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Bandwidth-Constrained Distributed Estimation for
Wireless Sensor Networks—Part I: Gaussian Case
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Abstract—We study deterministic mean-location parameter es-
timation when only quantized versions of the original observations
are available, due to bandwidth constraints. When the dynamic
range of the parameter is small or comparable with the noise vari-
ance, we introduce a class of maximum-likelihood estimators that
require transmitting just one bit per sensor to achieve an estima-
tion variance close to that of the (clairvoyant) sample mean es-
timator. When the dynamic range is comparable or larger than
the noise standard deviation, we show that an optimum quanti-
zation step exists to achieve the best possible variance for a given
bandwidth constraint. We will also establish that in certain cases
the sample mean estimator formed by quantized observations is
preferable for complexity reasons. We finally touch upon algorithm
implementation issues and guarantee that all the numerical maxi-
mizations required by the proposed estimators are concave.

Index Terms—Parameter estimation, wireless sensor networks.

I. INTRODUCTION

WIRELESS sensor networks (WSNs) comprise a large
number of geographically distributed nodes charac-

terized by low power constraints and limited computation
capability. However, with sensor collaboration, potentially
powerful networks can be constructed to monitor and control
environments [9]. While a number of works address sensor
collaboration for distributed detection (see, e.g., [22], [23],
and references therein), the equally challenging problem of
distributed estimation has not received much attention. In dis-
tributed estimation for WSN each sensor has available a subset
of the observations that must be either transmitted to a central
node (WSN with a fusion center) or shared among nodes (ad
hoc WSN). Various design and implementation issues were
pursued in early works [2], [7], [10]. More recently, a great deal
of attention has focused on decentralized algorithms exploiting
spatial correlation to reduce transmission requirements [3], [4],
[6], [14], [17], [19].
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A related problem for both types of WSN (ad hoc, or with a
fusion center) is that bandwidth is limited, necessitating the esti-
mator to be formed using quantized versions of the original ob-
servations. In this setup, quantization becomes an integral part
of the estimation process, since one may think of quantization
as a means of constructing binary observations. We then deal
with parameter estimation given a set of binary observations, as
opposed to the (clairvoyant) parameter estimation based on un-
quantized (analog) measurements. When the noise probability
density function (pdf) is known, transmitting a single bit per
sensor can lead to minimal loss in the estimator variance com-
pared with the clairvoyant estimator [1], [15]. Various algo-
rithms have been introduced in [15] to reduce the worst case
variance increase in certain setups. Alternatively, when the noise
pdf is unknown, universal (pdf-unaware) estimators based on
quantized sensor data have been introduced recently [11]–[13].

Our focus here is on bandwidth-constrained distributed mean-
location parameter estimation in additive white Gaussian noise
(AWGN). We seek maximum-likelihood estimators (MLEs) and
benchmark their variances with the Cramer–Rao lower bound
(CRLB) that, at least asymptotically, is achieved by the MLE.
We will show that the deciding factor in the choice of the esti-
mator is the signal-to-noise ratio (SNR), defined here as the dy-
namic range of the parameter square over the observation noise
variance.

Our approach is motivated by the observation that an esti-
mator based on the transmission of a single binary observa-
tion per sensor can have variance as small as times that
of the clairvoyant sample mean estimator (Section III). This re-
sult was derived first in [15] and is included here as a motiva-
tional starting point. By noting that this excellent performance
can only be achieved under careful design choices, we introduce
a class of estimators that minimize the average variance over a
given weight function, establishing that in the low-to-medium
SNR range this class of MLE performs close to the clairvoyant
estimator’s variance (Section III). We then turn our attention to
the high SNR regime, and show that a quantization step close
to the noise’s standard deviation is nearly optimal in the sense
of minimizing a properly defined per-bit CRLB (Section V), es-
tablishing a second result, on the optimal number of bits per
sensor to be transmitted. The sample mean estimator based on
quantized observations is subsequently analyzed to show that
at high SNR even a simple-minded estimator requires transmis-
sion of only a small number of extra bits than the MLE. This
allows us to establish analytically that bandwidth-constrained
distributed estimation is not a relevant problem in high SNR
scenarios. For such cases, we advocate using the sample mean
estimator based on the quantized observations for its low com-
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plexity (Section VI). The last conclusion of the present paper
is that numerical maximization required by our MLE can be
posed as a convex optimization problem, thus ensuring con-
vergence of e.g., Newton-type iterative algorithms. We finally
present numerical results in Section VII and conclude the paper
in Section VIII.

II. PROBLEM STATEMENT

This paper considers the problem of estimating a determin-
istic scalar parameter in the presence of zero-mean AWGN

(1)

where , and is the sensor index. Throughout,
we will use to denote the
noise pdf.

