
µSCOPE: A Methodology for Analyzing Least-Privilege
Compartmentalization in Large Software Artifacts

Nick Roessler

University of Pennsylvania

nroess@seas.upenn.edu

Lucas Atayde

Rice University

lsa4@rice.edu

Imani Palmer

Null Hat Security

inp2@protonmail.com

Derrick McKee

Purdue University

derrick.mckee@gmail.com

Jai Pandey

Nvidia

jpandey@illinois.edu

Vasileios P. Kemerlis

Brown University

vpk@cs.brown.edu

Mathias Payer

EPFL

mathias.payer@nebelwelt.net

Adam Bates

University of Illinois

batesa@illinois.edu

André DeHon

University of Pennsylvania

andre@acm.org

Jonathan M. Smith

University of Pennsylvania

jms@cis.upenn.edu

Nathan Dautenhahn

Rice University

ndd@rice.edu

ABSTRACT
By prioritizing simplicity and portability, least-privilege engineer-
ing has been an afterthought in OS design, resulting in monolithic

kernels where any exploit leads to total compromise. µSCOPE (“mi-

croscope”) addresses this problem by automatically identifying op-

portunities for least-privilege separation. µSCOPE replaces expert-

driven, semi-automated analysis with a general methodology for

exploring a continuum of security vs. performance design points

by adopting a quantitative and systematic approach to privilege

analysis. We apply the µSCOPE methodology to the Linux ker-

nel by (1) instrumenting the entire kernel to gain comprehensive,

fine-grained memory access and call activity; (2) mapping these

accesses to semantic information; and (3) conducting separability
analysis on the kernel using both quantitative privilege and over-

head metrics. We discover opportunities for orders of magnitude

privilege reduction while predicting relatively low overheads—at
15% mediation overhead, overprivilege in Linux can be reduced up to
99.8%—suggesting fine-grained privilege separation is feasible and

laying the groundwork for accelerating real privilege separation.

ACM Reference Format:
Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai

Pandey, Vasileios P. Kemerlis,Mathias Payer, Adam Bates, André

DeHon, JonathanM. Smith, andNathanDautenhahn. 2021. µSCOPE: A
Methodology for Analyzing Least-Privilege Compartmentalization in Large

Software Artifacts. In 24th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID ’21), October 6–8, 2021, San Sebastian, Spain.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3471621.3471839

1 INTRODUCTION
The Principle of Least Privilege is a key aspiration for secure sys-

tem design [41, 62]. However, despite decades of work, we still

use over-privileged software at every layer of the software stack.

Fundamentally, composing systems while minimizing privilege is

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RAID ’21, October 6–8, 2021, San Sebastian, Spain
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9058-3/21/10.

https://doi.org/10.1145/3471621.3471839

/arch

/block

/drivers

/fs

/include
/init
/ipc
/kernel
/lib
/mm
/net

/security
/sound

/crypto

/a
rc
h

/b
lo
ck

/d
ri
ve
rs

/f
s

/in
cl
u
d
e

/in
it

/ip
c

/k
e
rn
e
l

/li
b
/m
m

/n
e
t

/s
ec
u
ri
ty

/s
o
u
n
d

/c
ry
p
to

Figure 1: The interaction of code and objects in Linux kernel v4.10 at the direc-
tory level. Directories are in alphabetical orderwith labels shownon top-level
directories; blank entries are nested in the preceding labeled directory. Color
intensity indicates the logscale number of unique interaction edges from a
directory (X axis) to code or data objects owned by another directory (Y axis).
µSCOPE collects data at the instruction level; we aggregate to directories to
produce a viewable figure.

hard due to the complexity of defining privilege compartments and

the performance challenges they impose [50], leading developers to

simplify by building software with large, single trust domains. This

is problematic because these “monolithic” software artifacts (e.g.,
commodity operating systems) create an environment in which a

single vulnerability could lead to full compromise of the system—for

example, Project Zero’s recent iOS exploit [10] was built from a sin-

gle memory error in the kernel and led to a devastating zero-click,

radio-transmitted and wormable complete device compromise. Fac-

ing a range of both external [65, 69] and insider threats [11, 36], the

risks posed by monolithic software are not theoretical in nature,

but a daily reality.

https://doi.org/10.1145/3471621.3471839
https://doi.org/10.1145/3471621.3471839

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

Addressing overprivilege in operating system design is a matter

of both mechanism and policy. Privilege separation requires a self-

protecting mechanism to enforce privilege boundaries and mediate

any necessary boundary crossings (i.e., a reference monitor [8]).

Perhaps surprisingly, achieving this goal does not require abandon-

ing today’s operating systems (and all their source code) in favor

of microkernel architectures (e.g., L4 [25]); in fact, mechanisms for

retrofitting privilege compartmentalization into monolithic ker-

nels [18, 19, 52, 56, 72] and userspace applications [14, 22, 33, 34,

42, 46, 68, 71] have already been demonstrated. For example, Daut-

enhahn et al. [19] demonstrate that, by trapping on all updates to

virtual memory, it is possible to embed an intra-kernel reference
monitor (or “Nested Kernel”) within an existing monolithic OS that

can mediate accesses to physical memory or other system resources.

They leverage the Nested Kernel to define a coarse-grained com-

partmentalization that assures the integrity of the core kernel in

the presence of untrusted dynamically loaded modules.

These works demonstrate feasible mechanisms for retrofitting
privilege separation, but their focus on coarse-grained compart-

mentalizations only scratches the surface of the Principle of Least

Privilege. Why should a bug in one kernel subsystem have any

bearing at all on the integrity of another completely independent

subsystem? For that matter, why should a bug in one kernel function

undermine the integrity of other unrelated lines of code?

These questions are a matter of policy. Privilege separation re-

quires us to (retroactively) identify privilege compartments that pro-

vide a reasonable tradeoff between security and cost. With upwards

of tens of millions of lines of code to consider, manually defining

policies and privilege boundaries is infeasible. Unfortunately, while

recent attempts at privilege reduction [6, 12, 23, 29, 35, 45, 47] have

improved upon influential, but labor-intensive, early work [13, 37,

58, 72], they still fall short in terms of both least-privilege identifi-

cation and automation. In these approaches, an expert either labels

sensitive data (e.g., private keys) or low-integrity components (e.g.,
input parsing), and then performs a semi-automated compartmen-

talization routine that minimizes access to the sensitive data and/or

the reach of the low-integrity code. However, even for state-of-

the-art metric-based techniques [47], these approaches fall short of

whole-system privilege reduction, instead protecting a few coarse-

grained critical compartments. This is because they depend on the

availability and omniscience of experts to label security-relevant

data, code, or components—where, for massive systems like an op-

erating system, there may be no such single expert. At present, we
have no systematic approach to identifying and evaluating privilege
separation opportunities in monolithic software artifacts whose scale
exceeds the knowledge of a single developer.

With this in mind, we present µSCOPE (“Systematizing Com-

partmentalization Opportunities for Privilege Encapsulation”), a

methodology that enables the identification of whole-system priv-

ilege reduction opportunities without requiring manual analysis

by experts. µSCOPE instruments and profiles software activity at

the granularity of instructions and objects, encoding each refer-

ence (i.e., privilege requirement) in a novel low-level access control

matrix, the CAPMAP (Context-Aware Privilege Memory Access

Pattern). µSCOPE then uses the CAPMAP as the ground truth

with which it compares competing software compartmentalization
hypotheses that are either drawn from syntactic code structure

(e.g., functions, files, directories) or procedurally-identified through
data-driven clustering algorithms that combine frequently inter-

acting code and data. µSCOPE introduces a metric that allows it to

evaluate the level of privilege separation that is possible for a given

compartmentalization strategy compared to both monolithic (fully

overprivileged) and the minimum-required-to-run (least privilege)

baselines, then uses a performance model that estimates the cost of

enforcement for a range of potential isolation mechanisms.

To demonstrate the power of µSCOPE and evaluate whether

privilege separation is generically feasible, we apply µSCOPE to

analyze the notoriously overprivileged Linux kernel. We identify

the privilege separability of kernel objects, show the range of com-

partmentalizations that can be achieved in terms of aggregate levels

of privilege separation and overhead, and automatically identify the

data structures and design patterns that are important candidates

for refactoring. These results demonstrate the utility of µSCOPE’s
automated privilege analysis. Figure 1 previews our results under

a directory-based compartmentalization process. Here, individual

instructions (references) are clustered by the directory in which

the code resides. Even under this relatively coarse compartmental-

ization, the large amount of whitespace indicates massive privilege

separation opportunities for Linux. Even more surprising, our per-

formance analysis suggests that enforcing such privilege separation

opportunities might be practical and eliminates costly manual sep-

aration efforts from exploring impractical compartmentalizations.

In summary, our primary contributions include:

• µSCOPE, a framework for comprehensive, automated privi-
lege analysis (Sec. 5). It consists of four main components: (1)

A novel low-level privilege representation, the CAPMAP; (2) A

compartmentalization model that relaxes the standard object

ownership model; (3) Quantitative Metrics for characterizing
both privilege (the novel privilege set), and performance; (4)

Separability analysis, a novel systematic exploration of entire

compartmentalization spaces.

• An implementation of µSCOPE for the Linux kernel, binding

the C language abstractions to the CAPMAP model (Sec. 6).

µSCOPE’s analysis code and data sets are available from

https://fierce.cs.rice.edu/uscope/.

• A characterization of the degree to which Linux is privilege

separable, including automated identification of potential

refactorings (Sec. 8). We uncover opportunities for orders

of magnitude in privilege separation, up to a 500x reduction

(99.8%) in overprivilege, at predicted overhead of approx.

15%, suggesting that fine-grained privilege separation may

be possible with low overhead in monolithic kernels. Further,

we have released a browsable explorer
1
to allow researchers

to better understand the interactions between Linux objects

observed by µSCOPE.

2 MOTIVATION
As a concrete example to illustrate our concerns and motivate our

approach, let us consider the credential structure (struct cred)

from the Linux kernel (Fig. 2). This data structure controls the

privileges that user space subjects (e.g., processes, users) have to
system resources (e.g., tasks, files, sockets) [20]. As such, malicious

1
https://fierce.cs.rice.edu/uscope/object_explorer

https://fierce.cs.rice.edu/uscope/
https://fierce.cs.rice.edu/uscope/object_explorer

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

Figure 2: The (simplified) struct cred data structure used by the Linux
kernel for task access control and privilege management.

manipulation of this structure is a common vector for privilege

escalation. For example, a recent vulnerability can be exploited to

change the UID field of a user space process’ credential structure

to that of root, thus gaining root privilege and access to all system

resources [60].

In a monolithic kernel, the attack surface for struct cred alone

is enormous: this field could be modified by any of the 104,240

potentially unsafe write instructions in the kernel; i.e., any bug

that allows an attacker to control one of the more than a hundred
thousand possibly unsafe write instructions could become a vector

to manipulate its contents. However, as our analysis identifies, only

113 write instructions from 31 functions should legitimately have

access to struct cred objects. The other 104,127 write instructions

(99.89%) hold excess privilege that reduce the security of the entire

system. In other words, this privilege escalation attack is made

possible because a compromised kernel component has privileges

beyond those required to do its job.

