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[The design goals of performance, 

bandwidth efficiency, scalability, and robustness]

Distributed 
Compression-Estimation
Using Wireless Sensor
Networks

A
wireless sensor network (WSN) consists of a large number of spatially distrib-
uted signal processing devices (nodes), each with finite battery lifetime and thus
limited computing and communication capabilities. When properly pro-
grammed and networked, nodes in a WSN can cooperate to perform advanced
signal processing tasks with unprecedented robustness and versatility, thus mak-

ing WSN an attractive low-cost technology for a wide range of remote sensing and environmen-
tal monitoring applications [1], [32].
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Prolonging the lifetime of a WSN is important for both com-
mercial and tactical applications. With nonrechargeable batter-
ies, this requirement places stringent energy constraints on the
design of all WSN operations. Energy limitation is one of the
major differences between a WSN and other wireless networks
such as wireless local area networks, where energy efficiency is
of a lesser concern. Also, WSNs are often self-configured net-
works with little or no pre-established infrastructure as well as a
topology that can change dynamically. Moreover, there may be
physical obstacles in the network environment that can degrade
considerably the wireless links among sensors. All these present
formidable challenges to the design of communication, net-
working, and local signal processing algorithms performed by a
WSN. In this article, we focus on distributed estimation tasks
performed by a WSN under energy and bandwidth constraints.

Since data are collected by sensors at geographically dis-
tinct locations, estimation using a WSN requires not only local
information processing but also intersensor communications.
The latter brings in a wireless communication and networking
aspect of the problem that is absent from the traditional cen-
tralized estimation framework. In fact, a major challenge in
WSN research is the integrated design of local signal process-
ing operations and strategies for intersensor communication
and networking so as to strike a desirable tradeoff among ener-
gy efficiency, simplicity, and overall system performance. For
instance, to maximize battery lifetime and reduce communica-
tion bandwidth, it is essential for each sensor to locally com-
press its observed data so that only low rate intersensor
communication is required. This motivates joint design of the
compression-estimation module per sensor. 

Designing distributed compression-estimation algorithms in
the context of a WSN differs from the traditional centralized
framework in several important aspects.

■ Constraints on sensor cost, bandwidth, and energy budget
dictate that low quality sensor observations may have to be
aggressively quantized, e.g., down to a few bits per sample per
node. Thus, estimators must be developed based on severely
quantized versions of very noisy observations. 

■ Obtaining the complete signal models for a large number
of sensors may be impractical, particularly in dynamic 
sensing environments. This preempts application of optimum
estimation algorithms and motivates distributed estimators
based on partially known or unknown data/noise models.
■ Sensors may enter or leave the network dynamically,
resulting in unpredictable changes in network size and 
topology. Thus, to ensure robust operation, compression-
estimation algorithms for WSNs have to work with limited
(or no) knowledge of the network topology and/or size.
■ Local compression at a sensor node depends not only on
the quality of sensor observation, but also on the quality of
the wireless communication channel(s) from the node.
In addition, the design of distributed algorithms should be

coupled with the underlying WSN topology. We consider two
popular WSN deployments characterized by the presence or
absence of a fusion center (FC).

■ When an FC is present, there is no intersensor communi-
cation; communication is only between sensors and the FC.
The FC collects locally processed data and produces a final
estimate; see Figure 1. 
■ In ad hoc WSNs, there is no FC. The network itself is
responsible for processing the collected information, and to
this end, sensors communicate with each other through the
shared wireless medium; see Figure 2. 

Hybrids are also possible in which the WSN is partitioned into
clusters possibly with a hierarchical structure. Each cluster has
a local FC generating intermediate estimates, which in turn are
combined to obtain a final estimate. 

The focus of this article is on distributed compression and
estimation using WSNs in which the main design goals are per-
formance, bandwidth efficiency, scalability, and robustness to
changes in the network or environment. (The distributed detec-
tion in WSNs is discussed in [10].) We first pursue determinis-
tic parameter estimators and study the intertwining tasks of
quantization and estimation in: i) low signal-to-noise ratio
(SNR) situations where the noise standard deviation is in the
order of the parameter’s dynamic range and ii) universal
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[FIG1] A WSN topology with an FC.
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estimation where the sensor data and
noise model are unknown. The ulti-
mate objective is to understand how
the signal processing capability of a
WSN scales up with its size and to
develop robust distributed signal pro-
cessing algorithms and protocols
with low bandwidth requirements
and optimal performance. We will see
that in the low SNR regime, univer-
sal distributed estimators not only
exist but also achieve performance
close to that of estimators based on
the original (nonquantized) observa-
tions. Moreover, since network
resources (e.g., power and band-
width) are scarce, their optimal allo-
cation and scheduling can lead to
significant savings.

The techniques and basic results
that are derived for the parameter
estimation paradigms outlined first
are later extended to more general
and practical signal models. A
Bayesian estimation framework is laid out along with an appli-
cation to state estimation of dynamical stochastic processes.
The final part of the article addresses several issues pertaining
to WSNs with an FC from an information theoretic point of
view. These properties not only offer performance benchmarks
for distributed signal processing but also provide general
guidelines for algorithmic designs.

DISTRIBUTED ESTIMATION FRAMEWORK
Let us consider a generic distributed estimation problem using
a WSN with an FC. Our goal is to estimate a p× 1 vector param-
eter θθθ ∈ Rp from K independent scalar observations xk collected
by as many distributed sensors, as depicted in Figure 3. The
observations obey the model

xk = φk(θ) + wk, k = 1, . . . , K, (1)

where φk : Rp → R is generally a nonlinear function and the
noise terms wk, k = 1, . . . , K are zero-mean independent ran-
dom variables with variance σ 2

k := E(w 2
k). Let pk(w) be the prob-

ability density function (pdf) of wk and Fk(w) := ∫ ∞
w pk(u)du

denote the corresponding complementary cumulative distribu-
tion function (ccdf). Although our focus is on the parameter esti-
mation problem in (1), the methods here can be extended to
nonparametric models as well. Interested readers are also
referred to [35], which discusses robust nonparametric methods
using distributed learning.

Distributed estimation using a WSN entails a local compres-
sion stage in which sensors perform local quantization of their
observations to obtain finite-rate messages mk(xk). These mes-

sages are then sent to the FC where a final estimate
θ̂θθ = �(m1, . . . , mK) is generated.

If infinite bandwidth were available, each sensor could send
its analog-amplitude observation xk to the FC corresponding to
the setup discussed in the previous paragraph with
mk(xk) = xk. Upon receiving these real-valued messages, the
FC can use any of a number of estimation techniques, depend-
ing on the extent of its prior knowledge about the pdf pk(w), to
generate an optimal (in some statistical sense) estimate
θ̂θθ0 = �0(x1, . . . , xK). If, for example, θθθ is scalar (denoted by θ)
and we consider the simple signal model xk = θ + wk, a popular
approach is to compute the best linear unbiased estimator
(BLUE) θ̂0 = θ̂BLUE := (

∑K
k=1 xk/σ

2
k )/(

∑K
k=1 1/σ 2

k ) whose
mean-square error (MSE) [24] 

[FIG2] Ad hoc WSN.