If all the observations were available, the MLE of
would be the Sample Mean Estimator, .

Rightfully, this can be regarded as a clairvoyant estimator for the
bandwidth constrained problem, whose variance is known to be
[8, p. 30]

(2)

Due to bandwidth limitations, however, the observations
have to be quantized and estimation can only be based on these
quantized values. To this end, we will henceforth think of quan-
tization as the construction of a set of indicator variables (that
will be referred to, as binary observations)

(3)

where is a threshold defining , denotes the set of in-
tegers, and is used to index the set of binary observations con-
structed from the observation . The bandwidth constraint
manifests itself in dictating estimation of to be based on the
binary observations . The goal of this paper
is twofold: 1) to develop the MLE for estimating given a set
of binary observations, and 2) to study the associated CRLB—a
bound that is achieved by the MLE as .

Instrumental to the ensuing derivations is the fact that each
in (3) is a Bernoulli random variable with parameter

(4)

where is the com-
plementary cumulative distribution function (CDF) of .

The problem under consideration bears similarities and dif-
ferences with quantization. On the one hand, for a fixed the
set of binary observations specifies uniquely
the quantized value of to one of the prespecified levels

. On the other hand, different from quantization
in which the goal is to reconstruct (and the optimum so-
lution is known to be given by Lloyd’s quantizer [18, p. 108]);
our goal here is to estimate .

III. MLE BASED ON BINARY OBSERVATIONS:
COMMON THRESHOLDS

Let us consider the most stringent bandwidth constraint, re-
quiring sensors to transmit one bit per observation. And as
a simple first approach, let every sensor use the same threshold

to form

(5)

Dropping the subscript , we let ,
and denote as the parameter of these Bernoulli variables.
We are now ready to derive the MLE and the pertinent CRLB.

Proposition 1: [15] The MLE based on the vector of binary
observations is given by

(6)

Furthermore, the CRLB for any unbiased estimator based on
is given by

(7)

Proof: Due to the noise independence, the pdf of is
. Taking logarithm

yields the log-likelihood

(8)

whose second derivative with respect to is

(9)

for which we used that , and introduced
the definition .

Since for a Bernoulli variable , the CRLB
in (7) follows after taking the negative inverse of . The
MLE can be found either by maximizing (8), or simply after
recalling that the MLE of is

(10)

and using the invariance of MLE [cf. (4) and (10)].
Proposition 1 asserts that can be consistently estimated from

a single binary observation per sensor, with variance as small as
. Minimizing the latter over reveals that is achieved

when and is given by

(11)

In words, if we place optimally, the variance increases only
by a factor of with respect to the clairvoyant estimator that
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Fig. 1. CRLB and Chernoff bound in (13) as a function of the distance between
� and � measured in AWGN standard deviation (�) units.

relies on unquantized observations. Using the (tight) Chernoff
bound for the complementary CDF

(12)

based on which a simple bound on can be obtained

(13)

Fig. 1 depicts and its Chernoff bound, from where it be-
comes apparent that for the increase in vari-
ance relative to (2) will be around 2 [cf. (7) and (13)]. Roughly
speaking, to achieve a variance close to in (2), it suffices
to place “ -close” to . Fig. 2 shows a simulation where we
have chosen , to verify that the penalty is, indeed,
small.

Accounting for the dependence of on , and the
unknown , one can envision an iterative algorithm in which
the threshold is iteratively adjusted over time. Call the
threshold used at time , and the corresponding estimate
obtained as in (6). Having this estimate, we can now set

, for subsequent estimates not only benefit from
the increased number of observations but also from improved
binary observations. Such an iterative algorithm fits rather
nicely to, e.g., a target tracking application.

IV. MLE BASED ON BINARY OBSERVATIONS:
NONIDENTICAL THRESHOLDS

The variance of the estimator introduced in Section III will be
close to whenever the actual parameter is close to the
threshold in standard deviation units. This can be guaran-
teed when the possible values of are restricted to an interval
of size comparable to ; or in other words, when the dynamic
range of is in the order of . When the dynamic range of is
large relative to , we pursue a different approach using binary
observations , generated from different regions
in order to assure that there will always be a threshold close to

Fig. 2. MLE in (6) based on binary observations performs close to the
clairvoyant sample mean estimator when � is close to the threshold defining
the binary observation (� = 1, � = 0, and � = 1).

the true parameter. Consider, for each , the set of binary mea-
surements defined by (3) and to maintain the bandwidth con-
straint, let each sensor transmit only one out of this set of binary
observations.

Let be the total number of sensors transmitting binary ob-
servations based on the threshold , and define as
the corresponding fraction of sensors. We further suppose that
the index chosen by sensor , is known at the destination
(the fusion center or peer sensors in an ad hoc WSN). Algorith-
mically, we can summarize our approach in three steps.

