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Abstract—Wireless sensor networks (WSNs) deployed to per-
form surveillance and monitoring tasks have to operate under
stringent energy and bandwidth limitations. These motivate well
distributed estimation scenarios where sensors quantize and
transmit only one, or a few bits per observation, for use in forming
parameter estimators of interest. In a companion paper, we devel-
oped algorithms and studied interesting tradeoffs that emerge even
in the simplest distributed setup of estimating a scalar location
parameter in the presence of zero-mean additive white Gaussian
noise of known variance. Herein, we derive distributed estima-
tors based on binary observations along with their fundamental
error-variance limits for more pragmatic signal models: i) known
univariate but generally non-Gaussian noise probability density
functions (pdfs); ii) known noise pdfs with a finite number of
unknown parameters; iii) completely unknown noise pdfs; and iv)
practical generalizations to multivariate and possibly correlated
pdfs. Estimators utilizing either independent or colored binary
observations are developed and analyzed. Corroborating simu-
lations present comparisons with the clairvoyant sample-mean
estimator based on unquantized sensor observations, and include a
motivating application entailing distributed parameter estimation
where a WSN is used for habitat monitoring.

Index Terms—Distributed parameter estimation, wireless sensor
networks (WSNs).

I. INTRODUCTION

WIRELESS SENSOR NETWORKS (WSNs) consist of
low-cost energy-limited transceiver nodes spatially de-

ployed in large numbers to accomplish monitoring, surveillance
and control tasks through cooperative actions [10]. The potential
of WSNs for surveillance has by now been well appreciated es-
pecially in the context of data fusion and distributed detection;
e.g., [24], [25], and references therein. However, except, e.g.,
for recent works where spatial correlation is exploited to reduce
the amount of information exchanged among nodes [2], [3], [6],
[7], [11], [16], [19], [20], use of WSNs for the equally important
problem of distributed parameter estimation remains a largely
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uncharted territory. When sensors have to quantize measure-
ments in order to save energy and bandwidth, estimators based
on quantized samples and pertinent tradeoffs have been studied
for relatively simple models. Specifically, quantizer designs for
mean-location scalar parameter estimation in additive noise of
known distribution were studied in [1], [17], and [18], while one
bit per sensor quantization in noise of unknown distribution was
dealt with in [12]–[14]. In the present paper, we consider estima-
tion based on a single bit per sensor for a number of pragmatic
signal models. It is worth stressing that in these contributions
as well as in the present work that deals with WSN-based dis-
tributed parameter acquisition under bandwidth constraints, the
notions of quantization and estimation are intertwined. In fact,
quantization becomes an integral part of estimation as it creates
a set of binary observations based on which the estimator must
be formed—a problem distinct from parameter estimation based
on the unquantized observations.

In a companion paper we study estimation of a scalar mean-
location parameter in the presence of zero-mean additive white
Gaussian noise [23]. For this simple model, we define the so
called quantization signal-to-noise ratio (Q-SNR) as the ratio of
the parameter’s dynamic range over the noise standard devia-
tion, and advocated different strategies depending on whether
the Q-SNR is low, medium or high. An interesting conclusion
from [23] is that in low-medium Q-SNR, estimation based on
sign quantization of the original observations exhibits variance
almost equal to the variance of the (clairvoyant) estimator based
on unquantized observations. Interestingly, for the pragmatic
class of models considered here it is still true that transmitting
a few bits (or even a single bit) per sensor can approach under
realistic conditions the performance of the estimator based on
unquantized data. The impact of the latter to WSNs is twofold.
On the one hand, we effect energy savings by transmitting a
single bit per sensor; and on the other hand, we simplify analog
to digital conversion to (inexpensive) signal level comparation.
While results in the present paper apply only when the Q-SNR
is low-to-medium this is rather typical for WSNs.

We begin with mean-location parameter estimation in the
presence of known univariate but generally non-Gaussian noise
probability density functions (pdfs) (Section III-A). We next
develop mean-location parameter estimators based on binary
observations and benchmark their performance when the noise
variance is unknown; however, the same approach in principle
applies to any noise pdf that is known except for a finite
number of unknown parameters (Section III-B). Subsequently,
we move to the most challenging case where the noise pdf is
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completely unknown (Section IV). Finally, we consider vector
generalizations where each sensor observes a given (possibly
nonlinear) function of the unknown parameter vector in the
presence of multivariate and possibly colored noise (Section V).
While challenging in general, it will turn out that under re-
laxed conditions, the resultant maximum likelihood estimator
(MLE) is the maximum of a concave function, thus ensuring
convergence of Newton-type iterative algorithms. Moreover,
in the presence of colored Gaussian noise, we show that judi-
ciously quantizing each sensor’s data renders the estimators’
variance stunningly close to the variance of the clairvoyant
estimator that is based on the unquantized observations; thus,
nicely generalizing the results of Sections III-A, III-B, and
[23] to the more realistic vector parameter estimation problem
(Section V-A). Numerical examples corroborate our theoretical
findings in Section VI, where we also test them on a motivating
application involving distributed parameter estimation with a
WSN for measuring vector flow (Section VI-B). We conclude
the paper in Section VII.