[FIG3] Distributed estimation setup.
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E [(θ̂ − θ)2] =
(

K∑
k=1

1

σ 2
k

)−1

, (2)

is minimum among all linear unbiased estimators. If further-
more, the noise at sensor k adheres to a Gaussian pdf N (0, σ 2

k ),
then θ̂BLUE is the minimum variance unbiased estimator
(MVUE) that minimizes the estimator variance var (θ̂) for all
values of θ . In the particular case σ 2

k = σ 2 for all
k = 1, 2, . . . , K , we obtain the sample mean estimator
x̄ := (1/K)

∑K
k=1 xk whose MSE is known to be σ 2/K.

Having each sensor send the analog-amplitude xk to the FC
may violate the severe bandwidth and power constraints that
sensors are envisioned to obey. In such cases, it may be prefer-
able to let each sensor transmit a quantized version of xk to the
FC in the form a finite rate message mk(xk), to enable forming
at the FC the estimator θ̂θθ = �(m̂1, . . . , m̂K) based on the
received messages m̂1, . . . , m̂K (which are versions of
m1(x1), . . . , m(xk) corrupted by the noisy channel). Naturally,
the MSE performance of θ̂θθ = �(m̂1, . . . , m̂K) is in general infe-
rior to that of θ̂θθ0 = �0(x1, . . . , xK) due to quantization- and
channel-induced errors. Even though the optimal centralized
estimator θ̂θθ0 = �0(x1, . . . , xK) based on analog-amplitude
observations may be impractical in a WSN context, it serves as a
useful clairvoyant benchmark to evaluate the performance of
distributed estimators θ̂θθ . 

Our goal in the remaining sections is to
i) derive efficient local quantization schemes mk(xk) and dis-
tributed estimators θ̂ = �(m1, . . . , mK) under energy and
bandwidth constraints
ii) benchmark their MSE performance and quantify the per-
formance loss when compared to the centralized clairvoyant
estimators θ̂0

iii) ensure low-complexity {�, mk : k = 1, . . . , K} alternatives
iv) design adaptive resource (e.g., power and bandwidth) allo-
cation and scheduling strategies to improve the overall net-
work performance.

DISTRIBUTED ESTIMATORS
In this section, we will present distributed estimators for: 
i) known univariate noise pdfs, ii) known noise pdfs with a
finite number of unknown parameters, iii) completely
unknown noise pdfs, and iv) generalizations to multivariate
and possibly correlated pdfs. Even though the estimators will
turn out to require minimal communication overhead from
the sensors to the FC, they will exhibit essentially identical
MSE performance and comparable complexity with the corre-
sponding clairvoyant estimators.

COMPLETELY KNOWN PDF
Let us start by considering the signal model 

xk = θ + wk (3)

when the noise pdf pk(w) = p(w) for all k and p(w) is known.
Albeit simple, this model will illustrate basic properties that
carry over to more pragmatic models we will consider later. For
simplicity, we will impose a rate constraint of one binary bit per
sensor sample, but our results can be easily extended to any
fixed number of bits per sensor sample. For binary messages
(i.e., Lk = 1), we can consider the halfline Bc := (τc,∞) ∈ R

and define the message functions as mk(xk) = 1{xk ∈ (τc,∞)}
indicating whether the observation xk belongs to Bc or not.
Moreover, we make the simplifying assumption that the chan-
nels from the sensors to the FC are ideal, so that
m̂k(xk) = mk(xk), for all k.

Given that the noise is i.i.d. and the noise ccdf Fw(w) is
known, it is easy to find the maximum likelihood estimator
(MLE) θ̂MLE = �MLE(m1, . . . , mK) [6]. Indeed, since mk is an
indicator variable, it is Bernoulli distributed with parameter
given by the probability q := Pr{xk ∈ Bc} = Fw(τc − θ). As q
and θ are related by a one-to-one function and the MLE of q is
q̂ = (1/K)

∑K
k=1 mk, we deduce from the invariance property of

MLEs the closed-form expression [34], [38]

θ̂MLE = τc − F −1
w

(
1
K

−K∑
k=1

mk

)
. (4)

Although mk is a discontinuous function of xk, θ̂MLE is an estima-
tor whose computational cost is in the order of the optimal clair-
voyant estimators such as the sample mean estimator x̄ in (2).

The Cramer-Rao lower bound (CRLB) for estimating θ based
on {mk}K

k=1 provides a performance limit for the variance of
any estimator θ̂ = �(m1, . . . , mK) and it is achieved by θ̂MLE

for K sufficiently large. For our problem, the CRLB is given by
[38], B(θ) := Fw(τc − θ)[1 − Fw(τc − θ)]/p2(τc − θ) , from
which we infer that the ultimate performance limit is deter-
mined by the distance between τc and θ . For the particular case 
of Gaussian noise, we can define �c := (τc − θ)/σ as the (σ )-
distance between the parameter θ and the threshold τc meas-
ured in standard deviation units and let Q(v) denote the stan-
dardized Gaussian ccdf. Since the noise is Gaussian, the sample
mean estimator x̄ is the MVUE with variance var (θ̂0) = σ 2/K.

[FIG4] Performance penalty of a 1-b estimator with respect to the
sample mean estimator. When the parameter’s dynamic range is
on the order of the observation noise variance, the ratio
var(θ̂)/var(θ̂0) is not large.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

(τc–θ)/σ

C
R

LB

CRLB
Chernoff Bound



IEEE SIGNAL PROCESSING MAGAZINE [31] JULY 2006

Compared with this benchmark estimator, the one in (4)
incurs loss measured by the ratio B(θ)/var(θ̂0) =
(2π)Q(�c)[1 − Q(�c)]/e−�2

c ≤ (π/2)e�2
c/2 , which we depict

in Figure 4 versus �c [38], [39].
Figure 4 reveals something unexpected: relying on a single bit

per xk , the estimator in (4) may exhibit only π/2 times 
higher variance compared to the clairvoyant θ̂0 = x̄ that relies on
the nonquantized data xk. But this minimal loss in performance
corresponds to the ideal choice �c = 0, which implies τc = θ and
requires perfect knowledge of the unknown θ for selecting the
quantization threshold τc. How do we select τc and how much do
we lose when the unknown θ lies anywhere in (−∞,∞), or when
θ lies in [�1,�2], with �1, �2 finite and known a priori.
Intuition suggests selecting the threshold as close as possible to
the parameter. This can be realized with an iterative estimator θ̂ (i),
which can be formed as in (4), using τ (i)

c = θ̂ (i−1), the parameter
estimate from the previous (i − 1)st iteration. As we will see later,
this iterative threshold placement matches nicely with state esti-
mation of dynamical processes based on binary observations.