[S1] Define a set of thresholds and asso-
ciated frequencies .

[S2] Assign the index to sensor ; i.e., sensor generates
the binary observation using the threshold .
Define .

[S3] Transmit the corresponding binary observations to find
the MLE as we describe next.

Similar to (8), the log-likelihood function is given by

(14)
from where we can define the MLE of given the

(15)

As in (15) cannot be found in closed-form, we resort to a
numerical search, such as Newton’s algorithm that is based on
the iteration

(16)

where , and are the
first and second derivatives of the log-likelihood function that
we compute explicitly in (58) and (59) of Appendix A. Albeit
numerically found, the MLE in (15) is guaranteed to converge
to the global optimum of thanks to the following property:
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Proposition 2: The MLE problem (14), (15) is convex on .
Proof: The Gaussian pdf is log-concave [5, p. 104];

furthermore, the regions and are half-
lines, and accordingly convex sets. To complete the proof just
note that and are integrals of a log-concave func-
tion over convex sets ( and respectively); thus,
they are log-concave and their logarithms are concave. Given
that summation preserves concavity, we infer that is a con-
cave function of .

Although numerical MLE problems are typically difficult to
solve, due to local minima requiring complicated search algo-
rithms, this is not the case here. The concavity of guar-
antees convergence of the Newton iteration (16) to the global
optimum, regardless of initialization.

The CRLB for this problem follows from the expected value
of and is stated in the following proposition.

Proposition 3: The CRLB for any unbiased estimator
based on is

(17)

Proof: See Appendix A.
Since the CRLB in (17) depends on the design parameters

, Proposition 3 reveals that using nonidentical thresholds
across sensors provides an additional degree of freedom. This
is precisely what we were looking for in order to overcome the
limitations of the estimator introduced in Section III. In the en-
suing subsection, we will delve on the selection of .

A. Selecting the Parameters

Since the CRLB depends also on , the selection of
depends not only on the estimator variance for a specific value
of , but also on how confident we are that the actual param-
eter will take on this value. To incorporate this confidence we
introduce a weighting function, , which accounts for the
relative importance of different values of . For instance, if we
know a priori that , we can choose

, where is the unit step function.
Given this weighting function, a reasonable performance in-

dicator is the weighted variance

(18)

Although we do not have an expression for the variance of the
MLE in (15) but only the CRLB (17), we know that the MLE
will approach this bound as . Consequently, selecting
the best possible for a prescribed amounts to
finding the set that minimizes the weighted asymptotic
variance given by the weighted CRLB [c.f (17) and (18)]

(19)

Thus, the optimum set , should be selected as the solu-
tion to the problem

(20)

Solving (20) is complex, but through a proper relaxation we
have been able to obtain the following insightful theorem.

Theorem 1: Assume that . Then, the

weighted CRLB of any estimator based on binary observations
must satisfy

(21)

Furthermore, the bound is attained if and only if there exist a set
such that

(22)

Proof: See Appendix B.
Note that the claims of Theorem 1, are reminiscent of Cramer-

Rao’s Theorem in the sense that (21) establishes a bound, and
(22) offers a condition for this bound to be attained.

To gain intuition on the performance limit dictated by The-
orem 1, let us specialize (21) to a Gaussian-shaped , with
variance . In this case, the numerator in (21) becomes

(23)

The denominator in (21) that depends on the noise distribution
cannot be integrated in closed form, but we can resort to the
following numerical approximation

(24)

Substituting (24) and (23) in (21), we finally obtain

(25)

Perhaps as we should have expected, the best possible weighted
variance for any estimator based on a single binary observa-
tion per sensor can only be close to the clairvoyant variance in
(2) when —a condition valid in low to medium SNR
scenarios. When the SNR is high , the performance
gap between (2) and (25) is significant and a different approach
should be pursued.

A similar derivation leads to an analogous expression for a
uniform weight function

(26)

Equation (26) similarly allow us to infer that the variance of
any estimator based on a single binary observation per sensor
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can only be close to the clairvoyant variance in (2) when
, which corresponds to a low to medium SNR.

Regarding the achievability of the bound in (21), note that
although we cannot assure that there always exists a set
such that , we can adopt as a relaxed
optimal solution the set that minimizes the distance be-
tween and

(27)

The norm measuring the distance can be any norm in the space
of functions. Notwithstanding, we find it convenient to work
with the norm.

It is fair to emphasize that obtained as the solution
of (27) will in general be different from the optimum
obtained as the solution of (20). Nonetheless (27) offers a more
tractable formulation that can be easily solved by methods we
outline in Subsection IV-C, and test in Section VII. It will turn
out that solving (27) numerically yields a small minimum dis-
tance, illustrating that the estimator (15) based on is
nearly optimal.