II. PROBLEM STATEMENT

Consider a WSN consisting of sensors deployed to esti-
mate a deterministic vector parameter . The th sensor
observes an vector of noisy observations

(1)

where is a known (generally nonlinear) func-
tion and denotes zero-mean noise with pdf , that
is either unknown or known possibly up to a finite number of
unknown parameters. We further assume that is inde-
pendent of for ; i.e., noise variables are inde-
pendent across sensors. We will use to denote the Jacobian
of the differentiable function whose th entry is given by

.
Due to bandwidth limitations, the observations have to

be quantized and estimation of can only be based on these
quantized values. We will, henceforth, think of quantization as
the construction of a set of indicator variables

(2)

taking the value 1 when belongs to the region
, and 0 otherwise. Throughout, we suppose that the regions

are computed at the fusion center where resources are
not at a premium.

Estimation of will rely on the set of binary variables
. The latter are Bernoulli dis-

tributed with parameters satisfying

(3)

In the ensuing sections, we will derive the Cramér-Rao
Lower Bound (CRLB) to benchmark the variance of all un-
biased estimators constructed using the binary observations

. We will further show that it is
possible to find MLEs that (at least asymptotically) are known
to achieve the CRLB. Finally, we will reveal that the CRLB
based on can come surprisingly

close to the clairvoyant CRLB based on in certain
applications of practical interest.

III. SCALAR PARAMETER ESTIMATION—PARAMETRIC

APPROACH

Consider the case where is a scalar
, and is known, with denoting

the noise standard deviation. Seeking first estimators when the
possibly non-Gaussian noise pdf is known, we move on to the
case where is unknown, and prove that in both cases the vari-
ance of based on a single bit per sensor can come close to the
variance of the sample mean estimator, .

A. Known Noise Pdf

When the noise pdf is known, we will rely on a single
region in (2) to generate a single bit per
sensor, using a threshold common to all sensors:

. Based on these binary obser-
vations, received from all
sensors, the fusion center seeks estimates of .

Let denote the Complementary
Cumulative Distribution Function (CCDF) of the noise.
Using (3), we can express the Bernoulli parameter as,

; and its MLE as

. Invoking now the invariance property
of MLE, it follows readily that the MLE of is given by [23]1

(4)

Furthermore, it can be shown that the CRLB, that bounds the
variance of any unbiased estimator based on is [23]

(5)

If the noise is Gaussian, and we define the -distance between
the threshold and the (unknown) parameter as

, then (5) reduces to

(6)

with denoting the Gaussian
tail probability function.

The bound is the variance of , scaled by the factor
; recall that ([8, p. 31]). Optimizing

with respect to , yields the optimum at and
the minimum CRLB as

(7)

Equation (7) reveals something unexpected: relying on a single
bit per , the estimator in (4) incurs a minimal (just a
factor) increase in its variance relative to the clairvoyant which

1Although related results are derived in ([23], Prop. 1) for Gaussian noise, it
is straightforward to generalize the referred proof to cover also non-Gaussian
noise pdfs.
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relies on the unquantized data . But this minimal loss in
performance corresponds to the ideal choice , which im-
plies and requires perfect knowledge of the unknown
for selecting the quantization threshold . How do we select
and how much do we loose when the unknown lies anywhere
in , or when lies in , with finite
and known a priori? Intuition suggests selecting the threshold
as close as possible to the parameter. This can be realized with
an iterative estimator , which can be formed as in (4), using

, the parameter estimate from the previous
iteration.

But in the batch formulation considered herein, selecting
is challenging; and a closer look at in (5) will confirm that
the loss can be huge if . Indeed, as the de-
nominator in (5) goes to zero faster than its numerator, since
is the integral of the nonnegative pdf ; and thus,
as . The implication of the latter is twofold: i)
since it shows up in the CRLB, the potentially high variance
of estimators based on quantized observations is inherent to the
possibly severe bandwidth limitations of the problem itself and
is not unique to a particular estimator; ii) for any choice of ,
the fundamental performance limits in (5) are dictated by the
end points and when is confined to the in-
terval . On the other hand, how successful the selec-
tion is depends on the dynamic range which makes
sense because the latter affects the error incurred when quan-
tizing to . Notice that in such joint quantization-es-
timation problems one faces two sources of error: quantization
and noise. To account for both, the proper figure of merit for
estimators based on binary observations is what we will term
quantization signal-to-noise ratio (Q-SNR) that we define as2

(8)

Notice that contrary to common wisdom, the smaller Q-SNR
is, the easier it becomes to select judiciously. Furthermore,
the variance increase in (5) relative to the variance of the clair-
voyant is smaller, for a given . This is because as the Q-SNR
increases the problem becomes more difficult in general, but the
rate at which the variance increases is smaller for the CRLB in
(5) than for .

However, no matter how small the variance in (5) can be made
by properly selecting , the estimator in (4) requires perfect
knowledge of the noise pdf which may not be always justifiable.
For example, while assuming that the noise is Gaussian (or fol-
lows a known non-Gaussian pdf that accurately fits the problem)
is reasonable, assuming that its variance (or any other parameter
of the pdf) is known, is not. The search for estimators in more
realistic scenarios motivates the next subsection.