But in the batch formulation considered herein, selecting τ c

is challenging; a closer look at B(θ) confirms that the loss can
be huge if τ c − θ � 0. The implication of the latter is twofold:
i) since the loss shows up in the CRLB, the potentially high vari-
ance of estimators based on quantized observations is inherent
to the possibly severe bandwidth limitations of the problem
itself and is not unique to a particular estimator; 
ii) how successful the τ c selection is depends on the dynamic
range |�1 − �2| that makes sense because the latter affects the
error due to the quantization of xk to mk . In fact, two sources of
error are present in joint quantization-estimation problems:
quantization and noise.

To account for both, the proper figure of merit for estimators
based on binary observations is the quantization SNR (Q-SNR)
that we define as [39]

γ := |�1 − �2|2
σ 2 . (5)

Notice that contrary to common wisdom, the smaller Q-SNR is,
the easier it becomes to select τc judiciously. Furthermore, the
variance increase in B(θ) relative to the variance of the clairvoy-
ant θ̂0 is smaller, for a given σ . This is because as the 
Q-SNR increases the problem becomes more difficult in general,
but the rate at which the estimation variance increases is 
smaller for the CRLB in Figure 4 than for var (θ̂0) = σ 2/K.

KNOWN NOISE PDF WITH UNKNOWN PARAMETERS
The estimator in (4) requires perfect knowledge of the noise pdf
pw(w), which may not always be available. Here we suppose that
pw(w) = pw(w;ψ) is known and depends on the parameter vec-
tor ψ ∈ RL×1, which is unknown. Consider, for example, the
case frequently encountered in practice in which the noise pdf is
known (say Gaussian) except for its variance E(w2

k) = σ 2. Note
that the problem of estimating θ when the noise pdf is pw(w; σ)

can be addressed by writing xk = θ + σ vk with E(v2
k) = 1 and

estimating θ while viewing σ as a nuisance parameter [39].

If we define a single quantization region as in “Distributed
Estimators,” different combinations (θ, σ ) lead to sets of mes-
sages {mk}K

k=1 with identical probabilities. To avoid this ambigu-
ity problem, we define two regions Bj := (τ j,∞), j = 1, 2 with
τ1 < τ2 and let half the sensors use B1 to construct their binary
observations and the remaining half use B2. Accordingly, the
messages are defined as mk := 1{xk ∈ (τ1,∞)} for
k ∈ [1, K/2] and mk := 1{xk ∈ (τ2,∞)} for k ∈ [K/2 + 1, K].

As well as in the previous subsection, the mk messages are
Bernoulli with parameters qj := Pr{xk ∈ Bj} = Fv[(τ j − θ)/σ ]
depending on whether Sk uses threshold τ1 or τ2 to construct
mk. These expressions for the Bernoulli parameters imply that
(θ, σ ) and (q1, q2) are related by the nonlinear 2 × 2 mapping
[q1, q2]T = Fv[(τ1 − θ)/σ ], Fv[(τ2 − θ)/σ ]T that can be
inverted to express (θ, σ ) in terms of (q1, q2). This, plus the
invariance property of MLEs leads to [39]

θ̂MLE = F −1
v (q̂2)τ1 − F −1

v (q̂1)τ2

F −1
v (q̂2) − F −1

v (q̂1)
, (6)

where the MLEs of q1, q2 can be found as q̂1 = (2/K)
∑K/2

k=1 mk

and q̂2 = (2/K)
∑K

k=K/2+1 mk . Likewise, we can obtain the
MLE of σ if we are interested in the noise power.

Upon defining the σ -distances � j = (τ j − θ)/σ and the
ratios B j(θ) := Fv(�j)[1 − Fv(�j)]/p2(�j) , the CRLB can be
written as B(θ)/(σ 2/K) = 2/(�2 − �1)[(�2/�1)B1(θ)+
(�1/�2)B2(θ)]. Interestingly, B(θ) is a linear combination
of B1(θ), B2(θ) that are identical to the ratio depicted in
Figure 4. This establishes that the variance penalty with
respect to the clairvoyant sample mean estimator is still a
relatively small factor when the Q-SNR takes small-to-
medium values [39].

The approach here can be generalized to noise pdfs that
depend on L parameters by defining L + 1 regions
Bl := (τl,∞) and dividing the sensors in L + 1 groups so that
the l th group constructs their binary observations as
mk = 1{xk ∈ Bl}. (See Figure 5.) This applies when the noise
adheres to, e.g., a Gaussian mixture pdf. In all these cases we
find that a low complexity MLE can be constructed in closed
form by invoking the invariance property of MLEs. The associat-
ed normalized penalty var(θ̂MLE)/var(θ̂0) is small when γ is.
Even when the noise pdf is completely unknown we can develop
nonparametric universal estimators sharing the latter property
as we show later.

VECTOR PARAMETERS IN COLORED GAUSSIAN NOISE
Results presented earlier can be extended to the vector signal
model (1). For illustrative purposes, let us assume that the noise
pdf pk(w) and the corresponding ccdf Fk(w) are known but may
change from sensor to sensor and recall that we denote the
noise power as E(w2

k) = σ 2
k .

As before, we define 1-b messages mk := 1{xk ∈ (τk,∞)},
and note that mk is Bernoulli distributed with parameter
qk := Pr{xk ∈ (τk,∞)} = Fk[τk − φk(θ)] . Defining the log-
likelihood function
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L(θθθ) :=
K−1∑
k=0

mk ln qk + (1 − mk) ln(1 − qk), (7)

we can find the MLE of θ̂θθ based on observations {mk}K−1
k=0 as

θ̂θθMLE := arg max
θ̂
{L(θθθ)} [39].

The search for θ̂θθ can be challenging due to the multimodal
nature of L(θθθ) as well as the numerical difficulties caused by qk

values being close to zero. However, if a1) the noise pdfs pk(w)

are log-concave, and a2) the functions φk(θθθ) are linear, then the
likelihood L(θθθ) becomes a concave function of θθθ . The concavity
of L(θθθ) implies that computationally efficient search algorithms
e.g., interior point methods, are guaranteed to converge to the
global maximum θ̂θθMLE. Note that a1) is satisfied by common
noise pdfs, including the multivariate Gaussian, uniform in a
convex set, as well as generalized Gaussian [7, p. 104]; while a2)
is typical in parameter estimation. Moreover, even when a2) is
not satisfied, linearizing φk(θθθ) using Taylor’s expansion is a
common first step, typical in, e.g., parameter tracking applications.