Remark 1: The use of a weight function in our deterministic
parameter estimation problem is motivated by maximum a pos-
teriori (MAP) estimation principles which apply to random pa-
rameters. Viewing our deterministic parameter as a random
one with prior distribution , the log-distribution after ob-
serving the vector of binary observations is given by

(28)

with given by (14). The MAP estimator is defined as
.

Note that being , it holds that
when , and accordingly both estimators coincide
asymptotically. In particular, the average variance of the MAP
estimator converges to the average variance of the MLE, and
minimization of as defined in (19) yields the asymp-
totically optimum MAP estimator (as well as the asymptotically
optimal MLE).

Also worth mentioning is that if the prior distribution
is log-concave then the likelihood in (28) is concave. This is
the case for many distributions including the Gaussian and the
uniform one.

B. An Achievable Upper Bound on

To explore whether we can approach the bound in (21), we
introduce the following Chernoff bound [cf. (12) and (17)]

(29)

Being a superposition of shifted Gaussian bells with variance
, the bound is easier to manipulate than

in (17). However, the major implication of (29) is that by ad-
justing the spacing , the set of functions

becomes a Gabor basis [16, Ch. 6].
Therefore, can be thought of as a Gabor expansion

with coefficients , and thus capable of approximating
with arbitrary accuracy.

Theorem 2: Define the Gabor basis
with , and consider the coefficients of
the Gabor expansion of given by

(30)

Also, assume that . If , then
the weighted CRLB of the estimator based on the binary obser-
vations defined by , and

is bounded by

(31)

Proof: See Appendix B.
Corollary 1: If is Gaussian-shaped with ,

then the weighted CRLB of the estimator based on binary ob-
servations constructed form the set as in Theorem 2 is
bounded by

(32)

Proof: The coefficients of the Gabor transform of
using the basis are all positive [16, Chap. 6]; and

the integral of is given by (23).
Note that Theorem 2 is weaker than Theorem 1 in the sense

that the former asserts an upper bound on the asymptotic vari-
ance while the latter claims a lower bound. On the other hand,
Theorem 1 is weaker because it claims the existence of the lower
bound, while Theorem 2 claims the achievability of the upper
bound.

Perhaps more important is that comparison of (32) with (25)
implies that

(33)

that is, the gap between the lower and upper bound is small.
And, as we wanted to prove, the solution of (27) should give an
estimator whose CRLB is close to (within 14%) the bound
in (21).

Even though, it is possible by reducing the distance between
thresholds (or using nonuniform spacings) to further reduce the
variance, Theorem 2 asserts that this reduction will be no greater
than 14% relative to a uniform spacing with . Conse-
quently, a threshold spacing approximates the best per-
formance in (25) reasonably well. Moreover, numerical results
in Section VII will justify that a spacing is good enough
for practical purposes. Note that this result is somewhat coun-
terintuitive since we tend to think that reducing the distance
between thresholds would improve the estimator. However, the
truth is that with a uniform spacing (or as numer-
ical results illustrate) there is no need for increasing the number
of thresholds any further.

C. Algorithmic Implementation

Theorem 1 led to the definition of a near-optimal set
given by the solution of the infinite-dimensional least-squares
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problem in (27). Furthermore, Theorem 2 reinforced the useful-
ness of this near-optimal solution as we proved that the CRLB
for this cannot be very far from the optimal
defined by (20). In the present subsection, we will analyze the
numerical implementation of (27).

A by-product of Theorem 2 is that a uniform threshold
spacing captures most of the optimality,
and accordingly we begin the numerical implementation by
defining a threshold spacing . This reduces the degrees
of freedom by one, simplifying the numerical implementation
to that of finding the set of corresponding frequencies .

The first step is to obtain a finite dimensional problem by
discretizing the functions in (27)

(34)

where , , de-
notes element-wise inequality ; controls the dis-
cretization step, is the number of thresholds whose frequen-
cies are large enough to be considered of interest; and the matrix

, has entries given by

(35)

Discretization introduces numerical errors that can be controlled
by choosing a small enough step in the (numerical) evaluation
of the integrals. However, this discretization alters the implicit
constraint that , which was enacted by the normaliza-
tion constant in (22). Once the integral is discretized this nor-
malization no longer holds and we have to make the following
constraint explicit:

(36)

Note that the constrained least squares problem in (36) is
convex, since the objective is convex (norms are convex) and
the constraints are linear. Moreover, (36) can be transformed
to a second-order cone program (SOCP) after introducing the
auxiliary variable to obtain

(37)
It is known that a SOCP can be efficiently solved with stan-
dard convex optimization packages [21]. The implementation
of this design is illustrated in Section VII for a pair of different
weighting functions .