B. Known Noise pdf With Unknown Variance

A more realistic approach is to assume that the noise pdf is
known (e.g., Gaussian) but some of its parameters are unknown.

2Attaching to  the notion of SNR is justified if we consider � as random
uniformly distributed over [� ;� ], in which case the numerator of  is pro-
portional to the signal’s mean square value E(� ). Likewise, we can view the
numerator [� ;� ] as the root mean-square (rms) value of � in the determin-
istic treatment herein.

A case frequently encountered in practice is when the noise pdf
is known except for its variance . Introducing
the standardized variable allows us to write
the signal model as

(9)

Let and denote the known pdf and
CCDF of . Note that according to its definition, has
zero mean, , and the pdfs of and are related by

. Note also that all two parameter pdfs
can be standardized likewise. This is even true for a broad class
of three-parameter pdfs provided that one parameter is known.
Consider as a typical example the generalized Gaussian class of
pdfs ([9, p. 384])

(10)
with the gamma function defined as and

a known constant. In this case too, has unit
variance and (9) applies.

To estimate when is also unknown while keeping the
bandwidth constraint to 1 bit per sensor, we divide the sensors
in two groups each using a different region (i.e., threshold) to
define the binary observations

(11)

That is, the first sensors quantize their observations using
the threshold , while the remaining sensors rely on the
threshold . Without loss of generality, we assume .

The Bernoulli parameters of the resultant binary observations
can be expressed in terms of the CCDF of as

(12)

Given the noise independence across sensors, the MLEs of
can be found, respectively, as

(13)

Mimicking (4), we can invert in (12) and invoke the invari-
ance property of MLEs, to obtain the MLE in terms of and

. This result is stated in the following proposition that also de-
rives the CRLB for this estimation problem.

Proposition 1: Consider estimating in (9), when is un-
known, based on binary observations constructed from the re-
gions defined in (11).

a) The MLE of is

(14)
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with denoting the inverse function of , and
given by (13).

b) The variance of any unbiased estimator of based on
is bounded by

(15)

where is given by (12), and

(16)

is the -distance between and the threshold .
Proof: Using (12), we can express in terms of

, as

(17)

Since the MLEs of are available from (13), just recall the
invariance property of MLE and replace by to arrive at
(14).

To prove claim (b), note that because of the noise indepen-
dence the Fisher Information Matrix (FIM) for the estimation
of is diagonal and its inverse is given by

(18)

Applying known CRLB expressions for transformations of es-
timators, we can obtain the CRLB of as ([8, p. 45])

(19)

where the derivatives involved can be obtained from (17), and
are given by

(20)

Expanding the quadratic form in (19), and substituting the
derivatives for the expressions in (20), the CRLB in (15)
follows.

Equation (15) is reminiscent of (5), suggesting that the vari-
ances of the estimators they bound are related. This implies
that even when the known noise pdf contains unknown param-
eters the variance of can come close to the variance of the
clairvoyant estimator , provided that the thresholds are
chosen close to relative to the noise standard deviation (so that

, and in (16) are ). For the Gaussian pdf,
Fig. 1 shows the contour plot of in (15) normalized by

. It is easy to see that for , the
worst case variance is minimized by setting and

. With this selection in the low Q-SNR regime ,
and the relative variance increase is less than 3.

C. Dependent Binary Observations

As aforementioned, we restricted the sensors to transmit
only 1 bit (binary observation) per datum, and divided the

Fig. 1. Per bit CRLB when the binary observations are independent
(Section III-B) and dependent (Section III-C), respectively. In both cases, the
variance increase with respect to the sample mean estimator is small when the
�-distances are close to 1, being slightly better for the case of dependent binary
observations (Gaussian noise).

sensors in two classes each quantizing using a different
threshold. A related approach is to let each sensor use two
thresholds, thus providing information as to whether falls
in two different regions

(21)

where . We define the per sensor vector of binary ob-
servations , and the vector Bernoulli
parameter , whose components are as in
(12). Surprisingly, estimation performance based on these de-
pendent observations will turn out to improve that of indepen-
dent observations.

Note the subtle differences between (11) and (21). While each
of the sensors generates 1 binary observation according to
(11), each sensor creates 2 binary observations as per (21). The
total number of bits from all sensors in the former case is , but
in the latter , since our constraint implies that
the realization is impossible. In addition, all bits in
the former case are independent, whereas correlation is present
in the latter since and come from the same .
Even though one would expect this correlation to complicate
matters, a property of the binary observations defined as per
(21), summarized in the next lemma, renders estimation of
based on them feasible.

Lemma 1: The MLE of based on the
binary observations constructed according to (21)
is given by

(22)

Proof: See Appendix A.1.
Interestingly, (22) coincides with (13), proving that the corre-

sponding estimators of are identical; i.e., (14) yields also the
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MLE even in the correlated case. However, as the following
proposition asserts, correlation affects the estimator’s variance
and the corresponding CRLB.