To quantify the performance penalty in the vector case, we
define the equivalent noise powers ρ2

k := Fk(τk − φk(θθθ))

[1 − Fk(τk − φk(θθθ))]/p2[τk − φk(θθθ)], and consider two signal
models according to (1) with the noise powers given by
σ := [σ 2

0 , . . . , σ 2
K−1]T and ρ := [ρ0, . . . , ρK−1]T, respective-

ly. It can be shown that the CRLB Bx(θθθ;ρρρ) when estimating θθθ
based on {xk}K

k=1 with noise powers given by ρρρ, coincides with
the CRLB Bm(θθθ; σσσ) associated with the estimation of θ based
on {mk}K−1

k=0 when the noise powers are the components of σσσ
[38], [39]. Equivalently, it follows that performance of a cen-
tralized estimator when the noises have variance ρ2

k coincides
with the performance of a single-bit distributed estimator
when the noise variances are ρ2

k with the ratio ρ2
k/σ 2

k charac-
terized as in Figure 4.

Even though we considered scalar observations so far, the
results generalize to vector observations xk = φk(θθθ) + wk as
long as the components of wk are independent (e.g., white

Gaussian noise). If wk is Gaussian but colored, the approach
described here can also be used after local prewhitening [39].

UNIVERSAL APPROACHES
As shown earlier, optimal distributed estimators depend on
the parametric model and the noise pdfs. In certain cases
though, characterizing the exact sensor observation distribu-
tions for a large number of sensors may be impossible, espe-
cially in a dynamic sensing environment. Such applications
motivate universal distributed estimators that are independ-
ent of the noise or parameter distributions, under either
bandwidth or energy constraints.

ESTIMATION IN A HOMOGENEOUS ENVIRONMENT
Again, let us consider a WSN with an FC and the signal model
(3) where wk are spatially uncorrelated with zero mean but 
otherwise unknown. For the moment, let us also assume that all
wireless channels are orthogonal and distortionless. As dis-
cussed earlier, if the sensors could communicate their real-val-
ued observations to the FC error free, then the sample mean
estimator achieves an MSE performance of σ 2/K, implying that
the WSN has an estimation capability that scales linearly with
network size K. We have seen that under a rate constraint of one
binary bit per sensor sample, the same O(1/K) scaling law
remains valid when the noise pdf is completely or partially
known. Surprisingly, this scaling law can even be achieved by
universal distributed estimators, as we explain below.

The idea is to represent sensor observations in binary form and
quantize them to different bit positions across sensors. Specifically,
we can have 1/2 of the sensors quantize their observations to the
first most significant bit (MSB), 1/4 of the sensors quantize their
observations to the second MSB, 1/8 of the sensors quantize their
observations to the third MSB, and so on [27]. The resulting bits
are then used as the 1-b messages for individual sensors. The FC
simply averages the received 1-b messages to generate an esti-
mate of φ. Clearly, this distributed estimator is universal as it is

completely independent of the noise pdf.
Assume all observations xk are bounded
in an interval [−W, W] and they are con-
ditionally independent given θ . Then, the
mean of these message functions
(m1 + m2 + · · · + mK)/K estimates θ

with an MSE upper bounded by W2/K.
Notice that this estimation scheme assigns
more sensors to estimate the first MSB of θ
than any other bit. This is intuitively rea-
sonable since getting the first MSB of θ
right has the highest impact on minimiz-
ing the final MSE.

One limitation of the aforementioned
strategy is that it requires the use of an FC
and knowledge of network size K to specify
which sensor should quantize its observa-
tion to which bit. Moreover, the resultant
estimator is nonisotropic in the sense that

[FIG5] When the noise pdf pw(w;ψ) is known but depends on L unknown
parameters we divide the sensors in L groups each using a different threshold τl to
construct the binary message mk . Note that the messages are Bernoulli distributed
with parameters ql := Pr{xk ∈ (τl, ∞)} = Fw(τl − θ) when sensor Sk uses the
threshold τl . 
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sensors quantize their observations to possibly different MSBs. This
is difficult to implement in an ad hoc sensor network where there is
little or no coordination among sensors. For such networks we can
use the following probabilistic estimation scheme [28]:

■ With each new sample xk, sensor k flips a coin and, with
probability 1/2, quantizes xk to the first MSB, with probability
1/4 quantizes xk to the second MSB, and so on. The quanti-
zation outcome is sent to all its neighbors.
■ Messages are communicated among sensors via an
underlying WSN protocol. Each sensor recursively com-
putes the average of all received binary messages that are
distinct (determined by, say, the sender’s ID), and uses it as
an estimator of θ .
Intuitively, with the aforementioned coin flipping per sen-

sor, there will be roughly 1/2 of the sensors in the network
quantizing their observations to the first MSB, about 1/4 of
the sensors in the network quantizing their observations to
the second MSB, and so on. Thus, this probabilistic estimation
scheme should closely approximate the MSE performance of
the previous nonprobabilistic one. This is indeed the case.
Assume that each message has a header containing the
sender’s ID and eventually arrives at its destination without
error. Then each node in the WSN produces an unbiased esti-
mate of θ with an MSE of at most 4W2/(K1 + 1), where K1

denotes the number of distinct messages received by this sen-
sor. Notice that this probabilistic estimator is isotropic and
robust in the sense that all sensors operate identically and
independently and remain oblivious to possible changes in the
network size or the noise pdf. This probabilistic distributed
estimator can also be adapted for distributed detection [48].

The performance of a universal estimator is characterized by
the worst case MSE over all possible distributions of the observa-
tions xk with support [−W, W]. Given the binary nature of mes-
sages, the message functions must take the form
mk(xk) = 1{xk ∈ Sk}, indicating whether the observation xk

belongs to Sk or not, where Sk is a subset of R. The design of an opti-
mal 1-bit universal estimator is then to choose {S1, . . . , SK;�} such
that maxpk(w),θ E(|θ − θ̂ |2) is minimized. An example in [53]
shows that maxpk(w),θ E(|θ − θ̂ |2) ≥ W2/(4K) . Thus the best
achievable MSE for single-bit universal estimators is W2/(4K),
which implies that performance of the universal estimators in [27]
and [28] is within a constant factor of 4 to being optimal. 

Beyond the simple 1-b per sensor observation, universal esti-
mators can be derived for any fixed rate, and channel distortions
can also be accounted for [27].

ESTIMATION IN INHOMOGENEOUS ENVIRONMENTS
In an inhomogeneous sensing environment, different sensors
may have different quality of observations due to the fact that
sensors closer to the target may have a higher local SNR than
those farther away. While characterizing the pdf of sensor obser-
vations is difficult in practice, it is often possible for each sensor
to characterize its local SNR. This can be accomplished by com-
paring the received signal power with and without the presence
of the signal of interest θ .

In such inhomogeneous environments, it is no longer rea-
sonable to insist on having each sensor transmit identical num-
ber of bits to the FC. Intuitively, sensors with higher local SNRs
should send more bits to the FC and weigh these bits more than
those from sensors with lower SNRs. To this end, we can let
each sensor compress its observation to a discrete message with
length proportional to the logarithm of its local SNR and then
transmit the resulting message to the FC. The final estimate of
the unknown parameter is computed at the FC by combining
the received bits according to a universal fusion rule. The fol-
lowing distributed estimator in an inhomogeneous sensing
environment is proposed in [51].