V. RELAXING THE BANDWIDTH CONSTRAINT

The variances of the estimators in Sections III and IV are
close to either when the parameter’s range is small, or,
in the order of the noise variance. Formally, if for a Gaussian
weight function we define the SNR as , the variance
of the estimator in (15) is [cf. (2) and (25)]

(38)

If we let be the number of observations required by to
achieve the same variance of the estimator in (15), we can see
that the number of binary observations must increase by a
factor . It is clear that in high- scenarios,

we need a different approach motivating the relaxation of the
bandwidth constraint pursued in this section.

Specifically, using a sequence of thresholds
, we will rely on multiple binary observations per sensor,

, with corresponding Bernoulli pa-
rameters . Without loss of
generality, we will assume that , when . The
entries of are not independent, since cannot be at the
same time smaller than and larger than for ;
hence, can only take on realizations

for for (39)

The realization corresponds to the event
, which re-iterates our earlier comment that creating

multiple binary observations is just a different way of looking
at quantization.

We now express the distribution of in terms of , and
from there obtain the per-sensor log-likelihood as

(40)

where if , and 0 otherwise.
Independence across sensors implies,

(41)

and yields the MLE of given as

(42)

Two important features of in (42) are summarized next.
Proposition 4:

a) The log-likelihood (41) is a concave function of .
b) The CRLB of any unbiased estimator of based on

is given by

(43)

Proof: See Appendix C.
The concavity of in (41) asserted by Proposition 4-a)

implies existence of a reliable numerical implementation of in
(42). To understand Proposition 4-b) notice that for an infinite
set of equally spaced thresholds (with spacing

), in (43) is periodic with period . Fig. 3 depicts
parameterized by , along with the maximum and minimum
values of as functions of . Note that for a given the
worst and best variances are almost equal for , being for
all practical purposes constant when . More important,
when , is almost equal to the clairvoyant estimator’s
variance.

We now turn our attention to designing a transmission scheme
for the infinite number of binary observations per sensor. This
can be done by noting that if , then for

; and likewise if , then for .
Accordingly, each binary observation transmitted provides in-
formation about half of the thresholds, and the required number
of bits to be transmitted per sensor grows logarithmically
with the allowable parameter range. The actual value of will
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Fig. 3. Variance of the estimator relying on the whole sequence of binary
observations. The room for improved performance once � < � is small.

depend on the parameter’s range; e.g., for it will
be . When the prior knowledge about
dictates a Gaussian prior the result can be summarized in
the following proposition.

Proposition 5: When is a Gaussian bell with variance
, the infinite set of binary observations can be trans-

mitted using bits satisfying

(44)

where ,
, and .

Proof: See Appendix D.
Combining Propositions 4-b) and 5 yields a benchmark on the

performance of estimators based on binary observations. For a
given bandwidth constraint, we determine from (44), and from
there the benchmark variance from (43).

Note that (44) can also be written using a slightly more intu-
itive expression in terms of

(45)

where we substituted the constants in (44) by their explicit
values, and assumed for simplicity that the argument inside
the operator is positive (valid if ).
The first logarithmic term in (45) can be viewed as quantifying
the information that each observation carries about the
underlying parameter, while the second logarithmic term can be
thought of as quantifying our confidence on the observations.
By decreasing beyond we are adding bits to the quantization
of reflecting our belief that there is more information to be
extracted from it. In the next section, we will see that it makes
sense to set , in which case reduces to

(46)

Equation (46) is valid, when , in which case it is a
tight bound in the expected value of transmitted bits. When

, the bound reduces to which is too loose to be
of practical interest. However, remember that for this low SNR
scenario we advocate the estimator introduced in Section IV and
this limitation of (46) is not a concern.

A. Optimum Threshold Spacing

Estimation problems are usually posed for a given number of
measurements; but for bandwidth-constrained problems, a more
meaningful formulation is to prescribe the total number of avail-
able bits, . That is, given the channel (bandwidth, SNR, and
time) we are allowed to transmit up to bits that have to be
allocated among the observations. Fine quantization implies a
small per-observation variance, but also a small number of ob-
servations ; while coarse quantization increases the variance
per observation but allows for a larger .

A convenient metric for a bandwidth-constrained estimation
problem is the following:

Definition 1: Suppose that for a given estimator based on
binary observations, the transmission of binary observations
requires an average of bits. Define the per-bit worst-case
CRLB as

(47)

For a bandwidth constraint , the variance will be bounded by
.

Applying Definition 1 to the CRLB in (43), we deduce that
is a function of the spacing

(48)

what raises the question about the existence of an optimum
threshold spacing

(49)

For this question to be meaningful, should be neither zero nor
infinity, which is true for the problem considered in the current
section.