Proposition 2: Consider estimating in (9), when is un-
known, based on binary observations constructed from the re-
gions defined in (21). The variance of any unbiased estimator of

based on is bounded by

(23)

where the subscript in is used as a mnemonic for the
dependent binary observations this estimator relies on [cf. (15)].

Proof: See Appendix A.2.
Unexpectedly, (23) is similar to (15). Actually, a fair compar-

ison between the two requires compensating for the difference
in the total number of bits used in each case. This can be accom-
plished by introducing the per-bit CRLBs for the independent
and correlated cases, respectively

(24)

which lower bound the corresponding variances achievable by
the transmission of 1 bit.

Evaluation of and follows from (15),
(23) and (24) and is depicted in Fig. 1 for Gaussian noise and

-distances having amplitude as large as 5. Somewhat
surprisingly, both approaches yield very similar bounds with
the one relying on dependent binary observations being slightly
better in the achievable variance; or correspondingly, in re-
quiring a smaller number of sensors to achieve the same CRLB.

IV. SCALAR PARAMETER ESTIMATION—UNKNOWN NOISE pdf

When the noise pdf is known, we estimated by setting up a
common region for the sensors to obtain their
binary observations; for one unknown we required one re-
gion. For a known pdf with unknown variance, we set up two
regions and had either half of the sensors use to con-
struct their binary observations and the other half use ; or, let
each sensor transmit two binary observations. In either case, for
two unknowns ( and ) we utilized two regions.

Proceeding similarly, we can keep relaxing the required
knowledge about the noise pdf by setting up additional regions
to obtain similar estimators in the presence of noise with
known pdf, but with a finite number of unknown parameters.
Instead of this more or less straightforward parametric exten-
sion, we will pursue in this section a nonparametric approach
in order to address the more challenging extreme case where
the pdf is completely unknown, except obviously for its mean
that will be assumed to be zero so that in (9) is identifiable.

To this end, let and denote the pdf and CCDF of
the observations . As is the mean of , we can write

Fig. 2. When the noise pdf is unknown numerically integrating the CCDF
using the trapezoidal rule yields an approximation of the mean.

(25)

where in establishing the second equality we used the fact that
the pdf is the negative derivative of the CCDF, and in the last
equality we introduced the change of variables . But
note that the integral of the inverse CCDF can be written in terms
of the integral of the CCDF as (see also Fig. 2)

(26)

allowing one to express the mean of in terms of its CCDF.
To avoid carrying out integrals with infinite range, let us assume
that which is always practically satisfied for
sufficiently large, so that we can rewrite (26) as

(27)

Numerical evaluation of the integral in (27) can be performed
using a number of known techniques. Let us consider an ordered
set of interior points along with end-points
and . Relying on the fact that
and , application of the trapezoidal rule
for numerical integration yields (see also Fig. 2)

(28)

with denoting the approximation error. Certainly, other
methods like Simpson’s rule, or the broader class of
Newton-Cotes formulas, can be used to further reduce .

Whichever the choice, the key is that binary observations con-
structed from the region have Bernoulli param-
eters satisfying

(29)

Inserting the nonparametric estimators in (28),
our parameter estimator when the noise pdf is unknown takes
the form

(30)

Since s are unbiased, (28) and (30) imply that .
Being biased, the proper performance indicator for in (30)
is the mean squared error (mse), not the variance. In order to
evaluate this mse let us, as we did in Section III-C, consider the
cases of independent and dependent binary observations.
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A. Independent Binary Observations

Divide the sensors in subgroups containing sen-
sors each, and define the regions3

(31)

the region will be used by sensor to construct and
transmit the binary observation . Herein, the unbiased es-
timators of the Bernoulli parameters are

(32)

and are used in (30) to estimate . It is easy to verify that
, and that and are

independent for .
The resultant MSE, , will be bounded as stated in

the following proposition.
Proposition 3: Consider the estimator in (30), with
given by (32). Assume that for sufficiently large and

known , for ; and that the noise pdf has
bounded derivative , and define

and . The
mse is given by

(33)

with the approximation error and , satisfying

(34)

(35)

where is a grid of thresholds in and
as in (29).

Proof: Since the estimators are unbiased and is linear
in each , it follows from (30) that . Thus, we
can write

(36)

which expresses the mse in terms of the numerical integration
error and the estimator variance.

To bound , simply recall that the absolute error of the trape-
zoidal rule is given by ([5, sec. 7.4.2])

(37)

where is the second derivative of the noise
CCDF evaluated at some point . By noting that

3We recall that in the notationB (n), the argument n denotes the sensor and
the subscript k a region used by this sensor. In this sense, B (n) signifies that
each sensor is using only one threshold.

, and using the extreme values
and , (37) can be readily bounded as in (34).

Equation (35) follows after recalling how the variance of a
linear combination of independent random variables is
related to the sum of the variances of the summands

(38)

and using the fact that .
A number of interesting remarks can be made about

(34)–(35).
First note from (38) that the larger contributions to

occur when , since this value maximizes the coeffi-
cients ; equivalently, this happens when the thresholds
satisfy [cf. (29)]. Thus, as with the case where the
noise pdf is known, when belongs to an a priori known in-
terval , this knowledge must be exploited in selecting
thresholds around the likeliest values of .