2.1 Our Approach: Quantifying Privilege
This example illustrates a concrete way to quantify privilege and

overprivilege: we can count the number of instructions that strictly

require a given privilege, then compare that count to the number

that the system actually allows. Further, if we were to divide the

kernel into compartments such that only writes within a compart-

ment with legitimate need could access struct cred objects, we

could quantify the reduction in writes (privileges) that came from

that particular compartmentalization. Reducing the number of in-

structions with privilege to write to struct cred makes it harder

to find a vulnerability that can be exploited to corrupt struct cred,

reducing its attack surface. If there is, on average, one exploitable

security vulnerability in the code every 1,000 writes [9, 31, 51], a

system with a hundred thousand privileged write instructions has

a 1 − (1 − 10
−3)10

5

=1 − 3.5 × 10
−46 ≈ 100% chance of having an

exploitable vulnerability, while a compartment with only 100 such

write instructions has only a 1 − (1 − 10
−3)10

2

= 9.5% chance.

Of course, even if we limit the code that can directly write into

struct cred objects, an attacker could launch a confused deputy

attack and invoke one of the 31 authorized functions in an attempt

to manipulate that function into making the desired change. Since

Linux is a monolithic kernel, any of the 51,258 other functions could

conceivably be manipulated to call one of those 31 authorized func-

tions. However, there are actually only 26 “secondary” functions

with legitimate need to call those struct cred-authorized functions.

Allowing the other 51,222 functions access is, again, overprivilege.

A true least-privilege policy would remove that unnecessary privi-

lege, further reducing struct cred’s attack surface.

However, struct cred isn’t the only object in a program that

carries security implications. For example, page table entries and

secret keys are also clearly security-critical. We can perform simi-

lar analyses on each of these to quantify the minimum privileges

necessary to run, the overprivilege of the monolithic design, and

the privilege implications of a particular compartmentalization. We

include a web-based object explorer generated from our tool to

show the usage patterns of other kernel objects: µSCOPE object

explorer.
1

3 SECURITY MODEL
Threat Model. This work considers a realistic and powerful at-

tacker that has discovered an exploitable software vulnerability

(e.g., memory corruption, disclosure, or code execution) in a mono-

lithic software artifact, e.g., an OS kernel.
2
It is possible for the

attacker to trigger this exploit through the target system’s interac-

tions with low-integrity components such as user-space processes,

network communications, or peripheral devices. Leveraging this

exploit, the attacker seeks to take control of the system or gain

access to confidential data – under normal circumstances, the above

exploit alone would be sufficient to take full control of the system.

We conservatively make no assumption about the specific system

objects that the adversary seeks to access or corrupt; it is possible

that any object is relevant to the attacker’s objectives.

System Model. The target system is not without its own de-

fenses. We assume it is equipped with a state-of-the-art reference

monitor [8], the likes of which have been concretely instantiated in

recent work [14, 18, 19, 22, 27, 33, 34, 42, 46, 52, 56, 68, 71, 72]. This

mechanism can provide complete mediation over attempted accesses

at arbitrarily fine granularities, down to the memory references

contained in individual lines of code. It is tamper proof, meaning

that the reference monitoring cannot be disabled during operation.

Due to its small size, the reference monitor has been verified to

operate correctly. Critically, this reference monitor is able to op-

erate securely and correctly without the use of hardware-based

protection – that is, it executes in the same protection ring [63]

as the tasks that it mediates – allowing it to restrict the privileges

of other Ring 0 code. However, while the mechanism for privilege

separation is assumed to be present, the optimal security policy for

minimizing the privilege of the attacker is unknown.

4 DESIGN GOALS
The aim of µSCOPE is to systematically analyze fine-grained, whole-

system privileges within monolithic trust environments. Specifi-

cally, it aims to enable (1) comprehensive privilege analysis and

policy derivation, (2) automated instead of manual analysis, and

(3) exploration of the continuum of privilege-performance points

rather than a handful of single points in the space.

4.1 Comprehensive Privilege Coverage
Prior work has focused on manual or semi-automated compartmen-

talization by experts [12, 24, 29, 37, 47, 58, 67, 72]. In general, these

approaches selectively (1) sandbox buggy components (e.g., parsers)

or (2) protect a limited subset of sensitive data (code-pointers or

2
The recent Project Zero iOS zero click radio exploit is an example of such a vulnera-

bility that allows circumvention of all mitigations in a monolithic kernel [10].

https://fierce.cs.rice.edu/uscope/object_explorer
https://fierce.cs.rice.edu/uscope/object_explorer

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

secret keys). However, considering the capabilities and objectives

of our attacker, such an approach is not sufficient because it only

restricts the privileges of one or two critical components. Our so-

lution must be able to define a privilege policy that assures that

the attacker’s privileges will be always be restricted, even at an

arbitrary and unknown entry point into the system.

4.2 Automated Analysis
Today’s state-of-the-art in privilege reduction is based on manual,

expert analysis to identify what excess privileges the system should

remove. As code bases grow in age and complexity, the demand for

experts outstrips their availability and capability. For the largest of

code bases, many of which are decades old, no single person is an

expert on the whole system and all of its interactions. For example,

today’s Linux kernel contains 28 million Lines-of-Code, contributed

by over 19,000 developers [1], leaving it susceptible to a wide range

of vulnerabilities [11]. Accepting that experts may not be available

and may be fallible, our solution must take an automated approach

to privilege analysis.

4.3 Privilege Continuum
Between a fully-separated, least-privilege design and a monolithic

design, there is a vast set of possible decompositions at various

points in the security vs. performance tradeoff space. With current

manual and semi-automated compartmentalization techniques, it

is prohibitively expensive to explore even a fraction of this space

because each point requires (1) expert analysis and (2) significant

engineering to evaluate the viability of the choice. Furthermore, a

common concern is that privilege separation is not viable at fine

granularities due to performance costs, which deters practitioners

and researchers alike from even considering such options. Instead,

our solution must systematically explore a wide range of points in

the compartmentalization continuum. The tools we develop must

be flexible and easily integrate expert domain-specific knowledge,

to the extent available, through parameter adjustment or by placing

constraints on the search space.

5 THE µSCOPE METHODOLOGY
In this section, we present the generic µSCOPE methodology. We

show its concrete application to Linux in Sec. 6.

5.1 Privilege Model and CAPMAP
The µSCOPE privilege model is based on mapping software com-

ponents into subject and object domains in order to track their

access privileges at runtime. In object-oriented languages, innate

definitions for subject and object emerge based on the language’s

structure. However, such definitions are not apparent in procedural

languages such as C. Moreover; our objective is to evaluate a contin-

uum of privilege separation tradeoffs, some of which may conflict

with the object-oriented abstraction. Instead, we define a privilege
as an ISA-level operation (memory read, memory write, function

call, return, and memory deallocation) that may be performed by a

subject (instruction) on an object (virtual address region of mem-

ory). We choose this low-level representation due to its generality;

all access privileges can be reduced to instruction- and byte-level,

regardless of the program language.

Def. 1 (Privilege). A privilege allows an instruction, i ∈ I , to
perform a low-level operation, op ∈ Ops , on object, o ∈ O . I is the set
of all instructions,O the set of all objects, andOps , the set of low-level
operations.

This instruction-level privilege separation represents the finest-

grained separation that we identify in µSCOPE (Sec. 5.3.1). For this

finest-grained definition, the machine instructions I form our sub-

ject domain. For allocations and frees, we use the instruction that

performs the call to the allocator/free routine as the identifier for

that subject. Objects are likewise labeled by the instruction that

calls the allocator routine. However, each instruction is also an ob-

ject since it can be called (and potentially written, in case of mutable

code), allowing us to capture privileges needed to make individual

calls and returns. Aside from dynamically loaded or generated code

(considered in Sec. 11), identifying dynamically allocated objects

with allocating instructions means the set of object classes are lim-

ited to the set of statically allocated objects and statically known

allocation instructions. Therefore, the set of instructions and ob-

jects can be determined at compile time and do not change during

execution.

For context sensitive privilege analysis, it is possible to extend

the subject tuple to include separation contexts, such as the call

chain or kernel entry point. For practical reasons (e.g., state explo-
sion in the dynamic tracing system) we leave such exploration to

future work. Note, however, that the metrics presented here can eas-

ily accommodate context sensitivity. Our algorithmic approaches

(Sec. 6.2) can also handle context-sensitive subjects as is, but further

specialization may be needed to exploit context to its fullest extent.

Next, we define a privilege predicate priv(i,o,op) that indicates
if instruction i is allowed to perform op op on object o. Different def-
initions of the function priv(i,o,op) represent candidate policies on
the continuum of the privilege separation design space.priv(i,o,op)
is an embodiment of Lampson’s access matrix [41]. This simple

operation matches the minimal conditions that Lampson identifies

for isolated execution, selected because of its generality expressing

privileges and its ability to easily map to compiler IR or assembly

level operations.

Def. 2 (Privilege Set). The Privilege Set (PS) is the set of all
privileges for which priv(i,o,op) is true for a program.

A given PS can be modeled as a graph that encodes the whole-

system privileges of the associated program. The instructions i ∈ I ,
and objects o ∈ O , are vertices in the graph, while priv(i,o,op)
defines whether or not there is an edge of type op ∈ Ops between
the nodes i and o. Alternately, PS can bemodeled as an access matrix

where rows are instructions and objects are rows and columns while

op will appear in cell(i,o) if priv(i,o,op) is true.
Given the notion of privilege sets, it would clearly be valuable to

identify PSmin , the minimum privilege set needed in order for the

program to run. Our system will derive PSmin dynamically through

the notion of CAPMAPs:

Def. 3 (CAPMAP). The Context-Aware Privilege Memory Access
Pattern (CAPMAP) is the minimum PS necessary for a program to run
during the course of an observed execution. That is, capmap(i,o,op) is
the least privilege definition of priv(i,o,op); if any privilege (i,o,op)
is removed from the CAPMAP, the program cannot perform its task.

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

Privilege RepresentationInstrumentation, Observation, and Trace Output

Input

S’

Compartmentalization and Analysis

Separation
Hypotheses

Privilege and
Performance

Analysis

Code
Structure

Per Line

Function

File

Directory

Clustering

Trace of Priv Ops
Subject Op Object

s1 Alloc o2
s3 Write o2
s1 Read o2
s1 Alloc o3
… … …
s5 Call s6
s7 Ret s5
s4 Free o2

Instrument
S

?