Proposition 6: For a Gaussian-shaped , the optimum
threshold spacing in (49) is finite and different from zero.

Proof: When , because
while is bounded; furthermore when ,

because faster that (exponentially
versus logarithmically). As is continuous and approaches

in both extremes, it must have a minimum.
By taking into account the bandwidth constraint, we proved

the existence of an optimum quantization step that minimizes
for a given ; and a corresponding optimum number of bits

per observation. Fig. 4 depicts . It is apparent from these
curves, that the optimum value is quite insensitive to variations
of . When varies from 0 db to 50 db (a range) moves
from to . Furthermore, the curves are very flat around
the optimum, implying that we can adopt as a working
compromise for the optimum threshold spacing (i.e., quantiza-
tion step).

VI. QUANTIZED SAMPLE MEAN ESTIMATOR

It is interesting to compare the MLE estimator in (42) with
the low complexity quantized sample mean estimator (QSME).
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Fig. 4. Variation of the threshold spacing that minimizes the worst-case per-bit
CRLB with the SNR.C (�) is very flat around the optimum and � has a small
change when the SNR moves over a range of 50 db.

Consider the observations and quantize them with
a uniform quantizer at resolution to obtain

round (50)

where denotes the quantized observations and round is
the integer closest to .

The QSME is just the sample mean of the quantized
observations

(51)

which is a desirable estimator if one just ignores the bandwidth
constraint. Interestingly, this simple estimator is not very far
from the MLE in (42) as stated in the following proposition.

Proposition 7: The variance of the QSME in (51) is bounded
by

(52)

Proof: See Appendix E.
Note that since is biased, the pertinent performance metric

is the Mean Square Error (MSE), not the variance. Fig. 3 shows
that the MSE of the MLE for a threshold spacing is
roughly comparable to the MSE of the QSME for a spacing

.
For low SNR problems in which the cost of each sequence of

binary observations is just a few bits, adding two more bits in
order to use the QSME offers a rather poor solution. Meanwhile,
when the SNR is high, the addition of two bits to a long sequence
carries a small relative increase in the bandwidth requirement.
While the break point depends on the desired complexity–per-
formance tradeoff, it is clear that when the SNR is high the
bandwidth-constrained estimation problem is of little interest
since even a “simple-minded” estimator performs close to the
optimum MLE in (42). The effort in finding efficient bandwidth-

Fig. 5. Gaussian noise and Gaussian-shaped weight function. Although a
threshold spacing � = � reduces the approximation error to almost zero, a
spacing � = 2� is good enough in practice (� = 1, and � = 2).

Fig. 6. Gaussian noise and uniform weight function. A threshold spacing � =
� has smaller MSE but a spacing � = 2� is better in most of the nonzero
probability interval (� = 1, and prior U[�7,7]).

constrained distributed estimation algorithms should, thus, be
focused on low SNR scenarios.

VII. NUMERICAL RESULTS

We implement here the estimator introduced in Section IV,
for which there are two aspects we want to study; the design of

by numerically solving (37); and the implementation of
the estimator itself. Recall that with thresholds spaced by less
than , the room for increasing performance is limited, and thus
we are also interested in studying the effect the spacing has
on the average estimation variance.

A. Designing

For a given threshold spacing , the set of frequencies is
obtained as the solution of the SOCP in (37). Figs. 5 and 6 show
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Fig. 7. Gaussian noise and Gaussian weight function. With a threshold spacing
� = 2� we achieve a good approximation to the minimum asymptotic average
variance (� = 1, � = 2, and � = 2).

the result of computing for the case of Gaussian and uniform
weighting functions, respectively. In both cases, it is apparent
that a threshold spacing suffices to achieve a small MSE.

This is even more clear in the uniform case where reducing
the spacing results in nulling some of the . Particularly in-
teresting are the error curves depicting the difference between

and . When the threshold spacing is reduced
from to the error is almost unchanged. Al-
though we have not established this analytically, it appears that
choosing the thresholds with a spacing smaller than is of no
practical value.

B. Estimation With 1 bit per Sensor

The estimation problem itself is solved using Newton’s al-
gorithm based on the iteration (16). The results are shown on
Fig. 7 for a Gaussian weight function with spacing between
thresholds. For each value of , the experiment is repeated 200
times, and the average variance is plotted against the theoretical
threshold which reasonably predicts its value. This also rein-
forces the observation that a threshold spacing , is good
enough for practical purposes.

C. Comparison With Deterministic Control Signals

The exponential increase of the CRLB in (7) was first ob-
served in [15]. In particular, if , and we define

the worst-case CRLB is [cf. (7) with ],

(53)

whose growth is approximately exponential in ; which can be
interpreted as the parameter range measured in standard devia-
tion units.