On the other hand, note that the term in (33) will dom-
inate , because as per (34). To clarify this
point, consider an equispaced grid of thresholds with

, such that .
Using the (loose) bound , the MSE is bounded
by [cf. (33)–(35)]

(39)

The bound in (39) is minimized by selecting , which
amounts to having each sensor use a different region to con-
struct its binary observation. In this case, and
its effect becomes practically negligible. Moreover, most pdfs
have relatively small derivatives; e.g., for the Gaussian pdf we
have . The integration error can be further
reduced by resorting to a more powerful numerical integration
method, although its difference with respect to the trapezoidal
rule will not have any impact in practice.

Since , the selection , reduces the
estimator (30) to

(40)

that does not require knowledge of the threshold used to con-
struct the binary observation at the fusion center of a WSN. This
feature allows for each sensor to randomly select its threshold
without using values preassigned by the fusion center; see also
[13] and [14] for related random quantization algorithms.

Remark 1: While seems to dominate
in (39), this is not true for the operational low-to-medium

Q-SNR range for distributed estimators based on binary obser-
vations. This is because the support over which in
(27) is nonzero depends on and the dynamic range
of the parameter . And as the Q-SNR decreases, . But
since the integration error is which
is negligible when compared to the term .
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B. Dependent Binary Observations

Similar to Section III-C, the second possible approach is to
let each sensor form more than one binary observation per ,
Different from Section III-C, the performance advantage will lie
on the side of independent binary observations. Define

(41)

and let each sensor transmit the vector of binary observations
. As before, let

denote the vector of Bernoulli parameters.
Since by definition can only take on values of the form

, we deduce that the number of bits
required by this approach is .

Surprisingly, Lemma 1, extends to this case as well.
Lemma 2: The MLE of based on the binary observations

is given by

(42)

with covariance between elements

(43)

Proof: See Appendix B.1
When the binary observations come from the same , the

optimum estimators for are exactly the same as when they
come from independent observations. Furthermore, the variance
of is identical for both cases as can be seen by setting
in (43).

The variance of , alas, will be different when we rely on de-
pendent binary observations. While will remain the same,

will turn out to be bounded as stated in the ensuing
proposition.

Proposition 4: Let be the estimator in (30), with de-
noting the th component of in (42). The mse is given as in
(33), with bounded as in (34), and variance bounded as,

(44)

Proof: See Appendix B.2.
As we did in Section IV-A, let us consider equally spaced

thresholds , to obtain [cf.
(34), (35), (44)]

(45)

Notice that the MSE bound in (45) coincides with (39). Con-
sidering the extra bandwidth required by the estimator based on
correlated binary observations, the one relying on independent
ones is preferable when the noise pdf is unknown. However, one
has to be careful when comparing bounds (as opposed to exact
performance metrics); this is particularly true for this problem
since the penalty in the required number of bits is small, namely
a factor . A fair statement is that in general both esti-
mators will have comparable variance, and the selection would
better be based on other criteria such as sensor complexity or
the cost of collecting the observations.

Apart from providing useful bounds on the finite-sample per-
formance, (34), (35), (39), and (44), establish asymptotic opti-
mality of the estimators in (30) and (40) as summarized in the
following:

Corollary 1: Under the assumptions of Propositions 3 and 4,
and the conditions: i) ; and ii)

as , the estimators in (30) and (40) are
asymptotically (as ) unbiased and consistent in the
mean-square sense.

Proof: Notice that i) ensures that the MSE bounds in (39)
and (45) hold true; and let with the convergence
rates satisfying ii) to conclude that .

The estimators in (30) and (40) are consistent even if the
support of the data pdf is infinite, as long as we guarantee a
proper rate of convergence relative to the number of sensors and
thresholds.

Remark 2: pdf-unaware bandwidth-constrained distributed
estimation was introduced in [13], where it was referred to as
universal. While the approach here is different, implicitly uti-
lizing the data pdf (through the numerical approximation of the
CCDF) to construct the consistent estimator of (30); the mse
bound (39) for the simplified estimator (40) coincides with the
mse bound for the universal estimator in (13). Note though, that
the general mse expression of Proposition 3 can be used to opti-
mize the placement and allocation of thresholds across sensors
to lower the mse. Also different from [13], our estimators can
afford noise pdfs with unbounded support as asserted by Corol-
lary 1; and as we will see in Section V, the approach herein can
be readily generalized to vector parameter estimation—a prac-
tical scenario where universal estimators like [13] are yet to be
found.

C. Practical Considerations

At this point, it is interesting to compare the estima-
tors in (4), (14), and (40). For that matter, consider that

, and that the noise is Gaussian
with variance , yielding a Q-SNR . None of these
estimators can have variance smaller than ;
however, for the (medium) Q-SNR value they can
come close. For the known pdf estimator in (4), the variance
is . For the known pdf, unknown variance
estimator in (14) we find . The unknown pdf
estimator in (40) requires an assumption about the essentially
nonzero support of the Gaussian pdf. If we suppose that the
noise pdf is nonzero over , the corresponding variance
becomes . Respectively, the penalties due to
the transmission of a single bit per sensor with respect to
are approximately 2, 3, and 9. While the increasing penalty is
expected as the uncertainty about the noise pdf increases, the
relatively small loss is rather unexpected.