Alloc
Free

Read
Write

Call
Ret

CAPMAP Privilege Operations

o2

o3

c1
c3

c4

c6

c5 c7

o2

o3

c1
c3

c4

c6

c5 c7

o2

o3

s1
s3

s4

s6

s5 s7

.cmap files

Parse

Manual

Compartmentalize
1. Determine Subject Domain Groups

2. Determine Object Domain Groups

3. Determine Access Mediation Policy
 {Unmediated, Mediated, Not}

o2 o3

s1

s3

s4

s6

s5

s7

s3 s6 s7s1 s4 s5

Unmediated
Read, Write,

Free

Unmediated
Call, Return

Mediated
Call, Return

Mediated
Write

Mediated
Call, Return

Unmediated
Call, Return

Metrics

Figure 3: µSCOPE Overview. A software system S with unknown privilege separability is instrumented to trace its operations (read, write, call, return, and free)
at the level of instructions and data objects. The trace is then transformed into a CAPMAP, a low-level representation of the privilege required by the software
system. An analysis engine operates on the CAPMAP, allowing it to explore a range of compartmentalization hypotheses. We define new metrics to measure the
privilege permitted by a given compartmentalization and use a simple analytical model to estimate the performance cost of enforcing the compartmentalization
with a range of possible hardware mechanisms.

As a lower bound for capmap(i,o,op), we include all privileges
observed during one to many dynamic executions of the program

(Sec. 7); we discuss the potential threats to validity posed by our

dynamic analysis based approach in Sec. 11.

5.2 Compartmentalization Model
While PSmin privilege is ideal from a security perspective, instruction-

level least privilege is a single (and, perhaps, impractical) point in

the privilege-performance continuum. Instead, our compartmental-

ization model gathers individual instructions and primitive objects

together into larger groupings. We call a grouping of instructions

a Subject Domain (sd ∈ SD) and a grouping of objects an Object
Domain (od ∈ OD), each of which is a collection of primitive in-

structions and objects, respectively.

We divide the entire code into a set of groups, sd ∈ SD. Each
instruction, i , goes in exactly one sd . Similarly, we divide the data

into groups with each object, o, in exactly one od . Recall that, since
each instruction is also an object, each sd is also an od (or SD ⊂ OD).

Our basic compartmentalization model must specify for each

operation op whether access from an sd to an od is: Not allowed,
allowed but Mediated, or allowed Unmediated. The table in Fig. 3

shows one particular decision of an algorithm. Specifically, we

define the mediation types as the following:

• Not access is appropriate when the subject group does not

use an operation on an object group; we grant no privileges

between sd and od for op.
• Mediated operations are dynamically validated against the

CAPMAP at the fine-grained instruction and object level.

This supports CAPMAP allowed, least-privilege access with-

out allowing unnecessary access from other instructions

in that subject group, thereby achieving high security but

imposing per-access costs.

• Unmediated access between subject and object groupings

mean that any instruction for the particular op from the sd to

any object in the od will be permitted without fine-grained

runtime monitoring. Unmediated edges represent a coarse-

grained relaxation of privilege, but allow frequently inter-

acting components to reduce costs. This matches a virtual-

memory protection model where a subject domain maps in

the object domain.

We can think of each sd and the set of ods to which it has unmedi-

ated access as a compartment. This allows each od to exist within

multiple compartments. The mediation type may differ with the

op type to allow different operational privileges; for example an od
group that is only read by an sd may be mapped Unmediated for

read but Not for write, call, return, and free. The SD and ODs form

nodes in the coarser compartmentalization graph.

Def. 4 (Compartmentalization). A compartmentalization is a
division of instructions and objects into Subject Domain and Object
Domain sets and an assignment of edge types,Type(sd,od,op), to one
of {Not, Mediated, Unmediated} for all (sd,od,op) triplets.

We can reflect the privilege reduction of a given compartmental-

ization back to instruction-level privileges by consulting this coarse

compartmentalization graph:

privcompar t (i,o,op) = capmap(i,o,op) ∨ (1)

∃sd,od
(
(o ∈ od) ∧ (i ∈ sd) ∧

(Type(sd,od,op) = Unmediated)

)
In other words, the compartmentalized graph starts with all the

minimum privileges observed in the CAPMAP. Then, additional

unmediated edges are added between all instructions in sd and

all objects in od. As a result, if any instruction i ∈ sd and object

o ∈ od have an operation privilege defined in the CAPMAP, every

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

instruction and object in the (sd,od) compartment is granted that

operation privilege. Note that our compartmentalization model is

more general than conventional models that typically (1) require

objects to exist within at most one compartment (have unmediated

edges from a single subject) and (2) assign object ownership based

on the allocating subject.

5.3 Metrics
µSCOPE treats compartmentalization as an optimization problem

over the privilege-performance space. To do so, it uses metrics that

can be computed on a CAPMAP augmented with dynamic privilege

counts to capture tradeoffs in privilege and separation costs.

5.3.1 Privilege. To quantify the privilege that exists in the sys-

tem under various compartmentalizations, we use the size of the

privilege set, |PS | (see Sec. 2). To make the numbers generally mean-

ingful for comparison, the Privilege Set Ratio (PSR) is defined as a

ratio of the |PS | under a particular compartmentalization and the

|PS | of the monolithic case, i.e., when the whole task is a single

compartment. We break down five different operations (read, write,

call, return, and free) and provide a separate PSR for each.
3

Simply put, we add one unit of privilege to the |PS | for each
particular instruction that is allowed to perform the specified oper-

ation on a particular object. For memory reads and writes case, the

unit object is a byte of memory, and we group together all the bytes

allocated by a particular static instruction as a single object class.

For calls and returns, the unit is a single function entry or return

point. The total privilege then is the weighted sum of all instruc-

tions and the objects they are allowed to operate upon. Specifically,

for each operation type op, we can compute |PS(op)| for any priv(·)
definition as a weighted sum over the privileges that exist:

|PS(op)| =
∑
i ∈I

∑
o∈O

cpriv(i,o,op) ×w(o,op) (2)

Here cpriv simply has a 1 when priv(i,o,op) is true, and 0 when
it is false.w(o,op) is a weighting function that potentially depends

on the operation, the size of the object, and the security importance

of the object. In the simplest case, it could be the size of the object

in bytes.

The reference count for the monolithic case, |PSmono (op)|, is
simply the case where all feasible privileges exist. So, we evaluate

Eq. 2 with priv = privmono :

privmono (i,o,op) =

{
true, if i performs op

f alse, otherwise

(3)

Conversely, for the least-privilege compartmentalization PSmin (op),
every instruction is its own sd and every object is its own od . We can

compute |PSmin (op)| as Eq. 2 with priv(i,o,op) = capmap(i,o,op).
With this in mind, the lower bound of PSR is given as:

PSRmin (op) = |PSmin (op)|/|PSmono (op)| (4)

For the compartmentalization case where edges are typed as Not,
Mediated, or Unmediated, we compute Eq. 2 using priv(i,o,op) =
privcompar t (i,o,op) from Eq. 1. A concrete example to illustrate

these metrics is shown in App. A.

3
Other types of operations, such as jumps or memory allocation, can be represented

in the same way.

5.3.2 Performance Model. To reason about the overhead of a candi-

date compartmentalization, we build a model to estimate the impact

of these external operations, assigning a fixed cost to each mediated,

unmediated, and internal operation:

Tsep = Tunsep +
∑

op∈OPS
Nmed (op) ×Tmed (op)

+
∑

op∈OPS
Nunmed (op) ×Tunmed (op)

+
∑

op∈OPS
Nint (op) ×Tint (op) (5)

Here Tsep is the estimated execution time for the separated design

while Tunsep is the original, unseparated execution time. Tmed (op)
is the additional time for a mediated external operation op, and
Nmed (op), Nunmed (op), and Nint (op) are the total number of me-

diated, unmediated, and internal operations of type op. Tunmed is

the additional time for an unmediated external operation. Tint (op)
is the the additional time for an internal operation, a call or re-

turn inside the SD, when separated for modeling cases, like SFI

[26] (Sec. C), where each of these operations adds some overhead.

We can calculate the number of mediated external accesses for a

particular compartmentalization as:

Nmed (op) =
∑
i ∈I

∑
o∈KO

d(i,o,op) × tops(i,o,op) (6)

d(i,o,op) =


1, if ¬ (∃sd,od ((o ∈ or) ∧ (i ∈ sc)

∧Type(sd,od,op) = Unmediated))

0, otherwise

tops(i,o,op) is the number of times i performs op on o. d(i,o,op)
is a similar calculation to Eq. 1 that identifies all edges in the fine-

grained privilege map that are associated with an unmediated edge

in the coarse-grained compartmentalization graph. We calculate un-

mediated and internal operations similarly with different conditions

on d(i,o,op). This model does not explicitly account for temporal

or blocking effects; as such, the numbers are best interpreted as

averages. We treat memcpy as a single mediated operation.

5.4 Separability Analysis
Oncewe have a CAPMAP to represent necessary privileges (Sec. 5.1),

a dynamic performance trace to represent relative frequency of use,

a compartmentalization model that defines the space of legal com-

partments (Sec. 5.2), and metrics for privilege and performance

(Sec. 5.3), it becomes possible to systematically analyze the space

of compartmentalizations. We could generate all such compartmen-

talizations, evaluate their privilege and performance metrics, and

report the full continuum of privilege-performance points obtain-

able for the system. Unfortunately, the full set of compartments

is too large to practically enumerate for all but the most trivial

systems.

The CAPMAP with dynamic frequency counts on edges gives us

a graph to which we can apply standard single- and multi-objective

graph clustering and partitioning algorithms to gain access to the

interesting points in the continuum. This allows us, for example, to

formulate compartmentalization as constrained graph clustering

optimization problems by placing constraints on properties of the

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

compartments (e.g., subject size, object size, maximum number of

edges on subject or object) and the privilege metric (Eq. 2) or perfor-

mance (Eq. 5) and identifying objective functions to minimize, such

as excess privilege (|PS(op)| − |PSmin (op)|), performance overhead

((Tsep − Tunsep)/Tsep) or the ratio of privilege and performance

(|PS(op)|/Tsep). Using a sequence of optimization queries, we can

establish bounds on feasible performance and privilege points in

the space. Furthermore, since the models themselves are parametric

(e.g., relative weighting of operations and objects), analyses can be

tuned for different needs (e.g., privacy vs. integrity) andmechanisms

(Sec. 6.6), and adjusted for perceived importance (e.g., object weight-
ing, Sec. 8.8). We provide concrete examples of parameterization

and heuristic clustering algorithms in Secs. 6.2 through 6.6.

6 MAPPING LINUX AND C TO µSCOPE
In this section we apply the generic µSCOPE methodology to the

Linux kernel. We present a concrete instance of the approach that

makes selections for: (1) language bindings to generate meaning-

ful identifiers for subjects and objects, (2) specific algorithms for

choosing subject groups, object groups, and access mediation, (3)

specific privilege metric weights for our analysis, and (4) a spe-

cific set of mechanism costs to estimate the performance overhead

of separation, given a range of possible enforcement mechanisms.

These decisions represent initial design choices and offer many

parameterizations.

6.1 Mapping C for Fine-Grained Identification
Each machine instruction in the vmlinux must be mapped to a SD,

and each static and dynamically allocated C object must be mapped

to an OD. Objects includes global and per-CPU variables, as well

as objects from Linux’s dynamic allocators (Sec. 7.1). For simplicity

of analysis, we statically compile all required kernel modules.