■ At sensor k, choose

Lk =
⌈

log
W
σk

⌉
, (8)

and take mk to be the first Lk bits of the binary expansion of
(W + xk)/2W ∈ [0, 1].
■ The final estimator at the FC is 

θ̂ =
(

K∑
k=1

22Lk

)−1 K∑
k=1

22Lk W(2mk − 1). (9)

To form the estimator in (9), each sensor only needs to
know its own noise variance to determine the number of
bits Lk. The final fusion (9) is completely determined by the
received messages. Thus, such an estimation scheme is
totally distributed and easily implemented in a WSN. As
expected, higher quality sensors with smaller noise variance
send more bits and their messages carry more weight at the
final fusion process. Notice that θ̂ in (9) is unbiased, i.e.,
E(θ̂) = θ , with MSE

E(θ̂ − θ)2 <
25
8

(
K∑

k=1

1

σ 2
k

)−1

,

which is optimal (up to a factor of 3.125) when compared to the
centralized BLUE estimator.

An example from [51] comparing on the basis of MSE the
universal estimator in (9) with the centralized BLUE estimator
is shown in Figure 6. The asymptotic efficiency is defined as

asymptotic efficiency = 1

MSE · ∑K
k=1 1/σ 2

k

.

Clearly, the larger the asymptotic efficiency, the more efficient
is the estimation scheme. In all the simulation runs, we take
θ = 1, W = 9. Sensor noises are uniformly distributed with
standard deviations shown in Figure 7. The distributions of the
number of bits transmitted by all K sensors are plotted in
Figure 8. This shows that the universal estimator in (9)
requires a surprisingly low communication overhead (about
3.8 b per sample on average) and achieves essentially the same
order of MSE as the centralized BLUE estimator.
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ENERGY MINIMIZING ESTIMATION
The estimation schemes so far rely on the idea of adapting the
bit allocation depending on the observation SNR. For the pur-
pose of energy efficiency (which has obviously been a design
criterion for almost all aspects of WSN design; see [2], [8],
[25], and [36]), a sensor should choose a message length of
Lk = 0 if the quality of its channel to the FC is very poor, even
if the quality of its observation is high. Thus, to maximize
energy savings, it is necessary to adapt the message length Lk

not only based on the local observation SNRs but also based on
the intended channel quality. The work in [54] examined an
energy minimizing estimation problem by modeling the wire-
less links between sensors and the FC as additive white
Gaussian noise (AWGN) channels with known path-gains gk.
Sensors adopt uncoded quadrature amplitude modulation
(QAM) for the quantized bits. Energy models for uncoded M-
QAM transmissions are available in [13], [14], and [21]. If sen-
sor k sends Lk bits with QAM of constellation size 2Lk at a bit
error probability pk

b, then the total amount of required trans-
mission energy is given by 

Ek = ck

gk

(
ln

2

pk
b

)(
2Lk − 1

)
,

where ck is a system constant. To achieve a target distortion
D0 and minimize the total sensor transmission power, the
sensor scheduling problem can be formulated as a convex pro-
gram, and the optimal value of Lk can be derived in terms of
{σ 2

k , gk} as [54]

Lopt
k = log

(
1 + W

σk

√
(η0 gk − 1)+

)
, (10)

where η0 is a universal constant decided jointly by the target
MSE, sensor noise levels, and channel gains.

The message length in (10) is intuitively appealing as it
indicates that the message length should be proportional to
the logarithm of the local SNR scaled by the channel path
gain. This is in the same spirit as the message length formula
in (8) when the channels are ideal, although the latter was
derived from a different perspective. Also notice that when
η0 gk ≤ 1, we have Lk = 0, and therefore Pk = 0. Since gk is
the channel gain, this implies that when the channel quality
for sensor k is worse than the threshold η0, we should discard
its observation to save energy. Such a strategy of discarding
observations for the purpose of energy saving has been pro-
posed in the context of censoring sensors [37].

To obtain the desired quantization and transmit power levels,
we have assumed in this article that the fusion center knows
{(σ 2

k , gk) : k = 1, 2, . . . , K}. This assumption is reasonable in
cases where the network condition and the signal being estimat-
ed change slowly in a quasi-static manner. Thus, once {(σ 2

k , gk)}
are acquired by the fusion center, they can be used for a reason-
ably long period of time. Also, our approach can be generalized
to the estimation of a memoryless discrete-time random process

[FIG8] Distribution of the number of bits transmitted by
local sensors.
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[FIG7] Distribution of sensor noise standard deviations.
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θ(t). Due to the temporal memoryless property of the source
and sensor observations, we can impose sample-by-sample esti-
mation without significant estimation performance loss but
obtain important features such as easy implementation and no
coding and estimation delay.

We now present some simulation results from [54]. In
the simulations, the parameters are chosen as K = 1, 000,
σ 2

k = 1 for all k, and the channel path loss coefficients
ak = g−1

k = dα
k with dk ∈ [1, 10] and α ∈ [2, 6]. Figure 9 (a)

illustrates that as the WSN heterogeneity increases, a large
number of sensors with low channel gains or low-SNR
observations will transmit nothing (i.e., Lk = 0). Figure 9(b)
also reveals major energy savings compared to uniform
quantization or uniform power scheduling. Besides adaptive
quantization, other interesting strategies such as protecting
different bits with different bit error rates have been dis-
cussed in [26].

JOINT ESTIMATION OF A VECTOR SOURCE
The universal distributed estimation can be extended to the gen-
eral signal model (1) with vector observations. For illustrative
purposes, we considered observation model xk = Hkθ + wk ,
where Hk is a matrix with dimension (rk, p). We assume that
noise wk has zero mean and covariance matrix Ck but otherwise
unknown. Noises nk are spatially uncorrelated across sensors.
Without loss of generality, the source covariance matrix E(θθθθθθ T)

is assumed to be identity.
It is possible to extend the universal estimators described

earlier to this vector model [29]. There are two main steps in
this extension. First, at each sensor, the dimension of xk can be
reduced by adopting the dimensionality reduction strategy
proposed in [30]. It turns out that to perform the centralized
BLUE estimator, each sensor only needs to send to the FC a
number real messages equal to rank (HT

kC−1
k Hk). After reduc-

ing the dimension of xk , a universal quantization is performed
on each component, with the number of bits jointly deter-
mined by the pair of local matrices (Ck, Hk). In particular, to
ensure a factor of 2 away from the performance of the central-
ized BLUE, the number of bits that must be sent from each
sensor to the FC is on average no more than
Lk = (1/2) log det(I + HT

kC−1
k Hk) binary bits.

The quantity (1/2) log det (I + HT
kC−1

k Hk) coincides with
Shannon’s capacity of a “virtual AWGN channel” from
nature to sensor k with channel matrix given by Hk, noise
covariance matrix Ck , and input power given by identity
matrix. The fact that Lk represents channel capacity shows
nicely that the message length is decided by the number of
“useful” bits contained in xk = Hkθ + wk . Furthermore,
this message length function is reminiscent of that in (8)
for the scalar case.