As noted before, while this is satisfactory for , a dif-
ferent approach is needed for . To alleviate this problem,
adding control signals to the original observations was advo-
cated by [15]. Though different classes of control signals were

Fig. 8. Average variance of the optimum set (���; ���) found as the solution of
(37), yields a noticeable advantage over the use of equispaced equal frequency
thresholds as defined by (55) (� = 1, � = 2, and � = 2).

proposed in [15], particularly related to the present work are de-
terministic control signals of the form

(54)

where is a known periodic waveform, chosen as to
minimize the worst case CRLB in . To this end it
suffices to use a -periodic sawtooth waveform

with appropriately chosen
period .

Such control signals can be seen to be equivalent to the use
of multiple equispaced thresholds with equal frequency,

(55)

for . It can be shown that for large enough ,
the maximum CRLB is minimized by the (min–max optimum)
threshold spacing .

The difference with the approach in Section IV is, of course,
that the thresholds are optimized after averaging over a certain
weight function.

To illustrate a case where our approach could be of in-
terest consider a parameter and a Gaussian
weight function with variance . While in this case the range
is not limited, we can consider for practical purposes that

and compare the performance of the estimator
defined by the set given in (55), with the optimum set

found as the solution of (37). An example comparison
is depicted in Fig. 8, from where we observe a noticeable
difference favoring the second approach.

This difference is just a manifestation of optimization op-
tions, with each option being applicable in different situations.

VIII. CONCLUDING REMARKS

We have considered bandwidth constrained distributed esti-
mation for WSN. Under the strict bandwidth constraint of just
1 bit per sensor, we introduced a class of MLE’s that attain a
variance close to the sample mean estimator’s variance when
the noise variance is comparable with the dynamic range of the
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parameter to be estimated. This class of estimators is well suited
for low-to-medium SNR problems.

Relaxing the bandwidth constraint, we also constructed the
best possible estimator for a given total number of bits. This
led us to the per bit CRLB which revealed a tradeoff between
reducing the quantization step and making room for transmitting
more independent observations. A general rule of thumb is that
selecting a quantization step equal to the noise variance is good
enough for most practical situations.

Finally, by comparing this last MLE with the QSME, we de-
duced that for high SNR problems even the least complex scheme
performs close to the optimum. Consequently, bandwidth-con-
strained distributed estimation is not a relevant problem in such
cases and the QSME should be used for its low complexity. We
have also studied implementation issues, and established that
all the MLE problems we considered are convex. Consequently,
they can be efficiently solved and their numerical convergence
is assured.

Though the noise was assumed Gaussian throughout the
paper, it is worth noting that Theorem 1 and Propositions 1, 3,
and 4-b) are valid for any noise distribution; Propositions 2 and
4-a) only require a log-concave distribution.

APPENDIX A
PROOF OF PROPOSITION 3

Let us first note that from the form of in (14), the MLE
estimators of

(56)

are sufficient statistics for this problem, and, (14) reduces to

(57)
from where we can obtain the first

(58)
and second derivative

(59)

required by Newton’s iteration in (16). In deriving (58) and (59)
we used that , and .
As we defined before, .

To obtain the CRLB, we simply take the expected value of
(59) with respect to . Since is unbiased , the
terms involving disappear and (17) follows.

APPENDIX B
PROOF OF THEOREMS 1 and 2

We begin by introducing a lemma required by the proofs of
both theorems.

Lemma 2: If the solution of the vari-
ational problem

(60)
is given by the function

(61)

The corresponding minimum value is given by

(62)

Proof: Introducing a multiplier and considering a vari-
ation we obtain

(63)

which after setting the variation to zero yields

(64)

The latter is equivalent to (61), and the multiplier can be ob-
tained from the constraint as

(65)

The optimum value of the functional is found after substituting
(64) into to yield (62).

1) Theorem 1: Notice that , considered as a func-
tion of , cannot vary over the whole space of functions, but
over a restricted class dictated by (17), subject to the constraint

. Minimizing (20) is complex, but as pointed out
before it can be relaxed to a simpler problem by translating the
constraint over into a constraint over . To this end,
consider

(66)
and interchange summation with integration to obtain

(67)
But now, note that the integrals inside the summation are all
equal since they contain shifted versions of the same function.
Moreover, recalling that , we obtain

(68)

Thus, we can relax (20) to

(69)
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It is important to stress that (20) and (69) are not equivalent
because the functions subject to are
a subset of the functions subject to .
However, the very condition of being a subset dictates that the
solution of (69) is a lower bound on the solution of (20).

Invoking Lemma 1 to solve the variational problem in (69),
we obtain the bound (21), and requiring
renders the condition for this bound achievable.

