We can use the independent
scan ability to check the integrity of each interconnection channel along the path suspected
to be faulty. If this turns up a structural fault in the interconnection, the faulty channel
can be left disabled and the fault noted. However, if this fails to turn up a possible source
of corruption, each component in the path can be separately isolated from the network
and tested. If the dilated routing components have redundant on-chip switching crossbars
and the fault is determined to lie in a component’s crosshar, the spare can be switched in
to replace the faulty crossbar before returning the routing switch to active operation.

9 Conclusions

We have described some simple additions to the IEEE standard boundary-scan and test
access port practices which result in a scan methodology appropriate for fault-tolerant
systems. In addition to robust degradation of scan-paths in the presence of faults, these
additions allow fault localization and system reconfiguration. Fault localization may pro-
ceed in parallel with normal operation in a minimally intrusive manner. We have further
shown how the same basic mechanisms necessary for in-operation fault isolation can be
used for fault avoidance and on-line physical repair. To show how these facilities come
together in a representative system, we gave an example from our work with fault-tolerant
networks.

12
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