All the estimators discussed so far rely on certain thresh-
olds . Either this threshold has to be communicated to the
nodes by the fusion center, or, one can resort to the iterative
approach discussed in Section III-A. These two approaches are
different in terms of transmission cost and estimation accuracy.
Assuming a resource-rich fusion center, the cost of transmitting
the thresholds is indeed negligible, and the batch approach in-
curs an overall small transmission cost. However, it relies on
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rough a priori knowledge that can quickly become outdated.
The iterative estimator, on the other hand, is always using the
best available information for threshold positioning but requires
continuous updates which increase transmission cost. A hybrid
of these two approaches may offer a desirable tradeoff between
estimation accuracy and transmission cost, and constitutes an
interesting direction for future research.

V. VECTOR PARAMETER GENERALIZATION

Let us now return to the general problem we started with in
Section II. We begin by defining the per sensor vector of binary
observations , and note that since
its entries are binary, realizations of belong to the set

(46)

where denotes the th component of . With each
and each sensor we now associate the region

(47)

where denotes the set-complement of in .
Note that the definition in (47) implies that if
and only if ; see also Fig. 3 for an illustration in

. The corresponding probabilities are

(48)

with as in (1), and containing the unknown parameters
of the known noise pdf. Using (48) and (46), we can write the
pertinent log-likelihood function as

(49)

and the MLE of as

(50)

The nonlinear search needed to obtain could be challenged
either by the multimodal nature of or by numerical
ill-conditioning caused by, e.g., saddle points or by values
close to zero for which becomes unbounded. While this
is true in general, under certain conditions that are usually met
in practice, is concave which implies that computation-
ally efficient search algorithms can be invoked to find its global
maximum. This subclass is defined in the following proposition.

Proposition 5: If the MLE problem in (50) satisfies the
conditions:

c1) The noise pdf is log-concave ([4,
p. 104]), and is known.

c2) The functions are linear; i.e., , with
.

c3) The regions are chosen as half-spaces.
then in (49) is a concave function of .

Fig. 3. The vector of binary observations b takes on the value f� ; � g if and
only if x(n) belongs to the region B .

Proof: See Appendix C.
Note that c1) is satisfied by common noise pdfs, including the

multivariate Gaussian ([4, p. 104]); and also that c2) is typical in
parameter estimation. Moreover, even when c2) is not satisfied,
linearizing using Taylor’s expansion is a common first
step, typical in, e.g., parameter tracking applications. On the
other hand, c3) places a constraint in the regions defining the
binary observations, which is simply up to the designer’s choice.

The importance of Proposition 5 is that maximization of a
concave function is a well-behaved numerical problem safely
solvable by standard descent methods such as Newton’s algo-
rithm. Proposition 5 nicely generalizes our earlier results on
scalar parameter estimators in [23] to the more practical case
of vector parameters and vector observations.

A. Colored Gaussian Noise

Analyzing the performance of the MLE in (50) is only
possible asymptotically (as or SNR go to infinity). Notwith-
standing, when the noise is Gaussian, simplifications render
variance analysis tractable and lead to interesting guidelines for
constructing the estimator .

Restrict to the class of multivariate
Gaussian pdfs, and let denote the noise covariance ma-
trix at sensor . Assume that are known and let

be the set of eigenvectors and associ-
ated eigenvalues

(51)

For each sensor, we define a set of regions as
half-spaces whose borders are hyperplanes perpendicular to the
covariance matrix eigenvectors; i.e.,

(52)

Fig. 4 depicts the regions in (52) for . Note that
since each entry of offers a distinct scalar observation, the
selection amounts to a bandwidth constraint of 1 bit
per sensor per dimension.

The rationale behind this selection of regions is that the re-
sultant binary observations are independent, meaning that

for . As
a result, we have a total of independent binary observa-
tions to estimate .



2792 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 7, JULY 2006

Fig. 4. Selecting the regions B (n) perpendicular to the covariance matrix
eigenvectors results in independent binary observations.

Herein, the Bernoulli parameters take on a particularly
simple form in terms of the Gaussian tail function

(53)

where we introduced the -distance between and the cor-
responding threshold .

The independence among binary observations implies that
, and leads to a

simple log-likelihood function

(54)

whose independent summands replace the dependent
summands in (49).

Since the regions are half-spaces, Proposition 5 ap-
plies to the maximization of (54) and guarantees that the numer-
ical search for the estimator in (54) is well conditioned and will
converge to the global maximum, at least when the functions
are linear. More important, it will turn out that these regions
render finite sample performance analysis of the MLE in (50),
tractable. In particular, it is possible to derive a closed-form ex-
pression for the Fisher Information Matrix (FIM) ([8, p. 44]), as
we establish next.

Proposition 6: The FIM, , for estimating based on the
binary observations obtained from the regions defined in (52),
is given by

(55)

where denotes the Jacobian of .