6.2 Subject Domains
The data in the weighted CAPMAP provides us with rich, low-

level information about the control-flow flow and data-accessing

patterns of code, from which we can intelligently produce subject

domains. Because clustering is known to be NP-hard [7], we use a

lightweight, greedy clustering algorithm that assigns instructions

into clusters. More heavyweight clustering would only increase the

high separability we are able to identify. We begin the algorithm

by placing each function into its own cluster; we then proceed to

perform repeated cluster-merge operations until an assignment

of code into Subject Domains is produced. To determine which

clusters to merge at each step, we consider all possible pairs and

compute the ratio of a utility function to that of a cost function

for that pair; we then take the pair with the highest ratio, perform

the merge, and repeat. The utility function we use is the expected

performance savings of combining the two clusters: by combining

frequently interacting pieces of code, we save on the costs of cross-

compartment calls between those clusters. The cost function we

use is the net increase in |PS | incurred by the merge—that is, after

merging two clusters, the code and data of each can be exposed to

the code of the other (in the case of Unmediation), and |PS | captures
this quantification. The algorithm stops when there are no merges

left with a ratio above a specified minimum threshold α (that is,

no merges are favorable in terms of performance savings to |PS |).
Intuitively, α specifies the acceptable tradeoff level of performance

cost per unit of |PS |.
By varying values of α , we can produce a range of Subject Do-

mains at various points in the privilege-performance continuum.

We refer to subject domains constructed from this clustering algo-

rithm from their values of α . We include a web-based compartment

explorer for compartments generated with this algorithm: µSCOPE
compartment explorer.

4

6.3 Object Domains
After assigning instructions into Subject Domains, we then assign

the objects from the CAPMAP into ODs. At the most fine-grained

level, each object would be mapped into its own Object Domain

(e.g., the data allocated from each allocation site, or each global

variable, would be its own OD). For some enforcement mechanisms,

such as Virtual Memory using an MMU, there may be significant

performance implications for subjects that are allowed access to

many ODs (e.g., TLB pressure). For these enforcement mechanisms,

we run an object clustering algorithm that combines object classes

together into coarser ODs, so that no SD has access edges to more

than a specific object limit number of ODs. For some of the enforce-

ment mechanisms we model (capability hardware, direct hardware

support) no object clustering is applied.

To cluster objects, we use a greedy clustering algorithm similar to

the one we use for creating subject domains. We begin by assigning

each object class into its own OD. We then iteratively consider each

SD that has access edges to more than the object limit number of

ODs. For each such SD, we consider all pairs of ODs accessed by the

SD as candidates for a merge. We select the pair that has the lowest

value of a cost function, merge those ODs into a single OD, then

move on to the next SD that is over the limit until all SDs satisfy

the object limit constraint. The cost function we use to evaluate

merges is the net total increase of |PS | that would result from the

merge—since merging object classes will open up more PS (due

to each OD being possibly mapped unmediated in multiple SDs).

We set the object limit to 64 to match the number of entries in the

DTLB on modern CPUs [17].

6.4 Access Mediation
For each Subject Domain, Object Domain and operation type triple

(sd,od,op) we must choose a mediation type (Sec. 5.2). If the opera-

tion is not included in the CAPMAP, then the mediation is typed

as Not and the operation is not allowed. For operations that are

allowed, the mediation is typed as either Mediated or Unmediated.
We begin our algorithm with all edges typed as Mediated. We

then pick the edge that yields the largest performance savings per

unit increase of |PS | to unmediate. We set its type as Unmediated,
record the properties of the compartmentalization, then repeat the

same process until all edges are typed as Unmediated. Note that
this tradeoff curve connects the two extremes (all-Mediated and

all-Unmediated) but that moderate points are likely more attractive

concrete compartmentalizations that balance minimizing privilege

with performance cost. Privilege-performance tradeoff curves gen-

erated from mediation selection are presented in Sec. 8.

4
https://fierce.cs.rice.edu/uscope/compartment_explorer

https://fierce.cs.rice.edu/uscope/compartment_explorer/
https://fierce.cs.rice.edu/uscope/compartment_explorer/
https://fierce.cs.rice.edu/uscope/compartment_explorer

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

Table 1: Performance profile modeling parameters.

Tunmed (op) Tmed (op)
Architecture r, w call, ret r, w, call,

free int ext free ret

Kernel Context 0 0 6000 6000 6000

Page Table + EPT 0 0 450 1500 650

SFI (baseline) 50 25 25 150 50

SFI (optimized) 5 5 5 150 50

Capability Hardware 0 0 600 50 600

Direct Hardware 0 10 10 10 10

6.5 Weighting Parameters
For the privilege optimization objective used during clustering and

mediation, we take a simple linear sum across the individual PS

metrics for ops, |PS(op)|. Another decision to make is how best

to weight objects. At a uniform object weight of 1, PSR could be

interpreted as the ratio of permitted interactions in an access control

matrix compared to the monolithic case. However, larger objects

(such as composite structures containing multiple fields) likely

represent additional privilege. We weight objects by their size; a

size component in the weight also means that a refactoring to split

apart objects reduces privilege. This means that our PSRs can be

interpreted as an exposure reduction per byte compared to the

monolithic case. Weight tuning is discussed further in Sec. 8.8.

For global objects and codewe take the size to simply be the static

size in bytes. For heap objects we take the size to be the average live

data size in bytes associated with the allocation site in our dynamic

runs. We model stack memory as a single monolithic object with

a size equal to the average number of live stack bytes. Important

future work will be decomposing stack memory for more fine-

grained separation. For calls and returnswe usew(o, {call , ret}) = 1.

An advantage of the aboveweighting scheme is that it can be applied

automatically with no human intervention (Sec. 4.2). There is an

opportunity to further tune the compartmentalization algorithms by

scaling the various privilege operation components or by weighting

them according to a policy; e.g., confidentiality or integrity.

6.6 Performance Profiles
For demonstration, we use a set of performance profiles that illus-
trate a range of potential costs for different protection mechanisms

(Tab. 1). All entries are given in cycles; references and calibration

are detailed in App. C. The numbers are best interpreted as average

times for operations including typical caching effects; as such, the

simple model does not account for the specific time of each opera-

tion instance in context. Consequently, we pick conservative values

to use for these averages, and, most importantly, the profiles model

costs that span orders of magnitude to illustrate how curves shift

with a range of costs.

7 EXPERIMENTAL METHODS
7.1 CAPMAP Tracer
To collect CAPMAPs from the Linux kernel, we use Memorizer [61].

Memorizer is a tracing kernel that uses a combination of source code

annotations and compile-time tooks to capture every call, return,

allocation, free, and memory access. Captured traces are stored in

●

●
●

●
●

●

●
●

● ●
●

●

●

●
● ● ● ●

●
●

●

● ●

●

●
● ●

●

● ● ●

●

●

● ●

●

●

●

●
●

0
1

10
100

1,000
10,000

100,000

1 5 10 15 1 5 10 15

LTP Pass Phoronix Pass

N
ew

 e
nt

rie
s

Figure 4: Linux kernel dynamic tracing privilege coverage. Twenty passes of
the LTP test suite are added to a single CAPMAP (blue), followed by twenty
passes of the Phoronix benchmarks (green). Each point shows the total num-
ber of new CAPMAP graph entries that are observed for the first time in that
pass of testing. Note the log-scale Y axis.

memory and written out after a tracing run for post-processing and

analysis. We disable KASLR so that addresses are consistent across

runs and use a single core configuration, but otherwise use the

default kernel 4.10.0 configuration from Ubuntu LTS 16.04. Read,

write and call logging are turned off during boot, but memory

allocations are still traced. Logging is enabled before running a

workload or LTP [3] test on the kernel. This means the CAPMAPs

produced do not include permissions needed only during boot.

7.2 Coverage Test Sets
To exercise the kernel and build an initial CAPMAP, we use the

Linux Test Project (LTP) test suite [3] (release 20180926). The LTP

contains suites of tests for stressing various kernel components

(e.g., scheduling, syscalls). We run all the tests applicable to our

configuration (App. B). To improve coverage, we run the test suite

twenty times. In Fig. 4, we show the number of CAPMAP entries

(vertices and edges) that are found (instruction, object, or privilege

used for the first time) by the LTP tests as they are added to a single

CAPMAP (blue). On the last pass of the test suite, 35 new entries

were added, for a cumulative total of 331,013 graph elements after

training. To collect coverage CAPMAPs, we run the LTP tests on

the tracing kernel using QEMU for a total of ~8 CPU-months.

7.3 Performance Benchmarks
While the LTP benchmarks are good for coverage testing, their

emphasis on coverage means they do not represent a typical Linux

workload that one would see in practice. To represent more typ-

ical performance, we run the Phoronix Test Suite [5] (v8.2.0) for

performance overhead assessment. We combine the kernel and

linux-system test suites and run all of the benchmarks that run on

our configuration (22, see App. B). When we add twenty passes of

the Phoronix benchmark CAPMAPs to the full coverage CAPMAP

produced from the LTP runs, 1,196 (0.36%) new CAPMAP entries

are discovered (green in Fig. 4).
5
Ten of the full benchmark passes

encountered one or zero new instruction-level privileges; note that

the privileges exercised in Phoronix but were not present in the

LTP suite indicate ways to improve the quality of LTP.

For performance modeling, we boot the tracing kernel on a bare

metal system with a 2.1 GHz Intel Xeon CPU E5-2620 and 128GB of

memory.
6
We collect baseline kernel runtime Tunsep (Eq. 5) from

5
These runs for coverage assessment were also collected using QEMU.

6
We use the same vmlinux image in the coverage and performance experiments.

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

Sep. Hypothesis TopDir. α=5e-8 α=1e-7 Dir. α=5e-7 α=1e-6 α=1e-5 File α=1e-4 α=1e-3 Func.
PSR all-Unmediated 0.215 0.00520 0.00427 0.0302 0.00257 0.00133 0.000771 0.00289 0.000618 0.000578 0.000567

PSR half-Unmediated 0.0687 0.00282 0.00255 0.00745 0.00147 0.000697 0.0003102 0.000833 0.000204 0.000167 0.000140

PSR all-Mediated 0.0476 0.00047 0.00040 0.00272 0.00018 0.000085 0.0000552 0.000200 0.000047 0.000045 0.000040

struct key 6.10% 0.815% 0.785% 5.50% 0.770% 0.760% 0.738% 1.40% 0.730% 0.720% 0.720%

struct cred 38.4% 25.1% 23.0% 20.2% 16.6% 1.63% 1.10% 1.52% 0.695% 0.670% 0.664%

struct buffer_head 24.5% 24.2% 22.3% 20.1% 16.0% 3.95% 0.846% 2.05% 0.614% 0.604% 0.604%

struct file 71.6% 24.8% 22.9% 29.2% 17.0% 10.9% 4.66% 3.25% 2.65% 1.32% 1.16%

Table 2: Aggregate PSR and object write accessibility. For each separation hypothesis (row 1) we show the range of the aggregate PSR metric based on edge
mediation (rows 2-4). Rows 5-8 show the percent of write instructions that have write privilege to the shown object in the half-Unmediated case. Some objects are
very separable (struct key, struct cred) whereas other objects are poorly encapsulated and are difficult for the algorithms to separate (struct file).