This vector source estimation problem has also been stud-
ied in the context of linear decentralized estimation in [31],
[43], [55], and [56] for the purpose of dimensionality reduc-
tion and power control under both orthogonal and
nonorthogonal multiple access.

BAYESIAN ESTIMATION OF RANDOM SIGNALS
When knowledge about the parameter of interest is available in
the form of a prior distribution p(θθθ), we can pose our distrib-
uted estimation problem in a Bayesian framework. Consider the
signal model in (1) and define the messages as
mk := 1{xk ∈ (τk,∞)}. Letting m1:K := [m1, . . . , mK] denote
the message sequence, the minimum mean-square error
(MMSE) estimator can be found as the conditional mean of the
posterior distribution θ̂θθ = E[θθθ |m1:K] with p[θθθ |m1:K] =
p(m1:K|θθθ)p(θθθ)/p(m1:K) obtained through Bayes’ theorem.

Since computing the conditional expectation requires
prohibitively expensive numerical integrations, we consider the
maximum a posteriori (MAP) estimator θ̂θθMAP =
arg max p[θθθ |m1:K] that requires numerical maximization
instead of a numerical integration [17]. Given that p(m1:K) is a
constant and the logarithm is a monotonically increasing func-
tion, θ̂θθMAP can be found as

θ̂θθMAP = arg max
{
log[p(m1:K|θθθ)] + log[p(θθθ)]

}
, (11)

where log[p(m1:K|θθθ)] coincides with the log-likelihood func-
tion in (7). If the noise pdf is log-concave, it can be proved
that log [p(m1:K|θθθ)] is a concave function of θθθ [17], a result

[FIG9] (a) Number of active sensors decreases as the channel
path losses become more heterogeneous. (b) Power savings
compared to uniform power scheduling or uniform quantization.
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that we already mentioned. Furthermore, if the prior p(θθθ) is
also log-concave, then log[p(θθθ)] is concave by definition
and, thus, θ̂θθMAP can be found as the maximum of a concave
function.

Since θ̂θθMAP → θ̂θθMLE for K sufficiently large, performance of
the MAP estimator approaches that of the MLE we discussed
earlier. In fact, it turns out that the penalty paid by the MAP esti-
mator in (11) relative to the clairvoyant MAP based on analog-
amplitude observations is smaller than the penalty paid by the
respective MLEs [17].

DISTRIBUTED KALMAN FILTERING
Consider an ad hoc WSN deployed to estimate the state of a
dynamic stochastic process. Let n denote the time index,
x(n) ∈ Rp×1 the state at time n, v(n, k) ∈ R the scalar observa-
tion of sensor Sk at time n, and consider the following state-
observation model

x(n) = A(n)x(n − 1) + u(n)

y(n, k) = hT(n, k)x(n) + v(n, k), (12)

where the matrix A(n) ∈ Rp×p, the vector h(n, k) ∈ Rp×1, the
driving input u(n) is normally distributed with zero mean and
variance Cu(n) and the observation noise v(n, k) is zero-mean
AWGN and independent across sensors with variance σ 2

v (n, k).
Supposing that A(n), Cu(n), h(n, k), and σ 2

v (n, k) are available
for all n, k, the goal of the WSN is for each sensor Sk to form an
estimate of x(n).

Without loss of generality, we assume that sensors broadcast
their data in a time division multiple access (TDMA) fashion with
k(n) indexing the sensor scheduled at the n th time slot; for sim-
plicity we denote Sk(n) = S(n). If we had infinite bandwidth avail-
able, the sensor S(n) scheduled for transmission would
communicate its observation y(n, k(n)) = y(n) to all other sen-
sors. Having the entire set of observations y0:n :=
[y(0), . . . , y(n)]T available, each sensor would then be able to
obtain the MMSE estimate x̂(n|n) := E[x(n)|y0:n] and its 
corresponding error covariance matrix M(n|n) :=
E[(x̂(n|n) − x(n))(x̂(n|n) − x(n))T] by means of Kalman filtering
(KF) iterations, each of which includes a prediction step and a cor-
rection step [24, Chap. 13].

Supposing that x̂(n − 1|n − 1) and M(n − 1|n − 1) are avail-
able at time n, it follows from the linear model in (12) that the
predicted estimate x̂(n|n − 1) and its corresponding covariance
matrix M(n|n − 1) are given by

x̂(n|n − 1) = A(n)x̂(n − 1|n − 1)

M(n|n − 1) = A(n)M(n − 1|n − 1)AT(n) + Cu(n). (13)

Following this prediction step we use the innovation
sequence ỹ(n) := [y(n) − hT(n)x̂(n|n − 1)] to obtain the cor-
rected estimate x̂(n|n) using the well-known KF correction;
see e.g., [24 Sec. 13.6]. The innovation ỹ(n) represents the
information about the state contained in the current obser-
vation that cannot be predicted from past observations.

SIGN OF INNOVATIONS-KF 
We wish to derive a distributed KF whereby observations
made at each sensor are used to update state estimates at all
sensors. Our goal though is to ensure that the required
exchange of information among sensors entails low-commu-
nication overhead. To this end, we use as messages m(n) the
sign of the innovation (SOI): 

m(n) := sign[ ỹ(n)] = sign[y(n) − ỹ(n|n − 1)]. (14)

Note that quantizing y(n) to the SOI m(n) only alters the
observation model and consequently the prediction step for
the SOI-KF coincides with the prediction step for the clair-
voyant KF. The sign nonlinearity, though, implies that
p[x(n)|m0:n−1] is non-Gaussian and computation of the exact
MMSE estimate requires (computationally expensive) numer-
ical integrations and (memory intensive) propagation of the
posterior pdf. However, based on customary simplifications
made in nonlinear filtering, we can approximate the MMSE
with the following correction recursions [40]:

x̂(n|n) = x̂(n|n − 1) + m(n)
(
√

2/π)M(n|n − 1)h(n)√
h(n)TM(n|n − 1)h(n) + σ 2

v

M(n|n) = M(n|n−1)− (2/π)M(n|n−1)h(n)h(n)TM(n|n−1)

h(n)TM(n|n−1)h(n) + σ 2
v

.

(15)

Even at a minimal communication cost, the SOI-KF is
strikingly similar to the clairvoyant KF. The covariance
updates in particular are identical except for the 2/π factor
in (15). We emphasize that (15) is not the result of propos-
ing a KF-like recursion based on a priori heuristics. On the
contrary, the SOI-KF implements MMSE estimation based
on the SOI in (14) whose form ends up being, a posteriori,
reminiscent of the KF.