Proof: We just have to consider the second derivative of
the log-likelihood function in (54)

(56)

and take expected value with respect to the binary observations
to obtain

(57)

where we used the fact that .
On the other hand, differentiating with respect to yields

[cf. (53)]

(58)

The FIM is obtained as the negative of the expected value in (57)
if we also substitute (58) into (57), we obtain

(59)

Moving the common factor outside the innermost summa-
tion and substituting by its value in (53), we obtain (55).

The FIM places a lower bound in the achievable variance of
unbiased estimators since the covariance of any estimator must
satisfy

(60)

where the notation stands for positive semidefiniteness of
a matrix; the variances in particular are bounded by

.
Inspection of (55) shows that the variance of the MLE in (50)

depends on the signal function containing the parameter of in-
terest (via the Jacobians), the noise structure and power (via the
eigenvalues and eigenvectors), and the selection of the regions

(via the -distances). Among these three factors, only
the last one is inherent to the bandwidth constraint, the other
two being common to the estimator that is based on the original

observations.
The last point is clarified if we consider the FIM for esti-

mating given the unquantized vector observations . This
matrix can be shown to be (see Appendix D)

(61)

If we define the equivalent noise powers as

(62)
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Fig. 5. Noise of unknown power estimator. The CRLB in (15) is an accurate
prediction of the variance of the MLE estimator (14) moreover, its variance is
close to the clairvoyant sample mean estimator based on the analog observations
(� = 1; � = 0, Gaussian noise).

we can rewrite (55) in the form

(63)

which, except for the noise powers, has form identical to (61).
Thus, comparison of (63) with (61) reveals that from a perfor-
mance perspective, the use of binary observations is equivalent
to an increase in the noise variance from to , while
the rest of the problem structure remains unchanged.

Since we certainly want the equivalent noise increase to be
as small as possible, minimizing (62) over calls for this
distance to be set to zero, or equivalently, to select thresholds

. In this case, the equivalent noise power is

(64)

Surprisingly, even in the vector case a judicious selection of the
regions results in a very small penalty in terms
of the equivalent noise increase. Similar to Sections III-A and
III-B, we can, thus, claim that while requiring the transmission
of 1 bit per sensor per dimension, the variance of the MLE
in (50), based on , yields a variance close to the
clairvoyant estimator’s variance—based on —for
low-to-medium Q-SNR problems.

VI. SIMULATIONS

A. Scalar Parameter Estimation

We begin by simulating the estimator in (14) for scalar pa-
rameter estimation in the presence of AWGN with unknown
variance. Results are shown in Fig. 5 for two different sets of

-distances, , corroborating the values predicted by (15)
and the fact that the performance loss with respect to the clair-
voyant sample mean estimator is indeed small.

Without invoking assumptions on the noise pdf, we also
tested the simplified estimator in (40). Fig. 6 shows one such

Fig. 6. Universal estimator introduced in Section IV. The bound in (39)
overestimates the real variance by a factor that depends on the noise pdf
(� = 1; T = 5; � chosen randomly in [�2; 2]).

Fig. 7. The vector flow v incises over a certain sensor capable of measuring
the normal component of v.

test, depicting the bound in (39), as well as simulated variances
for uniform and Gaussian noise pdfs. Note that the bound
overestimates the variance by a factor of roughly for the
uniform case and roughly for the Gaussian case. Note that
having unbounded derivative, the uniform pdf is not covered by
Proposition 3; however, for piecewise linear CCDFs of which
uniform noise is a special case, (34) does not hold true but the
error of the trapezoidal rule is small anyways, as testified by
the corresponding points in Fig. 6.

B. Vector Parameter Estimation—A Motivating Application

In this section, we illustrate how a problem involving vector
parameters can be solved using the estimators of Section V-A.
Suppose we wish to estimate a vector flow using incidence ob-
servations. With reference to Fig. 7, consider the flow vector

, and a sensor positioned at an angle with
respect to a known reference direction. We will rely on a set
of so-called incidence observations measuring the
component of the flow normal to the corresponding sensor

(65)
where denotes inner product, is zero-mean AWGN,
and the equation holds for . The model
(65) applies to the measurement of hydraulic fields, pressure
variations induced by wind and radiation from a distant source
[15].
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Fig. 8. Average variance for the components of v. The empirical as well as
the bound (68) are compared with the analog observations based MLE (v =
(1; 1); � = 1).

Estimating fits the framework of Section V.A requiring the
transmission of a single binary observation per sensor,

. The FIM in (63) is easily found to be

(66)

Furthermore, since in (65) is linear in and the noise pdf
is log-concave (Gaussian) the log-likelihood function is concave
as asserted by Proposition 5.

Suppose that we are able to place the thresholds optimally at
, so that .

If we also make the reasonable assumption that the angles are
random and uniformly distributed then the
average FIM turns out to be

(67)

But according to the law of large numbers , and the esti-
mation variance will be approximately given by

(68)

Fig. 8 depicts the bound (68), as well as the simulated vari-
ances and in comparison with the clairvoyant
MLE based on , corroborating our analytical ex-
pressions. While this excellent performance is obtained under
ideal threshold placement, recalling the harsh bandwidth con-
straint (1 bit per sensor) justifies the potential of our approach
for bandwidth-constrained distributed parameter estimation in
this WSN-based context.