TopDir. Dir. File Func.

ECR 0.21 0.35 0.66 1.00

(a) Syntactic Subject Domains ECR

0.00

0.25

0.50

0.75

1.00

M
in

1e
−1

1e
−2

1e
−3

1e
−4

1e
−5

1e
−6

1e
−7

1e
−8

α

E
C

R

(b) Clustered Subject Domains ECR

Figure 5: The External Call Ratio for the syntactic domains (top) and the al-
gorithmic clustered domains (bottom).

the same system with the exact same kernel configuration, except

with tracing disabled (vanilla Linux) using perf [4]. We also collect

baseline function counts in the same manner on an independent

run. Some functions are invoked proportional to runtime. As a

result, our tracing kernel runs see more function invocations (by

27% on average) than the baseline function counts. For overhead

estimates, we use the function counts from the baseline system and

scale operation counts proportionally.

8 LINUX SEPARABILITY RESULTS
8.1 Linux Performance Separability
One important characteristic for performance is the External Call

Ratio (ECR); that is, the fraction of dynamic calls that are external

to the subject for a given choice of SDs and hence pay separation

overhead costs. Fig. 5 (top) shows the ECR for domains generated

from source code structure, and Fig. 5 (bottom) shows how the

ECR trends with α for our algorithmically generated domains. At

an α parameter of 10
−4

the clusterer achieves a smaller External

Call Ratio than the TopDir syntactic domain, which has compart-

ments that are 400× larger on average. This shows the advantage

of the clustering algorithms over the syntactic cuts: they have the

freedom to place functions with high call connectivity in the same

compartment to minimize the cost of domain crossings.

8.2 Linux Privilege Separability
Tab. 2 shows how much separation we can get under various sepa-

ration hypotheses. For each separation hypothesis (row 1) we show

the range of the aggregate privilege metric PSR from three edge

assignments: all-Mediated (row 2), half-Unmediated (row 3) and

all-Unmediated (row 4).

To show how the accessibility of several concrete objects trends

with PSR and our various separation hypotheses, we pick a set of

common Linux kernel objects (rows 5-8) and show the percent of

write instructions from live code that have write privilege in the

half-Unmediated case. Note that some objects are very separable

(struct cred) while others are less so (struct file).

8.3 Privilege-Performance Continuum
Fig. 6 shows how we trade off total Privilege Set Ratio and per-

formance overhead for the PageTable+EPT Performance Profile

(Sec. 6.6, Tab. 1). Given a tolerance for a certain level of overhead,

the privilege-performance graph allows us to see what level of priv-

ilege reduction we can potentially obtain. This is a key advantage of
systematic analysis and making the continuum available to develop-
ers. The data shows there is a large potential for privilege reduction
without manual refactoring or paying a substantial performance

penalty. At a 15% overhead, we can achieve a privilege reduction of

500×. Note that we calculate overheads for kernel time, which is

typically a small fraction of total time for most applications.

Each curve in Fig. 6 represents the range of privilege-performance

points generated by edge mediation choices (Sec. 6.4), with the low-

privilege/high-overhead end being fully mediated and the high-

privilege/low-overhead end being all unmediated accesses. The fact

the curves typically have a knee where the overhead drops quickly

at the expense of a small change in privileges shows the value of al-

lowing a small amount of unmediated access. Note that the domains

produced from clustering (colored lines) provide substantially better

privilege-performance tradeoffs than the code-structured domains

(grayscale lines). Larger domains (produced from a smaller α value)

have more privilege since no mediation is applied to calls and re-

turns within a domain. Larger domains have lower costs since more

calls and returns are internal to the domain and incur no overhead.

8.4 Highly-Connected Objects and Refactoring
There are some object outliers in the kernel that are accessed by

many subjects; these objects pose the greatest challenges in object

separability. The most highly accessed objects, measured in number

of accessing functions, are task_struct (1,136), ext4_inode (610),

file (529), and dentry (406).
1
These objects would induce high

overhead if they could only be placed in a compartment with a

single subject. The ability to mark edges as unmediated in our

compartmentalizationmodel, and, particularly, to allow unmediated

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

PSRmin

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.00010 0.00100 0.01000 0.10000
PSR

K
er

ne
l O

ve
rh

ea
d(

%
) Separation Hypothesis

Func.

File

Dir.

TopDir.

α = 1e−2

α = 1e−3

α = 1e−4

α = 1e−5

α = 1e−6

α = 1e−7

α = 1e−8

Figure 6: The privilege-performance continuum for each separation hypothesis using the EPT enforcement mechanism. The privilege lower bound (PSRmin) is
shown as a black vertical line. The squares show the privilege-performance point when each object is owned (Unmediated) by the single subject with the highest
access frequency.

access to an object from multiple subjects, can keep the overhead

down for these subjects (Sec. 5.2). In Fig. 6, the squares show what

would happen if we forced every object exclusively into the single

compartment that accessed it most frequently. As can be seen, this

inhibits all high-performance design points.

Importantly, this kind of analysis sets us up to consider refac-

torings that would improve separability. For example, we can run

the compartmentalization algorithms on a moderate domain size

(α = 10
−6
) and apply the mediation restriction that each object is

owned (unmediated) by the single subject with the most accesses.

The objects responsible for the largest fraction of mediated accesses

from other subjects tells us directly which objects are poorly en-

capsulated and are preventing the algorithms from finding a tight

separation. The worst offending objects of this type, measured

by their fraction of the total dynamic accesses, are task_struct

(responisble for 12.2% of all mediated accesses), ext4_inode_info

(8.7%), seq_file (8.2%) and seq_buf (6.7%); this suggests that large

improvements in seperability are possible through refactoring a

small subset of the overall system, and that µSCOPE analysis can

be used to guide these efforts.

8.5 Highly-Connected Subjects and Localizing
Similarly, there are some subject outliers that access many objects.

The worst offenders were common C library operations (e.g.,memcpy,
strcmp). To improve their separability, we add a new config option to

the kernel to inline these functions into their calling compartments—

this approach of localizing or replicating code is a simple way to

remove the object overprivilege for stateless functions.

Of the remaining high object-degree functions, the worst of-

fenders were related to strings—there are tens of thousands of

read-only string constants in the kernel recording various mes-

sages and names. The function with the highest object degree was

filldir which accepts a char * name argument and performs reads

to 2,093 string constants. Excluding string constants, the highest

object degree functions were sysfs_add_file_mode_ns (169) and

internal_create_group (147), which access many global variables

related to permissions. The functions with the most edges to heap

objects were __rcu_process_callbacks (81), __call_rcu (80), and

__mutex_init (40). With the help of a human designer to indicate

where it is safe, these functions with high object privilege could be

localized into compartments to produce a more separable design

and µSCOPE can guide these priorities. We note that a majority of

PSRmin

0.1

1.0

10.0

100.0

1,000.0

10,000.0

0.0001 0.0010 0.0100
PSR

O
ve

rh
ea

d(
%

)

Kernel Switch

EPT Switch

Capability HW

Direct HW

SFI

SFI (optimized)

Figure 7: The Pareto-optimal privilege-performance tradeoff curve for
each enforcement mechanism. The Pareto-optimal curve shows the lowest-
overhead point for each PSR value found from any domain.

object clustering merges (Sec. 6.3) were combining together read-

only string constants due to their large representation in high object

degree functions. The algorithms intentionally avoid combining

objects used by disparate pieces of code or unnecessarily opening

up read and write permissions due to the large increase in PS that

results from exposing objects to new code or operation types.

8.6 Allocator-Use Patterns
We further see that the allocating subject is often not the subject that

uses the object the most. Object-style constructor/accessor patterns

are common in the kernel. For example, get_empty_filp() is the

sole allocator of struct file objects, but only performs around

~3% of dynamic accesses to such objects. We find that for heap

objects, on average, the allocating function only performs around

~6% of accesses while the function with the most accesses performs

around ~20%. This indicates that the allocator of an object is a poor

predictor of actual dynamic use, and is therefore not a good method

for defining compartments.

8.7 Performance of Various Mechanisms
Fig. 7 shows the privilege-performance Pareto tradeoff curves for

the performance profiles introduced in Sec. 6.6 over our range of

compartmentalizations. Capturing a range of performance over-

heads in our profiles allows us to illustrate how the tradeoffs shift,

and possibly reshape, with different mechanism costs. The pro-

files also illustrate how lightweight mechanisms can enable higher

privilege separation for lower costs. For example, at an overhead

estimate of only ~1%, direct hardware support allows us to achieve

the same level of separation that would impose a ~50% overhead

for the EPT model. This highlights another reason automated com-

partmentalization that has access to the full compartmentalization

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

1

3

10

30

1 10 100 1000 10000
Overhead (%)

W
rit

e
O

ve
rp

riv
ile

ge
 (

X
)

Weight

1 (default)

10

100

1000

Infinite

Figure 8: The impact of increasing struct cred’s write weight on its final
write overprivilege. By increasing its weight, the write overprivilege can be
driven lower for the same overhead level, giving a designer an easy tool for
tuning the protection of a chosen object.

continuum is important—it allows a system to easily adapt to exploit

new hardware support with lower costs for separation.

8.8 Security Tuning
Tab. 2 shows the write exposure of struct cred for various separa-

tion hypotheses and mediation levels; this data is from a default,

fully-automatic compartmentalization flow. A developer can easily

control the overprivilege on objects they deem sensitive (like struct

cred) by increasing their weighting relative to other objects. This

will drive the algorithms (Secs. 6.2-6.4) to reduce the overprivilege

exposure for these items. In Fig. 8 we show the impact of increas-

ing struct cred’s write weight on its final write exposure. This

illustrates the advantages of automation in responding to evolving

threat models and security preferences.

9 EXPLOIT CASE STUDY
The compartmentalization model introduced by µSCOPE can be

qualitatively evaluated by studying concrete kernel exploits. This

section analyzes three CVEs relative to various compartmentaliza-

tions to assess the concrete security implication of the privilege

metric and separation methodology. We leave a more complete and

systematic analysis across all kernel CVEs to future work.

CVE-2017-7308 is a vulnerability in the Linux 4.8 network stack

that allows an unprivileged user to cause a kernel heap out-of-

bounds write that can grant root access to an unprivileged user. The

user facing packet-socket interface provides clients with the ability

to request kernel networking data structures, like ring buffers, but

lacks a critical security check. An adversary can submit amalformed

request to the interface to build a ring buffer and overwrite a kernel

timer function pointer. A common target is to use this to invoke code

in arch/x86/kernel/cpu/common that disables two critical security

protections (SMEP and SMAP [16]) by overwriting CR4. With these

protections disabled, the user process can force the kernel into

reading and executing memory in the user address space, which

can then be used to grant a user full root access to the host.