While the MSE corrections of the KF and SOI-KF are similar,
the estimate updates for x̂(n|n) appear to be quite different.
However, it is possible to express the SOI-KF corrector in (15) in
a form that exemplifies its link with the KF corrector. Indeed, if
we define the SOI-KF innovation sequence as
m̃(n|n − 1) :=

√
(2/π)E[ ỹ2(n|n − 1)]m(n), it is not difficult to

show that the SOI-EKF correction can be written as

x̂(n|n) = x(n|n − 1)

+ M(n|n − 1)h(n)

hT(n)M(n|n − 1)h(n) + σ 2
v (n)

m̃(n|n − 1), (16)

which is identical to the KF update if we replace m̃(n|n − 1)

with the innovation ỹ(n|n − 1) = y(n) − ŷ(n|n − 1) .
Moreover, note that the units of m̃(n|n − 1) and ỹ(n|n − 1) are
the same, and that E[m̃(n|n − 1)] = E[ ỹ(n|n − 1)] = 0. Even
more interesting, by definition it holds that E[m̃2(n|n − 1)] =
(2/π)E[ ỹ2(n|n − 1)], which explains the relationship between
the covariance corrections for the KF and for the SOI-KF in
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(15). The difference between the SOI-KF and KF corrections is
that in the SOI-KF the magnitude of the correction at each
step is determined by the magnitude of E[m̃2(n|n − 1)], and it
is the same regardless of how large or small the actual innova-
tion m̃(n|n − 1) is.

SOI-KF IMPLEMENTATION AND MSE PERFORMANCE
Implementation of the SOI-KF requires running two separate
algorithms. The observation-transmission algorithm is run by
the sensors as dictated by the scheduling algorithm and starts
by collecting the observation y(n, k) ↔ y(n). The sensor then
computes the state and observation predictions x̂(n|n − 1)

and y(n|n − 1) = hT(n)x̂(n|n − 1) . Based on y(n|n − 1) =
hT(n)x̂(n|n − 1), it obtains the SOI as in (14) and broadcasts it
to all other sensors as the message m(n). The reception-
estimation algorithm is continuously run by all sensors to track
x(n) and is identical to a KF algorithm except for the (minor)
differences in the update equations. At each time slot, the state
prediction is computed using (13) and after receiving the SOI
m(n) the corrected estimate is obtained using (15).

MSE performance of the SOI-KF can be related with that 
of the KF by defining an equivalent system that is identical to
the model in (12) except that the observation noise power 
at time n is (π/2)σ 2

v (n). It turns out that the steady-state MSE
of the clairvoyant KF run on this equivalent system basically
coincides with the steady-state MSE of a SOI-KF run on the
original system [40]. In other words, the MSE increase when
using the SOI-KF is as much as the KF would incur when
applied to a model with π/2 higher observation noise variance.

While we presented SOI-KF for scalar observations, general-
izations are available to vector observations and colored noise
after prewhitening [40].

TARGET TRACKING WITH SOI-EKF
Target tracking based on distance-only measurements is a typi-
cal problem in bandwidth-constrained distributed estimation
with WSNs (see e.g., [15] and [16]) for which an extended SOI-
KF to nonlinear models appears to be particularly attractive.
Consider K sensors randomly and uniformly deployed in a
square region of 2L × 2L meters and suppose that sensor posi-
tions {xk}K

k=1 are known.
The WSN is deployed to track the position

x(n) := [x1(n), x2(n)]T of a target, whose state model accounts
for x(n) and the velocity v(n) := [v1(n), v2(n)]T but not for the
acceleration that is modeled as a random quantity. Under these
assumptions, we obtain the state equation [22]

x(n) = x(n − 1) + Tsv(n − 1) + (T2
s /2)u(n)

v(n) = v(n − 1) + Tsu(n), (17)

where Ts is the sampling period and the random vector
u(n) ∈ R2 is zero-mean white Gaussian; i.e., p(u(n)) =
N (u(n); 0; σ 2

u I). The sensors gather information about their
distance to the target by measuring the received power of a 
pilot signal following the path-loss model yk(n) =
α log ‖x(n) − xk‖ + v(n) with α ≥ 2 a constant, ‖x(n) − xk‖
denoting the distance between the target and Sk, and v(n) the
observation noise with pdf p(v(n)) = N (v(n); 0; σ 2

v ).
Mimicking an extended (E)KF approach, we linearize this

observation model in a neighborhood of x̂(n|n − 1) to obtain an
approximate observation model that along with the state evolu-
tion in (17) is of the form (12). We can now use the SOI-KF to
track the target’s position x(n), which offers a version of EKF
with low communication cost. The results of simulating this
tracker (that we abbreviate as SOI-EKF) are depicted in Figure

[FIG10] Target tracking with EKF and SOI-EKF.
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10, where we see that the SOI-EKF succeeds in tracking the tar-
get with position errors less than 10 m. While this accuracy is
just a result of the specific experiment, the important point here
is that the clairvoyant EKF and the SOI-EKF yield almost identi-
cal performance even when the former relies on analog-ampli-
tude observations and the SOI-EKF on the transmission of a
single bit per sensor.

INFORMATION THEORETIC PERSPECTIVES
In this section, we study the WSN illustrated in Figure 1 by
approaching the source acquisition, data communication, and
final fusion processes from an information theoretic point of view.

As depicted in Figure 11, the source parameter of interest is
modeled by a discrete-time memoryless random process
{θ(t) : 1 ≤ t < ∞} . Sensor observations are denoted by
{Xk(t) : k = 1, 2, . . . , K}, and their joint conditional distribu-
tion (given the source θ(t)) is known. A general coding scheme
with block length n can be described as follows. First, sensor
observations Xn

k := {Xk(t) : 1 ≤ t ≤ n} are encoded in a distrib-
uted fashion ( fk denotes the encoder of the kth sensor). Then a
single decoder g decodes θn := {θ(t) : 1 ≤ t ≤ n} based on the
received information from the distributed encoders. In what fol-
lows, we will discuss two cases where the encoders are designed
under either rate or cost constraints.

SOURCE CODING UNDER RATE CONSTRAINTS
When rate constraints are imposed on encoded messages, we
obtain a source-coding problem in which the goal is to charac-
terize the rate-distortion region R(D). The latter consists of all
rate-tuples R = (R1, R2, . . . , RK) that allow for the reconstruc-
tion of the source θ within certain distortion level D, when the
sensor observations are encoded at a rate not exceeding Rk per
sensor k ∈ [1, K]. This is the so-called CEO problem that was
first introduced in [5] and subsequently studied in [9], [33], and
[46]. A natural source coding scheme can be described as fol-

lows. Each sensor encoder first quantizes its observation, these
quantized processes are then losslessly transmitted to the
decoder using the random binning scheme [11]. The decoder
uses these quantized processes to form its reproductions. This
leads to the Berger-Tung inner region [4], [45]. Except for inner
and outer bounds on R(D) derived in [4] and [45], and the
quadratic Gaussian case addressed in [33], the CEO problem
remains open to this date.