2) Theorem 2: Starting from (29) we can rephrase the
problem of finding the optimum set , as that of finding
the set that minimizes the average of the bound (29) over the
weighting function

(70)

As before, we relax the problem to the minimization of a func-
tional subject to a constraint on the integral of

(71)
By Lemma 1, the minimum bound is achieved when

(72)

and the function that achieves this minimum is

(73)

Finally, and this time different from the proof of Theorem 1, we
can go a step forward. According to the hypothesis, the coef-
ficients of the Gabor expansion of
over the basis are all positive. Thus,
by setting , and

we have that

(74)

Q.E.D.

APPENDIX C
PROOF OF PROPOSITION 4

To compute the CRLB, recall that and
differentiate (40) to obtain

(75)

where . On the other hand, note that

(76)

Averaging (75), yields the per-observation CRLB

(77)

Finally, note that the second summation is equal to zero from
where (43) follows readily.

To prove that is concave, note that we can write

(78)
Since is the integral of a log-concave func-
tion over a convex region (the segment ) it is
log-concave. is concave because it is a weighted sum of
logarithms of log-concave functions.

APPENDIX D
PROOF OF PROPOSITION 5

We start by proving a property of the Gaussian Complemen-
tary CDF, stated in the following lemma.

Lemma 2: If the positive argument function
, solves

(79)

then, , .
Proof: Note that , and take derivatives in both

sides of (79) to obtain the derivative of

(80)

Now note that , and consequently
implying that is decreasing around 0.

Supposing that is reached at other values, let denote
the smallest real number such that . From (80)
we see that is decreasing in ; so it must be that

, implying that is decreasing around . This is a
contradiction since is continuous.

To prove Proposition 5. we introduce a transmission scheme
requiring the number of bits given by (44). Begin by noting that
the unconditional distribution of is Gaussian

(81)

and assume without loss of generality that .
Given (81), construct the sequence whose ele-

ments satisfy

(82)

That is, is the median of the distribution (i.e., ),
is such that of the probability lies to its right, such

that , and so on.
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Remark 2: Application of Lemma 2 to the definition of
allows us to conclude that .

We point two consequences of the definition of the sequence
: first, the probability that lies between and given

that is

(83)

and second in any given interval the number
of equally spaced thresholds is bounded by

(84)

We can now introduce the transmission scheme as follows:

[S1] If then transmit 1; and if transmit
0 and change the sign of .

[S2] Transmit 1 if , and 0 otherwise. Start this
process at , and repeat it until the first for
which . This confines to the interval

that contains a total number of
thresholds bounded by (84).

[S3] Enumerate the binary observations over the in-
terval from 1 to and transmit them as
follows.
[S3a] Set , and transmit .
[S3b] Set if , or

if .
[S3c] Repeat [S3a]–[S3b] until .

Despite the involved description, the scheme is actually very
simple. In steps [S1] and [S2] we divide the line in segments
so that the probability of finding in any of them is 1/2 the
probability of finding it in the previous one. After this is com-
pleted, we switch back to the binary observations and transmit
them using pretty much the same scheme. We start with the bi-
nary observation that lies (approximately) in the middle of the
interval, and then depending on the value of the binary obser-
vation we transmit the observation closest to the first quarter or
the third quarter and so on.

Although not strictly needed for the proof we elaborate on
two issues. On the one hand, note that the thresholds are not
being used to define binary observations, but instead to transmit
the observations defined by the thresholds . On the other hand,
observe that the rationale for steps [S3a]–[S3c] is that over the
interval the pdf of is more or less constant;
i.e., is approximately uniformly distributed when the event

is given. This justifies the way the trans-
mission is designed since we expect the probabilities of finding

to the right or the left of the middle threshold to be
equal once we know that .

Now, we compute the expected value of the transmitted
number of bits. First, note that the number of bits required in
steps [S3a]–[S3c] can be bounded using (84)

(85)

where the 1 comes from the stopping criterion (the last binary
observation does not need to be transmitted), and the sub-
scripts are because cannot be negative.

Second, note that if , then transmitting the
sequence requires

(86)

bits. Combining the number of bits required when
given by (85) and (85), with the probability that

belongs to this interval, we find the expected value of
as

(87)

To complete the proof, invoke Remark 2 and note that
to reduce (87) to

(88)
Substituting the values of the geometric series (
and ), and remembering that ,
(44) follows.

APPENDIX E
PROOF OF PROPOSITION 7

Let denote the bias of the QSME,

(89)

where the second equality follows from the unbiasedness of .
We can write the MSE in terms of the bias

(90)

where in the second equality we added and subtracted . The
important point is that based on (89) the two variables

and are zero-mean; hence, we can apply the
triangle inequality

(91)
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Finally, note that since the quantization error is absolutely
bounded by we have

(92)

Substituting (92) and (2) into (91), we obtain

(93)

which after simplifying establishes (52).
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