Directory level compartmentalization (as well as the more fine-

grained separations) would have prevented the exploit detailed

above by removing the attack edge where the overwritten function

pointer (in the kernel timer mechanism) is used to call the sensitive

functions that disable SMEP/SMAP (in arch/x86/kernel/cpu/common).

CVE-2017-18344 [40] tracks a vulnerability in one of the POSIX

timer system-call interfaces that enables unprivileged code to read

arbitrary regions of kernel virtual and physical memory. The prob-

lem is that the timer_create system call fails to validate an input,

specifically the sigev_notify field in a k_itimer structure, which

is used to define a POSIX interval timer. The sigev_notify field

is used to index into a global array of strings. The PoC uses the

out-of-bounds read to access user space pages from within a kernel

thread and eventually map arbitrary kernel pages into the user

address space. The existing exploit fails when SMAP is enabled, i.e.,
two large compartments, but event without that, this example hints

at the broader need for compartmentalization and mediated access

within the kernel. The function that executes the overflow only

requires access to six objects, and can thus be restricted to avoid

the corruption. Furthermore, this function is called so rarely that

the clustering algorithms never grouped it with other code, and so

in all of our compartmentalizations the out-of-bounds read is never

permitted access to any other data.

CVE-2017-15649 is a use-after-free vulnerability that is caused

by a race condition in the net kernel subsystem. After the race

condition is triggered, a dangling reference to a freed heap object of

type struct packet_fanout is held by a live structure. An attacker

can manipulate the contents of the freed-but-accessible object by

causing a fresh allocation of a similar size to claim and access

the same memory. The struct packet_fanout contains a function

pointer id_match, which, when overwritten, offers a control-flow

hijack opportunity when the function pointer is later used. In a

system that enforces CAPMAP compartmentalizations, only a small

subset of the functions in the system have write permission to

these objects, meaning that even the initial corruption will be more

complex to execute and must be done through the net subsystem.

Assuming the function pointer can be overwritten successfully,

there is a single instruction that performs the hijacked call. In Tab. 9

we show (1) the |PScall | of the specific indirect call instruction, (2)
the total number of gadgets accessible to the hijacked domain,

(3) the number of distinct registers that can serve as stack pivot

targets, (4) whether or not Ropper can construct a write-what-

where gadget, (5) whether or not Ropper succeeds in constructing

a payload, and (6) the estimated overhead of that separation for

the All-Unmediated case (see Fig. 6 for full tradeoff-curves). To

determine whether Ropper succeeds in constructing a payload, we

add an additional pass to Ropper in which it filters out gadgets

that are made inaccessible to the hijacked domain by µSCOPE. This
shows that the general compartmentalization algorithms based on

PS not only eliminate needed privileges but also that exploiting this

vulnerability without a typical ROP chain significantly increases

the attacker’s work factor as they must perform repeated confused-

deputy attacks [30] to reach their target.

10 RELATEDWORK
Early privilege separation approaches reduced privilege by man-

ually decomposing a system [37, 58, 72]; such efforts require sig-

nificant human capital, in the form of time and domain expertise,

and are thus limited in terms of both scalability and the level of

privilege reduction provided. Later approaches introduced various

degrees of automation that reduce, but do not eliminate, the hu-

man capital requirement. This can be achieved through requesting

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

Mono. TopDir. α=1e-8 α=1e-7 Dir α=1e-6 α=1e-5 File α=1e-4 Func.

|PScall | 12,759,707 1,143,488 866,112 16,368 247,977 5,216 1,440 44,132 1,264 1,264

Total Gadgets 796,304 65,215 47,291 872 17,554 252 39 3,313 12 12

Stack Pivot Target Regs. 6 2 2 0 1 0 0 1 0 0

Write-What-Where Y Y Y N N N N N N N

Ropper Payload Succeeds Y Y Y N N N N N N N

Estimated Overhead 0% 200% ~1% ~1% 340% 15% 62% 670% 130% 1000%

Figure 9: CVE-2017-15649 metrics and statistics.

developer annotation of source code to derive privilege compart-

ments [12, 13, 29, 47, 54], or the combination of partial code anno-

tations with analysis infrastructures to further reduce developer

burden (SMV [35], SOAAP [29], Wedge [12], ACES [15], ERIM [67],

lwC [44], PM [47],[23]). These systems either retain the coarse-

grained, default-allow model of privilege, or, in cases where they

can support many compartments, still depend on experts: they are

“semi-automatic” at best, providing an incomplete and ad hoc explo-
ration of the privilege-performance space. Microkernels [11, 38, 59]

and other manual separation efforts [2, 32, 53, 70] have been ap-

plied to OSs, but lack the automation and exploration advantages

of µSCOPE’s approach.

11 DISCUSSION AND FUTUREWORK
µSCOPE analysis shows that the Linux kernel runs with exces-

sive privilege (over 25,000×) and has the potential for considerable

privilege reduction (500×) while indicating minimal restructuring

and excessive overhead (15%). This should be viewed as bringing

an enticing opportunity to light, but it stops far short of showing

how to engineer solutions that fully exploit it; it will still require

significant contributions to fully extract this promise.

Coverage andDynamicAnalysis: µSCOPE uses dynamic anal-

ysis to collect privileges and their runtime usage counts for privilege

and performance analysis. Our coverage results stabilized over our

test suites and kernel workloads (Fig. 4), indicating that our analysis

is quite comprehensive for the configuration under study. However,

coverage is a limitation of dynamic analysis. Like other works [15],

our framework could be combined with static analysis for a hybrid

design. The PSmin difference between static and dynamic analysis

would be interesting to explore. Note that, most mechanisms will

incur some generalization when applying a CAPMAP, e.g., accesses

could be generalized on a per-function or per-module level. It is

unlikely that data will only be touched in uncovered passes and

the implicit generalization will naturally include some potentially

missed accesses. Omissions discovered from µSCOPE can be used

to improve the quality of kernel test suites [3], and µSCOPE could

be used in conjunction with related fields such as Whitebox Fuzz

Testing [28] in discovering test cases for additional privilege cov-

erage. Our needs for privilege coverage are well aligned with the

needs for test coverage by the community at large.

Runtime modes, usability and alert messages: The refer-

ence monitor would support two modes: audit mode (in which

violations are written to a log file) and strict mode (in which vio-

lations produce failstop behavior). The logs produced from audit

mode include rich context, including the call stack and instruction-

level access that produced the violation, which allows an engineer

to discern whether or not to include the missing privilege and how

to extend the testing suite to capture it. A system would typically

be run in audit mode until the rate of violations drops below an

acceptable threshold. Even in strict mode, note that not all viola-

tions would cause the OS to terminate: when acting on behalf of a

program, only the offending system call or process need fail.

Interface Integrity: Our privilege metric identifies a “first or-

der” separation in that it quantifies memory accessibility and the

reachability of function calls. It does not assess indirect privilege

that might come from, for example, an exported getter or setter. Re-

fining privilege metrics to account for such effects, such as making

the weightw(o,op) of a call be a function of the privilege available

to the callee, would be interesting future work.

Correlation of Security and Privilege Metrics: We hypoth-

esize that privilege reduction is strongly correlated with security

improvement (Sec. 4) and provide some evidence that it does (Sec. 2).

Nonetheless, there is a need for a more complete and systematic

characterization of the relationship between privilege separation

and security to refine and validate efforts such as this one and

PM [47].

Dynamically Loaded or Generated Code: In some cases a

static instruction-level CAPMAP will not be adequate to define

privileges: kernels load dynamic kernel modules, application soft-

ware loads dynamically linked libraries, and code can be compiled

dynamically (and compilation may be data-dependent). In these

cases we can identify subjects and objects at a higher-level.

12 CONCLUSION
In this work we conduct a limit study on the privilege separability

of complex software. Our analysis is made possible by µSCOPE, a
framework that includes new models, metrics and algorithms for

exploring the continuum of compartmentalization spaces. We apply

µSCOPE to the Linux kernel and show that orders of magnitude

of privilege separation are possible, how the separability of kernel

objects can be explored and tuned, and that we can automatically

identify important refactorings for further improving separability.

We also highlight the potential for lightweight separation mecha-

nisms to enable greater privilege separation for lower costs. These

results demonstrate the utility of systematic privilege analysis.

ACKNOWLEDGMENTS
This research was funded in part by DARPA contracts HR0011-18-C-

0011 and HR001119S0089-AMP-FP-034; NSF grants CNS-1513687,

TWC-1513854, CNS-1801601, CNS-16-57534, CNS-17-50024 and

CNS-2008867; ERC StG 850868; and ONR grant BAA N00014-17-S-

B010. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not reflect

the official policy or position of the U.S. Government.

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

REFERENCES
[1] [n.d.]. The Linux Kernel Open Source Project on Open Hub. https://www.

openhub.net/p/linux.

[2] [n.d.]. SELinux Project. https://selinuxproject.org/.

[3] 2018. Linux Test Project. https://linux-test-project.github.io.

[4] 2018. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org/index.php/Main_Page.

[5] 2018. Phoronix Test Suite. https://www.phoronix-test-suite.com.

[6] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,

Avadis Tevanian, and Michael Young. 1986. Mach: A New Kernel Foundation for

UNIX Development. In Proc. USENIX. 93–112.
[7] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. NP-

hardness of Euclidean sum-of-squares clustering. Machine Learning 75, 2 (01

May 2009), 245–248. https://doi.org/10.1007/s10994-009-5103-0

[8] James P. Anderson. 1972. Computer Security Technology Planning Study. Technical
Report ESD-TR-73-51. Air Force Electronic Systems Division.

[9] V.R. Basili and B.T. Perricone. 1984. Software Errors and Complexity: An Empirical

Investigation. (1984), 42–52.

[10] Ian Beer. 2020. An iOS zero-click radio proximity exploit odyssey.

https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-

proximity.html?m=1.

[11] Simon Biggs, Damon Lee, and Gernot Heiser. 2018. The Jury Is In: Monolithic OS

Design Is Flawed—Microkernel-based Designs Improve Security. In Proceedings
of the ACM Asia-Pacific Workshop on Systems (APSys).

[12] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:

Splitting Applications into Reduced-Privilege Compartments. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’08). USENIX Association, Berkeley, CA, USA, 309–322.

[13] David Brumley and Dawn Song. 2004. Privtrans: Automatically Partitioning

Programs for Privilege Separation. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (SSYM’04). USENIX Association, Berkeley, CA,

USA, 5–5.

[14] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.

Shreds: Fine-Grained Execution Units with Private Memory. In IEEE Sympo-
sium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE
Computer Society, 56–71. https://doi.org/10.1109/SP.2016.12

[15] Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias

Payer. 2018. ACES: Automatic Compartments for Embedded Systems. In 27th
USENIX Security Symposium (USENIX Security 2018). USENIX Association, 65–82.

https://www.usenix.org/conference/usenixsecurity18/presentation/clements

[16] Intel Corporation. [n.d.]. 4.10.1 Paging Modes and Control Bits. https:

//www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-

32-architectures-software-developer-vol-3a-part-1-manual.pdf

[17] Intel Corporation. [n.d.]. Intel 64 and IA-32 Architectures Optimization Reference
Manual.