VII. CONCLUSION

We were motivated by the need to effect energy savings in
a wireless sensor network deployed to estimate parameters of
interest in a decentralized fashion. To this end, we developed pa-
rameter estimators for realistic signal models and derived their
fundamental variance limits under bandwidth constraints. The
latter were adhered to by quantizing each sensor’s observation

to one or a few bits. By jointly accounting for the unique quanti-
zation-estimation tradeoffs present, these bit(s) per sensor were
first used to derive distributed MLEs for scalar mean-location
parameters in the presence of generally non-Gaussian noise
when the noise pdf is completely known; subsequently, when
the pdf is known except for a number of unknown parameters;
and finally, when the noise pdf is unknown. The unknown
pdf case was tackled through a nonparametric estimator of
the unknown complementary cumulative distribution function
based on quantized (binary) observations.

In all three cases, the resulting estimators turned out to exhibit
comparable variances that can come surprisingly close to the
variance of the clairvoyant estimator which relies on unquan-
tized observations. This happens when the SNR capturing both
quantization and noise effects assumes low-to-moderate values.
Analogous claims were established for practical generalizations
that were pursued in the multivariate and colored noise cases
for distributed estimation of vector parameters under bandwidth
constraints. Therein, MLEs were formed via numerical search
but the log-likelihoods were proved to be concave thus ensuring
fast convergence to the unique global maximum.

A motivating application was also considered reinforcing the
conclusion that in low-cost-per-node wireless sensor networks,
distributed parameter estimation based even on a single bit per
observation is possible with minimal increase in estimation
variance4.

APPENDIX

A. Proofs of Lemma 1 and Proposition 2

1) Lemma 1: That is unbiased follows from the linearity of
expectation and the fact that . We will also establish
that is the MLE using Cramér-Rao’s theorem; the result will
actually be stronger since is in fact the minimum variance
unbiased estimator (MVUE) of . To this end, using that

, the log-likelihood function takes on the form

(69)

Note that we can rewrite the probabilities in terms of the com-
ponents of , since e.g., .
Moreover, since the binary observations are either 0 or 1 and
the combination is impossible, we can simplify
the products of binary observations; e.g.,

. Enacting these simplifications in (69), we obtain

(70)

From (70), we can obtain the gradient of as

4The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern-
ment.
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(71)

Differentiating once more yields the Hessian, and taking ex-
pected value over yields the FIM

(72)

It is a matter of simple algebra to verify that
, from where application of Cramer-Rao’s theorem concludes

the Proof of Lemma 1.
2) Proposition 2: The proof is analogous to the one of

Proposition 1. Let us start by inverting [cf. (72)]

(73)

We can now apply the property stated in (19), with the inverse
FIM given by (73), to obtain

(74)

Substituting the derivatives from (20) into (74) completes the
Proof of Proposition 2.

B. Proofs of Lemma 2 and Proposition 4

1) Lemma 2: As in the Proof of Lemma 1, the key property
is that only some combinations of binary observations are pos-
sible; hence, we have

(75)

and the log-likelihood function takes the form

(76)

where for the last equality we interchanged summations and
substituted from (42).

Applying the Neyman-Fisher factorization theorem to (76),
we deduce that are sufficient statistics for estimating

([8, p. 104]). Furthermore, noting that and that
is a function of sufficient statistics, application of Rao-Black-

well-Lehmann-Scheffe theorem proves that is the MVUE (and
consequently the MLE) of .

To compute the covariance, recall that to find

(77)

where for the last equality we used that
, for . The proof follows

form the independence of binary observations across sensors

(78)

QED.

2) Proposition 4: To compute the variance of , use the lin-
earity of expectation to write

(79)

Note that the expected value is by definition
, and is, thus, given by (43)

when . Substituting these values into (79), we obtain

(80)

Finally, note that and that
, to arrive at

(81)

Since the first sum contains terms and the second
, (44) follows.

C. Proof of Proposition 5

Consider the indicator function associated with

(82)

Equation (47) and c3), imply that since is an intersection
of half-spaces, it is convex (in fact c3) is both sufficient and
necessary for the convexity of ). Since is the
indicator function of a convex set it is log-concave (and concave
too).

Now, let us rewrite (48) as

(83)

and use the fact that is log-concave in its argument.
Moreover, since c2) makes this argument affine in , it fol-
lows that is log-concave in . Since
is log-concave under c1), the product is
log-concave too.

At this point, we can apply the integration property of log-
concave functions to claim that is log-concave, ([4, p.
104]). Finally, note that comprises the sum of logarithms
of log-concave functions; thus, each term is concave and so is
their sum.

D. FIM for Estimation of Based on

Let and consider the
log-likelihood

(84)
Differentiating twice with respect to , we obtain the first

(85)
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and second derivative

(86)

Since , taking the negative of the expected
value in (86) yields the FIM

(87)

Now, recall that the eigenvalues of are the inverses of
the eigenvalues of , and the eigenvectors are equal. Finally,
use to obtain (61).
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