The R(D) region serves as a performance benchmark for
distributed estimation under bandwidth constraints. In the
Gaussian quadratic CEO problem, [33] derived an asymptotic
total rate distortion function of the form D ≈ σ 2/(2R�) when
both K and R� are large, where R� is the total rate and σ 2 is
the sensor noise variance. For the special case of 1 b per sensor
sample, the total communication rate R� = K, and thus the
best achievable MSE performance dictated by rate distortion
theory is no less than σ 2/(2K). Recall that the distributed esti-
mators achieve an asymptotic MSE of (πσ 2)/(2K) when the
threshold of local message can be taken close to θ . This MSE is
a factor π away from the performance limit predicted by the
rate-distortion function. Also, the universal estimators in
“Universal Approaches” exhibit MSE of W2/K that has the cor-
rect asymptotic behavior with respect to the network size K.
This implies that the simple distributed estimators all have the
optimal scaling behavior in terms of network size K. In contrast,
the information theoretic schemes suggested by [4], [33], and
[45] require complete knowledge of source/observation distribu-
tion, ions as well as long block lengths to achieve the optimal
MSE performance predicted by rate distortion.

In the inhomogeneous case where local sensor SNRs are not
identical, specifying the optimal rate allocation minimizing the
sum rate R� in the rate distortion region is also an interesting
problem. It is well-known that the optimal rate allocation point
that attains the sum rate distortion function is not unique and is
actually a polymatroid with L! vertices [9]. The optimal rate allo-
cation region can be found through optimal Gaussian test chan-
nels and is given in [9] for the case of scalar source and
observations. Vector sources and vector observations have been
studied in [30] and [41]. The optimal rate allocation strategy is
equivalent to searching for optimal covariance matrices in
AWGN test channels and can be interpreted as a distributed
Karhunen-Loève transform [19] problem. The rate allocation
problem with distributed Karhunen-Loève transform is noncon-
vex, but suboptimal coordinate descent algorithms for optimiz-
ing individual sensor local covariance matrix have been
proposed in [19] and [42]. Recently, [52] reformulated the origi-
nal problem in an equivalent convex form that is efficiently solv-
able by interior point methods [7]. A lower bound of the sum
rate distortion function of the Gaussian multiterminal source
coding has also been proposed in [50] by considering the joint
compression of correlated Gaussian sources under individual
distortion criteria.

Figure 12 plots three rate distortion curves: i) a lower
bound of the sum rate distortion function assuming full
cooperation among the encoders; ii) an upper bound of the

[FIG11] A coding scheme in a WSN with an FC.
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sum rate distortion function using the so-called EC (estima-
tion-first compression-second) scheme introduced in [42];
and iii) the optimal sum rate distortion function that is cal-
culated by solving the convex problem formulated in [52]
with the numerical MAXDET routine [47]. The detail of the
simulation setup is referred to [52].

ON THE OPTIMAL COST-DISTORTION TRADEOFF
When channels from sensors to the FC are noisy, we need to
introduce cost constraints on the transmitted symbols from
each individual sensor. Such constraints may include power
constraints as a special case. In this way, it is possible to cast dis-
tributed estimation as a source-channel communication prob-
lem. The fundamental objective of the latter is to determine the
optimal tradeoff between cost and distortion in an information
theoretic sense regardless of complexity and delay.

In several important cases, source coding and channel cod-
ing can be separated without performance loss. For example,
in a point-to-point link, source and channel coding can be
performed separately without performance degradation if the
source and channel are both discrete and memoryless [44,
Theorem 21]. This source-channel separation theorem is
quite appealing from a practical standpoint since it implies
that source coding can be performed without channel knowl-
edge and similarly for channel encoding. Unfortunately, the
separation theorem does not extend to general links [11,
Chapter 14]. An interesting counterexample can be found in
[12] for lossless transmission of correlated sources through
an interfering (nonorthogonal) multiple access channel. In
this case, separating source from channel coding is subopti-
mal (see also [20]).

However, for the sensor network in Figure 1, if the intersen-
sor interference is resolved by reservation-based orthogonal pro-
tocols (e.g., TDMA or FDMA) and local sensors have
noninterfering channels to the FC, it turns out that the optimal
tradeoff between cost and distortion can be achieved by separate
source and channel coding [49]. Proving the separation theorem
in this case entails a multiple-letter characterization of the rate-
distortion region. By combining this multiletter representation
of R(D) with a continuity property under orthogonal multiac-
cess, a cost distortion pair (�, D) is achievable if and only if

C(�) ∩ R(D) �= ∅,

where C(�) is the multiaccess channel capacity. This work
extends the results of [3] and [23] for the lossless transmission
of correlated sources from finite alphabets through an orthogo-
nal multiple access channel to the rate distortion case for the
WSN in Figure 1.

EXAMPLE (GAUSSIAN SENSOR NETWORKS)
For the special case of estimating a Gaussian source using
MSE as distortion measure, we can compare the power dis-
tortion region achieved by the separation principle with
those achieved by joint source-channel coding strategies.

In particular, it is shown in [8] that when each sensor has a
fixed power budget and sensors are accessing the channel
synchronously, the distortion achieved by optimal separate
source and channel coding decreases at a rate 1/ log K ,
while for a simple “analog” uncoded transmissions, the
MSE decreases like 1/K , which is much faster. However,
since the separation theorem holds with orthogonal access,
the optimal tradeoff between total sensor power and overall

[FIG12] The optimal sum rate distortion function compared to an
EC upper bound and a full-encoder-cooperation lower bound.
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distortion is achieved by
separate source and chan-
nel coding. As a result, the
“digital” strategy outper-
forms the “analog” uncod-
ed transmission strategy.
This result should be contrasted to the case of nonorthogo-
nal multiple access for which the “analog” uncoded trans-
mission strategy is known to significantly outperform the
digital approach of separate source and channel coding. An
example of the achieved power distortion regions for the
separation principle and uncoded analog transmission is
depicted in Figure 13.

CLOSING REMARKS
This article provided an overview of distributed estimation-
compression problems encountered with WSNs. A general for-
mulation of distributed compression-estimation under rate
constraints was introduced, pertinent signal processing algo-
rithms were developed, and emerging tradeoffs were delineat-
ed from an information theoretic perspective. Specifically, we
designed rate-constrained distributed estimators for various
signal models with variable knowledge of the underlying data
distributions. We proved theoretically, and corroborated with
examples, that when the noise distributions are either com-
pletely known, partially known or completely unknown, dis-
tributed estimation is possible with minimal bandwidth
requirements which can achieve the same order of MSE per-
formance as the corresponding centralized clairvoyant esti-
mators. A distributed state estimation problem in the context
of WSN has also been considered when there is prior infor-
mation about the parameter of interest using the sign of
innovations. For WSNs operating in inhomogeneous environ-
ments, we presented resource allocation and sensor schedul-
ing algorithms that can result in considerable cost savings
and MSE improvement.

We have not considered the interaction of routing with
our distributed compression-estimation framework. This
and further cross-layer optimized protocols accounting for
all layers in the stack is worth further investigation and is
expected to improve the overall design of distributed estima-
tors using WSNs.
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