[18] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. 2007.

Secure Virtual Architecture: A Safe Execution Environment for Commodity

Operating Systems. In Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles (SOSP ’07). ACM, New York, NY, USA, 351–366.

https://doi.org/10.1145/1294261.1294295

[19] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and

Vikram Adve. 2015. Nested Kernel: An Operating System Architecture for Intra-

Kernel Privilege Separation. SIGARCH Comput. Archit. News 43, 1 (March 2015),

191–206. https://doi.org/10.1145/2786763.2694386

[20] David Howells. [n.d.]. Credentials in Linux.

https://www.kernel.org/doc/Documentation/security/credentials.txt.

[21] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008.

HardBound: Architectural Support for Spatial Safety of the C Programming

Language. In International Conference on Architectural Support for Programming
Languages and Operating Systems. 103–114. http://acg.cis.upenn.edu/papers/

asplos08_hardbound.pdf

[22] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,

Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and André DeHon.

2015. Architectural support for software-defined metadata processing. ACM
SIGARCH Computer Architecture News 43, 1 (2015), 487–502.

[23] Xinshu Dong, Hong Hu, Prateek Saxena, and Zhenkai Liang. 2013. A quanti-

tative evaluation of privilege separation in web browser designs. In European
Symposium on Research in Computer Security. Springer, 75–93.

[24] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David

Ziegler, Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. 2005.

Labels and event processes in the Asbestos operating system. In ACM SIGOPS
Operating Systems Review, Vol. 39. ACM, 17–30.

[25] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4 What Have We

Learnt in 20 Years of L4 Microkernels?. In Proceedings of the ACM Symposium on
Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13). ACM, New

York, NY, USA, 133–150. https://doi.org/10.1145/2517349.2522720

[26] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.

Necula. 2006. XFI: Software guards for system address spaces. In Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association, 75–88.

[27] Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard

Bugnion. 2020. Enclosure: language-based restriction of untrusted libraries.

In Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

[28] Patrice Godefroid, Michael Y Levin, and David Molnar. 2008. Automated White-

box Fuzz Testing. In The Network and and Distributed System Security Symposium
NDSS.

[29] Khilan Gudka, Robert N.M. Watson, Jonathan Anderson, David Chisnall, Brooks

Davis, Ben Laurie, Ilias Marinos, Peter G. Neumann, and Alex Richardson. 2015.

Clean Application Compartmentalization with SOAAP. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 1016–1031. https://doi.org/10.1145/2810103.2813611

[30] Norm Hardy. 1988. The Confused Deputy (or why capabilities might have been

invented). SIGOPS Operating Systems Review 22, 4 (October 1988), 36–38.

[31] L. Hatton. 1997. Reexamining the fault density component size connection. IEEE
Software 14, 2 (Mar 1997), 89–97. https://doi.org/10.1109/52.582978

[32] M.S. Hecht, M.E. Carson, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterer, V.D.

Gligor, W.D. Jiang, A. Johri, G.L. Luckenbaugh, and N. Vasudevan. 1987. UNIX

without the Superuser. In Proceedings of the Summer 1987 USENIX Conference.
USENIX Association.

[33] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,

Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation

for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 489–504.

[34] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.

2016. Enforcing Least Privilege Memory Views for Multithreaded Applications. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’16). Association for Computing Machinery, Vienna, Austria, 393–

405. https://doi.org/10.1145/2976749.2978327

[35] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.

2016. Enforcing Least Privilege Memory Views for Multithreaded Applications.

In ACM Conf on Computer and Communication Security. https://doi.org/10.1145/

2976749.2978327

[36] Paul A. Karger. 1987. Limiting the Damage Potential of Discretionary Trojan

Horses. In 1987 IEEE Symposium on Security and Privacy. IEEE Computer Society,

Los Alamitos, CA, USA, 32. https://doi.org/10.1109/SP.1987.10011

[37] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Applications. In

Proceedings of the FREENIX Track: 2003 USENIX Annual Technical Conference, June
9-14, 2003, San Antonio, Texas, USA. 273–284.

[38] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. 207–220.

[39] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-

los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware. In

Proceedings of the Twelfth European Conference on Computer Systems (EuroSys ’17).
ACM, New York, NY, USA, 437–452. https://doi.org/10.1145/3064176.3064217

[40] Andre Konovalov. [n.d.]. Linux kernel: CVE-2017-18344: arbitrary-read vul-

nerability in the timer subsystem. https://www.openwall.com/lists/oss-

security/2018/08/09/6

[41] Butler W. Lampson. 1974. Protection. SIGOPS Oper. Syst. Rev. 8, 1 (Jan. 1974),
18–24. https://doi.org/10.1145/775265.775268

[42] Wenhao Li, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan. 2015. Re-

ducing World Switches in Virtualized Environment with Flexible Cross-World

Calls. In Proceedings of the 42Nd Annual International Symposium on Com-
puter Architecture (ISCA ’15). ACM, New York, NY, USA, 375–387. https:

//doi.org/10.1145/2749469.2750406

[43] W. Li, Y. Xia, H. Chen, B. Zang, and H. Guan. 2015. Reducing world switches in

virtualized environment with flexible cross-world calls. In International Sympo-
sium on Computer Architecture (ISCA). 375–387. https://doi.org/10.1145/2749469.

2750406

[44] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby

Bhattacharjee, and Peter Druschel. 2016. Light-weight Contexts: An OS Abstrac-

tion for Safety and Performance. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation.

[45] Shen Liu, Gang Tan, and Trent Jaeger. 2017. PtrSplit: Supporting General Pointers

in Automatic Program Partitioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). ACM, New York, NY, USA, 2359–2371. https://doi.org/10.1145/3133956.

3134066

[46] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,

Trent Jaeger, and Gang Tan. 2019. Program-Mandering: Quantitative Privilege

Separation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19). Association for Computing Machinery,

https://www.openhub.net/p/linux
https://www.openhub.net/p/linux
https://selinuxproject.org/
https://linux-test-project.github.io
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.phoronix-test-suite.com
https://doi.org/10.1007/s10994-009-5103-0
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html?m=1
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html?m=1
https://doi.org/10.1109/SP.2016.12
https://www.usenix.org/conference/usenixsecurity18/presentation/clements
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://doi.org/10.1145/1294261.1294295
https://doi.org/10.1145/2786763.2694386
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf
https://doi.org/10.1145/2517349.2522720
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1109/52.582978
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1109/SP.1987.10011
https://doi.org/10.1145/3064176.3064217
https://www.openwall.com/lists/oss-security/2018/08/09/6
https://www.openwall.com/lists/oss-security/2018/08/09/6
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/2749469.2750406
https://doi.org/10.1145/2749469.2750406
https://doi.org/10.1145/2749469.2750406
https://doi.org/10.1145/2749469.2750406
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/3133956.3134066

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

London, United Kingdom, 1023–1040. https://doi.org/10.1145/3319535.3354218

[47] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,

Trent Jaeger, and Gang Tan. 2019. Program-mandering: Quantitative Privilege

Separation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (London, UK) (CCS ’19). ACM, New York, NY, USA.

[48] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwart-

ing Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Iso-

lation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS ’15). ACM, New York, NY, USA, 1607–1619.

https://doi.org/10.1145/2810103.2813690

[49] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and

M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-

principal modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. ACM, 115–128.

[50] Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. Ph.D. Dissertation. Johns Hopkins
University, Baltimore, MD, USA. AAI3245526.

[51] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. 2004. An empirical study

of software reuse vs. defect-density and stability. In Proceedings. 26th International
Conference on Software Engineering. 282–291. https://doi.org/10.1109/ICSE.2004.

1317450

[52] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and Anton Burt-

sev. 2020. Lightweight Kernel Isolation with Virtualization and VM Func-

tions. In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments (Lausanne, Switzerland) (VEE ’20). As-
sociation for Computing Machinery, New York, NY, USA, 157âĂŞ171. https:

//doi.org/10.1145/3381052.3381328

[53] Elliott I. Organick. 1972. The Multics System: An Examination of Its Structure. MIT

Press, Cambridge, MA, USA.

[54] Gabriel Parmer and Richard West. 2011. Mutable protection domains: Adapting

system fault isolation for reliability and efficiency. IEEE Transactions on Software
Engineering 38, 4 (2011), 875–888.

[55] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis Polychron-

akis, and Vasileios P. Kemerlis. 2017. kRˆX: Comprehensive Kernel Protection

against Just-In-Time Code Reuse. In Proc. of EuroSys. 420–436.
[56] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,

and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel

and User Space. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 563–577. https://doi.org/10.1109/SP40000.2020.00041

[57] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Polychronakis.

2020. xMP: Selective Memory Protection for Kernel and User Space. In 2020
IEEE Symposium on Security and Privacy (SP). 563–577. https://doi.org/10.1109/

SP40000.2020.00041

[58] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege

Escalation. In Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 16–16.

[59] Richard F. Rashid and George G. Robertson. 1981. Accent: A Communication

Oriented Network Operating System Kernel. In Proceedings of the Eighth ACM
Symposium on Operating Systems Principles (Pacific Grove, California, USA) (SOSP
’81). ACM, New York, NY, USA, 64–75. https://doi.org/10.1145/800216.806593

[60] Rick. 2018. Never-Ending Security: eBPF and Analysis of the Get-Rekt-Linux-

Hardened.c Exploit for CVE-2017-16995.

[61] Nick Roessler, Yi Chien, Lucas Atayde, Peiru Yang, Imani Palmer, Lily Gray, and

Nathan Dautenhahn. 2021. Lossless instruction-to-object memory tracing in the

Linux kernel. In Proceedings of the 14th ACM International Conference on Systems
and Storage. 1–12.

[62] Jerome H. Saltzer and Michael D. Schroeder. 1975. The Protection of Information

in Computer Systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[63] Michael D. Schroeder and Jerome H. Saltzer. 1972. A Hardware Architecture for

Implementing Protection Rings. Commun. ACM 15, 3 (March 1972), 157–170.

https://doi.org/10.1145/361268.361275

[64] Bin Shi, Lei Cui, Bo Li, Xudong Liu, Zhiyu Hao, and Haiying Shen. 2018. Shadow-

Monitor: An Effective In-VM Monitoring Framework with Hardware-Enforced

Isolation. In Proceedings of the International Symposium on Research in At-
tacks, Intrusions, and Defenses (RAID) (LNCS, 11050). Springer Nature, 670–690.
https://doi.org/10.1007/978-3-030-00470-5_31

[65] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war

in memory. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 48–62.
[66] Tsuna. 2010. How long does it take to make a context switch? https://blog.

tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html. https://

blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

[67] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isola-

tion with Protection Keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 1221–1238. https://www.

usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner

i0i1i2i3i4i5i6i7i8

o0
8B

o1
16B

o2
4B

o3
10B

o
b

je
c
ts

in
s
tr

s
.

od0od1

sd0sd1

Dashed
boxes are
optional
domain
clusters

Compartmentalization |PS | PSR

Monolithic (writeable code) 9×(38+9×4) 1.00

Monolithic (non-writeable code) 9 × 38 0.51

sd0, sd1, od0, od1

(all edges unmediated) 246 0.37

sd0, sd1, od0, od1

(sd0 to od1 mediated) 180 0.27

sd0, sd1, each ok own domain

(o1, o2 mediated) 140 0.21

Full Separation (|PSmin |)

(each ik and ok is own domain) 122 0.18

w(o,op)=o.size; assume 4 Byte instructions.

Figure 10: Privilege metric illustration.

[68] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. {ERIM}: Secure, Efficient In-Process

Isolation with Protection Keys ({MPK}). In 28th {USENIX} Security Symposium
({USENIX} Security 19). 1221–1238.

[69] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André De-

Hon, and Jonathan M. Smith. 2018. BreakApp: Automated, Flexible Applica-

tion Compartmentalization. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/

ndss2018_08-3_Vasilakis_paper.pdf

[70] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.

Capsicum: Practical Capabilities for UNIX.. InUSENIX Security Symposium, Vol. 46.

2.

[71] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann, J.

Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka, A.

Joannou, A. T. Markettos, E. Maste, S. J. Murdoch, C. Rothwell, S. D. Son, and M.

Vadera. 2016. Fast Protection-Domain Crossing in the CHERI Capability-System

Architecture. IEEE Micro 36, 5 (Sept 2016), 38–49. https://doi.org/10.1109/MM.

2016.84

[72] Emmett Witchel, Junghwan Rhee, and Krste Asanović. 2005. Mondrix: Memory

Isolation for Linux Using Mondriaan Memory Protection. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles (SOSP ’05). ACM,

New York, NY, USA, 31–44. https://doi.org/10.1145/1095810.1095814

[73] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity &

Randomization for Binary Executables. In IEEE Symposium on Security and Pri-
vacy. http://bitblaze.cs.berkeley.edu/papers/CCFIR-oakland-CR.pdf

A PSR METRIC EXAMPLE
Fig. 10 shows a simple graph and illustrates how PSR is calculated

for these cases. The baseline monolithic case assumes writeable

code. The rest of the cases assume non-writeable code, removing

many privileges. Even the clustered case with all unmediated edges

reduces privileges due to the Not edge from sd1 to od0. With the

sd0 to od1 edge mediated (fourth row), the link only adds the base

CAPMAP 4 units of privilege for i4 to access object o2. Changing
the sd0 to od1 edge from mediated to unmediated (third row) adds

5×14=70 units since all instructions in sd0 now have privilege over

all objects in od1, for a net increase of 70-4=66 privileges.

https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1109/ICSE.2004.1317450
https://doi.org/10.1109/ICSE.2004.1317450
https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1145/3381052.3381328
https://doi.org/10.1109/SP40000.2020.00041
https://doi.org/10.1109/SP40000.2020.00041
https://doi.org/10.1109/SP40000.2020.00041
https://doi.org/10.1145/800216.806593
https://doi.org/10.1145/361268.361275
https://doi.org/10.1007/978-3-030-00470-5_31
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
https://doi.org/10.1109/MM.2016.84
https://doi.org/10.1109/MM.2016.84
https://doi.org/10.1145/1095810.1095814
http://bitblaze.cs.berkeley.edu/papers/CCFIR-oakland-CR.pdf

µSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large Software Artifacts RAID ’21, October 6–8, 2021, San Sebastian, Spain

B TESTS AND BENCHMARKS
The Phoronix benchmarks we use are shown in Fig. 11, along with

the amount of memory we associate with each kind of memory

type based on our object weighting model. Code corresponds to the

size of the .text section in the compiled vmlinux binary. Globals
include the combined final size of the global objects stored in the

.data, .rodata and .bss sections. The SLUB, Page and VMalloc

allocators show the average data size of live objects as discussed

in our object weighting model. µSCOPE treats stack memory as a

single object, with a size equal to the average number of live stack

bytes across all kernel stacks. Memblock memory is physically allo-

cated from the Memblock subsystem; it is treated as a single object

with a size equal to the number of used pages. Lastly, VMEMMAP

corresponds to the size of the sparse virtual memory map structure

used by Linux for fast translations. gnupg uses an unusually large

amount of SLUB heap memory, which we identified as the Linux

buffer cache.

We use the following LTP tests: admin tools, can, cap bounds,
commands, connectors, containers, crypto, dio, fcntl locktests,
filecaps, fs, fsbind, fs ext4, fs perms simple, fsx, hugetlb,
input, io, kernel_misc, ltp aio stress, ltplite, math, mm,
network commands, nptl, pipes, power management tests, sched,
power management tests exclusive, quickhit, securebits,
stress, syscalls, syscalls ipc, timers, and tpm tools.

C PERFORMANCE PROFILES
Page Table Process Protection: One way to provide separation

is via the use of virtual memory. Subject Domains are mapped to

processes. Object Domains are mapped to contiguous, page-aligned

regions of virtual memory, which may contain either static objects

or serve as pools for dynamic allocations for that OD. Unmedi-

ated pages are mapped in to the process page table according to

their allowed permissions. Mediated accesses generate a trap to a

supervisor, which performs the CAPMAP check, and, if allowed,

performs the operation or performs a context switch in the case of

a cross-domain call or return. This is modeled by the 6000 cycles

for mediated operation based on a rough estimates from [43] and

[66]. A highly optimized microkernel context switch might be less

expensive [25] and closer to some of the leaner options that follow.

EPT Protection: The vmfunc [48] operation in modern Ex-

tended Page Tables (EPT) makes it less expensive to change page

tables for an operation. Unmediated reads, writes, and frees, as well

as internal calls, are directly mapped in the page table so they can

complete with no overhead. External calls and returns make an

explicit vmfunc call to perform the context switch; external medi-

ated calls and returns perform a CAPMAP check in the vmfunc call
[43, 48]. Mediated reads and writes will trap, check the CAPMAP,

and perform the vmfunc operation from the trap, when allowed

[64]. We model two traps (at 200 cycles each), two vmfunc calls

(at 450 cycles each) and one CAPMAP lookup (at 200 cycles) for

the total of 1500 cycles for a read, write or free. For the call, we

model one vmfunc call and one CAPMAP lookup. We calibrated

the vmfunc timing by measuring the kernel overhead time for Page

Table protection implementation in the public release of xMP [57]

and counting the number of added vmfuncs; so the 450 cycle rep-
resents the average cycles added per vmfunc including caching

effects. These numbers are consistent with [64]. The raw number

of cycles in the vmfunc is closer to 150, consistent with [39], but

that doesn’t include the caching impact. We measure the 200 cycles

per CAPMAP lookup from our hash implementation.

Software Fault Isolation (SFI): In an SFI scheme [26, 49, 55],

we can check any potentially unmediated read, write, or free access

with an inline code monitor. We model two cases, one standard

(baseline), and one optimized based on information we have in the

CAPMAP (optimized). When we know from the CAPMAP that a

small number of unmediated objects is accessed from a particular

instruction, these can be checked quickly with specialized, inline

base and bounds checks [55]. Our tracing shows that the dynamic

distribution of accessed objects is highly skewed (call entropy is

0.041, read/write entropy is 0.265); this means the checks can be

constructed in a tree organized like a Huffman encoding. Our opti-

mized model includes the cost for a single check in the average case.

Mediated accesses can be checked with a hash table lookup. Exter-

nal calls and returns can be wrapped with a springboard to permit

only CAPMAP allowed operations and change context information

when a call or return changes domains [73].

Capability Hardware: Capability hardware can restrict oper-

ations without requiring virtual memory and hence page table

changes [71]. Mediated read and write operations can use capabil-

ity pointers. Mediated calls and returns still require some time to

check the CAPMAP and change capabilities, but this can be less

expensive than a traditional OS context switch. We take the 600

cycle estimate from Tab. 2 in [71]. In the best case, mediated reads

and writes can use the capability pointers, but may require some

addition cycles to select and load capability pointers. Unmediated

operations on a single OD can use the capability bounds check to

eliminate per reference costs.

Direct Hardware Support: If we were to design hardware di-

rectly to support the CAPMAP, it could look like the HardBound

hardware hash mechanism [21] or a cached tag rule checking mech-

anism [22]. That is, on every operation, the hardware uses the

program counter and the address of the object to consult a hard-

ware cached hash of the CAPMAP. Hits to the cache will add no

overhead, while misses will incur a few cycles to fetch replacement

entries for the CAPMAP cache. We use 10 cycles as a crude estimate

for average time of a reference considering most references will

take 0 time, but 5% of references may take 200 cycles. Since the

miss rate will decrease with cluster size, assuming this high, fixed

miss rate will make overhead results increasingly pessimistic with

increasing cluster size.

RAID ’21, October 6–8, 2021, San Sebastian, Spain Roessler and Dautenhahn, et al.

0

20

40

60

bu
lle

t
by

te
c−

ra
y

co
m

pr
es

s−
7z

ip

co
m

pr
es

s−
lzm

a

co
m

pr
es

s−
pb

zip
2

cr
af

ty

en
co

de
−m

p3

ffm
pe

g

gm
pb

en
ch

gn
up

g

gr
ap

hic
s−

m
ag

ick

him
en

o

hm
m

er

joh
n−

th
e−

rip
pe

r
m

af
ft

op
en

ss
l

py
be

nc
h

sm
all

pt

sq
lite

ta
ch

yo
n

x2
64

S
iz

e
(M

B
)

Data Type

VMEMMAP (1.1%)

Memblock (0.5%)

VMalloc (27.6%)

Stack (0.1%)

Page Allocator (16.0%)

SLUB Allocator (8.2%)

Globals (14.1%)

Code (32.4%)

Figure 11: The amount of data we associate with each kind of memory region based on our object weighting model.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Our Approach: Quantifying Privilege

	3 Security Model
	4 Design Goals
	4.1 Comprehensive Privilege Coverage
	4.2 Automated Analysis
	4.3 Privilege Continuum

	5 The SCOPE Methodology
	5.1 Privilege Model and CAPMAP
	5.2 Compartmentalization Model
	5.3 Metrics
	5.4 Separability Analysis

	6 Mapping Linux and C to SCOPE
	6.1 Mapping C for Fine-Grained Identification
	6.2 Subject Domains
	6.3 Object Domains
	6.4 Access Mediation
	6.5 Weighting Parameters
	6.6 Performance Profiles

	7 Experimental Methods
	7.1 CAPMAP Tracer
	7.2 Coverage Test Sets
	7.3 Performance Benchmarks

	8 Linux Separability Results
	8.1 Linux Performance Separability
	8.2 Linux Privilege Separability
	8.3 Privilege-Performance Continuum
	8.4 Highly-Connected Objects and Refactoring
	8.5 Highly-Connected Subjects and Localizing
	8.6 Allocator-Use Patterns
	8.7 Performance of Various Mechanisms
	8.8 Security Tuning

	9 Exploit Case Study
	10 Related Work
	11 Discussion and Future Work
	12 Conclusion
	Acknowledgments
	References
	A PSR Metric Example
	B Tests and Benchmarks
	C Performance Profiles

